WO2012083577A1 - 一种压缩气体单作用执行器 - Google Patents

一种压缩气体单作用执行器 Download PDF

Info

Publication number
WO2012083577A1
WO2012083577A1 PCT/CN2011/000873 CN2011000873W WO2012083577A1 WO 2012083577 A1 WO2012083577 A1 WO 2012083577A1 CN 2011000873 W CN2011000873 W CN 2011000873W WO 2012083577 A1 WO2012083577 A1 WO 2012083577A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
port
actuator body
solenoid valve
actuator
Prior art date
Application number
PCT/CN2011/000873
Other languages
English (en)
French (fr)
Other versions
WO2012083577A8 (zh
Inventor
刘春香
管延科
李桂花
田宝宁
Original Assignee
济南高仕机械制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南高仕机械制造有限公司 filed Critical 济南高仕机械制造有限公司
Priority to EP11851328.2A priority Critical patent/EP2657535B1/en
Priority to KR1020137008499A priority patent/KR101512913B1/ko
Priority to DE112011103042T priority patent/DE112011103042T5/de
Priority to US13/878,546 priority patent/US20130255479A1/en
Publication of WO2012083577A1 publication Critical patent/WO2012083577A1/zh
Publication of WO2012083577A8 publication Critical patent/WO2012083577A8/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/084Characterised by the construction of the motor unit the motor being of the rodless piston type, e.g. with cable, belt or chain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • F15B15/065Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement the motor being of the rack-and-pinion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/202Externally-operated valves mounted in or on the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/002Electrical failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure

