WO2012081938A2 - Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same - Google Patents
Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same Download PDFInfo
- Publication number
- WO2012081938A2 WO2012081938A2 PCT/KR2011/009743 KR2011009743W WO2012081938A2 WO 2012081938 A2 WO2012081938 A2 WO 2012081938A2 KR 2011009743 W KR2011009743 W KR 2011009743W WO 2012081938 A2 WO2012081938 A2 WO 2012081938A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spark
- detonator
- circuit
- blasting
- electric
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D1/00—Blasting methods or apparatus, e.g. loading or tamping
- F42D1/04—Arrangements for ignition
- F42D1/045—Arrangements for electric ignition
Definitions
- the present invention relates to blasting using non-electric primers carried out in the field, such as tunnels and underground excavation, and more specifically to safely and reliably detonate non-electric primers at low cost using an electric blasting device and spark detonator.
- the present invention relates to a non-electric primer detonator system using a spark detonator and a blasting construction method using the same.
- non-electric primers have been developed and used to safely blast from such electrical hazards.
- the conventional method of detonating non-electric primers for the first time requires expensive detonation costs, so in recent years, electrical hazards have been reduced. Even if the cost of detonation is low, the detonation method using a simple electric primer is implicitly used.
- the traditional method of detonation is to connect a few hundred meters of signal tube called starter to the signal tube of the last non-electrical primer which was finally connected at the tunnel barrier, evacuate to the safety zone, and then explode shock or spark at the end of the signal tube.
- This method is a very safe method of detonation from electrical installations inside the drilling tunnel or lightning from outside the tunnel.However, hundreds of meters of signal tubes are used at every blast, resulting in expensive detonation costs. This remains a problem for the environment.
- the detonation method using an electric primer is connected to the signal tube of the last non-electrical primer that was finally connected at the tunnel curtain, and the blast bus of several hundred meters is connected to each line of the electric primer to evacuate to the safety zone.
- This method has the advantage of low cost of detonation and no environmental problems due to the use of permanently blasting busbars.However, only one electric primer makes expensive non-electrical primer installed in the entire membrane barrier. In addition, a single electric primer is a very irrational method of detonation, which is more sensitive to current than when the entire tunnel head is an electric primer and thus loses the fundamental purpose of making a non-electric primer.
- the present invention solves the problems of the two methods of detonation described above and adopts only the advantages, which are electrically safe, low cost of detonation, and non-electrical using a spark detonator for detonating non-electric primers reliably even from a distance. It is to provide a detonation system of the primer and blasting construction method using the same.
- the non-electric primer detonation system using the spark detonator according to the present invention is an electric blaster, a blast bus, a circuit inspection device and a spark detonator newly used in the blasting using a conventional electric primer Characterized in that consisting of.
- the spark detonator is a detonator for igniting the signal tube by generating a strong spark on the signal tube of the non-electric primer after receiving a high-voltage current generated from the electric blast through a blast bus of several hundred meters.
- the blasting construction method using the non-electric primer detonator system using the spark detonator according to the present invention is a non-electric primer detonator system using the spark detonator is a three-step process of installation, inspection, blasting step It is divided.
- the installation step is to secure the safety distance from the scattering and wind pressure of the blasting rock by connecting the spark detonator to the signal tube finally connected at the tunnel curtain and connecting the blast bus of several hundred meters to the lead wire of the spark detonator.
- the inspection step is to check whether there is an abnormality of the blasting circuit before connecting the blasting bus to the electric blasting device. Check the disconnection, short circuit, and normality of the blasting bus and spark detonator by using a normal conduction tester and resistance measuring device. Step.
- the detonation system of the non-electric primer and the blasting construction method using the spark detonator made as described above have the following effects compared to the conventional detonation method using a conventional starter and detonation method using an electric primer.
- waste plastic signal tube does not occur, it is environmentally advantageous.
- FIG. 1 is a view showing the configuration of a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- Figure 2 is a perspective view showing the external appearance of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- Figure 3 is an exploded perspective view showing the configuration of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- FIG. 4 is a perspective view and a cross-sectional view showing in detail the spark terminal of the spark detonator in the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- FIG. 5 is a circuit diagram showing two embodiments of a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- FIG. 7 is a circuit diagram illustrating two embodiments in which a varistor is embedded in a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- FIG. 8 is a view showing the configuration of the housing and the vise cap of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- FIG. 9 is a view showing the coupling of the housing and the vise cap of the non-electric primer detonation system using a spark detonator according to an embodiment of the present invention
- FIG. 10 is a perspective view showing a circuit inspection device [conduction tester and resistance measuring device] used in the blasting construction method using the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- FIG. 11 is an exemplary view showing a state of inspecting a blast circuit using a conduction tester in the blasting construction method using a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
- FIG. 12 is an exemplary view showing a state of checking a blasting circuit using a resistance measuring device in the blasting construction method using the sparking detonation system of the non-electric primer using the spark detonator according to an embodiment of the present invention
- 50 circuit inspection equipment [50-1: conduction tester, 50-2: resistance measuring instrument]
- the present invention relates to blasting using non-electric primers carried out at sites such as tunnels and underground excavations, and more particularly, to a spark detonation device and a non-electric primer using the same.
- FIG. 1 is a view showing the configuration of a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- This detonation system is the installation stage of connecting spark blasting device to the signal tube of the non-electric primer which was finally connected at the tunnel curtain and then connecting the blasting bus to the safety zone, and the blasting circuit consisting of spark detonating device and blasting bus It consists of a test step to check for abnormalities, and a blasting step of charging and blasting after connecting the blast bus to the blasting machine.
- the configuration of the device for implementing the detonation system is composed of a circuit inspection device 50, an electric blasting device 100, a blast bus 200 and a spark detonator 300, etc.
- the spark detonator in the present invention It is the main component that occupies the core.
- the spark detonator 300 receives a high-pressure current generated from the electric blasting machine 100 through the blast bus 200 of several hundred meters and then ignites the signal tube by generating a strong spark on the signal tube 400 of the non-electric primer. Looking at the structural features and the configuration of the parts as a detonator to make as follows.
- Figure 2 is a perspective view showing the appearance of the spark detonator of the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
- Spark detonator 300 shown in the outer shape as shown in the figure is connected to the plastic housing for protecting the electronic component 30, the transparent plastic viscap 31 for binding the signal tube, and the blast bus It consists of the lead wire 36 which becomes.
- FIG 3 is an exploded perspective view showing the configuration of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- a spark terminal 32 Inside the housing 30 of the spark detonator made of a plastic injection molding is composed of a spark terminal 32, a capacitor 33, an electrical resistance 34, a varistor 35, a lead wire 36, an electromagnetic plate 37, etc. It consists of an electronic component and a viscap 31 of a transparent plastic material.
- the spark terminal 32 is composed of two electrodes having a compact gap, and the two electrodes are inserted into the signal tube to receive a high voltage current generated by the electric blasting device and generate a strong spark in the signal tube. to be.
- the capacitor 33 serves to temporarily accumulate and discharge a high-voltage current generated by the electric blast generator, and serves to allow a sufficient current to flow through the spark terminal by correcting a voltage lost through a long blast bus.
- the capacitor used was a film capacitor without polarity, and the proper capacity of the capacitor was about 0.5 ⁇ 2uF (microfarad).
- the capacitor is an accessory part that is selectively inserted according to the output voltage of the electric blast generator. When the high voltage electric blast generator having a high output voltage is used, the capacitor is not necessary.
- the electrical resistance 34 provides a means for inspecting the abnormality of the blasting circuit and is an essential component used as a safety device for the spark amplification device in which a capacitor is inserted.
- the electrical resistance used as a means of inspecting the blasting circuit is an essential component that must be built regardless of the presence or absence of a capacitor.
