WO2012083608A1 - 终端及其无线充电方法、系统 - Google Patents

终端及其无线充电方法、系统 Download PDF

Info

Publication number
WO2012083608A1
WO2012083608A1 PCT/CN2011/071393 CN2011071393W WO2012083608A1 WO 2012083608 A1 WO2012083608 A1 WO 2012083608A1 CN 2011071393 W CN2011071393 W CN 2011071393W WO 2012083608 A1 WO2012083608 A1 WO 2012083608A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wireless
charging
circuit
pulse
Prior art date
Application number
PCT/CN2011/071393
Other languages
English (en)
French (fr)
Inventor
陈小龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012083608A1 publication Critical patent/WO2012083608A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/15Circuit arrangements or systems for wireless supply or distribution of electric power using ultrasonic waves

Definitions

  • the present invention relates to the field of power transmission technologies, and in particular, to a terminal and a wireless charging method and system thereof. Background technique
  • the portability of the terminal not only requires the terminal itself to be lightweight and easy to carry, but also requires the terminal to maintain a long working state. This can be ensured by increasing the endurance of the mobile terminal, as well as by charging the mobile terminal.
  • cable charging requires that the power supply and the terminal not be too far apart.
  • cable charging limits the user's mobile use of the terminal. For example, while charging, the user cannot move the terminal at will.
  • the present invention provides a terminal and a wireless charging method and system therefor.
  • the present invention provides a wireless charging system, where the system includes a wireless power supply device and a terminal;
  • the wireless power supply device is configured to generate a wireless harmonic signal, and send the wireless harmonic signal to the terminal;
  • the terminal is configured to receive the harmonic signal and convert it into an electrical signal; and charge the rechargeable battery through a charging circuit.
  • the wireless power supply device includes a pulse generation circuit, a pulse modulation circuit, and a transmitting probe;
  • the pulse generating circuit generates a high frequency pulse signal
  • the pulse modulation circuit modulates the high frequency pulse signal
  • the transmitting probe converts the modulated pulse signal into a wireless harmonic signal and transmits the same;
  • the terminal includes a receiving module, a charging circuit, and a rechargeable battery;
  • the receiving module is configured to receive a wireless harmonic signal emitted by the transmitting probe and convert it into an electrical signal
  • the rechargeable battery is charged by the charging circuit.
  • the wireless power supply device further includes a pulse amplifying circuit that performs voltage and power amplification on the modulated pulse signal while maintaining the frequency and modulation type of the signal.
  • the terminal further includes a power management circuit, and the power management circuit collects the power information of the rechargeable battery in real time.
  • the power management circuit starts the charging process to keep the wireless charging circuit In the on state, the electrical signal charges the battery through the wireless charging path; when the battery power is higher than the charging threshold, the power management circuit turns off the wireless charging circuit to stop charging the battery.
  • the receiving module includes a receiving probe, a piezoelectric crystal, a demodulation signal generator, a digital demodulator, and a low pass filter;
  • the receiving probe receives the ultrasonic signal and transmits it to the piezoelectric crystal
  • the piezoelectric crystal converts the received harmonic signal into an electrical signal by using a piezoelectric effect;
  • the demodulation signal generator emits a demodulated signal according to the characteristics of the amplitude modulation and outputs the signal to the digital demodulator;
  • the digital demodulator digitally demodulates the ultrasonic electrical signal by using the demodulated signal, and outputs a pulse electrical signal;
  • the invention provides a wireless charging method, the method comprising:
  • the wireless power supply device generates a wireless harmonic signal and transmits the wireless harmonic signal to the terminal; the terminal receives the harmonic signal and converts it into an electrical signal; and charges the rechargeable battery of the terminal through the charging circuit.
  • the wireless power supply device includes a pulse generation circuit, a pulse modulation circuit, and a transmitting probe;
  • the pulse generating circuit generates a high frequency pulse signal
  • the pulse modulation circuit modulates the high frequency pulse signal
  • the transmitting probe converts the modulated pulse signal into a wireless harmonic signal for transmission.
  • the wireless power supply device further includes a pulse amplifying circuit that performs voltage and power amplification on the modulated pulse signal while maintaining the frequency and modulation type of the signal.
  • the terminal includes a receiving module, and the receiving module includes a receiving probe, a piezoelectric crystal, a demodulation signal generator, a digital demodulator, and a low-pass filter;
  • the receiving probe receives the ultrasonic signal and transmits it to the piezoelectric crystal
  • the piezoelectric crystal converts the received harmonic signal into an electrical signal by using a piezoelectric effect; the demodulated signal generator emits a demodulated signal according to the characteristics of the amplitude modulation and outputs the signal to the digital demodulator;
  • the digital demodulator digitally demodulates the ultrasonic electrical signal by using the demodulated signal, and outputs the pulse electrical signal;
  • the terminal further includes a power management circuit, and the power management circuit collects the power information of the rechargeable battery in real time.
  • the power management circuit starts the charging process to keep the wireless charging circuit In the on state, the electrical signal charges the battery through the wireless charging path; when the battery power is higher than the charging threshold, the power management circuit turns off the wireless charging circuit to stop charging the battery.
  • the terminal includes a receiving module, a charging circuit and a rechargeable battery; the receiving module is configured to receive a wireless harmonic signal transmitted by the wireless power supply device and convert it into an electrical signal; A circuit charges the rechargeable battery.
  • the receiving module includes a receiving probe, a piezoelectric crystal, a demodulation signal generator, a digital demodulator, and a low pass filter;
  • the receiving probe receives the ultrasonic signal and transmits it to the piezoelectric crystal
  • the piezoelectric crystal converts the received harmonic signal into an electrical signal by using a piezoelectric effect; the demodulated signal generator emits a demodulated signal according to the characteristics of the amplitude modulation and outputs the signal to the digital demodulator;
  • the digital demodulator digitally demodulates the ultrasonic electrical signal by using the demodulated signal, and outputs a pulse electrical signal;
  • the terminal further includes a power management circuit, and the power management circuit collects the power information of the rechargeable battery in real time.