Definitions

  • the present invention relates to a single-acting actuator, in particular a compressed gas actuators' 0
  • the conventional single-acting tooth row pneumatic actuator has an actuator body 113, two integral pistons 102 and a rack 103, and a gear center shaft 104.
  • the interior of the body is provided with a lumen inlet 112 and a lumen 106 of the actuator body 113.
  • the external cavity total inlet and outlet port 110 communicates with the outer cavity 109 through the outer cavity inlet and outlet ports 108 at both ends.
  • the actuator body 113 has two pistons 102 therein, and the piston 102 and the rack 103 are integral.
  • a 0-ring seal 101 is embedded in the outer circumference of the piston, and the actuator body is divided into an inner chamber 106 and an outer chamber 109. The high pressure gas enters the inner cavity 106 from the inner cavity inlet 112.
  • the piston 102 moves to both sides under the action of the high pressure gas, and the air on both sides is discharged through the outer cavity inlet and outlet holes 108, and the piston 102 also drives the rack 103 to compress multiple resets.
  • the spring 107 moves to both sides, and the rack toggles the central shaft 104 to rotate counterclockwise, thereby driving the valve center shaft to open the valve.
  • the air source of the inner chamber inlet 112 is broken, and the actuator pushes the piston 102 to move from the both sides to the middle under the action of the return spring 107.
  • the piston 102 also drives the rack 103 and moves the center shaft 104. The hour hand rotates, thereby driving the valve center shaft to close the valve.
  • the drawbacks of this single-acting actuator are:
  • the compressed gas is not only overcome the execution
  • the double-acting actuator with the same type without spring has a torque of M1 at a certain air pressure, and the corresponding spring-loaded single-acting actuator can return the original state to provide the torque M2, which changes the original under the action of compressed air.
  • the positive end of the state can provide a torque of M3, then, M3 ⁇ M1-M2, the difference is the torque from the original state to the compression (or torsion) to the end point, whether it is positive or spring reset
  • the counteraction which overcomes the load that is carried, is the same as possible for actual production.
  • M2 is required to be close to M3, so that the torques M2 and M3 that such a single-acting actuator can provide are less than half of the value of Ml.
  • the closer to this half value the larger the required book spring size, and the spring size of the actual production. Restriction, generally M2 or M3 is only about 30% of Ml, and its actual efficiency is greatly reduced.
  • the valve has the highest torque during the opening or closing phase, while the conventional single-acting actuator only uses the spring force to close the valve when there is no gas or electricity.
  • the spring When the valve is closed, the spring is stretched to the maximum amount, which is the end of the strong force, and the output force is the minimum stage, so that the torque of closing the valve is naturally the smallest. It is easy to happen when the valve is not completely closed.
  • the purpose of the utility model is to provide a compressed gas single-acting actuator, which solves the problems that the single-acting actuator is prone to incomplete closing of the valve, valve rotation, valve failure and high energy consumption.
  • a compressed gas single-acting actuator comprising an actuator body, wherein the left and right ends of the actuator body are respectively provided with a piston, and the piston is provided with a rack.
  • a middle shaft is arranged between the two racks, and a plurality of (one side 2-7, two sides 4-14) small return springs are arranged between the piston and the actuator body, and a piston is formed between the pistons, and the piston and the piston
  • An external cavity is formed between the corresponding actuator bodies, and an external cavity air passage connecting the external cavity is disposed on the actuator body, wherein the plate electromagnetic valve interface of the actuator body is equipped with an electromagnetic wide, plate type A solenoid valve connector is arranged between the solenoid valve interface and the solenoid valve, a gas storage chamber is arranged on the actuator body, and a sealing ring is arranged between the gas storage chamber and the actuator body;
  • the actuator body is provided with the storage body a first intake passage communicating with the air chamber, the first intake passage being provided with a one-way turn at one end of the gas storage chamber, and the other end outlet being provided at a lower right side of the plate type solenoid valve interface and a second port on the electromagnetic wide joint plate
  • the actuator body further has a
  • the technical solution adopted by the utility model may further be: a large return spring is arranged between the actuator body and the actuator side cover and the piston, and the large return spring is coaxial with the piston.
  • the technical solution adopted by the utility model may further be: the actuator body and the piston are connected by a 0-type sealing ring, and the actuator side cover and the actuator body are connected by a sealing ring.
  • the technical solution adopted by the utility model may further be: the actuator body is provided with not less than one air storage chamber outside.
  • the utility model has the beneficial effects that: two gas passages are added inside the conventional actuator, and the two-side or two-side air storage chambers are connected through the two air passages, and the compressed air of the air storage chamber is used to ensure In the absence
  • the valve In the event of an electric or gas failure, the valve can be closed.
  • FIG. 1 is a schematic structural view of a conventional tooth row type pneumatic actuator
  • FIG. 2 is a schematic structural view of the actuator with a spring single gas storage chamber of the present invention
  • Figure 3 is a schematic view showing the structure of the double-storage chamber actuator without springs of the present invention
  • Figure 4 is a top view of the electromagnetic valve board of the present invention without a rubber pad
  • Figure 5 is a top view of the rubber valve plate of the utility model with a rubber pad
  • Figure 6 is a bottom view of the bottom surface of the solenoid valve of the present invention.
  • Figure 7 is a schematic view of the internal gas path structure of the actuator of the present invention.
  • Figure 8 is a schematic view of the utility model having electricity and gas.
  • FIG. 9 is a schematic view of the power failure and gas stop action of the utility model.
  • a compressed gas single-acting actuator includes an actuator body 113.
  • the left and right ends of the actuator body 113 are respectively provided with a piston 102.
  • the piston 102 is provided with a rack 103, and between the two racks 103.
  • a central shaft 104 is disposed, and six small return springs 107 are disposed between the piston 102 and the corresponding actuator body 113.
  • An internal cavity 106 is formed between the pistons 102, and an external cavity 109 is formed between the piston 102 and the actuator body 113.
  • the actuator body 113 is provided with an outer chamber air passage 301 connected to the outer chamber 109.
  • the plate solenoid valve interface of the actuator body 113 is equipped with a solenoid valve 201, and a plate solenoid valve interface is disposed between the solenoid valve 201 and the solenoid valve 201.
  • a solenoid valve plate 202 is disposed on the actuator body 113, and a sealing ring 111 is disposed between the gas storage chamber 12 and the actuator body 113.
  • the actuator body 113 is disposed.
  • the first intake passage 302 is provided with a one-way valve 304 at one end of the air storage chamber 12 (122), and the other end outlet is provided at the plate solenoid valve interface.
  • the second port 209 is correspondingly disposed; the actuator body 113 is further provided with a second intake passage 303 communicating with the air storage chambers 12 (121 and 122), and the outlet of the second intake passage 303 is provided at the plate solenoid valve
  • the upper left side of the interface corresponds to the third air port 210 on the solenoid valve plate 202; the ratio of the air volume of the air chamber to the effective volume of the actuator body is preferably 2:1 or more, which is always above 5 bar.
