WO2012083573A1 - 可变截面涡轮机 - Google Patents

可变截面涡轮机 Download PDF

Info

Publication number
WO2012083573A1
WO2012083573A1 PCT/CN2011/000460 CN2011000460W WO2012083573A1 WO 2012083573 A1 WO2012083573 A1 WO 2012083573A1 CN 2011000460 W CN2011000460 W CN 2011000460W WO 2012083573 A1 WO2012083573 A1 WO 2012083573A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
shaped baffle
movable tongue
tongue
baffle
Prior art date
Application number
PCT/CN2011/000460
Other languages
English (en)
French (fr)
Inventor
王航
纪旭娜
刘云岗
李永泰
朱智富
宋丽华
Original Assignee
Wang Hang
Ji Xuna
Liu Yungang
Li Yongtai
Zhu Zhifu
Song Lihua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Hang, Ji Xuna, Liu Yungang, Li Yongtai, Zhu Zhifu, Song Lihua filed Critical Wang Hang
Publication of WO2012083573A1 publication Critical patent/WO2012083573A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/143Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a variable-section turbocharger, and more particularly to a variable-section turbine that changes the throat passage while changing the throat section, and belongs to the field of internal combustion engines.
  • Turbochargers are widely used in automotive engines, which significantly improve engine performance. As the requirements of engine emission regulations become more stringent, higher demands are placed on the performance of automotive turbochargers. When the turbocharger is matched with the engine, there is a problem that the engine has insufficient low-speed torque, poor exhaust performance, and high-speed supercharging. In order to meet the performance requirements of the entire engine operating range, variable section turbocharging technology has been widely studied and applied. Among them, the tongue-shaped baffle variable-section turbine is widely used due to its simple structure and easy control.
  • the schematic diagram of the typical variable-section turbine of the tongue-shaped baffle is shown in Figure 1, which is set in the nozzle ring by changing.
  • the angle of rotation of the tongue-shaped baffle at the location adjusts the flow area of the flow path.
  • the volute 1 has an annular air passage 3, and the annular air passage 3 communicates with the air inlet 2, and the annular air passage 3 is provided with an adjusting device 7 for changing the cross-sectional area of the throat.
  • the adjusting device 7 is composed of a straight rack 5, a curved rack 6, and a tongue-shaped flap 8.
  • the root of the tongue-shaped baffle 8 is movably connected to the volute 1 , the curved rack 6 is fixed to the head of the tongue-shaped baffle 8 , and the actuator 4 disposed outside the volute controls the linear movement of the straight rack 5 , the arc
  • the rack 6 meshes with the straight rack 5 to adjust the opening of the tongue flap 8, thereby changing the air inlet area of the annular air passage 3.
  • the adjusting device 7 can adjust the tongue-shaped baffle 8 according to the actual working condition of the engine to meet the supercharging requirements of various operating conditions of the engine.
  • the adjustment device 7 is complicated in processing and installation, and the deformation of the flow path when the tongue-shaped baffle changes the intake cross-section does not conform to the fluid flow requirement, so that the flow loss is large, and the adjustment range of the gas flow rate is limited, and the supercharger is limited. The overall efficiency is low.
  • variable-section turbine with simple control, low flow loss, high efficiency and wide adjustment range to effectively widen the matching range between the turbocharger and the engine, while satisfying the low-speed rich gas and high-speed supercharging of the engine.
  • the right amount of demand is desirable to design a variable-section turbine with simple control, low flow loss, high efficiency and wide adjustment range to effectively widen the matching range between the turbocharger and the engine, while satisfying the low-speed rich gas and high-speed supercharging of the engine. The right amount of demand.
  • the problem to be solved by the present invention is to provide a variable-section turbine with simple and flexible handling, low flow loss and high efficiency, and effectively widening the matching range of the turbocharger and the engine, which can solve the low efficiency of the tongue-shaped baffle supercharger.
  • the problem of limited range of gas flow regulation is to meet the supercharging requirements of the full operating range of the engine.
  • the present invention adopts the following technical solutions:
  • a variable-section turbine includes a volute, an actuator is mounted on the volute, an annular air passage is disposed in the volute, an annular air passage has an air inlet, and an air intake cross-section adjusting mechanism is disposed in the annular air passage.
  • the intake section adjustment mechanism is drivingly coupled to the actuator.
  • the air intake section adjusting mechanism includes a fixed baffle installed in the annular airflow path near the air inlet, the fixed baffle is rotatably connected to the movable straight plate at one end of the air inlet, and the movable tongue is rotatably connected at the other end. Baffle. .
  • the airflow enters the volute uses the flow inertia to work on the turbine.
  • the other end of the fixed baffle is disposed in the annular airflow passage and the air inlet.
  • the cross section is at a position of 0 to 90°. advanced optimization:
  • the fixed baffle and the movable straight plate are rotatably connected by the movable straight plate rotating shaft, and the fixed baffle and the movable tongue baffle are rotatably connected by the movable tongue-shaped baffle rotating shaft.
  • the movable straight plate rotating shaft and the movable tongue-shaped baffle rotating shaft are mounted on the volute and rotatably connected with the volute.
  • One end of the movable straight plate rotating shaft and one end of the movable tongue-shaped baffle rotating shaft respectively protrude to the outside of the volute, the end of the movable straight plate rotating shaft and the movable tongue-shaped baffle rotating shaft