  • the power management circuit starts the charging process to keep the wireless charging circuit In the on state, the electrical signal charges the battery through the wireless charging path; when the battery power is higher than the charging threshold, the power management circuit turns off the wireless charging circuit to stop charging the battery.
  • the invention has the beneficial effects that: compared with the prior art, the mobile terminal realizes charging the battery by using harmonics in a wireless form, thereby overcoming the cumbersome and inconvenient charging of the cable.
  • FIG. 1 is a schematic diagram of a system for wireless charging according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the principle of an exemplary wireless power supply device according to the present invention.
  • FIG. 3 is a schematic diagram showing the principle of a pulse modulation circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the principle of an ultrasonic receiving module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the working principle of an ultrasonic exclusive charging circuit according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for implementing wireless charging according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a specific process of a wireless charging method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a workflow of a mobile terminal in a wireless charging process according to an embodiment of the present invention. detailed description
  • the main idea of the present invention is: a wireless power supply device generates a wireless harmonic signal, and transmits the wireless harmonic signal to a terminal; a receiving module of the terminal receives the harmonic signal and converts it into an electrical signal; The rechargeable battery of the terminal is charged.
  • the wireless charging system of the present invention includes a terminal and an external wireless power supply device; wherein the wireless power supply device is configured to generate a wireless harmonic signal and transmit the wireless harmonic signal to the terminal;
  • the terminal is configured to receive the harmonic signal and convert it into an electrical signal; and charge the rechargeable battery through a charging circuit;
  • the wireless power supply device includes a pulse generation circuit, a pulse modulation circuit, and a transmitting probe;
  • the pulse generating circuit generates a high frequency pulse signal
  • the pulse modulation circuit modulates the high frequency pulse signal
  • the transmitting probe converts the modulated pulse signal into a wireless harmonic signal and transmits the same;
  • the terminal includes a receiving module, a charging circuit, and a rechargeable battery; wherein
  • the receiving module is configured to receive a wireless harmonic signal emitted by the transmitting probe and convert it into an electrical signal;
  • the rechargeable battery is charged by the charging circuit.
  • the terminal is a mobile terminal, and the wireless power supply device generates an ultrasonic signal
  • the mobile terminal includes a central processing unit 101, a receiving module 102, a charging circuit 103, a power management circuit 104, a rechargeable battery 105, a radio frequency transceiver module 107, a keyboard 108, and a display screen 109 built in the mobile terminal.
  • the terminal may be a non-mobile terminal, and may not have a radio frequency transceiver module 107, a keyboard 108, and a display screen 109.
  • the wireless power supply device 106 is connected to the receiving module 102 by an ultrasonic signal in a wireless form, and other circuits built in the mobile terminal are connected through internal lines.
  • FIG. 2 is a schematic diagram of the principle of the wireless power supply device in the embodiment.
  • the wireless power supply device 106 includes a pulse generation circuit 201, a pulse modulation circuit 202, a pulse amplification circuit 203, and a transmission probe 204.
  • the wireless power supply device 106 is connected to the external power source 205 and is powered by the external power source 205.
  • the entire wireless power supply unit 106 transmits electrical energy to the charged mobile terminal via the ultrasonic signal, and the external power supply 205 provides the wireless power supply unit 106 with the power required to transmit the ultrasonic signal.
  • the pulse generating circuit 201 internally uses a voltage controlled quartz crystal oscillator as a resonance source. Under the control voltage, this resonant source resonates to produce a high-frequency pulse signal with a frequency of 40KHz and an amplitude of about 3 volts.
  • the pulse modulation circuit 202 modulates the high frequency pulse signal by means of amplitude modulation. Please refer to FIG. 3. As shown in FIG. 3, it is a schematic diagram of the principle of the pulse modulation circuit in this embodiment.
  • the pulse modulation circuit 202 internally generates an amplitude modulation signal, and digitally modulates the signal with a periodic pulse signal generated by the pulse generation circuit 201 to generate a modulated signal. Modulation It satisfies the requirements of the ultrasonic transmitting probe for the electrical characteristics of the signal, and at the same time reduces the attenuation of the ultrasonic signal when it propagates in the air, and increases the energy carried by the ultrasonic signal.
  • the pulse amplifying circuit 203 amplifies the modulated pulse signal by voltage and power to amplify the original 3 volt pulse signal to about 40 volts while maintaining the frequency and modulation type of the signal.
  • the amplified electrical signal is input to the ultrasonic transmitting probe 204.
  • the probe 204 is emitted, and a ceramic piezoelectric crystal is used as a transducer inside. It converts the modulated 40KHz pulse signal into a vibration wave by the inverse piezoelectric effect, and radiates it in the form of ultrasonic waves, thereby realizing the emission of the ultrasonic wave.
  • the transmitted ultrasonic signal carries a certain amount of electromagnetic energy and can provide electrical energy to the wireless charging terminal.
  • FIG. 4 is a schematic diagram of the receiving module in this embodiment.
  • the receiving module 102 is configured to receive the ultrasonic signal and convert it into an electrical signal, and includes a receiving probe 401, a piezoelectric crystal 402, a demodulation signal generator 403, a digital demodulator 404, and a low pass filter 405. .
  • the receiving probe 401 receives the ultrasonic signal and transmits it to the piezoelectric crystal 402.
  • the piezoelectric crystal 402 is an electroacoustic transducer that converts the received ultrasonic signal into an electrical signal using a piezoelectric effect.
  • the demodulated signal generator 403 issues a demodulated signal based on the characteristics of the amplitude modulation and outputs it to the digital demodulator 404.
  • the digital demodulator 404 digitally demodulates the electrical signal using a demodulated signal to output a pulsed electrical signal of 40 kHz.
  • the low pass filter 405 low-pass filters the 40 KHz pulse electrical signal to generate a DC signal.
  • FIG. 5 is a schematic diagram of the working principle of the charging circuit according to the embodiment of the present invention.
  • the charging circuit 103 is configured to collect an electrical signal converted by the ultrasonic signal and store it in the rechargeable battery 105, which includes a charging path control circuit 501 and a wireless charging path 502.
  • the charging path control circuit 501 controls the on/off of the wireless charging path 502 in accordance with an instruction from the power management circuit 104.
