WO2012085264A2 - Installation à récupération de chaleur perdue - Google Patents

Installation à récupération de chaleur perdue Download PDF

Info

Publication number
WO2012085264A2
WO2012085264A2 PCT/EP2011/073920 EP2011073920W WO2012085264A2 WO 2012085264 A2 WO2012085264 A2 WO 2012085264A2 EP 2011073920 W EP2011073920 W EP 2011073920W WO 2012085264 A2 WO2012085264 A2 WO 2012085264A2
Authority
WO
WIPO (PCT)
Prior art keywords
waste heat
orc
heat recovery
generator
recovery system
Prior art date
Application number
PCT/EP2011/073920
Other languages
German (de)
English (en)
Other versions
WO2012085264A3 (fr
Inventor
Stefan Müller
Konrad Herrmann
Anayet Temelci-Andon
Harald Köhler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201180062001.3A priority Critical patent/CN103620167A/zh
Priority to RU2013134398/06A priority patent/RU2013134398A/ru
Priority to EP11802103.9A priority patent/EP2655813B1/fr
Priority to US13/996,220 priority patent/US20140013749A1/en
Publication of WO2012085264A2 publication Critical patent/WO2012085264A2/fr
Publication of WO2012085264A3 publication Critical patent/WO2012085264A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • Waste heat utilization system The invention relates to a waste heat utilization system according to the preamble of claim 1.
  • An ORC Organic Rankine Cycle
  • a working medium passes through various thermodynamic states in order to be finally returned to the liquid initial state.
  • the working medium is brought to a higher pressure level with a pump. Thereafter, the working medium is preheated to the evaporation temperature and then evaporated. It is thus a steam process in which instead of water, an organic medium is evaporated.
  • the resulting steam drives an expansion machine, such as a turbine, a piston or screw motor, which in turn is coupled to an electrical generator to generate power.
  • the process medium enters a condenser and is cooled down there with heat being released. Since water evaporates at 100 ° C under atmospheric conditions, heat at a low temperature level, such as industrial waste heat or geothermal heat, often can not be used to generate electricity. However, using organic media with lower boiling temperatures, low-temperature steam can be produced.
  • ORC plants for example, in the utilization of biomass in connection with combined heat and power, especially at relatively low power, so if the conventional biomass combustion technology seems relatively expensive.
  • Biomass plants often have a fermenter for biogas production, which usually has to be heated.
  • Combined heat and power plants as plants for combined heat and power are well known. These are decentralized, usually powered by internal combustion engines power generation systems with simultaneous waste heat recovery. The discharged during the combustion of the cooling media heat is used as completely as possible for the heating of suitable objects.
  • the engine manufacturers prescribe a cooling water inlet temperature of only approx. 40 to 50 ° C for the mixture cooling so that the mixture can be sufficiently cooled. Since this temperature level is relatively low, the heat extracted from the fuel gas mixture in the previously known combined heat and power plants is released to the environment, for example with a table cooler.
  • DE 10 2005 048 795 B3 also discloses the preheating of the working medium in the ORC in two steps in a heating device, namely that the process medium in the ORC is connected via two heat exchangers arranged downstream of a feed pump is heated, wherein the first heat exchanger is provided after the feed pump as a first stage for coupling low-temperature heat and the subsequent heat exchanger as a second stage for coupling high-temperature heat.
  • the mixture cooling of the internal combustion engine is connected via a circuit to the first heat exchanger after the feed pump, wherein the heat from the cooling of the fuel gas mixture drawn in by the internal combustion engine serves to preheat the process medium in ORC and is coupled in as a low-temperature heat in the first heat exchanger.
  • a second heating circuit draws heat from engine cooling water and exhaust gas of the internal combustion engine and is connected to the second heat exchanger after the feed pump, the heat from the cooling circuit and the exhaust gas for overheating and evaporation of the process medium in ORC and coupled as high temperature heat in the second heat exchanger after the feed pump becomes.
  • the invention is therefore based on the object to optimize an existing from a waste heat source downstream ORC waste heat recovery system in terms of design and safe performance.
  • the waste heat recovery system consists inter alia of an expansion machine for steam expansion in ORC, which has a magnetic bearing with an associated control device and a power supply via a DC intermediate circuit of a generator-frequency converter.
  • the waste heat recovery system is characterized by a unit of expander, generator and frequency converter cooled with the refrigerant from the ORC circuit.
  • cool, liquid refrigerant is removed after the feed pump and supplied for cooling the unit from the expansion machine, generator and frequency converter.
  • the cool, liquid refrigerant is taken after the feed pump and fed directly to the expansion machine for storage cooling.
  • heated refrigerant exiting from the unit of expansion machine, generator and frequency converter and / or the storage area of the expansion machine is supplied to the condenser on the inlet side.
  • the refrigerant used for cooling of about 15 ° C to 50 ° C on the inlet side and about 30 ° C to 80 ° C on the outlet side, the respective temperatures of the current operating condition to be cooled components and / or assemblies and the entire waste heat recovery system.
  • a temperature monitoring device associated with a higher-level control device is provided with temperature measuring points in the components and / or assemblies to be cooled. This compares actual temperature measured values with predefinable setpoint values, evaluates them and / or regulates accordingly optimized refrigerant flow rate.
  • separate control loops with separate cooling channels or corresponding lines are preferably provided for the components to be cooled and / or assemblies. These individual, each to be cooled components and / or assemblies associated control circuits, valves, preferably solenoid valves, to control the refrigerant flow rate to optimally meet the respective local temperature situation.
  • Off-heat sources can be, for example, combined heat and power plants, industrial plants or boiler plants.
  • the waste heat recovery system in particular the unit of expansion machine, generator and frequency converter, is optimally and si tuationsNF cooled with the inventive measures.
  • this is a prerequisite for safe, robust plant operation, but on the other hand also for effective and gentle operation of the individual components, all of which have special requirements with regard to cooling.
  • This not only applies to the stationary operation of the waste heat recovery system, but also the modulating of the system according to it waste heat attack and the startup and shutdown. In particular, these states pose a challenge to the refrigeration system and, in accordance with the invention, provide safe control.
  • the drawing illustrates an embodiment of the invention and shows in a single figure the schematic structure of a waste heat recovery system, consisting of one of these downstream ORC.
  • the essential components for the ORC are an ORC circuit 1, a feed pump 2, an evaporator 3, a steam expansion expansion machine 4, which is coupled to a generator 5, a condenser 6 for re-cooling via a heat sink 7, and the heat exchangers 9, 10 for preheating the working medium in ORC circuit 1.
  • the two heat exchangers 8, 9 are connected downstream of the feed pump 2 in series.
  • the first heat exchanger 8 after the feed pump 2 serves as a first stage for coupling low-temperature heat and the subsequent heat exchanger 9 as a second stage for coupling high-temperature heat from a waste heat source 10th
  • a second heating circuit 1 1 is connected to its flow area with the evaporator 3 of the ORC, because the temperature level is initially high enough for its direct heating. Thereafter, the second heating circuit 1 1 opens the return side in the second heat exchanger 9 and there are still residual heat from the ORC.
  • a liquid refrigerant partial stream 12 for cooling the expansion machine 4 is branched off and initially passed through the generator 5. Thereafter, the cooling medium flows through the housing of the expansion machine 4, there in the starting phase for preheating initially for heat and ensures there in normal operation for sufficient heat dissipation. Only a simplified, schematic cable routing without the necessary branches to individual components or subassemblies, subcircuits, temperature measuring points, valves and control devices is distinguished.
  • a steam valve 13 is opened at the inlet of the steam expansion expansion machine 4 in the ORC and during the rest Opening the steam valve 13 is carried out a further ramping up the speed, so that the generator 5 passes from the engine operation in the normal generator operation.
  • a controlled bypass 14 with at least one throttle valve 15 is provided around the expansion machine 4.
  • This bypass 14 is initially open in the starting phase, ie at a still relatively low temperature of the working medium.
  • the working medium is passed around the expansion machine 4 around.
  • the throttle valve 15 in the bypass 14 is closed and the steam engine 13 connected upstream of the expansion engine 4 is opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