  • An adjustment paddle is disposed between the ends, and the adjustment paddle is drivingly coupled to the actuator.
  • One end of the adjusting paddle is provided with a curved sliding slot, and one end of the rotating shaft of the movable straight plate is installed in the arc-shaped sliding slot of the adjusting paddle, and one end of the rotating tongue of the movable tongue-shaped baffle is fixed in the adjustment dialing Chip.
  • the actuator can sequentially change the cross-sectional area of the throat and the intake runner by controlling the adjustment pad to simultaneously change the rotation angle of the movable straight plate and the movable tongue-shaped baffle.
  • the fixed baffle is integrally formed with the volute, and the fixed baffle, the movable straight plate and the movable tongue baffle are arranged along the axial direction of the annular air flow channel, and the movable straight plate and the fixed baffle are used to reduce the flow loss.
  • the profile formed by the movable tongue-shaped baffle is similar to the profile of the inner wall of the volute.
  • the other end of the movable tongue-shaped baffle is rotatably connected with a first movable tongue-shaped baffle and a second movable tongue-shaped baffle, and the end of the second movable tongue-shaped baffle is located near the annular airflow path. Relative to the position of the other end of the air inlet. advanced optimization:
  • the first movable tongue flap and the second movable tongue flap are disposed along an axial direction of the annular air passage.
  • the flow area can be adjusted within the flow area of the entire flow path, and the boosting requirement of the engine operating range can be more effectively met.
  • the first movable tongue flap and the second movable tongue flap are respectively mounted on the volute and are drivingly coupled to the actuator.
  • One or more actuators can be set up according to requirements for independent or joint adjustment to meet different engine and different working conditions.
  • the structure of the turbine volute of the invention is basically the same as that of the conventional supercharger volute, the structure is simple, the bearing is good, the cost is low, and the engineering is easy to be quickly realized.
  • the intake sectional adjustment control mechanism in the present invention is simple, the control method is easy to implement, and the reliability is high.
  • the invention divides the flow path of the volute from the inlet to the 90° section into two parts with different flow capacities, and adopts a freely adjustable gas guiding device to adjust and control two different flow paths to work in order to achieve control.
  • the flow area of the flow passage adjusts the gas state entering the turbine to meet the supercharging requirement of the full working condition range of the engine, and the actuator can adjust the rotation angle of the movable straight plate and the movable tongue-shaped baffle in real time according to the actual working condition of the engine. To change the throat section and the intake runner to achieve a good match between the turbocharger and the engine.
  • the tongue-shaped baffle together with other baffles closes the large flow channel that is not working, which reduces the eddy current generated by the small-flow working gas in the unclosed non-working channel. Loss, increase the aerodynamic efficiency of the turbine at low flow rates.
  • the structure of the tongue-shaped baffle not only ensures that the entire flow channel structure conforms to the fluid motion law when the small flow channel is working, but also ensures that the large flow channel is in the open state of the baffle plate.
  • the large and small flow passages conform to the law of fluid motion, which can ensure good aerodynamic efficiency in two states, avoid the abrupt image of the flow channel existing in the traditional tongue-shaped baffle structure, and greatly improve the aerodynamic efficiency of the turbine.
  • the use of the patent of the present invention to change the throat section and the variable-flow turbine of the intake runner can effectively meet the supercharging requirements of the entire operating range of the engine, and the overall structure of the supercharger does not undergo a large change.
  • the cost is low, easy to implement, has broad market value, and can achieve good application results.
  • FIG. 1 is a schematic structural view of a variable-section turbine equipped with a tongue-shaped baffle in the background art
  • FIG. 2 is an external view of a variable-section turbine in an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of a small-flow variable-section turbine in Embodiment 1 of the present invention
  • Figure 4 is a cross-sectional view of a large-flow variable-section turbine in Embodiment 1 of the present invention
  • Figure 5 is a variable cross-section of Embodiment 1 of the present invention
  • Figure 6 is a schematic cross-sectional view showing a variable section turbine in Embodiment 2 of the present invention.
  • Figure 7 is a schematic cross-sectional view showing a variable section turbine in Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural view of a double-flow passage of a circular cross section according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a single-section rectangular cross section according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a rectangular cross-section double flow passage according to an embodiment of the present invention.
  • Embodiment 1 as shown in FIG. 2, a variable-section turbine including a volute 1 having an annular air passage 3 therein, the annular air passage 3 having an air inlet 2, and an annular air passage 3 There is an intake section adjustment mechanism 17, and the intake section adjustment mechanism 17 is drivingly coupled to the actuator 15.
  • the intake section adjustment mechanism 17 includes a fixed baffle 11 mounted in the annular air passage 3 near the intake port 2, and the fixed baffle 11 is integrally molded with the volute 1.
