WO2012034347A1 - 可变截面双流道进气涡轮 - Google Patents

可变截面双流道进气涡轮 Download PDF

Info

Publication number
WO2012034347A1
WO2012034347A1 PCT/CN2011/000597 CN2011000597W WO2012034347A1 WO 2012034347 A1 WO2012034347 A1 WO 2012034347A1 CN 2011000597 W CN2011000597 W CN 2011000597W WO 2012034347 A1 WO2012034347 A1 WO 2012034347A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
volute
turbine
flow passage
variable
Prior art date
Application number
PCT/CN2011/000597
Other languages
English (en)
French (fr)
Inventor
朱智富
李永泰
王航
刘功利
袁道军
王聪聪
刘莹
宋丽华
Original Assignee
Zhu Zhifu
Li Yongtai
Wang Hang
Liu Gongli
Yuan Daojun
Wang Congcong
Liu Ying
Song Lihua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Zhifu, Li Yongtai, Wang Hang, Liu Gongli, Yuan Daojun, Wang Congcong, Liu Ying, Song Lihua filed Critical Zhu Zhifu
Publication of WO2012034347A1 publication Critical patent/WO2012034347A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable-section supercharger, and more particularly to a variable-section dual-flow intake turbine having different flow cross-sectional areas, which can effectively balance the high and low-speed supercharging requirements of an engine, and belongs to the field of internal combustion engine supercharging.
  • variable section superchargers have become the focus of research and development at home and abroad.
  • the structure of adding rotating blades at the turbine volute nozzle is generally adopted to meet the requirements of variable cross-section.
  • it can effectively widen the matching range between the turbocharger and the engine, and realize the supercharging pressure and Adjustable function of exhaust pressure.
  • the rotary vane turbocharger includes an impeller portion and a turbine portion, the impeller portion includes a compressor casing 1, and a compressor impeller is installed in the compressor casing 1. 13.
  • the compressor shaft 13 is mounted with a rotor shaft 12.
  • the turbine portion includes a volute 4, a volute nozzle 6, and a turbine wheel 8.
  • the compressor casing 1 and the volute 4 are connected by an intermediate casing 2
  • a nozzle vane 7 is mounted in the volute 4, and the nozzle vane 7 is mounted on the nozzle ring support disc 5.
  • the exhaust gas discharged from the engine reaches the volute nozzle 6 through the turbine inlet 10, and the transmission mechanism 3 adjusts the flow area of the nozzle and the angle of the outlet exhaust gas by controlling the nozzle vane 7, so that the exhaust gas is distributed to the periphery of the turbine impeller 8 at a designed angle.
  • the turbine wheel 8 is driven to rotate at a high speed, and the exhaust gas is exhausted to the turbine and discharged through the volute exhaust port 9.
  • the compressor shaft 13 Under the support of the inner floating bearing 11 of the intermediate casing 2, the compressor shaft 13 is driven to rotate at a high speed by the rotor shaft 12, and the air entering the compressor in the axial direction is compressed.
  • the compressed air is collected by the compressor casing 1 and sent to the cylinder for combustion to achieve the purpose of supercharging.
  • the rotary vane variable-section turbocharger changes the turbine flow area by changing the angle of the nozzle vanes for easy control.
  • this rotary vane variable turbocharger has some shortcomings:
  • the opening degree of the nozzle vane 7 is increased, and the nozzle vane 7 is closer to the leading edge of the turbine vane, and the exhaust gas particles cause greater wear on the nozzle vane 7.
  • the opening degree of the nozzle vane 7 is small, when the circumferential speed of the nozzle outlet airflow is high, the turbine becomes an impulsive turbine, and the aerodynamic loss of the gas flow is also serious, thereby making the supercharger The efficiency is declining.
  • the exhaust gas discharged from the engine has an exhaust gas temperature of about 600 to 700 ° C, and there is a tendency to further increase.
  • the exhaust gas high temperature has strict requirements on the nozzle vane 7, the nozzle ring support plate 5, and the transmission mechanism 3.
  • the turbocharger has a harsh working environment and strong vibrations have high requirements for the reliability of the transmission mechanism 3.
  • the poor reliability of the transmission mechanism 3 has not yet completely solved the technical problems.
  • variable section supercharger The high cost of the rotary vane variable section supercharger has made many engine manufacturers prohibit their expensive prices. Cost and life limit the market for this type of variable section supercharger.
  • the problem to be solved by the present invention is to provide a variable cross-section dual flow with simple structure, low cost, high reliability and convenient control, in view of the problem of poor efficiency and reliability of the conventional rotary vane variable-section turbocharger. Intake turbine.
  • the present invention adopts the following technical solutions:
  • a variable-section dual-channel intake turbine includes a turbine volute, a volute nozzle is disposed on the turbine volute, a turbine impeller is mounted in the turbine volute, and a volute intake runner is disposed on the turbine volute , volute
  • the inlet air passage is provided with an intermediate wall, and the intermediate wall divides the volute inlet flow passage into a volute intake small flow passage and a volute intake large flow passage, wherein: the radial cross section of the intermediate wall is Curved structure with an arc of 60. ⁇ 180°.
  • One end of the intermediate wall is fixed to the turbine volute, and the volute intake small flow passage and the volute intake large flow passage communicate at a position close to the other end of the intermediate wall.
  • the flow area of the volute intake small flow passage is smaller than the flow area of the volute intake large flow passage. Further improvement:
  • the intermediate wall is cast into a unitary structure with the turbine volute.
  • a bypass port is disposed on the intermediate wall near the inlet of the volute inlet flow passage, and an intake adjustment valve is installed on the bypass port, and the intake adjustment valve is drivingly connected to the intake adjustment control mechanism.
  • the intake air adjustment control mechanism can adjust the opening degree of the intake air regulating valve according to an actual working condition of the engine, and realize selection of a volute intake air passage and control of a flow capacity.
  • the volute intake small flow passage may be located inside the volute intake large flow passage, and when the volute intake small flow passage is located inside, the volute loss in the engine at the low speed is minimal and has good acceleration characteristics. .
  • volute intake small flow passage is located outside the volute intake large flow passage, and when the volute intake small flow passage is located outside, the volute intake large flow passage extends circumferentially faster , to achieve a smaller overall size of the turbine.
  • a plurality of airflow guiding blades are arranged at the nozzle of the volute air inlet passage, and a plurality of airflow guiding blades
  • the sheets are arranged in a semi-circular shape and are mounted obliquely in the direction of rotation of the turbine.
  • a plurality of air guiding vanes are arranged at the nozzle of the small flow passage of the volute casing, and the plurality of air guiding vanes are arranged in a semi-arc shape and are installed obliquely in the rotating direction of the turbine.