- the inspection method of the blasting circuit will be described in detail with reference to the drawings in the back of the chapter. Only electric resistance will be described.
- the electrical resistance used as a safety device is an electronic component that must be inserted into a spark detonator with a built-in capacitor. When the spark does not occur due to a defective electrode of the spark terminal, it gradually discharges the charge accumulated in the capacitor.
- the spark detonator fails to spark due to a poor electrode of the spark terminal, the explosive failure may cause the explosive operator to approach the tunnel barrier 500 to check for an abnormality of the blasting circuit. If the charge stored in the battery is discharged at once, an unexpected accident may occur.
- the electrical resistance is a part that plays an important role in gradually discharging the electric charges stored in the capacitor.
- the proper size of the resistance value was about 5K ⁇ ⁇ 1M ⁇ through experiments, and the safety resistance with this resistance value is applied to the spark terminal. The spark discharge was sufficiently caused, and if the spark discharge did not occur, the charge of the capacitor was completely discharged within 0.5 seconds.
- the varistor 35 which is another safety device, is an electronic component that prevents current from flowing through the spark terminal under a certain voltage.
- the spark detonator does not react to an electrical installation flowing inside the tunnel or lightning generated from outside the tunnel.
- the spark detonator is a safety component that causes sparking only by the electric blast generator.
- the lead wire 36 is a connecting wire for connecting the blast bus and the spark detonator, and the electromagnetic plate 37 connects and fixes the spark terminal, the capacitor, the electrical resistance, the varistor, and the lead wire to each other to form an electric circuit. Parts.
- the structural features of the spark terminal causing spark in the signal tube of the non-electric primer is as follows.
- FIG. 4 is a perspective view and a cross-sectional view showing in detail the spark terminal of the spark detonator in the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- the spark terminal 32 constitutes a spark tip 32-A composed of two electrodes 32-1 and 32-2 having a tight gap, and the distance between the two electrodes is an insulating coating 32-A. 3) is determined by the thickness.
- the thickness of the insulating coating that is, the spacing between the two electrodes, is closely related to the voltage causing the spark, and the larger the spacing between the two electrodes, the higher the voltage of the electroblasting apparatus is required.
- the thickness of the insulation coating of the spark terminal used in the present invention was about 0.15 to 0.2 mm, and the required voltage for sparking in this gap was about 500V.
- the spark tip 32-A consisting of two electrodes is inserted into the signal tube 400 to cause a strong spark to explode the octogen explosive 400-1 applied in the signal tube.
- the main material of the spark terminal is brass or a similar conductive metal. Teflon wire or enameled wire is used for the insulation coated wire constituting the spark tip.
- FIG. 5 is a circuit diagram illustrating two embodiments of a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- FIG. 5A is a circuit diagram of the spark detonator composed of only the spark terminal 32, the electrical resistance 34, and the lead wire 36. As shown in FIG.
- Such spark detonator requires a high voltage blasting device of 3000V or more to compensate for the size of the spark depending on the thickness and length of the blast bus.
- the electrical resistance 34 used for this circuit is an electronic component used as a means of inspecting the abnormality of a blasting circuit.
- 5B is a circuit diagram of a spark detonator composed of a spark terminal 32, a capacitor 33, an electrical resistance 34, and a lead wire 36. As shown in FIG.
- the spark detonator is such that the capacitor 33 is built into the electric circuit so that the spark can be generated even with a conventional electric blast within 1500V.
- the electric resistance 34 used at this time is a means for inspecting the abnormality of the blasting circuit. At the same time it is used as a safety device to discharge the charge of the capacitor.
- the varistor 35 is directly connected to the spark detonator so that the electronic circuit is cut below the required voltage, and the circuit is connected to generate the spark only when the required voltage is applied. It was made up.
- FIG. 6 is a circuit diagram showing the most common use of the varistor.
- the varistor 35 exists as a non-conductor connected in parallel to two wires of an electric circuit input terminal as shown in the circuit diagram. When a current of a specific voltage or more is applied, the varistor 35 becomes a conductor so that a high voltage current does not pass through the electric circuit or the ground. It is a variable resistance element that protects an electric circuit that allows current to flow to a portion.
- the varistor is connected to one or two lines of the circuit input terminal in series so that the electric circuit is cut off below a specific voltage and the circuit is connected above a specific voltage.
- the spark detonator did not cause a spark at a current below the voltage.
- the specific voltage is determined by the varistor specification according to the purpose of use. If the maximum voltage that can be applied during tunnel excavation is usually within 500V, the operating voltage of the varistor should be about 1000V in consideration of safety.
- FIG. 7 is a circuit diagram illustrating two embodiments in which a varistor is embedded in the blasting circuit of the spark detonator in the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
- FIG. 7 [A] is a diagram in which varistors are connected in series to one line in a circuit
- FIG. 7 [B] is a diagram in which varistors are connected in series to two lines in a circuit.
- the circuit configuration of the spark detonator is described above, and the following is a description of the features and functions of the external configuration of the spark detonator.
- FIG. 8 is a view showing the configuration of the housing and the vice cap of the spark detonator of the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
- the housing 30 of the spark detonator is made of a plastic material that is light and easy to mold, and the housing is composed of a body portion 30-A for protecting the electronic component and a vice 30-B for coupling the signal tube. .
- the configuration of the vise 30-B is a vise that adds the strength of tightening by the multi-parted vise rack 30-1, which serves to tighten the signal tube, and the inclined tube body 31-2 of the vise cap.
- the projection 30-2, the signal tube confirming groove 30-3 for checking whether the spark tip is inserted into the signal tube, and the fastening male screw 30-4 for fastening the vise cap are configured. It is done.
- FIG. 9 is a view showing a combination of the housing and the vise cap of the non-electric primer detonation system using a spark detonator according to an embodiment of the present invention.
- the vise rack 30-1 is pressed against the inclined tube body 31-2 of the vise cap and tightly tightens the signal tube so that the signal tube does not fall out.
- the detailed configuration and operation of the spark detonator was examined.
- the blast bus 200 of several hundred meters is connected to the lease line 36 of the spark detonator to evacuate to a safe distance. This completes the installation phase, the first phase of the detonation system.
- FIG. 10 is a perspective view showing a circuit inspection device (conductivity tester and resistance measuring device) used in the method for constructing a blasting using a spark detonation system using a spark detonation device according to an embodiment of the present invention.
- a circuit inspection device conductivity tester and resistance measuring device
- the circuit tester may use the conduction tester 50-1 and the resistance meter 50-2 used in the conventional electric primer blasting, but the electric resistance inserted in the spark detonator has a resistance value of several K ⁇ . A high range of inspection equipment is required.
- the conduction tester 50-1 is a simple circuit test device for checking the disconnection of the blast bus in the conventional electrical primer blasting.
- This device checks whether the blast bus is disconnected according to the direction of the needle gauge.
- the needle gauge points to the left when the blast bus is broken, and when the blast bus is normal and short-circuited. In fact, it is difficult to check whether the blasting circuit is short-circuit in the right direction.
- the resistance measuring instrument 50-2 is used to determine the abnormality of the blast circuit by measuring the resistance value of the blast bus.
- the resistance measuring instrument usually expresses the resistance value by digital number, and if the blast bus is disconnected, it shows 0 or infinity. If there is no abnormality in the blast circuit, the resistance value of the blast bus is displayed. It is smaller than the resistance value.
- the inspection step which is the second step of checking whether there is an abnormality in the blasting circuit composed of the blasting bus and the spark detonator, is as follows.
- FIG. 11 is an exemplary view showing a state of inspecting a blast circuit using a conduction tester in the blasting construction method using a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
- 11A shows a case in which the blast bus 200 constituting the blast circuit is disconnected, and the needle of the conduction tester is pointing to the left side.