  • the fixed baffle 11, the movable straight plate 9 and the movable tongue baffle 1.3 are arranged along the axial direction of the annular air flow path 3, and are composed of a movable straight plate, a fixed baffle plate and a movable tongue-shaped baffle plate for reducing flow loss.
  • the shape line is similar to the profile of the inner wall of the volute.
  • One end of the fixed baffle 11 near the air inlet 2 is rotatably connected to the movable straight plate 9 through the movable straight plate rotating shaft 10, and the other end is rotatably connected with the movable tongue-shaped baffle plate 13 through the movable tongue-shaped baffle rotating shaft 12. .
  • the movable straight plate rotating shaft 10 and the movable tongue-shaped shutter rotating shaft 12 are mounted on the volute 1 and rotatably connected with the volute 1.
  • An adjustment paddle 16 is disposed between the portion and the end of the movable tongue-shaped flap rotating shaft 12.
  • One end of the adjusting paddle 16 is provided with a curved chute 14, one end of the movable bar rotating shaft 10 is mounted in the arc chute 14 of the adjusting paddle 16, and the movable tongue-shaped baffle rotating shaft 12 One end is fixed to the adjustment paddle 16.
  • the adjusting paddle 16 is in driving connection with the actuator 15.
  • the actuator 15 drives the adjusting paddle 16 to rotate, the movable straight plate 9 and the movable tongue-shaped shutter 13 are simultaneously rotated.
  • the movable straight plate 9, the fixed baffle 11 and the movable tongue-shaped baffle 13 advance the volute
  • the annular air passage 3 at the mouth is divided into upper and lower parts, and the rotation of the movable straight plate 9 and the movable tongue-shaped baffle 13 can change the cross-sectional area of the throat and the intake flow passage, and control the cross-sectional area of the intake flow passage and the throat
  • the work of the airflow on the turbine wheel achieves adjustment of the boost pressure.
  • the annular air flow path 3 is a single flow path having a circular cross section.
  • the flow rate of the turbine exhaust gas is small, and the flap 16 is rotated counterclockwise under the action of the actuator 15, and the movable tongue-shaped flapper 13 is also rotated counterclockwise, and the movable straight plate 9 is rotated clockwise, and the tongue is blocked.
  • the plate 13 is located at the position A in FIG. 5, and the movable straight plate 9 and the movable tongue-shaped baffle 13 are both attached to the inner wall of the volute 1 to prevent flow loss caused by the air flow reversed, and the upper intake air passage closes the throat cross-sectional area.
  • the boost pressure rises to meet the engine's low-speed service boosting requirements and improve emissions performance.
  • the flow rate of the turbine exhaust gas is large, and the flap 16 is adjusted to rotate clockwise under the action of the actuator 15, and the movable tongue-shaped flapper 13 is rotated clockwise to rotate the movable straight plate 9 counterclockwise.
  • the tongue-shaped baffle 13 is located at the position B in FIG. 5, and the movable straight plate 9 and the movable tongue-shaped baffle 13 are separated from the inner wall of the volute 1 to open the intake passage, the cross-sectional area of the throat is enlarged, and the airflow speed is relatively
  • the reduction of the work done on the turbine is reduced to meet the flow demand of the supercharger, and the problem of excessive supercharging of the engine at high speed is solved.
  • Embodiment 2 as shown in FIG. 6, on the basis of Embodiment 1, in order to further expand the adjustment range of the intake air flow rate, the other end of the movable tongue-shaped baffle 13 is rotatably connected to the first movable tongue shape.
  • a baffle 18 and a second movable tongue-shaped baffle 19 the end of the second movable tongue-shaped baffle 19 being located near the other end of the annular airflow path 3 with respect to the air inlet 2,
  • a movable tongue flap 18 and a second movable tongue flap 19 are disposed along the axial direction of the annular air passage 3.
  • the first movable tongue-shaped baffle 18 and the second movable tongue-shaped baffle 19 are respectively mounted on the volute 1 and connected to the actuator 15 so that the flow area can be adjusted in the flow area of the entire flow path. , More efficient to meet the supercharge requirements of the full range of engine conditions.
  • one or more actuators may be set to perform independent or joint adjustment according to requirements to meet different engine and different working conditions.
  • Embodiment 3 After the airflow enters the volute, the work of the turbine is performed by the flow inertia, and the work of the airflow in the initial section plays an important role in the whole work of the turbine.
  • the fixed baffle 11 In order to make full use of the energy of the airflow at the beginning of the work, as shown in Fig. 7, on the basis of the first embodiment, the fixed baffle 11 is extended to an angle of 90° in the annular airflow path 3 close to the cross section of the air inlet 2.
  • the mounting position of the movable tongue-shaped baffle 13 is also moved backward, and the installation manner is unchanged, which prevents the airflow from expanding prematurely in the volute 1 and makes the energy of the airflow more fully utilized.
  • the boost pressure can be increased more effectively to meet the engine's low speed boost requirements.
  • the other end of the fixed baffle 11 may be disposed at an angle of 0 to 90° from the cross section of the air inlet 2 in the annular air passage 3 as needed to adjust the length of the fixed baffle.
  • the annular airflow path 3 can also adopt a circular cross-section double flow channel as shown in FIG.
  • the annular airflow path 3 can also adopt a rectangular cross section single flow channel as shown in FIG.
  • the annular airflow path 3 can also adopt a rectangular cross-section double flow path as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