  • the minimum torque is more than 60% of the torque output of the double-acting actuator, ensuring that the valve is in a safe state in the absence of power or gas failure.
  • the embodiment of the present invention may be: as shown in FIG. 2, the actuator body 113 and the piston 102 are connected by a 0-type sealing ring 101, and the actuator side cover 114 and the actuator body 113 pass through a sealing ring. There is no spring between the actuator body 113 and the actuator side cover 114 and the piston 102.
  • the embodiment of the present invention may also be: As shown in FIG. 3, a large return spring is disposed between the actuator body 113 and the actuator side cover 114 and the piston 102, and the large return spring is coaxial with the piston 102.
  • the embodiment of the present invention may be as follows: As shown in FIG. 3, the actuator body 113 is symmetrically disposed with two gas storage chambers: a left gas storage chamber 121 and a right gas storage chamber 122, which are respectively fixed and executed. The exterior of the outer chamber 109.
  • the embodiment of the present invention may also be as follows: As shown in FIG. 2, the actuator body 113 is provided with a gas storage chamber 12 on the side, which is fixed to the left or right side of the outer chamber 109 of the actuator.
  • a first air inlet 204 and a second air inlet 205 are arranged along the middle of the first surface 203 of the electromagnetic valve board 202.
  • the first air inlet 204 is provided with a first sinking slot 206.
  • the second air inlet 205 is provided with a second cooling slot 207; a first air port 208 is disposed below the first air inlet hole 204, and a second air port 209 is disposed at a lower right side of the second air inlet hole 205.
  • the first air port 208 is provided.
  • the fourth air port 211 and the fifth air port 212 are respectively disposed on the left and right sides, and the third air port 210 is disposed on the upper left side of the first air inlet hole 204; the first air channel 213 is disposed between the first air port 208 and the second air port 209; a third channel 214 is disposed between the third port 210 and the fourth port 211 and the fifth port 212; the third port 210 and the second port 209 are both through holes; as shown in FIG. 5, in the solenoid valve plate A rubber pad 215 is further disposed on the first surface 203 of the 202.
  • the rubber pad 215 is provided with a groove corresponding to the first surface 203, and is provided with a first sinking groove 206, a second sinking groove 207, and a first surface. a through hole communicating with the port 208, the fourth port 211 and the fifth port 212; the first face 203 of the solenoid valve plate 202 and the solenoid valve 201 Corresponding to the bottom; as shown in FIG. 6, the bottom of the solenoid valve 201 is provided with a partition 216 in a through hole corresponding to the first port 208, the fourth port 211 and the fifth port 212 of the solenoid valve plate 202.
  • the partition 216 divides the through hole into three chambers; the first chamber 217 and the third chamber 219 are blind holes, respectively communicating with the fourth port 211 and the fifth port 212, and the second chamber 218 is a through hole It communicates with the first port 208.
  • the gas when energized and ventilated, the gas enters the solenoid valve 201, and the gas enters through the first port 208 of the solenoid valve plate 202, enters the second port 209 through the first channel 213, and the gas of the second port 209 passes.
  • the first intake passage 302 on the actuator body 113 enters the right air reservoir 122.
  • the compressed air enters the left air reservoir 121 through the second intake passage 303 on the actuator body 113 while being returned to the fourth port 211 and the fifth port 212 of the solenoid valve plate 202 through the third port 210.
  • the solenoid valve 201 blocks the fifth port 212 of the electromagnetic splicing plate 202 coupled to the second air inlet 205 under the action of the electromagnetic coil and the external air, and slams the fourth port 211 coupled to the first air inlet hole 204.
  • the compressed air returned to the solenoid valve 201 by the left air reservoir 121 and the right air reservoir 122 enters the inner cavity 106 of the actuator body 113 through the first air inlet 204, and the piston 102 is under the action of high pressure gas.
  • the side movement causes the rack 103 to move to both sides, and the rack 103 rotates the center shaft 104 to rotate counterclockwise, thereby driving the valve center shaft to open the valve.
  • the solenoid valve 201 blocks the fourth port 211 of the first intake port 204 and opens the fifth port 212 of the second intake port 205 under the action of the spring force of the self-spring.
  • the compressed air returned to the solenoid valve 201 by the left air reservoir 121 and the right air reservoir 122 enters the outer chamber 109 through the second air inlet 205 into the outer chamber air passage 301 in the actuator body 113.
  • the piston 102 is in the outer chamber. Under the action of the high pressure gas, it moves to the middle, and at the same time, the rack 103 is moved to the middle, and the rack shifting shaft 104 rotates clockwise, thereby driving the wide shaft central shaft to close the valve.
  • the port 211 and the fifth port 212 The port 211 and the fifth port 212.
  • the movable valve 201 is opened by the electromagnetic coil, the movable iron is opened, but since no external air enters, the electromagnetic valve 201 still blocks the fourth air port 211 of the first air inlet 204 by the elastic force of its own spring.
  • the fifth port 212 that is coupled to the second intake port 205 is opened.
  • the compressed air returned to the solenoid valve 201 by the left air reservoir 121 and the right air reservoir 122 enters the outer chamber 109 of the actuator body 113 through the second air inlet 205, and the piston 102 is under the action of the high pressure gas of the outer chamber 109.
  • the rack 103 Moving in the middle, the rack 103 is driven to move in the middle, and the rack shifting shaft 104 rotates clockwise, thereby driving the wide shaft center shaft to close the valve.
  • the external gas enters the solenoid valve 201, the external gas enters the first port 208 of the solenoid valve plate 202, and enters the second port through the first channel 213. 209.
  • the gas of the second port 209 enters the right gas storage chamber 122 through the first intake passage 302.
  • the compressed air of the right plenum 122 enters the left plenum 121 through the second intake passage 303 while returning to the fourth port 211 and the fifth port 212 of the solenoid valve plate 202 through the third port 210.
  • the movable iron of the solenoid valve 201 cannot be opened, and the solenoid valve 201 still blocks the fourth port 211 of the first intake hole 204 under the elastic force of its own spring. Sustaining, the fifth port 212 that is coupled to the second intake port 205 is opened.
  • the compressed air returned to the solenoid valve 201 by the left air reservoir 121 and the right air reservoir 122 enters the outer chamber 109 through the second air inlet 205, and the piston 102 moves to the middle under the action of the high pressure gas of the outer chamber 109, while The rack 1Q3 is driven to move in the middle, and the rack shifting shaft 104 rotates clockwise, thereby driving the valve center shaft to close the valve.
  • the built-in check valve 304 of the present invention only allows the gas supply to enter the gas storage chamber 12 when the gas source pressure of the factory is greater than the air pressure in the gas storage chamber 12, so that the gas storage chamber 12 retains the current supply.
  • the highest value of gas pressure When the factory air supply is greater than the pressure of the air reservoir 12, the one-way valve 304 is opened to allow gas to enter the air reservoir 12 such that the pressure level is at its highest level.
  • the check valve will be closed and prevented. The actuator is shifted. This solves the problem that the conventional actuator controlled by the spring may not rotate in the normal order due to the fluctuation of the pressure.
  • the utility model adds two gas passages on the existing conventional actuator body 113, and in combination with the air passage arrangement of the electromagnetic valve connecting plate 202, it is not necessary to connect the outer pipeline, and all the air flow paths are inside, which improves the safety of use. Sex. Book