  • the nozzle position of the turbine volute is provided with a plurality of air flow guiding blades, and the plurality of air flow guiding blades are uniformly arranged in a circumferential direction and are installed obliquely in the rotating direction of the turbine.
  • the airflow guide vanes are inclined in the direction of rotation of the turbine to ensure that the airflow flows into the turbine in a prescribed direction.
  • the invention can change the position of the end of the intermediate wall in the circumferential direction by the reasonable separation of the intermediate wall, thereby changing the angle of the intake region corresponding to the large and small flow passages, and the intake region of the small flow passage of the volute intake air can be realized.
  • the angle varies between 60° and 180°, and the angle of the intake region of the corresponding large flow passage of the volute is varied between 300° and 180°.
  • the intake-regulating valve is in the 'off state' and all engine exhaust enters the volute intake small flow passage under low engine speed conditions. Due to the small cross-sectional area of the volute intake small flow passage and the intake air, the turbine intake pressure can be effectively increased, and the available energy in the exhaust gas can be effectively improved. Since the volute intake small passage adopts intake air, the engine has a low speed and a volute. The intake area of the turbine impeller in the closed state of the intake passage is reduced, which is less than half of the intake area of the turbine impeller in the full intake state.
  • the intake angle of the turbine can be controlled in an efficient area of about 70°, and the rotary vane Compared with the variable-section supercharger, the excessive intake angle loss at low speed is avoided, and the turbine efficiency at low speed can be effectively improved.
  • the turbine output work at the low engine speed is effectively increased, the boost pressure is increased, and the higher boost pressure demand at the low engine speed is satisfied;
  • the small flow channel has a small volume, and the exhaust gas from the engine can quickly enter the turbine impeller, effectively reducing the flow of the airflow.
  • the moving path eliminates the influence of the boost lag and improves the acceleration characteristics of the engine.
  • the intake adjusting wide door In the high-speed working condition of the engine, the intake adjusting wide door is open, and the volute intake small flow passage works together with the volute intake large flow passage. Since the engine exhaust flow rate entering the volute intake small flow passage and the volute intake large flow passage is controlled by the intake adjustment valve opening degree, the actual turbine volute flow cross-sectional area and the turbine impeller intake area are variable.
  • the control mechanism controls the opening of the intake regulating valve, realizes the flow path selection and flow distribution of the large and small intake flow passages, controls the actual turbine volute flow cross-sectional area and the turbine impeller intake area, and can effectively control the exhaust pressure of the engine and
  • the boost pressure is used to meet the engine's boost demand at medium and high speed conditions.
  • the total flow cross-sectional area of the large and small volute intake runners and the total intake area of the turbine meet the flow capacity requirements under engine rated conditions, avoiding over-pressurization of the engine and overspeed of the supercharger.
  • the invention has the advantages of simple structure, good inheritance, low cost, easy and quick realization of engineering, and can effectively meet the supercharging requirements of the full working condition range of the engine.
  • FIG. 1 is a schematic structural view of a rotary vane variable section supercharger in the background art of the present invention
  • FIG. 2 is a schematic structural view of Embodiment 1 of the present invention
  • Figure 3 is a cross-sectional view taken along line K-K of Figure 2;
  • FIG. 4 is a perspective view of the intake region angle ⁇ of the volute intake small flow passage of the embodiment 1 of the present invention when the angle ⁇ is 60° Schematic diagram of the turbine structure;
  • Figure 5 is a schematic view showing the structure of a turbine when the angle ⁇ of the intake region of the volute intake passage of the embodiment 1 is 180°;
  • FIG. 6 is a schematic structural view of a turbine of an intake air regulating wide door open state according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic view of a turbine structure after a positional exchange of a volute air intake flow passage in Embodiment 2 of the present invention
  • FIG. 8 is a schematic structural view showing the installation of an airflow guiding blade at a nozzle of a large intake passage of a volute casing according to Embodiment 3 of the present invention
  • FIG. 9 is a schematic structural view showing the installation of an airflow guiding blade at a nozzle of a volute air intake small flow passage according to Embodiment 4 of the present invention.
  • Figure 10 is a structural schematic view showing the simultaneous installation of airflow guiding vanes at the nozzles of the volute air intake flow passages in Embodiment 5 of the present invention.
  • a variable-section dual-channel intake turbine includes a turbine volute 4, and the turbine volute 4 is provided with a volute nozzle 6 installed in the turbine volute 4
  • a turbine impeller 8 a volute inlet flow passage 10 is disposed on the volute casing 4, and an intermediate wall 20 is disposed in the volute intake passage 10, and the intermediate wall 20 separates the volute intake passage 10 into a volute
  • the shell inlet small flow passage 18 and the volute intake large flow passage 19 the flow area of the volute intake small flow passage 18 is smaller than the flow area of the volute intake large flow passage 19, the volute The intake small flow passage 18 and the volute intake large flow passage 19 are both intake air.
  • the radial cross section of the intermediate wall 20 is an arc structure, one end of the intermediate wall 20 is fixed to the turbine volute 4, and the volute intake small flow passage 18 and the volute intake large flow passage 19 are at It is close to the other end of the intermediate wall 20, and its curvature can be varied between 60° and 180°.
  • the volute intake small flow passage 18 and the volute intake are large. The change in the angle of the intake region of the flow passage 19.
  • a bypass port 22 is disposed on the intermediate wall 20 near the inlet of the volute intake air passage 10, and an intake adjusting valve 15 is mounted on the bypass port 22, the intake adjusting valve 15 and the intake adjusting control mechanism 16 drive connection.
  • the turbine casing is provided with a turbine casing cover 14, and the turbine casing cover 14 is used to prevent leakage of gas during the opening of the intake regulating valve 15, thereby functioning as a seal.
  • the turbine casing is further provided with a support boss 17, and the support boss 17 is fixedly connected to the actuator bracket by bolts for accommodating the intake air control mechanism 16.
  • the intake adjustment valve 15 is formed with different opening degrees by the intake adjustment control mechanism 16, and controls the flow of gas into the volute intake small flow passage 18 and the volute intake large flow passage 19, thereby realizing the selection and circulation capacity of the flow passage. control.