  • the wireless charging path 502 is composed of a set of MOS tubes and energy storage elements, through which electrical signals are introduced and stored in the energy storage elements to be converted into electric quantities; and under the control of the charging path control circuit 501, the mobile terminal can be charged.
  • the battery is charged.
  • the power management circuit 104 collects the power information of the rechargeable battery 105 in real time. When the battery power is lower than the charging threshold, the power management circuit 104 starts the charging process to keep the wireless charging path 502 in an on state, and the ultrasonically converted electrical signal charges the battery through the wireless charging path 502; when the battery is higher than the charging At a wide value, the power management circuit 104 turns off the wireless charging path 502 and stops charging the battery.
  • the present invention further provides a terminal, where the terminal includes a receiving module, a charging circuit, and a rechargeable battery;
  • the receiving module is configured to receive a wireless harmonic signal transmitted by the wireless power supply device and convert it into an electrical signal; and charge the rechargeable battery by the charging circuit;
  • the receiving module includes a receiving probe, a piezoelectric crystal, a demodulation signal generator, a digital demodulator, and a low pass filter;
  • the receiving probe receives the harmonic signal and transmits it to the piezoelectric crystal
  • the piezoelectric crystal converts the received harmonic signal into an electrical signal by using a piezoelectric effect; the demodulated signal generator emits a demodulated signal according to the characteristics of the amplitude modulation and outputs the signal to the digital demodulator;
  • the digital demodulator digitally demodulates the ultrasonic electrical signal using the demodulated signal to output a pulsed electrical signal.
  • the terminal includes a power management circuit, and the power management circuit collects the power information of the rechargeable battery in real time, and when the battery power is lower than the charging threshold, the power management circuit starts.
  • the charging program keeps the wireless charging circuit in a conducting state, and the electrical signal charges the battery through the wireless charging path; when the battery power is higher than the charging threshold, the power management circuit turns off the wireless charging circuit to stop charging the battery.
  • the present invention also implements a wireless charging method. As shown in FIG. 6, the method includes the following steps:
  • Step 601 The wireless power supply device generates a wireless harmonic signal, and sends the wireless harmonic signal to the terminal.
  • the wireless power supply device includes a pulse generating circuit, a pulse modulation circuit, and a transmitting probe;
  • the pulse generating circuit generates a high frequency pulse signal
  • the pulse modulation circuit modulates the high frequency pulse signal
  • the transmitting probe converts the modulated pulse signal into a wireless harmonic signal and transmits it.
  • the wireless power supply device further includes a pulse amplifying circuit, and the pulse amplifying circuit performs voltage and power amplification on the modulated pulse signal. At the same time, the frequency and modulation type of the signal are kept unchanged.
  • Step 602 The terminal receives the harmonic signal and converts it into an electrical signal; charging the rechargeable battery of the terminal through the charging circuit;
  • the terminal includes a receiving module, and the receiving module includes a receiving probe, a piezoelectric crystal, a demodulation signal generator, a digital demodulator, and a low-pass filter;
  • the receiving probe receives the harmonic signal and transmits it to the piezoelectric crystal
  • the piezoelectric crystal converts the received harmonic signal into an electrical signal by using a piezoelectric effect; the demodulated signal generator emits a demodulated signal according to the characteristics of the amplitude modulation and outputs the signal to the digital demodulator;
  • the digital demodulator digitally demodulates the ultrasonic electrical signal by using the demodulated signal, and outputs the pulse electrical signal;
  • the terminal includes a power management circuit, and the power management circuit collects the power information of the rechargeable battery in real time.
  • the power management circuit starts the charging process, so that the wireless charging circuit is kept in the guide.
  • the electrical signal charges the battery through the wireless charging path; when the battery power is higher than the charging threshold, the power management circuit turns off the wireless charging circuit to stop charging the battery.
  • FIG. 7 is a schematic flowchart of a wireless charging method according to an embodiment of the present invention, which includes the following steps:
  • the user activates an external wireless power supply device
  • the wireless power supply device begins to reverse the piezoelectric effect
  • the piezoelectric crystal inside the wireless power supply device begins to have an inverse piezoelectric effect.
  • the piezoelectric crystal generates a mechanical vibration wave of 40 KHz
  • the receiving module receives the ultrasonic signal
  • the piezoelectric crystal built in the receiving module converts the ultrasonic signal into an electrical signal by a piezoelectric effect
  • the receiving module converts the ultrasonic signal into an electrical signal by a piezoelectric effect.
  • the receiving module demodulates and filters the electrical signal to generate a DC signal that can be used for charging;
  • the power management circuit turns on the wireless charging path
  • the DC signal charges the battery through the wireless charging path.
  • FIG. 8 is a schematic diagram of a working process of a mobile terminal in a wireless charging process according to an embodiment of the present invention, which includes the following steps:
  • 801 When the power of the mobile terminal is low, the user starts the external wireless power supply device; 802: The receiving module built in the mobile terminal receives the ultrasonic signal;
  • step 805 detecting whether the rechargeable battery is full, if not, then proceeds to step 804 to continue charging, if the battery is full, then proceeds to step 806;
  • the power transmission is performed by using a wireless method of ultrasonic waves.
  • power transmission may be performed by using radio frequency, acoustic wave, infrasound wave, etc.
  • the wireless power supply device generates a radio frequency signal, an acoustic wave signal, and an infrasound wave.
  • Wireless harmonic signals such as signals.
  • the mobile terminal determines the power of the rechargeable battery. If the battery is lower than the charging threshold, the wireless charging path is turned on to start charging the battery. While charging, the mobile terminal monitors the battery power in real time. When the battery is higher than the charging threshold, that is, when the battery is full, the wireless charging path is turned off, and the charging of the battery is stopped, thereby completing a wireless charging process.
  • the technical solution of the present invention realizes that the mobile terminal uses the wireless form of the harmonic to charge the battery, which overcomes the cumbersome and inconvenient charging of the cable.