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Magnetically Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

说 明 书
一种压缩气体单作用执行器 技术领域
本实用新型涉及一种单作用执行器, 具体地说是一种压缩气体单作用执行 器0
背景技术
随着工业化自动化生产的实现, 在流通控制领域, 均采用自动控制阀, 特 别是石油化工和食品制药领域, 为提高效率, 对管道均实现远程自动控制, 气 动执行器的自动控制 90度或 180度开关的阀门, 在流体管道和设备器件应用越 来越广泛。
如图 1所示: 传统的单作用齿排式气动执行器具有执行器本体 113、两个一 体的活塞 102及齿条 103及齿轮中轴 104。 该本体中央设有一内腔进口 112, 与 执行器本体 113的内腔 106。外腔总进出气口 110通过两端的外腔进出气孔 108, 和外腔 109相通。该执行器本体 113内有两个活塞 102,活塞 102和齿条 103是 一体的。活塞的外周圆嵌设有 0型密封圈 101,将执行器本体分成内腔 106和外 腔 109。高压气体由内腔进口 112进入内腔 106,活塞 102在高压气体的作用下, 向两侧运动, 两侧的空气会通过外腔进出气孔 108排出, 活塞 102也带动齿条 103压缩多条复位弹簧 107向两侧运动, 齿条拨动中轴 104逆时针转动, 从而带 动阀门中轴将阀门打开。 当停电停气时, 内腔进口 112 的气源断掉, 执行器在 复位弹簧 107的作用下, 推动活塞 102由两侧向中间运动, 活塞 102也带动齿 条 103并拨动中轴 104顺时针转动, 从而带动阀门中轴将阀门关闭。 该单作用执行器的缺陷有:
1、 在改变原始状态(例如打开阔门) 的时候, 压缩气除了克服执行所带的 负荷外, 还要克服弹簧的弹力或扭力, 使单作用执行器的输出的有效扭力大大 降价低。 相同型号不带弹簧的双作用执行器计在一定气压下输出扭力是 Ml, 其 对应的带弹簧的单作用执行器回复原始状态所能提供的扭力是 M2, 其在压缩气 的作用下改变原始状态的正作用的终点所能提供的扭力是 M3,那么, M3<M1-M2, 其差值是弹簧从原始状态到压缩(或扭转)到终点增加的扭力, 而无论是正作用 或是弹簧复位的反作用, 其克服所带的负荷是一样的, 为此实际生产中尽可能 说
要求 M2与 M3接近, 从而这样的单作用执行器所能提供的扭力 M2和 M3是少于 Ml 的一半值, 越接近这个一半值, 要求的书弹簧尺寸越大, 实际生产中受弹簧尺 寸的限制, 一般 M2或是 M3只有 Ml的 30%左右, 其实际功效大大降低。
2、 阀门在打开或者关闭的阶段扭矩最大, 而传统的单作用执行器在无气和 电时, 仅仅用弹簧的弹力关闭阀门。 在关闭阀门时, 弹簧的伸缩到了最大量, 是强弩之末, 输出的力是最小的阶段, 这样关闭阀门的扭力自然是最小的时候。 很容易发生不完全关闭阀门的情况。
3、 单作用执行器要获得大扭矩, 采用的是多根弹簧, 会有弹簧倒伏和断裂 的情况, 一旦弹簧倒伏和断裂。 执行器不能起到开关阀门的功效, 即使使用外 力, 也会因为倒伏弹簧卡住, 而无法开关阀门。 在特殊行业, 这种失效更危险。
4、齿轮齿条执行器的弹簧的弹力始终在作用,当工厂气源压力正常下降时, 弹簧执行器随气体供应升降而左右蠕动, 阀门就可能出现不正常次序的转动。 实用新型内容
本实用新型的目的在于提供一种压缩气体单作用执行器, 解决目前单作用 执行器易发生不完全关闭阀门、 阀门转动、 阀门失效以及能耗高的问题。
本实用新型解决其技术问题所采用的技术方案是: 一种压缩气体单作用执 行器, 包括执行器本体, 执行器本体左右两端分别设有活塞, 活塞上设有齿条, 说 明 书
两个齿条之间设有中轴, 活塞与执行器本体之间设有多根 (单侧 2-7根, 双侧 4-14根) 小复位弹簧, 活塞之间形成内腔, 活塞与对应的执行器本体之间形成 外腔, 在执行器本体上设有连接外腔的外腔气室通路, 其特征是, 所述的执行 器本体的板式电磁阀接口处装配有电磁阔, 板式电磁阀接口与电磁阀之间设有 电磁阀接板, 执行器本体上设有储气室, 储气室与执行器本体之间设有密封圈; 所述的执行器本体上设有与储气室相通的第一进气通道, 第一进气通道在储气 室的一端设有单向闽, 另一端出口设在板式电磁阀接口的右下侧与电磁阔接板 上的第二气口相对应; 所述的执行器本体上还设有与储气室相通的第二进气通 道, 第二进气通道的出口设在板式电磁阀接口的左上侧与电磁阀接板上的第三 气口相对应; 所述的电磁阀接板的第一面的中部并排设有第一进气孔和第二进 气孔, 第一进气孔设有第一沉槽, 第二进气孔设有第二沉槽; 在第一通孔的下 方设有第一气口, 在第二通孔的右下方设有第二气口, 第一气口左右两侧分别 设有第四气口和第五气口, 第一进气孔的左上方设有第三气口; 第一气口与第 二气口之间设有第一槽道, 第三气口与第四气口和第五气口之间设有第二槽道; 第三气口与第二气口均为通孔; 在电磁阀接板的第一面上还设有一橡胶垫, 该 橡胶垫上设有与第一面相对应的凹槽, 并设有与第一沉槽、 第二沉槽、 第一气 口、 第四气口和第五气口相通的通孔; 所述的电磁阀接板的第一面与电磁阀底 部相对应; 所述的电磁阀底部上与电磁阀接板的第一气口、 第四气口和第五气 口相对应的通孔内设有隔板, 隔板将通孔分为三个腔室; 第一腔室和第三腔室 为盲孔, 分别与第四气口和第五气口相通, 第二腔室为通孔与第一气口相通; 所述的储气室气腔容积与执行器本体的有效容积比不低于 0. 5 : 1。