可变截面涡轮机
技术领域:
本发明涉及一种可变截面涡轮增压器, 具体涉^到一种在改变喉口截面同 时也改变进气流道的可变截面涡轮机, 属于内燃机领域。
背景技术:
涡轮增压器广泛的应用于车用发动机, 它能显著地提高发动机性能。 随着 发动机排放法规要求的日益严格, 对车用涡轮增压器的性能也提出了更高的要 求。 涡轮增压器在与发动机匹配时普遍存在发动机低速扭矩不足、 排放性能差 及高速增压过量的问题。 为了满足发动机全工况范围内的性能要求, 可变截面 涡轮增压技术得到了广泛的研究和应用。 其中舌形挡板可变截面涡轮机由于结 构简单、 便于控制而被广泛应用。
过去的十几年国内外学者对舌形挡板可变截面涡轮机做过大量的研究, 典 型的舌形挡板可变截面涡轮的结构示意图如附图 1所示, 其通过改变设置在喷 嘴环处的舌形挡板的转动角度来调节流道流通面积。蜗壳 1内有环形气流道 3, 环形气流道 3与进气口 2连通, 环形气流道 3上设置有用于改变喉口截面面积 的调节装置 7。 调节装置 7由直齿条 5、 弧形齿条 6、 舌形挡板 8构成。 舌形挡 板 8的根部活动地连接在蜗壳 1上, 弧形齿条 6固定在舌形挡板 8的头部, 设 置在蜗壳外侧的执行器 4控制直齿条 5直线移动, 弧形齿条 6与直齿条 5啮合 从而对舌形挡板 8的开度进行调节, 从而改变环形气流道 3的进气口面积。 当 舌形挡板 8背离涡轮方向转动时, 环形气流道 3的进气口面积减小, 使得进入 涡轮的废气能量增加, 对涡轮的做功能力增强, 提高了发动机在低速时的增压 压力。 反之空气增压压力减小。 调节装置 7可根据发动机的实际工况, 对舌形 挡板 8进行调节, 以满足发动机各个工况的增压要求。 但是调节装置 7在加工安装实现上较复杂, 并且舌形挡板的在改变进气截 面时流道变形不符合流体流动要求使流动损失较大, 对气体流量的调节范围有 限, 增压器的总效率较低。
因此希望发明设计一种控制简便、 流动损失小、 效率较高、 调节范围较广 的可变截面涡轮来有效地拓宽涡轮增压器与发动机的匹配范围, 同时满足发动 机低速富气和高速增压适量的要求。
发明内容:
本发明所要解决的问题是要提供一种操控简便灵活、流动损失小效率较高、 有效地拓宽涡轮增压器与发动机匹配范围的可变截面涡轮机, 能够解决舌形挡 板增压器效率低、 对气体流量调节范围有限的问题, 以满足发动机全工况范围 的增压要求。
为了解决以上问题,本发明采用以下技术方案:
一种可变截面涡轮机, 包括蜗壳, 蜗壳上安装有执行机构, 蜗壳内设有环 形气流道,环形气流道具有进气口,所述环形气流道内设有进气截面调节机构, 所述进气截面调节机构与执行机构传动连接。
以下是本发明对上述方案的进一步优化:
所述进气截面调节机构包括安装在环形气流道内靠近进气口处的固定挡 板, 所述固定挡板靠近进气口的一端转动连接有可动直板, 另一端转动连接有 可动舌形挡板。 .
进一步优化:
气流进入蜗壳后利用流动惯性对涡轮做功, 为了充分利用气流在做功起始 段的能量, 特别是满足发动机低速时的增压要求, 固定挡板的另一端设置在环 形气流道内与进气口的横截面呈 0〜90° 角的位置处。 进一步优化:
所述固定挡板与可动直板之间通过可动直板转动轴转动连接, 固定挡板与 可动舌形挡板通过可动舌形挡板转动轴转动连接。
进一步优化:
所述可动直板转动轴和可动舌形挡板转动轴安装在蜗壳上并与蜗壳之间 转动连接。
进一步优化:
所述可动直板转动轴的其中一端和可动舌形挡板转动轴的其中一端分别 伸出到蜗壳的外部, 所述可动直板转动轴的端部与可动舌形挡板转动轴的端部 之间设有调节拨片, 所述调节拨片与执行机构传动连接。
进一步优化:
所述调节拨片的其中一端设有弧形滑槽, 所述可动直板转动轴的一端安装 在调节拨片的弧形滑槽内, 可动舌形挡板转动轴的一端固定在调节拨片上。
所述执行机构通过控制调节拨片可同时改变可动直板及可动舌形挡板的 转动角度可顺序改变喉口截面面积和进气流道。
进一步优化:
所述固定挡板与蜗壳铸为一体, 所述固定挡板、 可动直板和可动舌形挡板 沿环形气流道的轴向设置, 为了减少流动损失, 由可动直板、 固定挡板和可动 舌形挡板组成的型线与蜗壳内壁的型线相近。