L'invention concerne une installation à récupération de chaleur perdue pour une source de chaleur perdue (11), comprenant un dispositif à cycle de Rankine à caloporteur organique (ORC) monté en aval de cette dernière, la source de chaleur perdue (11) étant reliée au dispositif de chauffage du dispositif à ORC, ainsi qu'à une machine à expansion (4) qui est accouplée à un générateur (5) et est destinée à l'expansion de vapeur dans le dispositif à ORC. La machine à expansion présente un palier magnétique doté d'un dispositif de régulation associé et d'une alimentation électrique par l'intermédiaire d'une liaison intermédiaire cc d'un convertisseur de fréquence d'un générateur. Le but de l'invention est d'optimiser, en termes de construction et de comportement en service plus sûr, une installation à récupération de chaleur, constituée d'un dispositif à ORC implanté en aval d'une source de chaleur.
PCT/EP2011/073920 2010-12-24 2011-12-23 Installation à récupération de chaleur perdue WO2012085264A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180062001.3A CN103620167A (zh) 2010-12-24 2011-12-23 废热利用设备
RU2013134398/06A RU2013134398A (ru) 2010-12-24 2011-12-23 Рекуперационная установка
EP11802103.9A EP2655813B1 (fr) 2010-12-24 2011-12-23 Installation à récupération de chaleur perdue
US13/996,220 US20140013749A1 (en) 2010-12-24 2011-12-23 Waste-heat recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010056299.8 2010-12-24
DE102010056299A DE102010056299A1 (de) 2010-12-24 2010-12-24 Abwärmenutzungsanlage