本实用新型所釆用的技术方案还可以是: 所述的执行器本体和执行器侧盖 与活塞之间设有一个大复位弹簧, 大复位弹簧与活塞同轴。 本实用新型所采用的技术方案还可以是: 所述的执行器本体与活塞之间通 过 0型密封圈连接, 执行器侧盖与执行器本体之间通过密封圈连接。 本实用新型所釆用的技术方案还可以是: 所述的执行器本体外部设有不少 于一个储气室。 本实用新型的有益效果是: 在传统的执行器内部增加两个气路, 通过这两 个气路连接加装的单侧或双侧的储气室, 利用储气室的压缩空气, 来确保在缺 说
电或者缺气失效状态下, 能保证阀门处于关闭状态。
附图说明
图 1是传统齿排式气动执行器的结构示意图,
图 2是本实用新型带弹簧单储气室执行器的结构示意图,
图 3是本实用新型不带弹簧双储气室执行器的结构示意图,
图 4是本实用新型电磁阀接板不带橡胶垫的俯视图,
图 5是本实用新型电磁阀接板带橡胶垫的俯视图,
图 6是本实用新型电磁阀底面的仰视图,
图 7是本实用新型执行器内部气路结构示意图,
图 8是本实用新型有电有气动作示意图,
图 9是本实用新型停电停气动作示意图。
图中: 101 0型密封圈, 102活塞, 103齿条, 104中轴, 106内腔, 107 复位弹簧, 108外腔进出气孔, 109外腔, 110外腔总进出气口, 111 0型密封 圈, 112内腔进出气口, 113执行器本体, 114执行器侧盖, 12储气室, 121左 储气室, 122右储气室, 201电磁阀, 202电磁阀接板, 203第一面, 204第一进 气孔, 205第二进气孔, 206第一沉槽, 207第二沉槽, 208第一气口, 209第二 气口, 210第三气口, 211第四气口, 212第五气口, 213第一槽道, 214第二槽 道, 215橡胶垫, 216隔板, 217第一空腔, 218第二空腔, 219第三空腔, 30J 外腔气室通路, 302第一进气通道, 303第二进气通道, 304单向阀。 说 明 书 具体实施方式
如图 2所示, 一种压缩气体单作用执行器, 包括执行器本体 113, 执行器 本体 113左右两端分别设有活塞 102, 活塞 102上设有齿条 103, 两个齿条 103 之间设有中轴 104,活塞 102与对应的执行器本体 113之间设有六个小复位弹簧 107,活塞 102之间形成内腔 106,活塞 102与执行器本体 113之间形成外腔 109, 在执行器本体 113上设有连接外腔 109的外腔气室通路 301,所述的执行器本体 113的板式电磁阀接口处装配有电磁阀 201, 板式电磁阀接口与电磁阀 201之间 设有电磁阀接板 202 , 执行器本体 113上设有储气室 12, 储气室 12与执行器本 体 113之间设有密封圈 111 ; 如图 7所示,所述的执行器本体 113上设有与储气 室 12 ( 122 )相通的第一进气通道 302, 第一进气通道 302在储气室 12 ( 122 ) 的一端设有单向阀 304,另一端出口设在板式电磁阀接口的右下侧与电磁阀接板 202上的第二气口 209相对应;所述的执行器本体 113上还设有与储气室 12( 121 和 122 )相通的第二进气通道 303, 第二进气通道 303的出口设在板式电磁阀接 口的左上侧与电磁阀接板 202上的第三气口 210相对应; 所述的储气室气腔容 积与执行器本体的有效容积比最佳为 2 : 1以上,这样总是在 5bar以上的压力下, 最小扭力也是双作用执行器扭矩输出的 60%以上,确保在缺电或者缺气失效状态 下, 能保证阀门处于安全状态。
-、
本实用新型的实施方式可以是: 如图 2所示, 所述的执行器本体 113与活 塞 102之间通过 0型密封圈 101连接, 执行器侧盖 114与执行器本体 113之间 通过密封圈连接, 执行器本体 113和执行器侧盖 114与活塞 102之间不设弹簧。
本实用新型的实施方式还可以是: 如图 3所示, 所述的执行器本体 113和 执行器侧盖 114与活塞 102之间设有一个大复位弹簧, 大复位弹簧与活塞 102 同轴。 说 明 书
本实用新型的实施方式可以是: 如图 3所示, 所述的执行器本体 113两侧 对称的设有两个储气室: 左储气室 121和右储气室 122,分别固定在执行器外腔 109的外部。
本实用新型的实施方式还可以是: 如图 2所示, 所述的执行器本体 113— 侧设有一个储气室 12, 固定在执行器外腔 109的外部左或者右侧。
如图 4所示,电磁阀接板 202的第一面 203的中部并排设有第一进气孔 204 和第二进气孔 205, 第一进气孔 204设有第一沉槽 206, 第二进气孔 205设有第 二沉槽 207 ; 在第一进气孔 204的下方设有第一气口 208, 在第二进气孔 205的 右下方设有第二气口 209,第一气口 208左右两侧分别设有第四气口 211和第五 气口 212, 第一进气孔 204的左上方设有第三气口 210; 第一气口 208与第二气 口 209之间设有第一槽道 213,第三气口 210与第四气口 211和第五气口 212之 间设有第二槽道 214; 第三气口 210与第二气口 209均为通孔; 如图 5所示, 在 电磁阀接板 202的第一面 203上还设有一橡胶垫 215,该橡胶垫 215上设有与第 一面 203相对应的凹槽, 并设有与第一沉槽 206、第二沉槽 207、第一气口 208、 第四气口 211和第五气口 212相通的通孔;所述的电磁阀接板 202的第一面 203 与电磁阀 201底部相对应; 如图 6所示, 所述的电磁阀 201底部上与电磁阀接 板 202的第一气口 208、第四气口 211和第五气口 212相对应的通孔内设有隔板 216 , 隔板 216将通孔分为三个腔室; 第一腔室 217和第三腔室 219为盲孔, 分 别与第四气口 211和第五气口 212相通, 第二腔室 218为通孔与第一气口 208 相通。