Description

终端及其无线充电方法、 系统 技术领域
本发明涉及电力传输技术领域, 尤其涉及终端及其无线充电方法、 系 统。 背景技术
终端, 特别是移动终端的便携性, 不但要求终端本身轻便小巧易于携 带, 而且要求终端能够保持较长时间的工作状态。 这可以通过提高移动终 端的续航能力来保证, 同时也可以通过对移动终端充电来保障。
在市场上流行的移动终端主要釆用线缆的充电方式。 线缆方式充电有 很多不方便之处:
第一, 由于终端的各种信号线、 电源线等线缆太多, 导致釆用线缆方 式充电比较繁瑣。
第二, 线缆充电要求电源和终端不能距离太远。
第三, 线缆充电限制用户对终端的移动使用, 比如正在充电中, 用户 不能随意移动终端。
第四, 各种厂家的充电器接口不一致, 甚至同一厂家不同型号的移动 终端, 使用的接口也不一致。 从而限制了用户的充电。
从上面几点可以看出, 现有的线缆充电方式有很多弊端。 发明内容
为实现上述目的, 本发明提出一种终端及其无线充电方法、 系统。 本发明提供的一种无线充电系统, 所述系统包括无线供电装置和终端; 其中, 所述无线供电装置, 用于产生无线谐波信号, 并发送所述无线谐波信 号到终端;
所述终端, 用于接收所述谐波信号, 并将其转换为电信号; 通过充电 电路对可充电电池进行充电。
上述方案中, 所述无线供电装置包括脉冲发生电路、 脉冲调制电路和 发射探头; 其中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去; 所述终端包括接收模块、 充电电路和可充电电池; 其中,
所述接收模块用于接收所述发射探头发射的无线谐波信号并将其转换 为电信号;
通过所述充电电路对所述可充电电池进行充电。
上述方案中, 所述无线供电装置还包括脉冲放大电路, 所述脉冲放大 电路将调制后的脉冲信号进行电压和功率放大, 同时保持信号的频率和调 制类型不变。
上述方案中, 所述终端还包括电源管理电路, 所述电源管理电路实时 釆集可充电电池的电量信息, 当电池电量低于充电阔值时, 电源管理电路 启动充电程序, 使无线充电电路保持在导通状态, 电信号通过无线充电通 路给电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电 电路, 停止对电池充电。
上述方案中, 所述接收模块包括接收探头、 压电晶体、 解调信号发生 器、 数字解调器和低通滤波器; 其中,
接收探头接收超声波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号;
低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
本发明提供的一种无线充电方法, 所述方法包括:
无线供电装置产生无线谐波信号, 并发送所述无线谐波信号到终端; 终端接收所述谐波信号, 并将其转换为电信号; 通过充电电路对终端的可 充电电池进行充电。
上述方案中, 所述无线供电装置包括脉冲发生电路、 脉冲调制电路和 发射探头; 其中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去。 上述方案中, 所述无线供电装置还包括脉冲放大电路, 所述脉冲放大 电路将调制后的脉冲信号进行电压和功率放大, 同时保持信号的频率和调 制类型不变。
上述方案中, 所述终端包括接收模块, 所述接收模块包括接收探头、 压电晶体、 解调信号发生器、 数字解调器和低通滤波器; 其中,
接收探头接收超声波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号; 低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
上述方案中, 所述终端还包括电源管理电路, 所述电源管理电路实时 釆集可充电电池的电量信息, 当电池电量低于充电阔值时, 电源管理电路 启动充电程序, 使无线充电电路保持在导通状态, 电信号通过无线充电通 路给电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电 电路, 停止对电池充电。
本发明提供的一种终端, 所述终端包括接收模块、 充电电路和可充电 电池; 所述接收模块用于接收无线供电装置发射的无线谐波信号并将其转 换为电信号; 通过所述充电电路对所述可充电电池进行充电。
上述方案中, 所述接收模块包括接收探头、 压电晶体、 解调信号发生 器、 数字解调器和低通滤波器;
接收探头接收超声波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号;
低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
上述方案中, 所述终端还包括电源管理电路, 所述电源管理电路实时 釆集可充电电池的电量信息, 当电池电量低于充电阔值时, 电源管理电路 启动充电程序, 使无线充电电路保持在导通状态, 电信号通过无线充电通 路给电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电 电路, 停止对电池充电。
本发明的有益效果是: 与现有技术相比, 实现了移动终端利用无线形 式的谐波对电池进行充电, 克服了线缆充电的繁瑣和不方便。 附图说明