  • the intake regulating valve 15 When the engine is running at a low speed, the intake regulating valve 15 is in a closed state, at which time all engine exhaust enters the volute intake small flow passage 18, and the flow cross-sectional area of the volute intake small flow passage 18 is small and is intake. , can effectively improve the intake pressure of the turbine volute 4, improve the available energy in the exhaust gas; because the volute intake small flow passage 18 uses intake air, the engine low speed, the intake adjustment valve 15 is closed, the turbine impeller intake area Smaller, less than half of the turbine impeller intake area under full-circumference intake, the turbine's intake angle can be controlled in an efficient region of around 70 degrees, avoiding low speed compared to the rotary vane variable-section supercharger Excessive intake angle loss can effectively improve turbine efficiency at low speeds.
  • the turbine output power at the low engine speed is effectively increased.
  • the pressure is increased to meet the higher boost pressure requirement at low engine speed; meanwhile, due to the small volume of the volute intake small flow passage 18, the exhaust gas from the engine can quickly enter the turbine wheel 8, effectively shortening the flow path of the airflow to eliminate The effect of the boost lag increases the corresponding characteristics of the engine's acceleration.
  • the angle of the intake area of the volute intake small flow passage 18 and the volute intake large flow passage 19 in the circumferential direction can be specifically designed according to the different requirements of the engine.
  • the change of the angle of the intake region of the volute intake small flow passage 18 and the volute intake large flow passage 19 is realized by changing the position of the end of the intermediate wall 20 in the circumferential direction, and ⁇ is the volute intake small flow passage 18
  • the angle of the intake region of the volute intake small flow passage 18 can vary from 60° to 180°, and the angle of the intake region of the corresponding volute intake passage 19 can vary from 300° to 180°.
  • the engine is at an intermediate speed, the intake regulating valve 15 is in an open state, and the volute intake small flow passage 18 and the volute intake large flow passage 19 work together. Since the engine exhaust flow rate entering the volute intake small flow passage 18 and the volute intake large flow passage 19 is controlled by the opening degree of the intake regulating valve 15, the actual turbine volute flow cross-sectional area and the turbine impeller inlet area are obtained. variable.
  • the intake adjusting valve 16 controls the opening degree of the intake adjusting valve 15, realizes the flow path selection and flow distribution of the large and small intake flow passages, controls the actual turbine volute flow cross-sectional area and the turbine impeller intake area, and can effectively control the engine. Exhaust pressure and boost pressure to meet the engine's boost demand at medium and high speed conditions. At the same time, the total flow cross-sectional area and vortex of the large and small volute inlet flow passage The total intake area of the wheel impeller meets the flow capacity requirements under engine rated conditions, avoiding over-pressurization of the engine and overspeed of the supercharger.
  • variable-section dual-flow intake turbine for the engine to the variable-section turbocharger, and effectively utilizes the exhaust gas energy, taking into account the supercharging demand of the engine at low speed and medium-high speed conditions.
  • This type of variable-section dual-flow intake turbine can be completed using existing casting and processing equipment for conventional superchargers.
  • Embodiment 2 as shown in FIG. 7, on the basis of Embodiment 1, the positions of the volute intake large flow passage and the volute intake small flow passage are interchanged, and the position of the intake adjustment control mechanism is re-adjusted. The rest is the same.
  • the volute intake small flow passage 18 is located outside the volute intake passage 19, and when the engine is at a low speed, only the volute intake small passage 18 achieves intake.
  • the intake adjusting valve 15 controls the intake adjusting valve 15 to form different opening degrees, and controls the flow of gas entering the volute intake small flow passage 18 and the volute intake large flow passage 19 to realize the flow.
  • the choice of the road and the control of the circulation capacity enable the matching with the engine at medium and high speeds.
  • the volute intake small flow passage 18 is located outside the volute intake large flow passage 19. Since the volute intake large flow passage 19 has a larger flow cross-sectional area than the volute intake small flow passage 18, its dimensional contraction in the circumferential direction It is also faster and can achieve a smaller overall turbine size.
  • variable-section dual-flow intake turbine for the engine to the variable-section turbocharger, and effectively utilizes the exhaust gas energy, taking into account the supercharging demand of the engine at low speed and medium-high speed conditions.
  • This type of variable-section dual-flow intake turbine can be completed using the casting and machining techniques of conventional conventional superchargers.
  • Embodiment 3 as shown in FIG. 8, in Embodiment 1, a plurality of airflow guiding blades 21 may be disposed at the nozzle of the volute air intake passage 19, and the plurality of airflow guiding blades 21 are arranged in a semicircular arc shape, and The installation is inclined along the direction of rotation of the turbine to ensure that the outlet airflow of the volute intake passage 19 enters the turbine at a prescribed angle.
  • the exhaust gas energy utilization efficiency at high speed in the engine can be improved, and the outlet airflow at the end of the volute intake small flow passage 18 at the low speed of the engine can be effectively prevented from entering the volute intake large flow passage 19.
  • Embodiment 4 as shown in FIG. 9, in Embodiment 1, a plurality of airflow guiding blades 21 may be disposed at the nozzle of the volute air intake small flow passage 18, and the plurality of airflow guiding blades 21 are arranged in a semicircular arc shape, and Tilted in the direction of turbine rotation.
  • the outlet airflow of the volute intake small flow passage 18 enters the turbine at a prescribed angle.
  • the use of this technical solution can improve the efficiency of exhaust gas energy utilization at low engine speeds.
  • Embodiment 5 As shown in FIG. 10, in Embodiment 1, a plurality of airflow guiding blades 21 may be disposed at a nozzle position of a turbine volute, and a plurality of airflow guiding blades 21 are uniformly arranged in a circumferential direction and are rotated along the turbine. Tilting is installed to ensure that the vent air intake small flow passage 18 and the volute air intake passage 19 outlet airflow enter the turbine at a prescribed angle.
  • variable-section dual-flow intake turbine for the engine to the variable-section turbocharger, and effectively utilizes the exhaust gas energy, taking into account the supercharging demand of the engine at low speed and medium-high speed conditions.
  • This type of variable-section dual-flow intake turbine can be completed using the casting and machining techniques of conventional conventional superchargers.