如图 8所示, 当通电通气时,气体进入电磁阀 201,气体由电磁阀接板 202 的第一气口 208进入,通过第一槽道 213进入第二气口 209,第二气口 209的气 体通过执行器本体 113上第一进气通道 302进入右储气室 122。右储气室 122的 说 明 书
压缩空气通过执行器本体 113上第二进气通道 303进入左储气室 121,同时通过 第三气口 210回流至电磁阀接板 202的第四气口 211和第五气口 212。 电磁阀 201在电磁线圈和外气的作用下,将电磁闽接板 202上联接第二进气孔 205的第 五气口 212堵住, 将联接第一进气孔 204的第四气口 211打幵, 这样左储气室 121、 右储气室 122回流至电磁阀 201的压缩空气就通过第一进气孔 204进入执 行器本体 113的内腔 106, 活塞 102在高压气体的作用下, 向两侧运动, 同时带 动齿条 103向两侧运动, 齿条 103拨动中轴 104逆时针转动, 从而带动阀门中 轴将阀门打开。
如图 9所示, 当停电电停气 (失效状态一) 时的单作用: 无外压缩气体进 入, 第一进气通道 302后面的内置单向阀 304关闭, 防止压缩¾气压力从右储 气室 122回流至电磁阀接板 202的第一气口 208处。 左储气室 121、 右储气室 122的压缩空气通过第二进气通道 303联接的第三气口 210回流至电磁阀接板 202的第四气口 211、 第五气口 212。 电磁阀 201因为无电无气的作用, 在自身 弹簧的弹力作用下, 将联接第一进气孔 204的第四气口 211堵住, 将联接第二 进气孔 205的第五气口 212打开。这样左储气室 121、右储气室 122回流至电磁 阀 201的压缩空气就通过第二进气孔 205进入执行器本体 113内的外腔气室通 路 301进入外腔 109, 活塞 102在外腔的高压气体的作用下, 向中间运动, 同时 带动齿条 103向中间运动, 齿条拨动中轴 104顺时针转动, 从而带动阔门中轴 将阀门关闭。
当有电停气 (失效状态二) 时的单作用 (图 9), 无外压缩气体进入, 第一 进气通道 302后面的内置单向阀 304关闭, 防止压缩空气压力从右储气室 122 回流至电磁阀接板 202的第一气口 208处。左储气室 121、右储气室 122的压缩 空气通过第二进气通道 303联接的第三气口 210回流至电磁阀接板 202的第四 说 明 书
气口 211、 第五气口 212。 电磁阀 201虽然在电磁线圈的作用下, 可动铁打开, 但是因为无外气进入, 电磁阀 201仍在自身的弹簧的弹力作用下, 将联接第一 进气孔 204的第四气口 211堵住, 将联接第二进气孔 205的第五气口 212打开。 这样左储气室 121、右储气室 122回流至电磁阀 201的压缩空气就通过第二进气 孔 205进入执行器本体 113的外腔 109,活塞 102在外腔 109的高压气体的作用 下, 向中间运动, 同时带动齿条 103向中间运动, 齿条拨动中轴 104顺时针转 动, 从而带动阔门中轴将阀门关闭。
当无电有气(失效状态三)时的单作用(图 9), 外部气体进入电磁阀 201, 外部气体进入电磁阀接板 202的第 气口 208进入, 通过第一槽道 213进入第 二气口 209, 第二气口 209的气体通过第一进气通道 302进入右储气室 122。 右 储气室 122的压缩空气通过第二进气通道 303进入左储气室 121,同时通过第三 气口 210回流至电磁阀接板 202的第四气口 211、第五气口 212。因为无电有气, 虽然有外气进入, 但是电磁阀 201的可动铁打不开, 电磁阀 201仍在自身的弹 簧的弹力作用下, 将联接第一进气孔 204的第四气口 211堵住, 将联接第二进 气孔 205的第五气口 212打开。这样左储气室 121、右储气室 122回流至电磁阀 201的压缩空气就通过第二进气孔 205进入外腔 109, 活塞 102在外寧 109的高 压气体的作用下, 向中间运动, 同时带动齿条 1Q3 向中间运动, 齿条拨动中轴 104顺时针转动, 从而带动阀门中轴将阀门关闭。
本实用新型内置的单向阀 304,只有当工厂的气源压力大于储气室 12内存 的空气压力时, 才使得气体供应进入储气室 12, 这样, 储气室 12就保有了当次 供气压力的最高值。 在工厂气源大于储气室 12压力时, 单向阀 304被打开, 使 气体进入储气室 12, 这样的压力水平在其最高位。 在工厂气源压力出现意外下 降的情况下, 即工厂气源压力小于等于储气室 12压力时, 单向阀会关闭, 并防 止执行器移位。 这样就解决了采用弹簧来控制的传统执行器由于压力的波动会 出现阀门不按正常次序转动的问题。
本实用新型在现有的传统执行器本体 113上增设两个气路, 结合电磁阀接 板 202 的气路设置, 可不必联接外管路, 所有的空气流动路径都在内部, 提高 了使用安全性。 说 书