- the blast bus used in tunnel blasting has a length of at least 300m and is frequently broken by scattering of blasting rock.
- the needle of the conduction tester points to the left.
- 11B shows a case where the blast bus is shorted, and the needle of the conduction tester is pointing in the right direction.
- FIG. 11 [C] is a diagram showing that the blast bus and the spark detonator are intact and the needle of the continuity tester is pointing to the center.
- the resistance value of the electrical resistance inserted into the spark detonator should be in the range that can be checked by the conduction tester, and the resistance value of the needle of the conduction tester used in the conventional electric blasting is about 10-20K ⁇ .
- FIG. 12 is an exemplary view illustrating a state of checking a blasting circuit using a resistance measuring device in the blasting construction method using the sparking detonation system using a spark detonation device according to an embodiment of the present invention.
- This method is similar to the method using the conduction tester described above, but differs in that it is represented by a number in the method of indicating the presence or absence of a blast circuit.
- Fig. 12B is a diagram in which the blast bus is shorted and is expressed as a resistance value up to the shorted part, and the maximum size of the shorted resistance is less than or equal to the maximum resistance of the blast bus.
- FIG. 12 [C] is a diagram illustrating a case where the blast bus and the spark amplification device have no abnormality, and the resistance value of the resistance meter is expressed as the sum of the resistance of the blast bus 200 and the resistance of the electrical resistance 34.
- the blasting step is performed, which is the third step of blasting by connecting the blasting bus to the electric blasting device, and charges the electric blasting device to blast the high voltage current.
- the spark detonator causes a strong spark, and the signal tube connected to the spark detonator is ignited by the spark impact to detonate the non-electric primer.
- the spark detonator is a consumable product that is directly buried by the blasting rock at every blasting because it is directly connected to the final signal tube at the tunnel face.
- the non-electric primer detonation system using the spark detonator has less cost reduction and environmental pollution than the conventional detonation system using the starter, and it is electrically safer than the detonation system using the electric primer because it is only detonated by the high-pressure current blasting machine. .
- the present invention having the same configuration as described above is an industrially useful invention that can safely and surely trigger non-electric primers at low cost.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
The present invention relates to blasting using a non-electric detonator performed in the field of tunneling, underground excavation, etc. More particularly, the present invention relates to a detonation system of a non-electric detonator using a spark detonation apparatus, in which an electric blasting machine and the spark detonation apparatus are implemented to detonate the non-electric detonator in an inexpensive, safe and reliable manner. The present invention also relates to a blasting construction method using the detonation system.
Description
본 발명은 터널 및 지하굴착 등의 현장에서 실시하는 비전기식 뇌관을 이용한 발파와 관련된 것으로, 보다 상세하게는 전기발파기와 스파크 기폭장치를 이용하여 비전기식 뇌관을 저가의 비용으로 안전하고 확실하게 기폭시키기 위한 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템 및 이를 이용한 발파 시공 방법에 관한 것이다.The present invention relates to blasting using non-electric primers carried out in the field, such as tunnels and underground excavation, and more specifically to safely and reliably detonate non-electric primers at low cost using an electric blasting device and spark detonator. The present invention relates to a non-electric primer detonator system using a spark detonator and a blasting construction method using the same.
터널 및 지하철 등의 지하굴착공사에서 사용되는 굴착장비들은 매연 및 분진발생을 최소화하기 위하여 고압전기를 동력으로 사용하는데 이곳에서 실시하는 전기뇌관을 이용한 발파방법은 필연적으로 전기적인 위험에 노출될 수밖에 없었다.Excavation equipments used in underground excavation works such as tunnels and subways use high voltage electricity to minimize soot and dust generation, and the blasting method using electric primers inevitably exposes to electrical risks. .
또한 터널 밖에서 발생하는 낙뢰는 지면을 통하여 흡수되는데 이때 터널 막장에 장약 된 전기뇌관에 작은 전류가 흐르게 될 경우 예기치 않는 폭발사고가 발생하여 소중한 생명을 앗아가는 끔찍한 발파사고가 발생하기도 하였다.In addition, lightning generated outside the tunnel is absorbed through the ground, and when a small current flows through the electric primer charged at the end of the tunnel, an unexpected explosion occurs, causing a terrible blasting accident that takes away precious lives.
이에 근래에는 이러한 전기적인 위험요소로부터 안전하게 발파를 할 수 있도록 비전기식 뇌관이 개발되어 이용되고 있으나 비전기식 뇌관을 최초로 기폭시키기 위한 정통적인 기폭방법은 고가의 기폭비용이 소요되기 때문에 근래에는 전기적 위험을 감수하고라도 기폭비용이 저렴하고 간편한 전기뇌관을 이용한 기폭방법을 암암리에 이용하고 있다.In recent years, non-electric primers have been developed and used to safely blast from such electrical hazards. However, the conventional method of detonating non-electric primers for the first time requires expensive detonation costs, so in recent years, electrical hazards have been reduced. Even if the cost of detonation is low, the detonation method using a simple electric primer is implicitly used.
상기 두 가지 기폭방법의 특징 및 장단점을 간략히 살펴보면 다음과 같다.The characteristics and advantages and disadvantages of the two detonation methods will be briefly described as follows.
첫째, 정통적인 기폭방법은 터널막장에서 최종적으로 결선된 마지막 비전기식 뇌관의 시그널튜브에 스타터라 불리는 수백 미터의 시그널튜브를 추가로 연결하여 안전지대까지 대피한 후 시그널튜브의 끝단에 폭발충격 또는 스파크충격을 인가하여 시그널튜브 내의 폭약을 점화시키는 방법이다.First, the traditional method of detonation is to connect a few hundred meters of signal tube called starter to the signal tube of the last non-electrical primer which was finally connected at the tunnel barrier, evacuate to the safety zone, and then explode shock or spark at the end of the signal tube. A method of igniting explosives in a signal tube by applying an impact.
이 방법은 굴착터널 내부의 전기 시설 또는 터널 외부의 낙뢰로부터 매우 안전한 기폭방법이기는 하나 매 발파시 수백 미터의 시그널튜브가 사용되기 때문에 고가의 기폭비용이 소요되고 더불어 발파 후 수백 미터의 폐 플라스틱 튜브가 잔류하여 환경적으로도 문제가 된다.This method is a very safe method of detonation from electrical installations inside the drilling tunnel or lightning from outside the tunnel.However, hundreds of meters of signal tubes are used at every blast, resulting in expensive detonation costs. This remains a problem for the environment.
둘째, 전기뇌관을 이용한 기폭방법은 터널막장에서 최종적으로 결선 된 마지막 비전기식 뇌관의 시그널튜브에 전기뇌관을 연결하고 전기뇌관의 각선에 수백 미터의 발파모선을 연결하여 안전지대까지 대피한 후 통상의 전기발파기를 이용하여 전기뇌관을 폭발시킴으로써 전기뇌관에 묶여있는 시그널튜브가 기폭되도록 하는 방법이다.Secondly, the detonation method using an electric primer is connected to the signal tube of the last non-electrical primer that was finally connected at the tunnel curtain, and the blast bus of several hundred meters is connected to each line of the electric primer to evacuate to the safety zone. By exploding the electric primer using an electric blasting machine to detonate the signal tube tied to the electric primer.
이 방법은 영구적으로 사용 가능한 발파모선을 이용하기 때문에 기폭비용이 저렴하고 환경적인 문제도 발생하지 않은 장점이 있으나, 단 1개의 전기뇌관으로 인하여 터널 전체 막장에 설치된 고가의 비전기식 뇌관이 전기뇌관화 될 뿐만 아니라, 오히려 1발의 전기뇌관이 터널 막장 전체가 전기뇌관인 때보다도 더 전류에 민감하여 비전기식 뇌관으로 장약한 근본적인 취지를 상실하게 하는 매우 비합리적인 기폭방법이다. This method has the advantage of low cost of detonation and no environmental problems due to the use of permanently blasting busbars.However, only one electric primer makes expensive non-electrical primer installed in the entire membrane barrier. In addition, a single electric primer is a very irrational method of detonation, which is more sensitive to current than when the entire tunnel head is an electric primer and thus loses the fundamental purpose of making a non-electric primer.