进一步优化:
所述可动舌形挡板的另一端依次转动连接有第一可动舌形挡板和第二可 动舌形挡板, 所述第二可动舌形挡板的末端位于靠近环形气流道内相对于进气 口的另一端的位置处。 进一步优化:
所述所述第一可动舌形挡板和第二可动舌形挡板沿环形气流道的轴向设 置。
这样可以实现流通面积在整个流道的流动区域内可调, 更有效地满足发动 机全工况范围的增压要求。
进一步优化:
所述第一可动舌形挡板和第二可动舌形挡板分别安装在蜗壳上并与由执 行机构传动连接。
可根据需求设置一个或多个执行机构进行独立或联合调节, 以满足不同发 动机、 不同工况工作要求。
本发明中的涡轮蜗壳结构与普通增压器蜗壳结构基本相同, 结构简单, 继 承性好, 成本低, 容易快速实现工程化。 本发明中的进气截面调节控制机构简 单, 控制方式容易实现, 可靠性高。
本发明通过将蜗壳从入口到 90 ° 截面的流道区分为上下流通能力不同的 两部分, 采用一种可自由调节的气体导向装置调节、 控制两个不同的流道顺序 工作, 以达到控制流道的流通面积, 调节进入涡轮的燃气状态, 满足发动机全 工况范围的增压要求, 所述执行机构可根据发动机的实际工况实时调节可动直 板及可动舌形挡板的转动角度来改变喉口截面和进气流道, 以实现涡轮增压器 与发动机全工况的良好匹配。
在小流道工作时, 舌形挡板与其他挡板一起将不工作的大流道封闭, 减少 了其他形式可调机构存在的小流道工作燃气在未封闭的非工作流道产生的涡流 损失, 提高涡轮机小流量时的气动效率。 同时, 舌形挡板的结构既保证小流道 工作时整个流道结构符合流体运动规律, 也可保证在挡板开启状态下, 大流道 参与工作时, 大小流道均符合流体运动规律, 可保证在两种状态下获得良好的 气动效率, 避免了传统舌形挡板结构中存在的流道突变形象, 极大改善了涡轮 机气动效率。
综上所述, 采用本发明专利的同时改变喉口截面和进气流道可变截面涡轮 机可以有效的满足发动机全工况范围的增压要求, 该类型增压器整体结构不发 生大的变化, 成本低, 容易实现, 具有广阔的市场推广价值, 能取得良好的应 用效果。
附图说明:
附图 1是背景技术中安装有舌形挡板的可变截面涡轮的结构示意图; 附图 2是本发明实施例中可变截面涡轮外观图;
附图 3是本发明实施例 1中小流量可变截面涡轮机剖面示意图; 附图 4是本发明实施例 1中大流量可变截面涡轮机剖面示意图; 附图 5是本发明实施例 1中可变截面涡轮机可动舌形挡板分别处于小流量 和大流量时的位置示意图;
附图 6是本发明实施例 2中可变截面涡轮机剖面示意图;
附图 7是本发明实施例 3中可变截面涡轮机剖面示意图;
附图 8为本发明实施例中环形截面双流道的结构示意图;
附图 9为本发明实施例中矩形截面单流道的结构示意图;
附图 10为本发明实施例中矩形截面双流道的结构示意图。
图中: 1-蜗壳; 2-进气口; 3-环形气流道; 4-执行器; 5-直齿条; 6-弧形 齿条; 7-调节装置; 8-舌形挡板; 9-可动直板; 10-可动直板转动轴; 11-固定 挡板; 12-可动舌形挡板转动轴; 13-可动舌形挡板; 14-弧形滑槽; 15-执行机 构; 16-调节拨片; 17-进气截面调节机构; 18-第一可动舌形挡板; 19-第二可 动舌形挡板。
具体实施方式:
实施例 1, 如附图 2所示, 一种可变截面涡轮机, 包括蜗壳 1, 蜗壳 1 内 设有环形气流道 3,环形气流道 3具有进气口 2,环形气流道 3内设有进气截面 调节机构 17, 所述进气截面调节机构 17与执行机构 15传动连接。
如图 3所示, 所述进气截面调节机构 17包括安装在环形气流道 3内靠近 进气口 2处的固定挡板 11, 所述固定挡板 11与蜗壳 1铸为一体。
所述固定挡板 11、 可动直板 9和可动舌形挡板 1.3沿环形气流道 3的轴向 设置, 为了减少流动损失, 由可动直板、 固定挡板和可动舌形挡板组成的形线 与蜗壳内壁的型线相近。