Description

可变截面双流道进气涡轮
技术领域:
本发明涉及一种可变截面增压器, 具体的说涉及一种流通截面积不同的可 变截面双流道进气涡轮, 能有效地兼顾发动机的高低速增压要求, 属于内燃机 增压领域。
背景技术:
随着排放标准的逐步提高, 增压器被广泛的应用于现代发动机。 为了满足 发动机所有工况下的性能和排放要求, 增压器必须具有增压压力和排气压力的 可调节功能。 随着国四排放法规的实施, 可变截面增压器已经成为国内外研发 的重点。 目前普遍采用在涡轮蜗壳喷嘴处增加旋转叶片的结构来满足变截面的 要求, 与传统涡轮增压器相比, 它能有效地拓宽涡轮增压器与发动机的匹配范 围, 实现增压压力和排气压力的可调节功能。
旋叶式可变涡轮增压器结构示意图如图 1所示, 旋叶式涡轮增压器包括叶 轮部分和涡轮部分, 叶轮部分包括压气机壳 1, 在压气机壳 1 内安装有压气机 叶轮 13, 压气机叶轮 13上安装有转子轴 12, 所述涡轮部分包括蜗壳 4、 蜗壳 喷嘴 6、 涡轮叶轮 8三部分, 所述压气机壳 1与蜗壳 4之间通过中间壳 2连接, 蜗壳 4内安装有喷嘴叶片 7, 所述喷嘴叶片 7安装在喷嘴环支撑盘 5上。
发动机排出的废气经涡轮进气道 10到达蜗壳喷嘴 6,传动机构 3通过控制 喷嘴叶片 7来调节喷嘴的流通面积和出口废气的角度, 使废气按设计的角度分 布到涡轮叶轮 8的周边, 推动涡轮叶轮 8高速旋转, 废气对涡轮做完功后经蜗 壳排气口 9排出。 在中间壳 2内部浮动轴承 11的支撑下, 通过转子轴 12带动 压气机叶轮 13高速旋转,对轴向进入压气机的空气进行压缩。压缩后的空气经 过压气机壳 1的收集后被送入气缸参与燃烧, 实现增压的目的。 旋叶式可变截面涡轮增压器通过改变喷嘴叶片的角度来改变涡轮流通面 积, 控制方便。 但是通过实际的应用发现这种旋叶式可变涡轮增压器存在一些 缺点:
当发动机在大流量工况时, 喷嘴叶片 7的开度增大, 喷嘴叶片 7距离涡轮 叶片前缘较近, 废气颗粒会对喷嘴叶片 7造成较大的磨损。 当发动机在小流量 工况时, 喷嘴叶片 7开度很小, 这时喷嘴出口气流的周向速度高, 涡轮变为冲 动式涡轮, 另外气体流动的气动损失也比较严重, 从而使增压器效率下降。
发动机排出的废气具有 600~700°C左右的排气温度, 并且有进一步提升的 趋势, 排气高温对喷嘴叶片 7、 喷嘴环支撑盘 5、 传动机构 3都有严格的要求。 另外涡轮增压器工作环境恶劣、 强烈的振动对传动机构 3的可靠性都有很高的 要求。 传动机构 3的可靠性较差是到现在还没有完全解决好的技术问题。
旋叶式可变截面增压器的成本很高, 这使许多发动机厂家对其昂贵的价格 望而却步。 成本和寿命限制了该类型可变截面增压器的市场。
因此希望设计一种结构简单、 成本低、 可靠性高, 并且在小流量时具有较 高效率的新型可变截面涡轮结构, 来解决目前旋转叶片结构的涡轮增压器在可 靠性和效率方面存在的问题, 满足发动机在各个工况下对增压压力的要求。 发明内容:
本发明要解决的问题是针对传统的旋转叶片式可变截面涡轮增压器的效率 和可靠性较差的问题, 提供一种结构简单、 成本低、 可靠性高、 控制方便的可 变截面双流道进气涡轮。
为了解决上述问题, 本发明采用以下技术方案:
一种可变截面双流道进气涡轮, 包括涡轮蜗壳, 所述涡轮蜗壳上设有蜗壳 喷嘴, 涡轮蜗壳内安装有涡轮叶轮, 所述涡轮蜗壳上设有蜗壳进气流道, 蜗壳 进气流道内设有中间壁, 所述中间壁将蜗壳进气流道分隔成蜗壳进气小流道和 蜗壳进气大流道, 其特征是: 所述中间壁的径向截面为弧形结构, 其弧度为 60 。 〜180° 。
以下是本发明对上述方案的进一步改进:
所述中间壁的其中一端与涡轮蜗壳固接, 所述蜗壳进气小流道与蜗壳进气 大流道在靠近中间壁另一端位置处连通。
进一步改进:
所述蜗壳进气小流道的流通面积小于所述蜗壳进气大流道的流通面积。 进一步改进:
所述中间壁与所述涡轮蜗壳铸为一体结构。
进一步改进:
所述中间壁上靠近蜗壳进气流道进口的位置设有旁通口, 在旁通口上安装 有进气调节阀门, 所述进气调节阀门与进气调节控制机构传动连接。
所述进气调节控制机构能根据发动机的实际工况调节所述进气调节阀门的 开度, 实现蜗壳进气流道的选择和流通能力的控制。
另一种改进:
所述蜗壳进气小流道可位于蜗壳进气大流道内侧,当所述蜗壳进气小流道位 于内侧时, 发动机低速时的蜗壳内流通损失最小并且具有好的加速特性。
另一种改进- 所述蜗壳进气小流道位于蜗壳进气大流道外侧,所述蜗壳进气小流道位于外 侧时, 蜗壳进气大流道延周向收縮较快, 可实现较小的涡轮整体外形尺寸。
另一种改进:
所述蜗壳进气大流道的喷嘴处设有若干个气流导向叶片,若干个气流导向叶 片呈半圆弧状排列, 并沿涡轮旋转方向倾斜安装。
另一种改进:
在蜗壳进气小流道的喷嘴处设有若干个气流导向叶片, 若干个气流导向叶 片呈半圆弧状排列, 并沿涡轮旋转方向倾斜安装。
另一种改进:
所述涡轮蜗壳的喷嘴位置设有若干个气流导向叶片, 若干个气流导向叶片 呈圆周状均匀排列, 并沿涡轮旋转方向倾斜安装。
所述气流导向叶片向涡轮旋转方向倾斜, 以保证气流按规定的方向流入涡 轮。
本发明通过所述中间壁的合理分隔, 改变中间壁的末端在周向上的位置, 从而改变大小流道相对应的进气区域角度, 可以实现所述蜗壳进气小流道的进 气区域角度在 60° -180° 之间变化,相应的所述蜗壳进气大流道的进气区域角 度在 300° -180° 之间变化。