본 발명은 상기에 나타난 두 가지 기폭방법의 문제점을 해결하고 장점만을 채택하여 전기적으로도 안전하고, 기폭비용이 저렴하며, 먼 거리에서도 확실하게 비전기식 뇌관을 기폭시키기 위한 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템 및 이를 이용한 발파 시공 방법을 제공하고자 한 것이다.The present invention solves the problems of the two methods of detonation described above and adopts only the advantages, which are electrically safe, low cost of detonation, and non-electrical using a spark detonator for detonating non-electric primers reliably even from a distance. It is to provide a detonation system of the primer and blasting construction method using the same.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스은 종래의 전기뇌관을 이용한 발파에서 사용되는 전기발파기, 발파모선, 회로검사기기와 새로 구비되는 스파크 기폭장치로 구성됨을 특징으로 한다.In order to achieve the object as described above, the non-electric primer detonation system using the spark detonator according to the present invention is an electric blaster, a blast bus, a circuit inspection device and a spark detonator newly used in the blasting using a conventional electric primer Characterized in that consisting of.
특히 스파크 기폭장치는 전기발파기에서 발생한 고압의 전류를 수백 미터의 발파모선을 통하여 전달받은 후 비전기식 뇌관의 시그널튜브에 강력한 스파크를 일으켜 시그널튜브를 점화시키는 기폭장치이다.In particular, the spark detonator is a detonator for igniting the signal tube by generating a strong spark on the signal tube of the non-electric primer after receiving a high-voltage current generated from the electric blast through a blast bus of several hundred meters.
또한, 본 발명에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법은 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템은 설치단계, 검사단계, 발파단계인 총 3단계의 과정으로 나누어 실시된다.In addition, the blasting construction method using the non-electric primer detonator system using the spark detonator according to the present invention is a non-electric primer detonator system using the spark detonator is a three-step process of installation, inspection, blasting step It is divided.
설치단계는 터널막장에서 최종적으로 결선된 시그널튜브에 스파크 기폭장치를 연결하고 스파크 기폭장치의 리드선에 수백 미터의 발파모선을 연결하여 발파암의 비산 및 풍압으로부터 안전거리를 확보하는 단계이다.The installation step is to secure the safety distance from the scattering and wind pressure of the blasting rock by connecting the spark detonator to the signal tube finally connected at the tunnel curtain and connecting the blast bus of several hundred meters to the lead wire of the spark detonator.
검사단계는 발파모선을 전기발파기에 연결하기 전에 발파회로의 이상 유무를 확인하는 단계로 통상의 도통시험기 및 저항측정기를 이용하여 발파모선 및 스파크 기폭장치의 단선, 합선, 정상 여부를 확인하여 조치하는 단계이다.The inspection step is to check whether there is an abnormality of the blasting circuit before connecting the blasting bus to the electric blasting device. Check the disconnection, short circuit, and normality of the blasting bus and spark detonator by using a normal conduction tester and resistance measuring device. Step.
발파단계에서는 전기회로에 이상이 없음을 확인한 후 전기발파기에 발파모선을 연결한 다음 전기발파기를 충전하여 고압의 전류를 발파모선에 흘려보내면 스파크 기폭장치가 강력한 스파크를 일으키고 스파크 기폭장치에 연결된 시그널튜브는 스파크충격에 의해 점화되어 비전기식 뇌관을 기폭하게 된다.In the blasting stage, after confirming that there is no abnormality in the electric circuit, connect the blast bus to the blast generator, charge the electric blast generator, and send a high-voltage current to the blast bus. Is ignited by a spark impact to detonate the non-electric primer.
상기와 같이 이루어지는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템 및 이를 이용한 발파 시공 방법은 종래의 스타터를 이용한 정통적인 기폭방법과 전기뇌관을 이용한 기폭방법에 대비하여 다음과 같은 효과가 있다.The detonation system of the non-electric primer and the blasting construction method using the spark detonator made as described above have the following effects compared to the conventional detonation method using a conventional starter and detonation method using an electric primer.
첫째, 고가의 시그널튜브를 사용하지 하지 않으므로 기폭비용이 저렴하다.First, the cost of detonation is low because no expensive signal tube is used.
둘째, 폐 플라스틱 시그널튜브가 발생하지 않으므로 환경적으로 유리하다.Second, waste plastic signal tube does not occur, it is environmentally advantageous.
셋째, 전기뇌관에 비하여 전기적으로 안전하다.Third, it is safer than electric primer.
넷째, 폭약류가 아니므로 취급 및 보관이 용이하다.Fourth, because it is not explosives, it is easy to handle and store.
도 1은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 구성을 도시한 도면1 is a view showing the configuration of a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 2는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 외형을 도시한 사시도Figure 2 is a perspective view showing the external appearance of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 3은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 구성을 도시한 분해사시도Figure 3 is an exploded perspective view showing the configuration of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 4는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 스파크단자를 상세하게 도시한 사시도 및 단면도4 is a perspective view and a cross-sectional view showing in detail the spark terminal of the spark detonator in the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 5는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 발파 회로의 2가지 실시예를 도시한 회로도5 is a circuit diagram showing two embodiments of a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
도 6은 바리스터의 가장 보편적인 사용방법을 도시한 회로도6 is a circuit diagram showing the most common use of varistors
도 7은본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 발파 회로에 바리스터가 내장된 2가지 실시예를 도시한 회로도FIG. 7 is a circuit diagram illustrating two embodiments in which a varistor is embedded in a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
도 8는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 하우징과 바이스 캡의 구성을 도시한 도면8 is a view showing the configuration of the housing and the vise cap of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 9는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 하우징과 바이스 캡의 결합을 도시한 도면9 is a view showing the coupling of the housing and the vise cap of the non-electric primer detonation system using a spark detonator according to an embodiment of the present invention
도 10은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에 이용되는 회로검사기기[도통시험기 및 저항측정기]를 도시한 사시도10 is a perspective view showing a circuit inspection device [conduction tester and resistance measuring device] used in the blasting construction method using the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 11은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에서 도통시험기를 이용한 발파회로를 점검하는 상태를 도시한 예시도11 is an exemplary view showing a state of inspecting a blast circuit using a conduction tester in the blasting construction method using a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention
도 12는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에서 저항측정기를 이용한 발파회로를 점검하는 상태를 도시한 예시도12 is an exemplary view showing a state of checking a blasting circuit using a resistance measuring device in the blasting construction method using the sparking detonation system of the non-electric primer using the spark detonator according to an embodiment of the present invention
<주요 도면부호에 대한 간단한 설명><Short description of the major reference symbols>
50: 회로검사기기 [50-1: 도통시험기, 50-2: 저항측정기]50: circuit inspection equipment [50-1: conduction tester, 50-2: resistance measuring instrument]
100: 전기발파기 200: 발파모선 300: 스파크 기폭장치100: electric blasting machine 200: blasting bus 300: spark detonator
400: 시그널튜브 500: 터널막장400: signal tube 500: tunnel close
30: 상, 하 하우징 [30-1: 바이스 랙, 30-2: 바이스 돌기,30: upper and lower housings [30-1: vise rack, 30-2: vise protrusion,
30-3: 스파크팁 확인홈, 30-4:체결용 숫나사] 30-3: Spark tip check groove, 30-4: Tightening male thread]
31: 바이스 캡 [31-1: 시그널튜브 삽입홈, 31-2: 경사면 관체,31: Vise cap [31-1: Signal tube insertion groove, 31-2: Slope tube,
31-3:체결용 암나사] 31-3: Tightening female thread]
32: 스파크단자 33: 캐패시터 34: 안전저항 32: spark terminal 33: capacitor 34: safety resistor
35: 바리스터 36: 리드선 37: 전자기판35: varistor 36: lead wire 37: electromagnetic plate
본 발명은 터널 및 지하굴착 등의 현장에서 실시하는 비전기식 뇌관을 이용한 발파와 관련된 것으로 상세하게는 스파크 기폭장치와 이를 이용한 비전기식 뇌관의 기폭시스템에 관한 것이다.The present invention relates to blasting using non-electric primers carried out at sites such as tunnels and underground excavations, and more particularly, to a spark detonation device and a non-electric primer using the same.