Publications (2)

Publication Number Publication Date
WO2012085264A2 true WO2012085264A2 (fr) 2012-06-28
WO2012085264A3 WO2012085264A3 (fr) 2013-12-19

Family

ID=45418691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/073920 WO2012085264A2 (fr) 2010-12-24 2011-12-23 Installation à récupération de chaleur perdue

Country Status (6)

Country Link
US (1) US20140013749A1 (fr)
EP (1) EP2655813B1 (fr)
CN (1) CN103620167A (fr)
DE (1) DE102010056299A1 (fr)
RU (1) RU2013134398A (fr)
WO (1) WO2012085264A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202487A1 (de) * 2014-02-12 2015-08-13 Robert Bosch Gmbh Steuergerät, Wärmekopplungskreislauf sowie Verfahren zum Betrieb solch eines Wärmekopplungskreislaufs
DE202017107002U1 (de) * 2017-11-18 2019-02-19 Bdr Thermea Group B.V. Blockheizkraftwerk
CN109337798A (zh) * 2018-12-07 2019-02-15 黑龙江省能源环境研究院 沼液余热回收利用系统及工作方法
CN109401954A (zh) * 2018-12-07 2019-03-01 黑龙江省能源环境研究院 沼气发酵反应器外部增温换热系统及工作方法
US11015846B2 (en) 2018-12-20 2021-05-25 AG Equipment Company Heat of compression energy recovery system using a high speed generator converter system
CN110173313A (zh) * 2019-05-28 2019-08-27 上海慕帆动力科技有限公司 应用于发动机余热回收的高参数orc透平发电设备及orc装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007771A1 (en) * 2003-08-27 2007-01-11 Ttl Dynamics Ltd. Energy recovery system
US20080252077A1 (en) * 2007-04-16 2008-10-16 Calnetix, Inc. Generating energy from fluid expansion
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
WO2011146388A1 (fr) * 2010-05-19 2011-11-24 General Electric International, Inc. Système générateur pour un cycle de rankine organique
WO2011149916A1 (fr) * 2010-05-28 2011-12-01 General Electric International, Inc Production d'énergie à partir de la dilatation d'un fluide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035557A (en) * 1959-07-23 1962-05-22 Sulzer Ag Method of cooling resuperheaters of a steam plant
FR2449780A1 (fr) 1979-02-22 1980-09-19 Semt Procede et dispositif de recuperation d'energie thermique dans un moteur a combustion interne suralimente
US4901531A (en) 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
ES2083627T3 (es) * 1991-07-17 1996-04-16 Siemens Ag Procedimiento para la operacion de una instalacion de turbina de gas y vapor e instalacion para la realizacion del procedimiento.
NZ248729A (en) * 1992-10-02 1996-03-26 Ormat Ind Ltd High pressure geothermal power plant with secondary low pressure turbogenerator
DE19541521A1 (de) 1995-11-08 1997-07-31 Schmeink & Cofreth En Manageme Steigerung des elektrischen Wirkungsgrades bei der Verstromung von Sondergasen
JP4427364B2 (ja) * 2004-03-19 2010-03-03 株式会社荏原製作所 発電装置
DE102005048795B3 (de) 2005-10-12 2006-12-28 Köhler & Ziegler Anlagentechnik GmbH Kraft-Wärme-Kopplungsanlage
EP3000994B1 (fr) * 2006-02-02 2019-01-02 Duerr Cyplan Ltd. Turbo-generateur a cycle organique de rankine
US7841306B2 (en) * 2007-04-16 2010-11-30 Calnetix Power Solutions, Inc. Recovering heat energy
US8839622B2 (en) * 2007-04-16 2014-09-23 General Electric Company Fluid flow in a fluid expansion system
DE202007016668U1 (de) * 2007-12-04 2008-02-28 GMK-Gesellschaft für Motoren und Kraftanlagen mbH Anlage zur Stromerzeugung nach dem ORC-Prinzip
CN101806232A (zh) * 2010-03-17 2010-08-18 昆明理工大学 多级蒸发有机朗肯循环余热回收发电系统及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007771A1 (en) * 2003-08-27 2007-01-11 Ttl Dynamics Ltd. Energy recovery system
US20080252077A1 (en) * 2007-04-16 2008-10-16 Calnetix, Inc. Generating energy from fluid expansion
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
WO2011146388A1 (fr) * 2010-05-19 2011-11-24 General Electric International, Inc. Système générateur pour un cycle de rankine organique
WO2011149916A1 (fr) * 2010-05-28 2011-12-01 General Electric International, Inc Production d'énergie à partir de la dilatation d'un fluide