图 1是本发明实施例无线充电的系统示意图;
图 2是本发明实施例外置无线供电装置的原理示意图;
图 3是本发明实施例脉冲调制电路的原理示意图;
图 4是本发明实施例超声波接收模块的原理示意图;
图 5是本发明实施例超声波专属充电电路的工作原理示意图; 图 6是本发明实施例实现无线充电的方法的流程示意图;
图 7是本发明实施例无线充电方法的具体流程示意图;
图 8是本发明实施例无线充电过程中移动终端的工作流程示意图。 具体实施方式
本发明的主要思想是: 无线供电装置产生无线谐波信号, 并发送所述 无线谐波信号到终端; 终端的接收模块接收所述谐波信号, 并将其转换为 电信号; 通过充电电路对终端的可充电电池进行充电。
下面结合附图和具体实施例对本发明技术方案作进一步的详细描述。 本发明所述的无线充电系统包括终端和外置的无线供电装置; 其中, 所述无线供电装置, 用于产生无线谐波信号, 并发送所述无线谐波信 号到终端;
所述终端, 用于接收所述谐波信号, 并将其转换为电信号; 通过充电 电路对可充电电池进行充电;
所述无线供电装置包括脉冲发生电路、 脉冲调制电路和发射探头; 其 中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去; 所述终端包括接收模块、 充电电路和可充电电池; 其中, 所述接收模块用于接收所述发射探头发射的无线谐波信号并将其转换 为电信号;
通过所述充电电路对所述可充电电池进行充电。
在本实施例中, 如图 1 所示, 所述终端是移动终端, 所述无线供电装 置产生超声波信号;
具体的, 所述移动终端包括移动终端内置的中央处理器 101、接收模块 102、 充电电路 103、 电源管理电路 104、 可充电电池 105、 射频收发模块 107、 键盘 108、 显示屏 109。 当然, 在其他实施例中, 终端可以是非移动 终端, 可以不具有射频收发模块 107、 键盘 108、 显示屏 109。
无线供电装置 106通过无线形式的超声波信号与接收模块 102连接, 移动终端内置的其他电路通过内部线路进行连接。
请参考图 2, 如图 2所示, 是本实施例中无线供电装置的原理示意图, 所述无线供电装置 106包括脉冲发生电路 201、 脉冲调制电路 202、 脉冲放 大电路 203、 发射探头 204。 所述无线供电装置 106连接于外置电源 205 , 通过外置电源 205供电。
整个无线供电装置 106通过超声波信号将电能量传递给被充电移动终 端, 而外置电源 205则为无线供电装置 106提供发射超声波信号所需的电
•6匕
匕。
脉冲发生电路 201 , 其内部釆用电压控制式石英晶体振荡器作为谐振 源。 在控制电压的作用下, 这个谐振源发生谐振现象而产生频率为 40KHz, 幅值约 3伏特的高频脉冲信号。
脉冲调制电路 202通过幅度调制的方式, 对此高频脉冲信号进行调制。 请参考图 3 , 如图 3所示, 是本实施例中脉冲调制电路的原理示意图。 所述脉冲调制电路 202 内部产生调幅信号, 并将此信号与脉冲发生电 路 201 产生的周期性脉冲信号进行数字调制, 产生调制后的信号。 调制目 的是满足超声波发射探头对信号电特性的要求, 同时可以减小超声波信号 在空气中传播时的衰减, 提高超声波信号携带的能量。
脉冲放大电路 203将调制后的脉冲信号进行电压和功率放大,将原先 3 伏特的脉冲信号放大到约 40伏特,但同时保持信号的频率和调制类型不变。 经过放大的电信号输入到超声波发射探头 204。
发射探头 204,内部釆用陶瓷压电晶体作为换能器。它通过逆压电效应, 将调制后的 40KHz脉冲信号转换成振动波, 并以超声波的形式辐射出去, 从而实现了超声波的发射。 发射出去的超声波信号携带有一定的电磁能量, 能够为无线充电终端提供电能量。
请参考图 4, 如图 4所示, 是本实施例中接收模块的原理示意图。
所述接收模块 102, 用于接收上述超声波信号, 并将其转换为电信号, 其包括接收探头 401、压电晶体 402、解调信号发生器 403、数字解调器 404 和低通滤波器 405。
接收探头 401 , 接收超声波信号, 并传递给压电晶体 402。
压电晶体 402是电声换能器, 它利用压电效应, 将接收到的超声波信 号转换为电信号。
解调信号发生器 403根据幅度调制的特性, 发出解调信号并输出到数 字解调器 404。
数字解调器 404利用解调信号对所述电信号进行数字解调,输出 40KHz 的脉冲电信号。
低通滤波器 405对 40KHz的脉冲电信号进行低通滤波, 从而生成直流 电信号。
请参考图 5 , 如图 5所示, 本发明实施例充电电路的工作原理示意图。 所述充电电路 103 用于釆集由超声波信号转换成的电信号并存储在可 充电电池 105中, 其包括充电通路控制电路 501和无线充电通路 502。 充电通路控制电路 501根据电源管理电路 104发出的指令, 控制无线 充电通路 502的通断。
无线充电通路 502由一组 MOS管和储能元件构成, 电信号通过这条通 路导入并存储在储能元件中转变为电量; 并在充电通路控制电路 501 的控 制下, 对移动终端的可充电电池进行充电。