본 발명의 올바른 실시를 목적으로 첨부된 도면을 통하여 스파크 기폭장치의 세부 구성 및 이를 이용한 비전기식 뇌관의 기폭시스템에 대하여 살펴보면 다음과 같다.Looking at the detailed configuration of the spark detonator and the non-electric primer detonator system using the same through the accompanying drawings for the purpose of correct implementation of the present invention.
도 1은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 구성을 도시한 도면이다.1 is a view showing the configuration of a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
본 기폭시스템은 터널막장에서 최종적으로 결선된 비전기식 뇌관의 시그널튜브에 스파크 기폭장치를 연결한 후 발파모선을 연결하여 안전지대까지 대피하는 설치단계와, 스파크 기폭장치 및 발파모선으로 이루어진 발파회로의 이상 유무를 확인하는 검사단계와, 발파모선을 발파기에 연결한 후 충전 및 발파하는 발파단계로 이루어진다.This detonation system is the installation stage of connecting spark blasting device to the signal tube of the non-electric primer which was finally connected at the tunnel curtain and then connecting the blasting bus to the safety zone, and the blasting circuit consisting of spark detonating device and blasting bus It consists of a test step to check for abnormalities, and a blasting step of charging and blasting after connecting the blast bus to the blasting machine.
상기 기폭시스템을 실시하기 위한 장치의 구성은 회로검사기기(50), 전기발파기(100), 발파모선(200) 및 스파크 기폭장치(300) 등으로 이루어지며 특히 스파크 기폭장치는 본 발명에 있어서 핵심을 차지하는 주요 구성장치이다.The configuration of the device for implementing the detonation system is composed of a circuit inspection device 50, an electric blasting device 100, a blast bus 200 and a spark detonator 300, etc. In particular, the spark detonator in the present invention It is the main component that occupies the core.
스파크 기폭장치(300)는 전기발파기(100)에서 발생한 고압의 전류를 수백 미터의 발파모선(200)을 통하여 전달받은 후 비전기식 뇌관의 시그널튜브(400)에 강력한 스파크를 일으켜 시그널튜브를 점화시키는 기폭장치로 그 구조적 특징 및 부품의 구성을 살펴보면 다음과 같다.The spark detonator 300 receives a high-pressure current generated from the electric blasting machine 100 through the blast bus 200 of several hundred meters and then ignites the signal tube by generating a strong spark on the signal tube 400 of the non-electric primer. Looking at the structural features and the configuration of the parts as a detonator to make as follows.
도 2는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 외형을 도시한 사시도이다.Figure 2 is a perspective view showing the appearance of the spark detonator of the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
도면에서와 같이 외형상으로 나타나는 스파크 기폭장치(300)는 전자부품을 보호하는 플라스틱 재질의 하우징(30)과, 시그널튜브를 결속시키기 위한 투명플라스틱 재질의 바이스캡(31)과, 발파모선과 연결되는 리드선(36)으로 구성된다. Spark detonator 300 shown in the outer shape as shown in the figure is connected to the plastic housing for protecting the electronic component 30, the transparent plastic viscap 31 for binding the signal tube, and the blast bus It consists of the lead wire 36 which becomes.
도 3은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 구성을 도시한 분해사시도이다.3 is an exploded perspective view showing the configuration of the spark detonator of the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
플라스틱 사출물로 이루어진 스파크 기폭장치의 하우징(30)내부에는 스파크단자(32), 캐패시터(33), 전기저항(34), 바리스터(35), 리드선(36), 전자기판(37) 등으로 구성되는 전자부품과 투명플라스틱 재질의 바이스캡(31)으로 구성된다.Inside the housing 30 of the spark detonator made of a plastic injection molding is composed of a spark terminal 32, a capacitor 33, an electrical resistance 34, a varistor 35, a lead wire 36, an electromagnetic plate 37, etc. It consists of an electronic component and a viscap 31 of a transparent plastic material.
상기 전자부품의 구체적인 역할과 특성을 살펴보면 다음과 같다.Looking at the specific role and characteristics of the electronic component as follows.
스파크단자(32)는 조밀한 간극을 갖는 두 개의 전극으로 구성되며, 두 개의 전극이 시그널튜브에 삽입되어 전기발파기에서 발생한 고전압의 전류를 인가받아 시그널튜브에 강력한 스파크를 일으키는 점화장치로 필수부품이다. The spark terminal 32 is composed of two electrodes having a compact gap, and the two electrodes are inserted into the signal tube to receive a high voltage current generated by the electric blasting device and generate a strong spark in the signal tube. to be.
캐패시터(33)는 전기발파기에서 발생한 고압의 전류를 임시 축적했다가 방전하는 역할을 하며, 긴 발파모선을 통하여 손실된 전압을 보정하여 스파크단자에 충분한 전류가 흐르도록 하는 역할을 한다.The capacitor 33 serves to temporarily accumulate and discharge a high-voltage current generated by the electric blast generator, and serves to allow a sufficient current to flow through the spark terminal by correcting a voltage lost through a long blast bus.
이때 사용되는 캐패시터는 극성이 없는 필름 캐패시터가 사용되며 캐패시터의 적정용량은 0.5~2uF(마이크로 패럿) 정도가 적정하였다.At this time, the capacitor used was a film capacitor without polarity, and the proper capacity of the capacitor was about 0.5 ~ 2uF (microfarad).
상기 캐패시터는 전기발파기의 출력전압에 따라 선택적으로 삽입되는 부수부품으로 출력전압이 높은 고압 전기발파기를 사용하는 경우 캐패시터는 필요치 않게 된다.The capacitor is an accessory part that is selectively inserted according to the output voltage of the electric blast generator. When the high voltage electric blast generator having a high output voltage is used, the capacitor is not necessary.
전기저항(34)은 발파회로의 이상 유무를 검사할 수 있도록 하는 수단을 제공함과 동시에 캐패시터가 삽입된 스파크기폭장치에 대하여는 안전장치로 사용되는 필수부품이다.The electrical resistance 34 provides a means for inspecting the abnormality of the blasting circuit and is an essential component used as a safety device for the spark amplification device in which a capacitor is inserted.
발파회로의 검사 수단으로 사용되는 전기저항은 캐패시터의 삽입 유무에 관계없이 반드시 내장되어야 하는 필수 부품으로 발파회로의 검사 방법에 대하여는 뒷장의 도면을 통하여 상세히 설명하기로 하고, 우선적으로 안전장치로 사용되는 전기저항에 대하여만 설명키로 한다.The electrical resistance used as a means of inspecting the blasting circuit is an essential component that must be built regardless of the presence or absence of a capacitor. The inspection method of the blasting circuit will be described in detail with reference to the drawings in the back of the chapter. Only electric resistance will be described.