Claims

权 利 要 求 书
1、 一种压缩气体单作用执行器, 包括执行器本体, 执行器本体左右两端 分别设有活塞, 活塞上设有齿条, 两个齿条之间设有中轴, 活塞与对应的执行 器本体之间设有多个小复位弹簧, 活塞之间形成内腔, 活塞与执行器本体之间 形成外腔, 在执行器本体上设有连接外腔的外侧的储气腔气室通路, 其特征是, 所述的执行器本体的板式电磁阀接口处装配有电磁阔, 板式电磁阀接口与电磁 阀之间设有电磁阀接板, 执行器本体侧面设有储气室, 储气室与执行器本体之 间设有密封圈; 所述的执行器本体上设有与储气室相通的第一进气通道, 第一 进气通道在储气室的一端设有单向阀, 另一端出口设在板式电磁阀接口的右下 侧与电磁阀接板上的第二气口相对应; 所述的执行器本体上还设有与储气室相 通的第一出气通道, 第一出气通道的出口设在板式电磁阀接口的左上侧与电磁 阀接板上的第三气口相对应。
2、 根据权利要求 1所述的一种压缩气体单作用执行器, 其特征是, 所述 的执行器本体和执行器侧盖与活塞之间设有一个大复位弹簧, 大复位弹簧与活 塞同轴。
3、 根据权利要求 1 所述的一种压缩气体单作用执行器, 其特征是, 所述 的执行器本体与活塞之间通过 0型密封圈连接, 执行器侧盖与执行器本体之间 通过密封圈连接。
4、 根据权利要求 1或 2或 3所述的一种压缩气体单作用执行器, 其特征 是, 所述的执行器本体外部设有不少于一个储气室。
5、 根据权利要求 1 所述的一种压縮气体单作用执行器, 其特征是, 所述 的储气室气腔容积与执行器本体的有效容积比不低于 0. 5 : 1。
6、 根据权利要求 1 所述的一种压缩气体单作用执行器, 其特征是, 所述 的电磁阀接板的第一面的中部并排设有第一进气孔和第二进气孔, 第一进气孔 权 利 要 求 书
设有第一沉槽, 第二进气孔设有第二沉槽; 在第一通孔的下 ¾"设有第一气口, 在第二通孔的右下方设有第二气口, 第一气口左右两侧分别设有第四气口和第 五气口, 第一进气孔的左上方设有第三气口; 第一气口与第二气口之间设有第 一槽道, 第三气口与第四气口和第五气口之间设有第二槽道; 第三气口与第二 气口均为通孔; 在电磁阀接板的第一面上还设有一橡胶垫, 该橡胶垫上设有与 第一面相对应的凹槽, 并设有与第一沉槽、 第二沉槽、 第一气口、 第四气口和 第五气口相通的通孔; 所述的电磁阀接板的第一面与电磁阀底部相对应。
7、 根据权利要求 1所述的一种压缩气体单作用执行器, 其特征是, 所述的电 磁阀底部上与电磁阀接板的第一气口、 第四气口和第五气口相对应的通孔内设 有隔板, 隔板将通孔分为三个腔室; 第一腔室和第三腔室为盲孔, 分别与第四 气口和第五气口相通, 第二腔室为通孔与第一气口相通。
PCT/CN2011/000873 2010-12-22 2011-05-19 一种压缩气体单作用执行器 WO2012083577A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11851328.2A EP2657535B1 (en) 2010-12-22 2011-05-19 Compressed air single-action actuator
KR1020137008499A KR101512913B1 (ko) 2010-12-22 2011-05-19 공압 단동식 액추에이터
DE112011103042T DE112011103042T5 (de) 2010-12-22 2011-05-19 Einfachwirkender Aktuator eines Druckgases
US13/878,546 US20130255479A1 (en) 2010-12-22 2011-05-19 Compressed air single-action actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201020673683.4 2010-12-22
CN2010206736834U CN201909093U (zh) 2010-12-22 2010-12-22 一种压缩气体单作用执行器

Publications (2)

Publication Number Publication Date
WO2012083577A1 true WO2012083577A1 (zh) 2012-06-28
WO2012083577A8 WO2012083577A8 (zh) 2013-08-08

Family

ID=44301294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000873 WO2012083577A1 (zh) 2010-12-22 2011-05-19 一种压缩气体单作用执行器

Country Status (6)