采用可变截面双流道进气涡轮后, 在发动机低速工况下, 进气调节阀门 处于'关闭状态, 所有发动机排气进入蜗壳进气小流道。 由于蜗壳进气小流道的 流通截面积小且为进气, 可有效提升涡轮进气压力, 提高废气中的可用能量; 由于蜗壳进气小流道采用进气, 发动机低速、 蜗壳进气大流道关闭状态下的涡 轮叶轮进气面积缩小, 小于全周进气状态下的涡轮叶轮进气面积的一半, 涡轮 的进气角度可控制在 70° 左右的高效区域, 与旋叶式可变截面增压器相比, 避 免了低速时过大的进气冲角损失, 可有效提高低速时的涡轮效率。 通过废气可 用能量的提升和低速时涡轮效率的提高,有效增大发动机低速时的涡轮输出功, 使增压压力升高, 满足发动机低速时的较高增压压力需求; 同时由于蜗壳进气 小流道的容积小, 发动机排出的废气可快速进入涡轮叶轮, 有效缩短气流的流 动路程以消除增压滞后带来的影响, 提高发动机的加速相应特性。 通过以上两 方面的作用, 有效提高发动机低速性能并降低排放。
在发动机中高速工况下, 进气调节阔门处于开启状态, 蜗壳进气小流道 和蜗壳进气大流道一起工作。 由于进入蜗壳进气小流道和蜗壳进气大流道的发 动机排气流量受进气调节阀门开度的控制, 导致实际的涡轮蜗壳流通截面积和 涡轮叶轮进气面积可变。 在相同的涡轮蜗壳进气总流量下, 如果进气调节阀门 开度小, 进入蜗壳进气小流道的排气多而进入蜗壳进气大流道的排气少, 实际 的涡轮蜗壳流通截面积和涡轮叶轮进气面积相对较小; 如果进气调节阀门开度 大, 进入蜗壳进气小流道的排气少而进入蜗壳进气大流道的排气多, 实际的涡 轮蜗壳流通截面积和涡轮叶轮进气面积相对较大。 通过控制机构控制进气调节 阀门的开度, 实现大小进气流道的流道选择和流量分配, 控制实际的涡轮蜗壳 流通截面积和涡轮叶轮进气面积, 可有效控制发动机的排气压力和增压压力, 以满足发动机在中高速工况下增压需求。 同时, 大小蜗壳进气流道的总流通截 面积和涡轮的总进气面积满足发动机额定工况下的流通能力需求, 避免发动机 过增压和增压器的超速。
本发明结构简单, 继承性好, 成本低, 容易快速实现工程化, 可以有效 的满足发动机全工况范围的增压要求。
下面结合附图和实施例对本发明做进一步说明- 附图说明:
附图 1为本发明背景技术中旋叶式可变截面增压器结构示意图; 附图 2为本发明实施例 1的结构示意图;
附图 3为附图 2中的 K-K向剖视图;
附图 4为本发明实施例 1中蜗壳进气小流道的进气区域角度 α为 60° 时的 涡轮结构示意图;
附图 5为本发明实施例 1中蜗壳进气小流道的进气区域角度 α为 180° 时 的涡轮结构示意图;
附图 6为本发明实施例 1中进气调节阔门开启状态的涡轮结构示意图; 附图 7为本发明实施例 2中蜗壳进气大小流道的位置互换后的涡轮结构示 意图;
附图 8为本发明实施例 3中蜗壳进气大流道的喷嘴处安装气流导向叶片的 结构示意图;
附图 9为本发明实施例 4中蜗壳进气小流道的喷嘴处安装气流导向叶片的 的结构示意图;
附图 10为本发明实施例 5中蜗壳进气大小流道的喷嘴处同时安装气流导 向叶片的的结构示意图。
图中: 1-压气机壳; 2-中间壳; 3-传动机构; 4-涡轮蜗壳; 5-喷嘴环支撑盘; 6-蜗壳喷嘴; 7-喷嘴叶片; 8-涡轮叶轮; 9-蜗壳排气口; 10-蜗壳进气流道; 11- 浮动轴承; 12-涡轮转子轴; 13-压气机叶轮; 14-涡轮壳盖板; 15-进气调节阀门; 16-进气调节控制机构; 17-支撑凸台; 18-蜗壳进气小流道; 19-蜗壳进气大流道; 20-中间壁; 21-气流导向叶片; 22-旁通口。
具体实施方式:
实施例 1, 如图 2和图 3所示, 一种可变截面双流道进气涡轮, 包括涡轮 蜗壳 4, 所述涡轮蜗壳 4上设有蜗壳喷嘴 6, 涡轮蜗壳 4内安装有涡轮叶轮 8, 所述祸轮蜗壳 4上设有蜗壳进气流道 10, 蜗壳进气流道 10内设有中间壁 20, 所述中间壁 20将蜗壳进气流道 10分隔成蜗壳进气小流道 18和蜗壳进气大流道 19, 蜗壳进气小流道 18的流通面积小于蜗壳进气大流道 19 的流通面积, 蜗壳 进气小流道 18和蜗壳进气大流道 19均为进气。
所述中间壁 20的径向截面为弧形结构,所述中间壁 20的其中一端与涡轮 蜗壳 4固接, 所述蜗壳进气小流道 18与蜗壳进气大流道 19在靠近中间壁 20 另一端位置处连通, 其弧度可在 60° 〜180° 之间变化, 通过改变中间壁 20的 末端在周向上的位置实现蜗壳进气小流道 18和蜗壳进气大流道 19的进气区域 角度的改变。
所述中间壁 20上靠近蜗壳进气流道 10进口的位置设有旁通口 22, 在旁 通口 22上安装有进气调节阀门 15,所述进气调节阀门 15与进气调节控制机构 16传动连接。
涡轮壳设有涡轮壳盖板 14, 涡轮壳盖板 14用来防止进气调节阀门 15开 启过程中气体的泄漏, 起到密封的作用。 涡轮壳上还设有支撑凸台 17, 支撑凸 台 17与执行器支架通过螺栓固定连接以用来安放进气调节控制机构 16。 通过 进气调节控制机构 16使进气调节阀门 15形成不同的开度, 控制进入蜗壳进气 小流道 18和蜗壳进气大流道 19的气体流量, 实现流道的选择和流通能力的控 制。