안전장치로 사용되는 전기저항은 캐패시터가 내장된 스파크 기폭장치에 반드시 삽입되어야 하는 전자부품으로 스파크단자의 전극 불량으로 인하여 스파크가 발생하지 않은 경우 캐패시터에 축적된 전하를 서서히 방전하는 역할을 한다.The electrical resistance used as a safety device is an electronic component that must be inserted into a spark detonator with a built-in capacitor. When the spark does not occur due to a defective electrode of the spark terminal, it gradually discharges the charge accumulated in the capacitor.
예를 들어 만약 스파크단자의 전극 불량으로 스파크 기폭장치가 스파크를 일으키지 못할 경우 발파실패로 인하여 화약류작업자가 터널막장(500)에 접근하여 발파회로의 이상 유무를 살피게 되는데 이때 스파크 단자가 정상적으로 작동하여 캐패시터에 저장된 전하가 일시에 방전된다면 예기치 않는 사고가 발생할 수도 있을 것이다.For example, if the spark detonator fails to spark due to a poor electrode of the spark terminal, the explosive failure may cause the explosive operator to approach the tunnel barrier 500 to check for an abnormality of the blasting circuit. If the charge stored in the battery is discharged at once, an unexpected accident may occur.
그러므로 전기저항은 캐패시터에 축전 된 전하를 서서히 방전시키는 중요한 역할을 하는 부품으로 저항값의 적정크기는 실험을 통하여 알아본 결과 5KΩ~1MΩ 정도였으며, 이 정도의 저항값을 갖는 안전저항은 스파크단자에 불꽃방전을 충분히 일으키고 만약 불꽃방전이 일어나지 않을 경우 0.5초 이내에 캐패시터의 전하를 완전히 방전시켰다.Therefore, the electrical resistance is a part that plays an important role in gradually discharging the electric charges stored in the capacitor. The proper size of the resistance value was about 5KΩ ~ 1MΩ through experiments, and the safety resistance with this resistance value is applied to the spark terminal. The spark discharge was sufficiently caused, and if the spark discharge did not occur, the charge of the capacitor was completely discharged within 0.5 seconds.
또 다른 안전장치인 바리스터(35)는 일정전압 이하에서는 스파크단자에 전류가 흐르지 않도록 하는 전자부품으로, 터널 내부에 흐르는 전기시설 혹은 터널 외부로부터 발생하는 낙뢰에 대하여는 스파크 기폭장치가 반응하지 않고, 고압의 전기발파기에 의하여만 스파크 기폭장치가 스파크를 발생토록 하는 안전부품이다.The varistor 35, which is another safety device, is an electronic component that prevents current from flowing through the spark terminal under a certain voltage. The spark detonator does not react to an electrical installation flowing inside the tunnel or lightning generated from outside the tunnel. The spark detonator is a safety component that causes sparking only by the electric blast generator.
기타 부품으로 리드선(36)은 발파모선과 스파크 기폭장치를 연결하는 연결전선이며, 전자기판(37)은 스파크단자와 캐패시터와 전기저항과 바리스터와 리드선을 상호 연결하고 고정하여 전기회로를 구성하는 보조부품이다.As other components, the lead wire 36 is a connecting wire for connecting the blast bus and the spark detonator, and the electromagnetic plate 37 connects and fixes the spark terminal, the capacitor, the electrical resistance, the varistor, and the lead wire to each other to form an electric circuit. Parts.
상기 부품 중 비전기식 뇌관의 시그널 튜브에 스파크를 일으키는 스파크 단자의 구조적 특징을 살펴보면 다음과 같다.The structural features of the spark terminal causing spark in the signal tube of the non-electric primer is as follows.
도 4는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 스파크단자를 상세하게 도시한 사시도 및 단면도이다.4 is a perspective view and a cross-sectional view showing in detail the spark terminal of the spark detonator in the non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
그림에서와 같이 스파크단자(32)는 조밀한 간극을 갖는 두 개의 전극(32-1, 32-2)으로 구성된 스파크팁(32-A)을 구성하며, 두 전극의 간격은 절연피복(32-3)의 두께로 결정된다.As shown in the figure, the spark terminal 32 constitutes a spark tip 32-A composed of two electrodes 32-1 and 32-2 having a tight gap, and the distance between the two electrodes is an insulating coating 32-A. 3) is determined by the thickness.
절연피복의 두께 즉, 두 전극의 간격은 스파크를 일으키는 전압과 밀접한 관계를 갖으며 두 전극의 간격이 클수록 높은 전압의 전기발파기를 필요로 한다.The thickness of the insulating coating, that is, the spacing between the two electrodes, is closely related to the voltage causing the spark, and the larger the spacing between the two electrodes, the higher the voltage of the electroblasting apparatus is required.
본 발명에 사용되는 스파크단자의 절연피복의 두께는 0.15~0.2mm 정도이며 이정도의 간극에서 스파크를 일으키기 위한 필요전압은 약 500V정도였다.The thickness of the insulation coating of the spark terminal used in the present invention was about 0.15 to 0.2 mm, and the required voltage for sparking in this gap was about 500V.
도면에 도시한 바와 같이 두 개의 전극으로 구성되는 스파크팁(32-A)은 시그널튜브(400)에 삽입되어 강력한 스파크를 일으킴으로써 시그널튜브 내에 도포된 옥토겐 폭약(400-1)을 폭발시킨다.As shown in the figure, the spark tip 32-A consisting of two electrodes is inserted into the signal tube 400 to cause a strong spark to explode the octogen explosive 400-1 applied in the signal tube.
스파크단자의 주재료는 황동 또는 이와 유사한 전도성 금속이며, 스파크팁을 구성하는 절연피복의 전선은 테프론전선 또는 에나멜선 등을 사용한다.The main material of the spark terminal is brass or a similar conductive metal. Teflon wire or enameled wire is used for the insulation coated wire constituting the spark tip.
이상으로 스파크 기폭장치의 구성부품의 종류와 역할에 대하여 살펴 보았고 다음은 각 전자부품의 회로구성에 대하여 설명하고자 한다.The types and roles of the components of the spark detonator have been described above, and the circuit configuration of each electronic component will be described below.
도 5는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 발파 회로의 2가지 실시예를 도시한 회로도이다.5 is a circuit diagram illustrating two embodiments of a blasting circuit of a spark detonator in a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
도 5[A]는 스파크단자(32)와 전기저항(34)과 리드선(36)으로만 구성된 스파크 기폭장치의 회로도로이다.FIG. 5A is a circuit diagram of the spark detonator composed of only the spark terminal 32, the electrical resistance 34, and the lead wire 36. As shown in FIG.
이와 같은 스파크 기폭장치는 발파모선의 두께 및 길이에 따라 스파크의 크기가 영향을 받기 때문에 이를 보정하기 위하여 3000V 이상의 고압 발파기를 필요로 한다.Such spark detonator requires a high voltage blasting device of 3000V or more to compensate for the size of the spark depending on the thickness and length of the blast bus.
또한 이 회로에 사용되는 전기저항(34)은 발파회로의 이상 유무를 검사하는 수단으로서 사용되는 전자부품이다.In addition, the electrical resistance 34 used for this circuit is an electronic component used as a means of inspecting the abnormality of a blasting circuit.
*즉, 전기저항(34)이 없다면 발파모선과 스파크 장치로 연결된 발파회로의 단선 및 합선 여부 등을 검사할 방법이 없기 때문에 반드시 수 KΩ 이상의 저항값을 갖는 전기저항이 두 선에 병렬로 연결되어야 한다.* In other words, if there is no electric resistance 34, there is no way to check the disconnection and short circuit of the blasting circuit connected to the blast bus and the spark device. Therefore, an electric resistance having a resistance value of several KΩ or more must be connected in parallel to the two wires. do.
도 5[B]는 스파크단자(32)와 캐패시터(33)와 전기저항(34)과 리드선(36)으로 구성된 스파크 기폭장치의 회로도이다. 5B is a circuit diagram of a spark detonator composed of a spark terminal 32, a capacitor 33, an electrical resistance 34, and a lead wire 36. As shown in FIG.