电源管理电路 104实时釆集可充电电池 105的电量信息。 当电池电量 低于充电阔值时, 电源管理电路 104 启动充电程序, 使无线充电通路 502 保持在导通状态, 超声波转换成的电信号通过无线充电通路 502给电池充 电;当电池电量高于充电阔值时,电源管理电路 104关闭无线充电通路 502, 停止对电池充电。
基于上述系统, 本发明还提供一种终端, 所述终端包括接收模块、 充 电电路和可充电电池; 其中,
所述接收模块用于接收无线供电装置发射的无线谐波信号并将其转换 为电信号; 通过所述充电电路对所述可充电电池进行充电;
所述接收模块包括接收探头、 压电晶体、 解调信号发生器、 数字解调 器和低通滤波器;
接收探头接收所述谐波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号。
低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
进一步的, 所述终端包括电源管理电路, 所述电源管理电路实时釆集 可充电电池的电量信息, 当电池电量低于充电阔值时, 电源管理电路启动 充电程序, 使无线充电电路保持在导通状态, 电信号通过无线充电通路给 电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电电路, 停止对电池充电。
基于上述系统, 本发明还实现一种无线充电方法, 如图 6所示, 该方 法包括以下几个步骤:
步骤 601 : 无线供电装置产生无线谐波信号, 并发送所述无线谐波信号 到终端;
本步骤中, 所述无线供电装置包括脉冲发生电路、 脉冲调制电路和发 射探头; 其中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去; 进一步的, 所述无线供电装置还包括脉冲放大电路, 所述脉冲放大电 路将调制后的脉冲信号进行电压和功率放大, 同时保持信号的频率和调制 类型不变。
步骤 602: 终端接收所述谐波信号, 并将其转换为电信号; 通过充电电 路对终端的可充电电池进行充电;
本步骤中, 所述终端包括接收模块, 所述接收模块包括接收探头、 压 电晶体、 解调信号发生器、 数字解调器和低通滤波器; 其中,
接收探头接收所述谐波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号; 低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。 进一步的, 所述终端包括电源管理电路, 所述电源管理电路实时釆集 可充电电池的电量信息, 当电池电量低于充电阔值时, 电源管理电路启动 充电程序, 使无线充电电路保持在导通状态, 电信号通过无线充电通路给 电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电电路, 停止对电池充电。
请参考图 7所示, 是本发明实施例无线充电方法的具体流程示意图, 其包括如下步骤:
701 : 用户启动外置的无线供电装置;
702: 无线供电装置开始逆压电效应;
具体的, 无线供电装置内部的压电晶体开始发生逆压电效应。
703: 压电晶体产生 40KHz的机械振动波;
704: 发射探头将所述振动波以超声波的形式发射;
705: 接收模块接收超声波信号;
706: 接收模块内置的压电晶体通过压电效应, 将所述超声波信号转换 为电信号;
具体的, 接收模块接收到所述超声波信号后, 其内置的压电晶体通过 压电效应, 将所述超声波信号转化为电信号。
707: 接收模块对此电信号进行解调滤波, 生成可用于充电的直流电信 号;
708: 电源管理电路打开无线充电通路;
709: 直流电信号通过无线充电通路给电池充电。
请参考图 8所示, 是本发明实施例无线充电过程中移动终端的工作流 程示意图, 其包括如下步骤:
801 : 用户在移动终端的电量低时, 随即启动外置的无线供电装置; 802: 移动终端内置的接收模块接收超声波信号;
803 : 在接收到超声波信号后, 将所述超声波信号转换为电信号; 本步骤所述将所述超声波信号转换为电信号即: 提取超声波信号的能 量转换为电能量。
804: 开始无线充电;
805: 检测可充电电池电量是否满, 如果不满, 则转入步骤 804继续充 电, 如果电量满, 则转入步骤 806;
806: 停止无线充电。
在上述实施例中, 是以超声波的无线方式进行电力传输, 在其他实施 例中, 可以釆用射频、 声波、 次声波等方式进行电力传输, 所述无线供电 装置相应产生射频信号、 声波信号、 次声波信号等无线谐波信号。
移动终端判断可充电电池的电量, 若电量低于充电阔值, 则导通无线 充电通路, 开始对电池进行充电。 移动终端在充电的同时, 实时监测电池 的电量, 当其电量高于充电阔值, 即电池充满时, 关闭无线充电通路, 停 止对电池的充电, 从而完成了一个无线充电过程。
与现有技术相比, 本发明技术方案实现了移动终端利用无线形式的谐 波对电池进行充电, 克服了线缆充电的繁瑣和不方便。
以上所描述的仅为本发明较佳实例, 当然不能以此来限定本发明的权 利范围, 因此, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技 术人员都可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应当属于本发明所附的权利要求的保护范围。