发动机在低速工况下, 进气调节阀门 15处于关闭状态, 此时所有发动机 排气进入蜗壳进气小流道 18, 由于蜗壳进气小流道 18的流通截面积小且为进 气, 可有效提升涡轮蜗壳 4的进气压力, 提高废气中的可用能量; 由于蜗壳进 气小流道 18采用进气, 发动机低速、 进气调节阀门 15关闭状态下, 涡轮叶轮 进气面积较小, 小于全周进气状态下的涡轮叶轮进气面积的一半, 涡轮的进气 角度可控制在 70度左右的高效区域,与旋叶式可变截面增压器相比,避免了低 速时过大的进气冲角损失, 可有效提高低速时的涡轮效率。 通过废气可用能量 的提升和低速时涡轮效率的提高, 有效增大发动机低速时的涡轮输出功, 使增 压压力升高, 满足发动机低速时的较高增压压力需求; 同时由于蜗壳进气小流 道 18的容积小, 发动机排出的废气可快速进入涡轮叶轮 8, 有效縮短气流的流 动路程以消除增压滞后带来的影响, 提高发动机的加速相应特性。 通过以上两 方面的作用, 有效提高发动机低速性能并降低排放。
如图 4、 图 5所示, 蜗壳进气小流道 18和蜗壳进气大流道 19在周向上的 进气区域角度可以根据发动机的不同要求进行针对性设计。
通过改变中间壁 20 的末端在周向方向上的位置实现蜗壳进气小流道 18 和蜗壳进气大流道 19的进气区域角度的改变, α 为蜗壳进气小流道 18的进气 区域角度, 为蜗壳进气大流道 19的进气区域角度, β =360° - α 。
蜗壳进气小流道 18的进气区域角度可以在 60° -180° 之间变化,相应的 蜗壳进气大流道 19的进气区域角度可以在 300° -180° 之间变化。
如图 6所示, 发动机在中高速下, 进气调节阀门 15处于开启状态, 蜗壳 进气小流道 18和蜗壳进气大流道 19一起工作。 由于进入蜗壳进气小流道 18 和蜗壳进气大流道 19的发动机排气流量受进气调节阀门 15开度的控制, 导致 实际的涡轮蜗壳流通截面积和涡轮叶轮进气面积可变。 在相同的涡轮蜗壳进气 总流量下, 如果进气调节阀门 15开度小, 进入蜗壳进气小流道 18的排气多而 进入蜗壳进气大流道 19的排气少,实际的涡轮蜗壳流通截面积和涡轮叶轮进气 面积相对较小; 如果进气调节阀门 15开度大, 进入蜗壳进气小流道 18的排气 减少而进入蜗壳进气大流道 19的排气增多,实际的涡轮蜗壳流通截面积和涡轮 叶轮进气面积相对较大。 通过进气调节控制机构 16控制进气调节阀门 15的开 度, 实现大小进气流道的流道选择和流量分配, 控制实际的涡轮蜗壳流通截面 积和涡轮叶轮进气面积, 可有效控制发动机的排气压力和增压压力, 以满足发 动机在中高速工况下增压需求。 同时, 大小蜗壳进气流道的总流通截面积和涡 轮叶轮的总进气面积满足发动机额定工况下的流通能力需求, 避免发动机过增 压和增压器的超速。
本发明专利针对发动机对可变截面涡轮增压器的需求,完成了可变截面双 流道进气涡轮的开发, 有效的利用了废气能量, 兼顾了发动机低速和中高速工 况下的增压需求。 该类型可变截面双流道进气涡轮可以采用现有普通增压器的 铸造及加工设备完成。
实施例 2, 如图 7所示, 在实施例 1的基础上, 将蜗壳进气大流道和蜗壳 进气小流道的位置互换, 并重新调整了进气调节控制机构的位置, 其余部分相 同。
蜗壳进气小流道 18位于蜗壳进气大流道 19外侧, 发动机在低速时, 只有 蜗壳进气小流道 18实现进气。 发动机在中高速时, 通过进气调节控制机构 16 控制进气调节阀门 15形成不同的开度, 控制进入蜗壳进气小流道 18和蜗壳进 气大流道 19的气体流量,实现流道的选择和流通能力的控制,实现与发动机在 中高速下的匹配。
蜗壳进气小流道 18位于蜗壳进气大流道 19外侧, 由于蜗壳进气大流道 19 比蜗壳进气小流道 18的流通截面积大,其在周向上的尺寸收缩也比较快,可以 实现较小的涡轮整体外形尺寸。
本发明专利针对发动机对可变截面涡轮增压器的需求, 完成了可变截面双 流道进气涡轮的开发, 有效的利用了废气能量, 兼顾了发动机低速和中高速工 况下的增压需求。 该类型可变截面双流道进气涡轮可以采用现有普通增压器的 铸造及加工技术完成。
实施例 3, 如图 8所示, 在实施例 1中, 可以在蜗壳进气大流道 19的喷嘴 处设有若干个气流导向叶片 21, 若干个气流导向叶片 21呈半圆弧状排列, 并 沿涡轮旋转方向倾斜安装,以保证蜗壳进气大流道 19的出口气流按规定的角度 进入涡轮。 采用此种技术方案可提高发动机中高速时的废气能量利用效率, 并 有效阻止发动机低速时蜗壳进气小流道 18 的末端的出口气流进入蜗壳进气大 流道 19。
实施例 4, 如图 9所示, 在实施例 1中, 可以在蜗壳进气小流道 18的喷嘴 处设有若干个气流导向叶片 21, 若干个气流导向叶片 21呈半圆弧状排列, 并 沿涡轮旋转方向倾斜安装。以保证蜗壳进气小流道 18的出口气流按规定的角度 进入涡轮。 采用此种技术方案能提高发动机低速时对废气能量利用效率。
实施例 5, 如图 10所示, 在实施例 1中, 可以在涡轮蜗壳的喷嘴位置设有 若干个气流导向叶片 21, 若干个气流导向叶片 21呈圆周状均匀排列, 并沿涡 轮旋转方向倾斜安装, 以保证蜗壳进气小流道 18和蜗壳进气大流道 19的出口 气流按规定的角度进入涡轮。
采用此种技术方案能提高发动机大部分工况下对废气能量的利用, 提高了 涡轮效率, 满足发动机各工况的增压要求。
本发明专利针对发动机对可变截面涡轮增压器的需求, 完成了可变截面双 流道进气涡轮的开发, 有效的利用了废气能量, 兼顾了发动机低速和中高速工 况下的增压需求。 该类型可变截面双流道进气涡轮可以采用现有普通增压器的 铸造及加工技术完成。
现在我们己经按照国家专利法对发明进行了详细的说明, 对于本领域的技 术人员会识别本文所公开的具体实施例的改进或代替。 这些修改是在本发明的 精神和范围内的。