Also Published As

Publication number Publication date
EP2655813B1 (fr) 2017-04-19
US20140013749A1 (en) 2014-01-16
EP2655813A2 (fr) 2013-10-30
CN103620167A (zh) 2014-03-05
DE102010056299A1 (de) 2012-06-28
RU2013134398A (ru) 2015-01-27
WO2012085264A3 (fr) 2013-12-19

Similar Documents

Publication Publication Date Title
EP1816318B1 (fr) Installation de cogénération avec une combinaison d'un moteur à combustion interne et d'un cycle de Rankine utilisant un fluide organique (ORC)
EP2655813B1 (fr) Installation à récupération de chaleur perdue
DE112010003230B4 (de) Energierückgewinnungssystem, das einen organischen Rankine-Kreisprozess verwendet
DE102010042792A1 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
DE102011005072A1 (de) Verbrennungsmotor
DE112011102951B4 (de) Abgasturbolader eines Verbrennungsmotors
DE102010003906A1 (de) Verbrennungsmotor
DE202007002602U1 (de) ORC-System für Verbrennungsmotoren
EP2683919B1 (fr) Installation à récupération de chaleur perdue
EP2288791B1 (fr) Utilisation d'un dispositif de turbine à gaz et à vapeur au moyen d'un convertisseur de fréquence
AT510317A1 (de) Elektrisches kraftwerk
EP2606214A1 (fr) Centrale stationnaire, notamment centrale au gaz pour la production de courant électrique
DE102007008609A1 (de) ORC-System für Verbrennungsmotoren
WO2012085093A1 (fr) Installation à récupération de chaleur perdue
DE10055202A1 (de) Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
WO2012085262A1 (fr) Installation à récupération de chaleur perdue
WO2007009874A1 (fr) Installation a turbine a gaz et a vapeur, ainsi que procede pour la faire fonctionner
DE202011101243U1 (de) Abwärmenutzungsanlage
EP2733339B1 (fr) Dispositif d'utilisation de la chaleur rejetée d'un moteur à combustion interne
DE10221157A1 (de) Anordnung und Verfahren zur Leistungserhöhung eines Verbrennungsmotors
DE102011102803B4 (de) Abwärmenutzungsanlage
CH705180B1 (de) Verfahren zur Effizienzsteigerung eines Antriebs sowie Effizienzsteigerungsvorrichtung.
EP2443321A2 (fr) Procédé et dispositif de production de courant à partir de chaleur
DE10307606A1 (de) Krafterzeugungsanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802103

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011802103

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011802103

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013134398

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13996220

Country of ref document: US