Claims

权利要求书
1、 一种无线充电系统, 其特征在于, 所述系统包括无线供电装置和终 端; 其中,
所述无线供电装置, 用于产生无线谐波信号, 并发送所述无线谐波信 号到终端;
所述终端, 用于接收所述谐波信号, 并将所述谐波信号转换为电信号; 通过充电电路对可充电电池进行充电。
2、 如权利要求 1所述的系统, 其特征在于, 所述无线供电装置包括脉 冲发生电路、 脉冲调制电路和发射探头; 其中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去; 所述终端包括接收模块、 充电电路和可充电电池; 其中,
所述接收模块用于接收所述发射探头发射的无线谐波信号并将所述无 线谐波信号转换为电信号;
通过所述充电电路对所述可充电电池进行充电。
3、 如权利要求 2所述的系统, 其特征在于, 所述无线供电装置还包括 脉冲放大电路, 所述脉冲放大电路将调制后的脉冲信号进行电压和功率放 大, 同时保持信号的频率和调制类型不变。
4、 如权利要求 2所述的系统, 其特征在于, 所述终端还包括电源管理 电路, 所述电源管理电路实时釆集可充电电池的电量信息, 当电池电量低 于充电阔值时, 电源管理电路启动充电程序, 使无线充电电路保持在导通 状态, 电信号通过无线充电通路给电池充电; 当电池电量高于充电阔值时, 电源管理电路关闭无线充电电路, 停止对电池充电。
5、 如权利要求 2所述的系统, 其特征在于, 所述接收模块包括接收探 头、 压电晶体、 解调信号发生器、 数字解调器和低通滤波器; 其中, 接收探头接收超声波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号;
低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
6、 一种无线充电方法, 其特征在于, 所述方法包括:
无线供电装置产生无线谐波信号, 并发送所述无线谐波信号到终端; 终端接收所述谐波信号, 并将所述谐波信号转换为电信号; 通过充电电路 对终端的可充电电池进行充电。
7、 如权利要求 6所述的方法, 其特征在于, 所述无线供电装置包括脉 冲发生电路、 脉冲调制电路和发射探头; 其中,
所述脉冲发生电路产生高频脉冲信号;
所述脉冲调制电路对上述高频脉冲信号进行调制;
所述发射探头将调制后的脉冲信号转换成无线谐波信号发射出去。
8、 如权利要求 7所述的方法, 其特征在于, 所述无线供电装置还包括 脉冲放大电路, 所述脉冲放大电路将调制后的脉冲信号进行电压和功率放 大, 同时保持信号的频率和调制类型不变。
9、 如权利要求 6所述的方法, 其特征在于, 所述终端包括接收模块, 所述接收模块包括接收探头、 压电晶体、 解调信号发生器、 数字解调器和 低通滤波器; 其中,
接收探头接收所述谐波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对超声电信号进行数字解调, 输出脉冲电信 号;
低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
10、 如权利要求 9所述的方法, 其特征在于, 所述终端还包括电源管 理电路, 所述电源管理电路实时釆集可充电电池的电量信息, 当电池电量 低于充电阔值时, 电源管理电路启动充电程序, 使无线充电电路保持在导 通状态, 电信号通过无线充电通路给电池充电; 当电池电量高于充电阔值 时, 电源管理电路关闭无线充电电路, 停止对电池充电。
11、 一种终端, 其特征在于, 所述终端包括接收模块、 充电电路和可 充电电池; 所述接收模块用于接收无线供电装置发射的无线谐波信号并将 所述无线谐波信号转换为电信号; 通过所述充电电路对所述可充电电池进 行充电。
12、 如权利要求 11所述的终端, 其特征在于, 所述接收模块包括接收 探头、 压电晶体、 解调信号发生器、 数字解调器和低通滤波器;
接收探头接收无线谐波信号, 并传递给压电晶体;
压电晶体利用压电效应, 将接收到的所述谐波信号转换为电信号; 解调信号发生器根据幅度调制的特性, 发出解调信号并输出到数字解 调器;
数字解调器利用解调信号对电信号进行数字解调, 输出脉冲电信号; 低通滤波器对脉冲电信号进行低通滤波, 生成直流电信号。
13、 如权利要求 12所述的终端, 其特征在于, 所述终端还包括电源管 理电路, 所述电源管理电路实时釆集可充电电池的电量信息, 当电池电量 低于充电阔值时, 电源管理电路启动充电程序, 使无线充电电路保持在导 通状态, 电信号通过无线充电通路给电池充电; 当电池电量高于充电阔值 时, 电源管理电路关闭无线充电电路, 停止对电池充电。
PCT/CN2011/071393 2010-12-20 2011-02-28 终端及其无线充电方法、系统 WO2012083608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010596256.5 2010-12-20
CN2010105962565A CN102025178A (zh) 2010-12-20 2010-12-20 终端及其无线充电方法、系统

Publications (1)

Publication Number Publication Date
WO2012083608A1 true WO2012083608A1 (zh) 2012-06-28

Family

ID=43866168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071393 WO2012083608A1 (zh) 2010-12-20 2011-02-28 终端及其无线充电方法、系统

Country Status (2)