Country Link
US (1) US20130255479A1 (zh)
EP (1) EP2657535B1 (zh)
KR (1) KR101512913B1 (zh)
CN (1) CN201909093U (zh)
DE (1) DE112011103042T5 (zh)
WO (1) WO2012083577A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840378A (zh) * 2012-09-13 2012-12-26 浙江超达阀门股份有限公司 阀杆的自动回位装置
KR102208195B1 (ko) * 2013-11-29 2021-01-27 삼성전자주식회사 머리 착용형 디스플레이 장치에서 디스플레이 화면을 제어하는 방법, 및 머리 착용형 디스플레이 장치
IN2014CH01828A (zh) * 2014-04-07 2015-10-09 Asco Numatics India Pvt Ltd
CN104088843B (zh) * 2014-07-05 2016-06-01 福州大学 一种低泄漏高频响大流量高速开关阀
KR101687244B1 (ko) * 2014-11-06 2016-12-19 경상북도(승계청:경상북도농업기술원,관리청:경상북도 도지사) 직선 및 회전 구동용 이중실린더
US20170122454A1 (en) * 2015-11-02 2017-05-04 Pentair Flow Services Ag Electro-Hydraulic Actuator
CN105889605A (zh) * 2016-05-26 2016-08-24 江苏通达船用阀泵有限公司 一种气动执行器
US10260534B2 (en) * 2016-11-09 2019-04-16 Caterpillar Inc. Hydraulic flowpath through a cylinder wall
CN106641314B (zh) * 2016-11-18 2019-05-28 超达阀门集团股份有限公司 具有自动密封功能的气动球阀
DE102019204446A1 (de) * 2019-03-29 2020-10-01 Festo Se & Co. Kg Fluidbetätigte Drehantriebsvorrichtung
CN115479211B (zh) * 2022-10-31 2023-05-23 中国矿业大学 一种带有单向和多齿轮传动阀门的地下储能装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606864A1 (en) * 1993-01-11 1994-07-20 Kabushiki Kaisha Sg Braking apparatus operated via resilient deformation of coned disk springs
CN2363106Y (zh) * 1998-09-05 2000-02-09 黄勤建 双活塞气动执行器
JP2003167633A (ja) * 2001-12-03 2003-06-13 Fujikura Rubber Ltd 電空変換式空気レギュレータ
CN201053421Y (zh) * 2007-03-15 2008-04-30 温州市鼎锋阀门厂 四活塞气动执行器
CN201461597U (zh) * 2009-06-19 2010-05-12 季忠庸 气动执行器
CN201547039U (zh) * 2009-12-17 2010-08-11 济南高仕机械制造有限公司 一种压缩气单作用执行器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979909A (en) * 1976-01-12 1976-09-14 Hydrapower Inc. Hydraulic actuator
US4132071A (en) * 1977-10-11 1979-01-02 Hills-Mccanna Company Electro-hydraulic controlled valve actuator system
FR2736972B1 (fr) * 1995-07-17 1997-08-29 Ksb Sa Actionneur du type comprenant un verin
DE19543237C2 (de) * 1995-11-20 1997-09-18 Pleiger Maschf Paul Hydraulische Stellvorrichtung, insbesondere Schwenkantrieb
JP2001517285A (ja) 1996-02-15 2001-10-02 クォーターコ インコーポレーテッド 空気アクチュエータ
US5950427A (en) * 1997-11-18 1999-09-14 Worcester Controls Licensco, Inc. Fail-safe electric hydraulic actuator
US6155531A (en) * 1999-01-22 2000-12-05 Automatic Switch Company Proportional control value
JP3469525B2 (ja) * 2000-03-03 2003-11-25 Smc株式会社 クッション機構付空気圧ロータリアクチュエータ
US6766649B2 (en) * 2001-06-11 2004-07-27 Lisbon Hoist, Inc. Pneumatic powered drive
US6959913B2 (en) * 2003-06-13 2005-11-01 Dynamic Air Inc. Actuator
US7182310B2 (en) * 2005-06-24 2007-02-27 Shui-Ching Chen Position return device for an open and close apparatus
US20070034264A1 (en) * 2005-08-12 2007-02-15 Stonel Corporation Apparatus for valve communication and control
US7337801B2 (en) * 2005-10-10 2008-03-04 V-Controls Inc. Valve
EP1821005B1 (en) * 2006-02-17 2011-06-08 Magneti Marelli S.p.A. Hydraulic servo for a gear change
ITMI20060479A1 (it) * 2006-03-16 2007-09-17 G T Attuatori Srl Attuatore a fluido
CN201053422Y (zh) * 2007-06-21 2008-04-30 济南高仕机械制造有限公司 扇型气动执行器
US7736328B2 (en) * 2007-07-05 2010-06-15 Baxter International Inc. Dialysis system having supply container autoconnection
US8567752B2 (en) * 2009-09-02 2013-10-29 Emerson Process Management, Valve Automation Inc. Rotary valve actuators having partial stroke damping apparatus
US8567185B1 (en) * 2010-02-16 2013-10-29 Vecna Technologies, Inc. High efficiency actuator method, system and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606864A1 (en) * 1993-01-11 1994-07-20 Kabushiki Kaisha Sg Braking apparatus operated via resilient deformation of coned disk springs
CN2363106Y (zh) * 1998-09-05 2000-02-09 黄勤建 双活塞气动执行器
JP2003167633A (ja) * 2001-12-03 2003-06-13 Fujikura Rubber Ltd 電空変換式空気レギュレータ
CN201053421Y (zh) * 2007-03-15 2008-04-30 温州市鼎锋阀门厂 四活塞气动执行器
CN201461597U (zh) * 2009-06-19 2010-05-12 季忠庸 气动执行器
CN201547039U (zh) * 2009-12-17 2010-08-11 济南高仕机械制造有限公司 一种压缩气单作用执行器

Also Published As

Publication number Publication date
KR20130069787A (ko) 2013-06-26
DE112011103042T5 (de) 2013-07-04
US20130255479A1 (en) 2013-10-03
EP2657535A1 (en) 2013-10-30
KR101512913B1 (ko) 2015-04-16
EP2657535A4 (en) 2017-03-15
WO2012083577A8 (zh) 2013-08-08
CN201909093U (zh) 2011-07-27
EP2657535B1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2012083577A1 (zh) 一种压缩气体单作用执行器
EP1975480B1 (en) Motor-operated selector valve and refrigeration cycle device for refrigerators
CN201391499Y (zh) 智能型电液式执行机构
CN201513574U (zh) 气动快速切断阀
US20120211681A1 (en) Pneumatic actuator air flow control system
CN106641314B (zh) 具有自动密封功能的气动球阀
CA2752542A1 (en) Hydraulic control system for drilling systems
CN102923291A (zh) 一种用于转叶式舵机的液压控制阀组
CN201209689Y (zh) 二位三通电磁阀
WO2012028050A1 (zh) 采用组合式法兰控制盖板的紧凑型二通插装阀
CN110388474A (zh) 一种快速响应的小型化先导式电磁阀
CN109538562A (zh) 一种先导阀套控制式开关阀
JP2000320711A (ja) 電動式コントロールバルブ
TWM413048U (en) Single-acting cylinder for compression of gas
CN204573137U (zh) 一种气动膨胀式蝶阀
CN206280524U (zh) 具有自动密封功能的气动球阀
CN110319264A (zh) 三位置气动执行器
CN111102358A (zh) 多路流体管道交替启闭阀
CN201053421Y (zh) 四活塞气动执行器
CN209705326U (zh) 一种隔膜式电磁阀
CN203641586U (zh) 试验电磁阀
CN208651772U (zh) 电液联动的控制系统及调节型执行器
CN217440910U (zh) 一种新型带球阀开关的电磁阀
CN112065795A (zh) 螺纹插装式阀组
CN204784982U (zh) 一种阀门转动驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137008499

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111030428

Country of ref document: DE

Ref document number: 112011103042

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011851328

Country of ref document: EP