所述固定挡板 11靠近进气口 2的一端通过可动直板转动轴 10转动连接有 可动直板 9, 另一端通过可动舌形挡板转动轴 12转动连接有可动舌形挡板 13。
所述可动直板转动轴 10和可动舌形挡板转动轴 12安装在蜗壳 1上并与蜗 壳 1之间转动连接。
如图 2所示, 所述可动直板转动轴 10的其中一端和可动舌形挡板转动轴 12的其中一端分别伸出到蜗壳 1的外部, 所述可动直板转动轴 10的端部与可 动舌形挡板转动轴 12的端部之间设有调节拨片 16。
所述调节拨片 16的其中一端设有弧形滑槽 14,所述可动直板转动轴 10的 一端安装在调节拨片 16的弧形滑槽 14内,可动舌形挡板转动轴 12的一端固定 在调节拨片 16上。
所述调节拨片 16与执行机构 15传动连接, 执行机构 15带动调节拨片 16 转动时, 同时带动可动直板 9和可动舌形挡板 13转动。
如图 3所示, 所述可动直板 9、 固定挡板 11和可动舌形挡板 13将蜗壳进 口处的环形气流道 3分为上下两部分,可动直板 9和可动舌形挡板 13的转动可 以改变喉口截面面积和进气流道, 并通过改变进气流道和喉口截面面积控制气 流对涡轮叶轮的做功实现对增压压力的调节。
如图 5所示, 所述环形气流道 3为环形截面单流道。
发动机低速时, 进入涡轮废气流量小, 在执行机构 15 的作用下调节拨片 16逆时针转动, 同时带动可动舌形挡板 13也逆时针转动, 可动直板 9顺时针 转动,舌形挡板 13位于如图 5中的 A处位置,此时可动直板 9和可动舌形挡板 13都与蜗壳 1内壁贴合, 防止气流反串造成流动损失, 上进气流道关闭喉口截 面积变小, 气流速度增大, 涡轮转速升高, 增压压力升高, 满足发动机低速工 况增压要求, 改善排放性能。
如图 4所示, 发动机高速时, 进入涡轮废气流量大, 在执行机构 15的作 用下调节拨片 16顺时针转动, 同时带动可动舌形挡板 13顺时针转动可动直板 9逆时针转动, 舌形挡板 13位于如图 5中的 B处位置, 此时可动直板 9和可动 舌形挡板 13离开蜗壳 1内壁上进气流道打开,喉口截面积变大,气流速度相对 减小对涡轮做功减少以满足增压器的流量要求, 解决了发动机高速工况增压过 量的问题。
实施例 2, 如图 6所示, 在实施例 1的基础上, 为了进一步扩大进气流量 的调节范围,所述可动舌形挡板 13的另一端依次转动连接有第一可动舌形挡板 18和第二可动舌形挡板 19, 所述第二可动舌形挡板 19的末端位于靠近环形气 流道 3内相对于进气口 2的另一端的位置处,所述第一可动舌形挡板 18和第二 可动舌形挡板 19沿环形气流道 3的轴向设置。
第一可动舌形挡板 18和第二可动舌形挡板 19分别安装在蜗壳 1上并与由 执行机构 15传动连接, 这样可以实现流通面积在整个流道的流动区域内可调, 更有效地满足发动机全工况范围的增压要求。
上述实施例中, 可根据需求设置一个或多个执行机构进行独立或联合调 节, 以满足不同发动机、 不同工况工作要求。
实施例 3, 气流进入蜗壳后利用流动惯性对涡轮做功, 气流在起始段内的 做功在涡轮整个做功过程中占据很重要的地位。 为了充分利用气流在做功起始 段的能量, 如图 7所示, 在实施例 1的基础上, 固定挡板 11延长至环形气流道 3内靠近与进气口 2的横截面呈 90° 角的位置处,同样可动舌形挡板 13的安装 位置也随之后移, 安装方式不变, 这样可以防止气流在蜗壳 1内过早膨胀, 使 气流的能量得到更充分的利用。 特别是在发动机低速时, 可以更有效地提高增 压压力, 满足发动机低速增压要求。
上述实例中,可根据需要所述固定挡板 11的另一端部设置在环形气流道 3 内与进气口 2的横截面呈 0〜90° 角的位置处, 以调节固定挡板的长度, 以满 足不同发动机、 不同工况工作要求。
上述实施例中, 所述环形气流道 3还可以采用如图 8所示的环形截面双流 道。
上述实施例中, 所述环形气流道 3还可以采用如图 9所示的矩形截面单流 道。
上述实施例中, 所述环形气流道 3还可以采用如图 10所示的矩形截面双 流道。