이와 같은 스파크 기폭장치는 전기회로 내에 캐패시터(33)를 내장하여 종래의 1500V 이내의 전기발파기로도 스파크를 일으킬 수 있도록 한 것으로 이때 사용되는 전기저항(34)은 발파회로의 이상 유무를 검사하는 수단으로 사용됨과 동시에 캐패시터의 전하를 방전하는 안전장치로 사용된다.The spark detonator is such that the capacitor 33 is built into the electric circuit so that the spark can be generated even with a conventional electric blast within 1500V. The electric resistance 34 used at this time is a means for inspecting the abnormality of the blasting circuit. At the same time it is used as a safety device to discharge the charge of the capacitor.
이상 상기와 같은 부품으로 구성된 일반적인 스파크 기폭장치는 터널 내부에 사용되는 500V 정도의 고압전기시설 혹은 터널 외부로부터 인가될 수 있는 낙뢰에 의한 써지전류에 대하여 안전하다고는 볼 수 없기 때문에 추가로 이러한 예기치 않는 전류에 대하여도 안전한 스파크 기폭장치가 필요하게 되었다.Since the general spark detonator composed of the above components is not considered to be safe against surge currents caused by lightning strikes that may be applied from the high voltage electric facilities of about 500V or from outside the tunnel, such unexpected additions are not expected. There is a need for a spark detonator that is also safe against current.
이러한 목적을 달성하기 위하여 스파크 기폭장치 내에 바리스터(35)를 직력로 연결하여 필요전압 이하에서는 전자회로가 끊어지도록 하고, 필요전압 이상이 인가 될 경우에만 회로가 연결되어 스파크를 발생시키도록 하는 회로를 구성하게 되었다.In order to achieve this purpose, the varistor 35 is directly connected to the spark detonator so that the electronic circuit is cut below the required voltage, and the circuit is connected to generate the spark only when the required voltage is applied. It was made up.
도 6은 바리스터의 가장 보편적인 사용방법을 도시한 회로도이다.6 is a circuit diagram showing the most common use of the varistor.
통상 바리스터(35)는 회로도에서와 같이 전기회로 입력단자의 두 선에 병렬로 연결되어 부도체로 존재하다가 특정전압 이상의 전류가 인가될 경우 전도체가 되어 고압의 전류가 전기회로를 거치지 않고 출력단자 혹은 접지부분으로 전류가 흐르도록 하는 전기회로를 보호하는 가변저항소자이다.In general, the varistor 35 exists as a non-conductor connected in parallel to two wires of an electric circuit input terminal as shown in the circuit diagram. When a current of a specific voltage or more is applied, the varistor 35 becomes a conductor so that a high voltage current does not pass through the electric circuit or the ground. It is a variable resistance element that protects an electric circuit that allows current to flow to a portion.
그러나 본 발명에서는 상기의 이용목적과는 달리 바리스터를 회로 입력단자의 한 선 또는 두 선에 직렬로 연결하여 특정전압 이하에서는 전기회로가 차단되고 특정전압 이상에서는 회로가 연결되도록 함으로써 전기발파기에서 발생하는 전압 이하의 전류에서는 스파크 기폭장치가 스파크를 일으키지 않도록 하였다. However, in the present invention, unlike the above-mentioned purpose, the varistor is connected to one or two lines of the circuit input terminal in series so that the electric circuit is cut off below a specific voltage and the circuit is connected above a specific voltage. The spark detonator did not cause a spark at a current below the voltage.
특정전압은 사용목적에 따라 바리스터의 규격에 의하여 결정되는데 터널굴착시 인가될 수 있는 최대 전압이 통상 500V 이내라면 안전을 고려하여 바리스터의 작동전압이 1000V 정도면 충분하다 하겠다.The specific voltage is determined by the varistor specification according to the purpose of use. If the maximum voltage that can be applied during tunnel excavation is usually within 500V, the operating voltage of the varistor should be about 1000V in consideration of safety.
즉, 1000V 이상에서 작동되는 바리스터를 스파크 기폭장치에 직렬로 연결한 경우 1000V 이내의 전류에 대하여는 스파크 기폭장치가 스파크를 일으키지 않게 되므로 그만큼 안전하게 되며, 발파기의 출력전압이 높을수록 바리스터의 안전수치도 높일 수 있게 된다.In other words, when a varistor operating at 1000V or higher is connected in series with a spark detonator, the spark detonator does not cause sparks for current within 1000V, so it is safe.The higher the output voltage of the blasting device, the safer the level of the varistor. It can be increased.
도 7은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에서 스파크 기폭장치의 발파 회로에 바리스터가 내장된 2가지 실시예를 도시한 회로도이다.FIG. 7 is a circuit diagram illustrating two embodiments in which a varistor is embedded in the blasting circuit of the spark detonator in the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
도 7[A]는 회로 내의 한 선에 바리스터를 직렬로 연결한 그림이며, 도 7[B]는 회로 내의 두 선에 바리스터를 직렬로 연결한 그림으로 안전율을 고려한다면 후자가 더 바람직 할 것이다.7 [A] is a diagram in which varistors are connected in series to one line in a circuit, and FIG. 7 [B] is a diagram in which varistors are connected in series to two lines in a circuit.
이상으로 스파크 기폭장치의 회로적인 구성을 살펴 보았고 다음은 스파크 기폭장치의 외부구성의 특징과 기능에 대하여 설명하면 다음과 같다.The circuit configuration of the spark detonator is described above, and the following is a description of the features and functions of the external configuration of the spark detonator.
도 8은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 스파크 기폭장치의 하우징과 바이스 캡의 구성을 도시한 도면도이다.8 is a view showing the configuration of the housing and the vice cap of the spark detonator of the detonator system of the non-electric primer using the spark detonator according to an embodiment of the present invention.
스파크 기폭장치의 하우징(30)은 가볍고 성형하기 쉬운 플라스틱 재질로 이루어지며 하우징은 전자부품을 보호하기 위한 몸체 부분(30-A)과 시그널튜브를 결합하기 위한 바이스(30-B) 부분으로 구성된다.The housing 30 of the spark detonator is made of a plastic material that is light and easy to mold, and the housing is composed of a body portion 30-A for protecting the electronic component and a vice 30-B for coupling the signal tube. .
바이스(30-B)의 구성은 시그널튜브가 빠지지 않도록 조여주는 역할을 하는 다중 분할된 바이스 랙(30-1)과, 바이스 캡의 경사면 관체(31-2)에 의하여 조임의 강도를 부가하는 바이스 돌기(30-2)와, 스파크팁이 시그널튜브에 삽입되었는지의 여부를 확인하는 시그널튜브 확인홈(30-3)과, 바이스 캡을 체결하기 위한 체결용 숫나사(30-4)가 구성됨을 특징으로 한다.The configuration of the vise 30-B is a vise that adds the strength of tightening by the multi-parted vise rack 30-1, which serves to tighten the signal tube, and the inclined tube body 31-2 of the vise cap. The projection 30-2, the signal tube confirming groove 30-3 for checking whether the spark tip is inserted into the signal tube, and the fastening male screw 30-4 for fastening the vise cap are configured. It is done.
도 9는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템의 하우징과 바이스 캡의 결합을 도시한 도면이다.9 is a view showing a combination of the housing and the vise cap of the non-electric primer detonation system using a spark detonator according to an embodiment of the present invention.
그림에서와 같이 바이스 캡(31)이 하우징(30)에 체결되면 바이스 랙(30-1)은 바이스 캡의 경사면 관체(31-2)에 눌리어 시그널튜브를 강하게 조여 시그널튜브가 빠지지 않도록 구속한다.When the vise cap 31 is fastened to the housing 30 as shown in the figure, the vise rack 30-1 is pressed against the inclined tube body 31-2 of the vise cap and tightly tightens the signal tube so that the signal tube does not fall out. .