Claims

权利要求
1、一种可变截面双流道进气涡轮,包括涡轮蜗壳(4),所述涡轮蜗壳(4) 上设有蜗壳喷嘴(6),涡轮蜗壳(4)内安装有涡轮叶轮(8),所述涡轮蜗壳(4) 上设有蜗壳进气流道 (10), 蜗壳进气流道 (10) 内设有中间壁 (20), 所述中 间壁 (20) 将蜗壳进气流道 (10) 分隔成蜗壳进气小流道(18)和蜗壳进气大流 道 (19 ), 其特征在于: 所述中间壁 (20) 的径向截面为弧形结构, 其弧度为 60。 〜180。 。
2、 根据权利要求 1所述的可变截面双流道进气涡轮, 其特征在于: 所述 中间壁(20) 的其中一端与涡轮蜗壳(4) 固接, 所述蜗壳进气小流道(18)与 蜗壳进气大流道 (19) 在靠近中间壁 (20) 另一端位置处连通。
3、 根据权利要求 1或 2所述的可变截面双流道进气涡轮, 其特征在于: 所述蜗壳进气小流道 (18) 的流通面积小于所述蜗壳进气大流道 (19) 的流通 面积。
4、 根据权利要求 3所述的可变截面双流道进气涡轮, 其特征在于: 所述 中间壁 (20) 与所述涡轮蜗壳 (4) 铸为一体结构。
5、 根据权利要求 4所述的可变截面双流道进气涡轮, 其特征是: 所述中 间壁(20)上靠近蜗壳进气流道(10)进口的位置设有旁通口 (22), 在旁通口
(22)上安装有进气调节阀门 (15), 所述进气调节阀门 (15)与进气调节控制 机构 (16) 传动连接。
6、根据权利要求 5所述的可变截面双流道进气涡轮, 其特征是: 所述蜗壳 进气小流道 (18) 位于蜗壳进气大流道 (19) 内侧。
7、根据权利要求 5所述的可变截面双流道进气涡轮, 其特征是: 所述蜗壳 进气小流道 (18) 位于蜗壳进气大流道 (19) 外侧。
8、根据权利要求 3所述的可变截面双流道进气涡轮, 其特征是: 所述蜗壳 进气大流道(19)的喷嘴处设有若干个气流导向叶片(21 ), 若干个气流导向叶 片 (21 ) 呈半圆弧状排列, 并沿涡轮旋转方向倾斜安装。
9、根据权利要求 3所述的可变截面双流道进气涡轮, 其特征是: 在蜗壳进 气小流道(18)的喷嘴处设有若千个气流导向叶片(21 ), 若干个气流导向叶片
(21 ) 呈半圆弧状排列, 并沿涡轮旋转方向倾斜安装。
10、 根据权利要求 3所述的可变截面双流道进气涡轮, 其特征是: 所述涡 轮蜗壳的喷嘴位置设有若干个气流导向叶片 (21 ), 若干个气流导向叶片 (21 ) 呈圆周状均匀排列, 并沿涡轮旋转方向倾斜安装。
PCT/CN2011/000597 2010-09-14 2011-04-06 可变截面双流道进气涡轮 WO2012034347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010280157.6 2010-09-14
CN2010102801576A CN101949326A (zh) 2010-09-14 2010-09-14 可变截面双流道进气涡轮