Claims

权利要求
1、 可变截面涡轮机, 包括蜗壳 (1), 蜗壳 (1) 上安装有执行机构 (15), 蜗壳 (1) 内设有环形气流道 (3), 环形气流道 (3) 具有进气口 (2), 其特征 在于: 所述环形气流道 (3) 内设有进气截面调节机构 (17), 所述进气截面调 节机构 (17) 与执行机构 (15) 传动连接。
2、 根据权利要求 1 所述的可变截面涡轮机, 其特征在于: 所述进气截面 调节机构 (17) 包括安装在环形气流道 (3) 内的固定挡板 (11), 所述固定挡 板(11)靠近进气口 (2) 的一端转动连接有可动直板(9), 另一端转动连接有 可动舌形挡板 (13)。
3、 根据权利要求 2 所述的可变截面涡轮机, 其特征在于: 所述固定挡板 (11) 的另一端部设置在环形气流道 (3) 内与进气口 (2) 的横截面呈 0〜90
° 角的位置处。
4、 根据权利要求 2 所述的可变截面涡轮机, 其特征在于: 所述固定挡板 (11)与可动直板(9)之间通过可动直板转动轴(10)转动连接,固定挡板(11) 与可动舌形挡板 (13) 通过可动舌形挡板转动轴 (12) 转动连接。
5、 根据权利要求 5 所述的可变截面涡轮机, 其特征在于: 所述可动直板 转动轴 (10) 和可动舌形挡板转动轴 (12) 安装在蜗壳 (1) 上并与蜗壳 (1) 之间转动连接。
6、 根据权利要求 6 所述的可变截面涡轮机, 其特征在于: 所述可动直板 转动轴 (10) 的其中一端和可动舌形挡板转动轴 (12) 的其中一端分别伸出到 蜗壳( 1 )的外部,所述可动直板转动轴 ( 10)的端部与可动舌形挡板转动轴( 12) 的端部之间设有调节拨片(16), 所述调节拨片 (16)与执行机构(15)传动连 接。
7、 根据权利耍求 7 所述的可变截面涡轮机, 其特征在于: 所述调节拨片 (16) 的其中一端设有弧形滑槽(14), 所述可动直板转动轴(10) 的一端安装 在调节拨片 (16) 的弧形滑槽 (14) 内, 可动舌形挡板转动轴 (12) 的一端固 定在调节拨片 (16) 上。
8、根据权利要求 2〜8任一权利要求所述的可变截面涡轮机,其特征在于: 所述固定挡板 (11)、 可动直板 (9) 和可动舌形挡板 (13) 沿环形气流道 (3) 的轴向设置。
9、 根据权利要求 4 所述的可变截面涡轮机, 其特征在于: 所述可动舌形 挡板 (13) 的另一端依次转动连接有第一可动舌形挡板 (18) 和第二可动舌形 挡板 (19), 所述第二可动舌形挡板 (19) 的末端位于靠近环形气流道 (3) 内 相对于进气口 (2) 的另一端的位置处。
10、 根据权利要求 10 所述的可变截面涡轮机, 其特征在于: 所述第一可 动舌形挡板(18)和第二可动舌形挡板(19)分别安装在蜗壳(1)上并与由执 行机构 (15) 传动连接。
11、 根据权利要求 8所述的可变截面涡轮机, 其特征在于: 所述第一可动 舌形挡板 (18) 和第二可动舌形挡板 (19) 沿环形气流道 (3) 的轴向设置。
PCT/CN2011/000460 2010-12-24 2011-03-21 可变截面涡轮机 WO2012083573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106042048A CN102080577A (zh) 2010-12-24 2010-12-24 可变截面涡轮机
CN201010604204.8 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012083573A1 true WO2012083573A1 (zh) 2012-06-28