Country Link
CN (1) CN102025178A (zh)
WO (1) WO2012083608A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936300A (zh) * 2017-12-18 2019-06-25 中国科学院大连化学物理研究所 脉冲调制器高压稳定装置
CN111371131A (zh) * 2018-12-25 2020-07-03 苏州景昱医疗器械有限公司 一种用于神经刺激器的无线充电系统以及欠压启动方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825494B (zh) * 2014-02-20 2016-03-16 东南大学 物联网射频收发组件中固支梁振动电磁自供电微传感器
CN104810908B (zh) * 2015-05-22 2017-11-17 石崇源 无线充电的电能发送装置、电能接收装置和无线充电系统
CN105024105A (zh) * 2015-06-30 2015-11-04 深圳市金立通信设备有限公司 一种充电方法及终端
CN105244967A (zh) * 2015-11-04 2016-01-13 上海斐讯数据通信技术有限公司 充电方法及移动终端
CN107302233A (zh) * 2016-04-14 2017-10-27 苏州宝时得电动工具有限公司 超声波无线充电装置及具有该超声波无线充电装置的电动工具
WO2019041089A1 (zh) * 2017-08-28 2019-03-07 深圳传音通讯有限公司 一种无线充电转接头及其充电方法
CN110011431A (zh) * 2019-04-28 2019-07-12 辽宁工程技术大学 一种应用于人体植入式设备的超声耦合无线充电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829037A (zh) * 2005-03-03 2006-09-06 陈居阳 具无线充电系统的电池装置及其方法
CN101227094A (zh) * 2007-01-03 2008-07-23 江国庆 可携式装置用充电模块
CN101357251A (zh) * 2008-09-17 2009-02-04 重庆大学 基于微线圈阵列的多通道神经电刺激传输装置
CN101924396A (zh) * 2009-06-16 2010-12-22 上海科勒电子科技有限公司 用于洁具上的无线充/供电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2904435Y (zh) * 2006-03-15 2007-05-23 银环 无接触式充电器
US20100164433A1 (en) * 2008-12-30 2010-07-01 Motorola, Inc. Wireless Battery Charging Systems, Battery Systems and Charging Apparatus
CN101612451B (zh) * 2009-07-31 2011-05-18 广东省医疗器械研究所 可充电的植入性心脏起搏器设备及其充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829037A (zh) * 2005-03-03 2006-09-06 陈居阳 具无线充电系统的电池装置及其方法
CN101227094A (zh) * 2007-01-03 2008-07-23 江国庆 可携式装置用充电模块
CN101357251A (zh) * 2008-09-17 2009-02-04 重庆大学 基于微线圈阵列的多通道神经电刺激传输装置
CN101924396A (zh) * 2009-06-16 2010-12-22 上海科勒电子科技有限公司 用于洁具上的无线充/供电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936300A (zh) * 2017-12-18 2019-06-25 中国科学院大连化学物理研究所 脉冲调制器高压稳定装置
CN109936300B (zh) * 2017-12-18 2024-05-14 中国科学院大连化学物理研究所 脉冲调制器高压稳定装置
CN111371131A (zh) * 2018-12-25 2020-07-03 苏州景昱医疗器械有限公司 一种用于神经刺激器的无线充电系统以及欠压启动方法

Also Published As

Publication number Publication date
CN102025178A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2012083608A1 (zh) 终端及其无线充电方法、系统
US9024484B2 (en) Method and apparatus for controlling wireless power of a receiver in a wireless power transmission/reception system
JP2019083683A (ja) 共振型無線電力伝送システムにおける無線電力伝送制御方法、それを用いる無線電力送信装置、及びそれを用いる無線電力受信装置
JP3414381B2 (ja) 電力給電装置、電力受電装置、電力伝送システム、電力伝送方法、携帯機器および時計装置
CN104205549B (zh) 用于使用蓝牙低能量进行无线电力控制通信的系统和方法
JP2016197992A (ja) 無線電力送信のための装置、方法、コンピュータプログラム及び記憶媒体
US20100164433A1 (en) Wireless Battery Charging Systems, Battery Systems and Charging Apparatus
TW201817126A (zh) 用於後續接收器之無線電力充電之設備及方法
KR101702914B1 (ko) 공진 전력 전송의 반사파 에너지 관리 장치
CN112928789B (zh) 一种充电方法及电子设备
JP2013188019A (ja) エネルギーハーベスト装置及び環境エネルギー供給方法
US20090243433A1 (en) Apparatus, system and method for converting vibrational energy to electric potential
CN201654673U (zh) 具有无线充电的笔记本电脑
JP6185396B2 (ja) ウエアラブル型の小形電気機器
US20120001589A1 (en) Bidirectional wireless charging/discharging device
JP2003309490A (ja) Rfid装置
JP2013070535A (ja) 無線給電対応型電源装置、電動工具、充電装置及び電気機器
CN104836313B (zh) 一种人工耳蜗言语处理器无线充电装置及方法
KR20130020035A (ko) 초음파를 이용한 무선 전력 전송 장치
CN109004764B (zh) 一种针对密闭金属容器进行超声供电系统及方法
CN209896778U (zh) 电动玩具及其游乐设备
CN205249455U (zh) 无线充电音响装置
TW201328103A (zh) 無線供電裝置及供電方法
KR101691825B1 (ko) 무선충전 진공청소기
EP3136612B1 (en) Method and apparatus for transmission of an inductive-charging signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851117

Country of ref document: EP

Kind code of ref document: A1