Publications (1)

Publication Number Publication Date
WO2012034347A1 true WO2012034347A1 (zh) 2012-03-22

Family

ID=43452932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000597 WO2012034347A1 (zh) 2010-09-14 2011-04-06 可变截面双流道进气涡轮

Country Status (2)

Country Link
CN (1) CN101949326A (zh)
WO (1) WO2012034347A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788459B2 (en) * 2022-03-09 2023-10-17 Toyota Jidosha Kabushiki Kaisha Forced-induction device
US11815009B2 (en) * 2022-03-09 2023-11-14 Toyota Jidosha Kabushiki Kaisha Forced-induction device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949326A (zh) * 2010-09-14 2011-01-19 康跃科技股份有限公司 可变截面双流道进气涡轮
CN102383877A (zh) * 2011-10-08 2012-03-21 康跃科技股份有限公司 可变几何的脉冲进气涡轮机的蜗壳装置
CN102562185B (zh) * 2011-12-26 2014-10-22 康跃科技股份有限公司 带导流叶片的双通道变截面蜗壳装置
CN102536354A (zh) * 2011-12-29 2012-07-04 康跃科技股份有限公司 可变流道的蜗壳装置
CN102562186B (zh) * 2012-01-11 2015-03-04 康跃科技股份有限公司 带导流叶片的分段式蜗壳
CN102619617A (zh) * 2012-02-29 2012-08-01 康跃科技股份有限公司 多层可变几何蜗壳装置
CN105298551B (zh) * 2014-11-20 2017-09-19 康跃科技股份有限公司 带导叶的废气旁通涡轮机
US9708925B2 (en) * 2014-12-17 2017-07-18 Honeywell International Inc. Adjustable-trim centrifugal compressor, and turbocharger having same
GB201909819D0 (en) * 2019-07-09 2019-08-21 Cummins Ltd Turbine assembly
CN110735673B (zh) * 2019-11-18 2021-10-26 大连海事大学 一种双通道涡壳
CN111396138B (zh) * 2020-04-29 2022-08-09 北京动力机械研究所 一种适用于惰性混合工质的高效向心涡轮

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
US4512714A (en) * 1982-02-16 1985-04-23 Deere & Company Variable flow turbine
CN101694166A (zh) * 2009-10-23 2010-04-14 寿光市康跃增压器有限公司 双层流道变截面涡轮机控制装置
CN101949326A (zh) * 2010-09-14 2011-01-19 康跃科技股份有限公司 可变截面双流道进气涡轮
CN201794626U (zh) * 2010-09-14 2011-04-13 康跃科技股份有限公司 一种可变截面双流道进气涡轮

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214232A (ja) * 1986-03-17 1987-09-21 Hitachi Ltd 内燃機関の排気ガスによつて駆動されるタ−ビン
JPS63215829A (ja) * 1987-03-04 1988-09-08 Hitachi Ltd 排気タ−ビン過給機
US7644585B2 (en) * 2004-08-31 2010-01-12 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Multi-stage turbocharging system with efficient bypass
KR100993377B1 (ko) * 2008-02-01 2010-11-09 기아자동차주식회사 가변 터보 과급기 및 가변 터보 과급기 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389845A (en) * 1979-11-20 1983-06-28 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Turbine casing for turbochargers
US4512714A (en) * 1982-02-16 1985-04-23 Deere & Company Variable flow turbine
CN101694166A (zh) * 2009-10-23 2010-04-14 寿光市康跃增压器有限公司 双层流道变截面涡轮机控制装置
CN101949326A (zh) * 2010-09-14 2011-01-19 康跃科技股份有限公司 可变截面双流道进气涡轮
CN201794626U (zh) * 2010-09-14 2011-04-13 康跃科技股份有限公司 一种可变截面双流道进气涡轮

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788459B2 (en) * 2022-03-09 2023-10-17 Toyota Jidosha Kabushiki Kaisha Forced-induction device
US11815009B2 (en) * 2022-03-09 2023-11-14 Toyota Jidosha Kabushiki Kaisha Forced-induction device

Also Published As

Publication number Publication date
CN101949326A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2012034347A1 (zh) 可变截面双流道进气涡轮
US8480360B2 (en) Turbocharger turbine
WO2012034258A1 (zh) 可变截面复合涡轮装置
US8764376B2 (en) Diffuser divider
US10662870B2 (en) Variable geometry wastegate turbine
WO2012012926A1 (zh) 电动复合多级离心压气机装置
CN102080578B (zh) 可变截面轴径流复合涡轮增压装置
WO2012031381A1 (zh) 涡轮增压器复合喷嘴装置
WO2013049971A1 (zh) 可变几何的脉冲进气涡轮机的蜗壳装置
JP2005299660A (ja) 可変形態タービン
JP2005299660A5 (zh)
WO2012100387A1 (zh) 多喷管式可变流量增压装置
EP2749738B1 (en) Assembly for a turbocharger and turbocharger
CN101694178A (zh) 非对称双流道变截面涡轮增压器
CN100523439C (zh) 可变截面涡轮增压器的复合喷嘴
KR20150097576A (ko) 볼류트에 구획 베인을 구비한 터빈 하우징
WO2013166627A1 (zh) 用于涡轮增压的双区式涡轮
CN101598037B (zh) 可变喷嘴零间隙浮动调节装置
WO2013106503A1 (en) Turbocharger with variable turbine geometry having grooved guide vanes
CN201443420U (zh) 一种涡轮增压器双层流道变截面涡轮机
WO2013127033A1 (zh) 多层可变几何蜗壳装置
WO2012083573A1 (zh) 可变截面涡轮机
JP2013543081A (ja) 内燃機関の排気ターボチャージャー用タービン
CN201802444U (zh) 一种可变截面复合涡轮装置
CN107387171A (zh) 一种双涡管涡轮增压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824418

Country of ref document: EP

Kind code of ref document: A1