Family

ID=44086740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000460 WO2012083573A1 (zh) 2010-12-24 2011-03-21 可变截面涡轮机

Country Status (2)

Country Link
CN (1) CN102080577A (zh)
WO (1) WO2012083573A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536433B (zh) * 2012-01-11 2014-05-07 康跃科技股份有限公司 阶段式可调流量涡轮壳
US10006354B2 (en) 2013-07-09 2018-06-26 Ford Global Technologies, Llc System and method for variable tongue spacing in a multi-channel turbine in a charged internal combustion engine
CN106523435B (zh) * 2016-11-25 2019-02-01 华中科技大学 一种型线可调节的风机蜗壳
CN109306898B (zh) * 2017-07-26 2021-05-18 上海汽车集团股份有限公司 一种发动机、涡轮增压器及其控制方法
CN107762578B (zh) * 2017-10-09 2019-12-31 中国第一汽车股份有限公司 一种可变流道涡轮增压器蜗壳

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
JPH02221603A (ja) * 1989-02-23 1990-09-04 Res Dev Corp Of Japan ラジアルタービンにおける可変スクロール機構
JP2003286853A (ja) * 2002-03-28 2003-10-10 Aisin Seiki Co Ltd 可変容量ターボチャージャ
WO2010024145A1 (ja) * 2008-08-28 2010-03-04 三菱重工業株式会社 可変容量排気ガスタービンの製造方法
WO2010047246A1 (ja) * 2008-10-24 2010-04-29 三菱重工業株式会社 可変容量タービン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047103A1 (de) * 2004-09-29 2006-04-13 Bayerische Motoren Werke Ag Turbolader
DE102007045993A1 (de) * 2007-09-26 2009-04-02 Continental Automotive Gmbh Laufradgehäuse mit einem variabel einstellbaren Strömungskanal
KR100993377B1 (ko) * 2008-02-01 2010-11-09 기아자동차주식회사 가변 터보 과급기 및 가변 터보 과급기 제어방법
CN101418708B (zh) * 2008-12-09 2011-05-04 常州市立新增压器有限公司 废气涡轮增压器
DE102009014916A1 (de) * 2009-03-25 2010-09-30 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
CN101769178A (zh) * 2009-11-05 2010-07-07 寿光市康跃增压器有限公司 旁通进气变截面涡轮机装置
CN201953419U (zh) * 2010-12-24 2011-08-31 康跃科技股份有限公司 一种可变截面涡轮机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
JPH02221603A (ja) * 1989-02-23 1990-09-04 Res Dev Corp Of Japan ラジアルタービンにおける可変スクロール機構
JP2003286853A (ja) * 2002-03-28 2003-10-10 Aisin Seiki Co Ltd 可変容量ターボチャージャ
WO2010024145A1 (ja) * 2008-08-28 2010-03-04 三菱重工業株式会社 可変容量排気ガスタービンの製造方法
WO2010047246A1 (ja) * 2008-10-24 2010-04-29 三菱重工業株式会社 可変容量タービン

Also Published As

Publication number Publication date
CN102080577A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
CN103534461B (zh) 双流涡轮机壳体式涡轮增压器
US10662870B2 (en) Variable geometry wastegate turbine
WO2013049971A1 (zh) 可变几何的脉冲进气涡轮机的蜗壳装置
JP2005299660A (ja) 可変形態タービン
WO2012034347A1 (zh) 可变截面双流道进气涡轮
JP2005299660A5 (zh)
CN101694166B (zh) 双层流道变截面涡轮机控制装置
WO2013104090A1 (zh) 阶段式可调流量涡轮壳
WO2012083573A1 (zh) 可变截面涡轮机
WO2011000182A1 (zh) 涡轮增压器双层流道变截面涡轮机
WO2012031381A1 (zh) 涡轮增压器复合喷嘴装置
CN101769178A (zh) 旁通进气变截面涡轮机装置
WO2012034258A1 (zh) 可变截面复合涡轮装置
JP5664595B2 (ja) ターボチャージャ
CN108884721A (zh) 具有可变压缩机修边的涡轮增压器
WO2012100387A1 (zh) 多喷管式可变流量增压装置
WO2016029622A1 (zh) 一种具有三级可调喷嘴的废气涡轮增压器系统
WO2013127033A1 (zh) 多层可变几何蜗壳装置
CN202391495U (zh) 一种可变流道的蜗壳装置
CN102536354A (zh) 可变流道的蜗壳装置
CN201953419U (zh) 一种可变截面涡轮机
CN102536435B (zh) 混合式可变流量蜗壳
CN202500622U (zh) 一种可变几何蜗壳装置
CN201916047U (zh) 一种多喷管式可变流量增压装置
CN201581937U (zh) 一种双层流道变截面涡轮机控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850536

Country of ref document: EP

Kind code of ref document: A1