이상 도면을 통하여 스파크 기폭장치의 세부 구성 및 작용을 살펴 보았고 스파크 기폭장치와 시그널튜브가 완전히 체결되면 스파크 기폭장치의 리스선(36)에 수백 미터의 발파모선(200)을 연결하여 안전거리까지 대피하는 것으로 기폭시스템의 1단계 과정인 설치단계가 완성된다.Through the above drawings, the detailed configuration and operation of the spark detonator was examined. When the spark detonator and the signal tube are completely connected, the blast bus 200 of several hundred meters is connected to the lease line 36 of the spark detonator to evacuate to a safe distance. This completes the installation phase, the first phase of the detonation system.
도 10은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에 이용되는 회로검사기기[도통시험기 및 저항측정기]를 도시한 사시도이다.10 is a perspective view showing a circuit inspection device (conductivity tester and resistance measuring device) used in the method for constructing a blasting using a spark detonation system using a spark detonation device according to an embodiment of the present invention.
회로검사기기는 종래의 전기뇌관 발파에서 사용되는 도통시험기(50-1) 및 저항측정기(50-2)를 사용할 수 있으나 스파크 기폭장치 내에 삽입되어 있는 전기저항은 수 KΩ의 저항값을 갖기 때문에 측정 범위가 높은 검사기기를 필요로 한다.The circuit tester may use the conduction tester 50-1 and the resistance meter 50-2 used in the conventional electric primer blasting, but the electric resistance inserted in the spark detonator has a resistance value of several KΩ. A high range of inspection equipment is required.
도통시험기(50-1)는 종래 전기뇌관 발파에서 발파모선의 단선 여부를 확인하는 간단한 회로테스트 기기이다.The conduction tester 50-1 is a simple circuit test device for checking the disconnection of the blast bus in the conventional electrical primer blasting.
이 기기는 바늘게이지의 방향에 의하여 발파모선의 단선 여부를 점검하는데 종래의 전기뇌관을 사용한 발파회로에서는 발파모선이 단선된 경우 바늘게이지가 좌측방향을 가리키고, 발파모선이 정상인 경우와 합선된 경우에는 우측방향을 가리켜 발파회로의 합선 여부는 사실상 점검이 곤란한 점이 있다.This device checks whether the blast bus is disconnected according to the direction of the needle gauge.In the conventional blasting circuit using an electric primer, the needle gauge points to the left when the blast bus is broken, and when the blast bus is normal and short-circuited. In fact, it is difficult to check whether the blasting circuit is short-circuit in the right direction.
그래서 발파모선의 단선 여부는 물론 발파모선의 합선 여부까지도 정확히 점검하기 위하여 발파모선의 저항값을 측정하여 발파회로의 이상 유무를 판단하는 저항측정기(50-2)가 이용되고 있다.Therefore, in order to accurately check whether the blast bus is disconnected as well as whether the blast bus is short-circuited, the resistance measuring instrument 50-2 is used to determine the abnormality of the blast circuit by measuring the resistance value of the blast bus.
저항측정기는 통상 디지털방식의 숫자로 저항값을 표현하며 발파모선이 단선된 경우 0 또는 무한대의 값을 나타내고, 발파회로에 이상이 없는 경우 발파모선의 저항값이 나타나며, 합선된 경우 발파모선의 전체 저항값보다 작게 표기가 된다.The resistance measuring instrument usually expresses the resistance value by digital number, and if the blast bus is disconnected, it shows 0 or infinity. If there is no abnormality in the blast circuit, the resistance value of the blast bus is displayed. It is smaller than the resistance value.
이러한 회로검사기기를 이용하여 발파모선과 스파크 기폭장치로 구성되는 발파회로의 이상 유무를 점검하는 제 2단계 과정인 검사단계를 도면을 통하여 알아보면 다음과 같다.The inspection step, which is the second step of checking whether there is an abnormality in the blasting circuit composed of the blasting bus and the spark detonator, is as follows.
도 11은 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에서 도통시험기를 이용한 발파회로를 점검하는 상태를 도시한 예시도이다.11 is an exemplary view showing a state of inspecting a blast circuit using a conduction tester in the blasting construction method using a non-electric primer detonator system using a spark detonator according to an embodiment of the present invention.
도 11[A]는 발파회로를 구성하는 발파모선(200)이 단선된 경우를 도시한 그림으로 도통시험기의 바늘이 좌측을 가리키고 있는 그림이다.11A shows a case in which the blast bus 200 constituting the blast circuit is disconnected, and the needle of the conduction tester is pointing to the left side.
통상 터널발파에서 사용하는 발파모선은 최소 300m 이상의 길이를 사용하는데 발파암의 비산에 의하여 자주 끊어지며 도통시험기로 발파회로를 점검하면 도통시험기의 바늘이 좌측을 가리킨다.In general, the blast bus used in tunnel blasting has a length of at least 300m and is frequently broken by scattering of blasting rock. When the blasting circuit is checked with a conduction tester, the needle of the conduction tester points to the left.
이는 도통시험기에서 미세하게 흘려보낸 전류가 발파모선을 통하여 되돌아오지 못함을 의미하는 것으로 작업자는 단선된 전선부위를 찾아 결선해 주어야 한다.This means that the electric current sent by the conduction tester cannot be returned through the blast bus, and the worker should find and connect the disconnected wire.
도 11[B]는 발파모선이 합선된 경우를 도시한 그림으로 도통시험기의 바늘이 우측방향을 가리키고 있는 그림이다.11B shows a case where the blast bus is shorted, and the needle of the conduction tester is pointing in the right direction.
이는 도통시험기에서 미세하게 흐른 전류가 발파모선을 통과하여 도통시험기에 되돌아옴을 의미하는 것으로 작업자는 합선된 부분을 찾아 끊어주어야 한다.This means that the minute current flowing through the continuity tester passes through the blast bus and returns to the continuity tester.
도 11[C]는 발파모선과 스파크 기폭장치가 이상이 없음을 나타내는 그림으로 도통시험기의 바늘이 중앙을 가리키고 있는 그림이다.11 [C] is a diagram showing that the blast bus and the spark detonator are intact and the needle of the continuity tester is pointing to the center.
이는 도통시험기의 전류가 발파모선 및 스파크 기폭장치를 통과하여 되돌아오는 동안 상당한 전압강하가 이루어졌음을 의미하는 것으로 이러한 현상을 나타내는 직접적인 원인은 스파크 기폭장치에 삽입된 전기저항(34) 때문이며 전기저항의 저항값이 클수록 도통시험기의 바늘은 좌측 방향으로 치우치며, 저항값이 작을 수록 우측방향으로 치우치게 된다.This means that a significant voltage drop occurred while the current of the continuity tester passed back through the blast bus and spark detonator. The direct cause of this phenomenon is due to the electrical resistance 34 inserted into the spark detonator. The larger the resistance value, the more the needle of the conduction tester is biased to the left. The smaller the resistance value is to the right.
그러므로 스파크 기폭장치에 삽입된 전기저항의 저항값의 크기는 도통시험기로 점검이 가능한 범위에 있어야 하며, 종래 전기발파에서 사용되는 도통시험기의 바늘이 중앙을 가리키는 저항값은 10~20KΩ정도였다.Therefore, the resistance value of the electrical resistance inserted into the spark detonator should be in the range that can be checked by the conduction tester, and the resistance value of the needle of the conduction tester used in the conventional electric blasting is about 10-20KΩ.
도 12는 본 발명의 일실시예에 따른 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에서 저항측정기를 이용한 발파회로를 점검하는 상태를 도시한 예시도이다.12 is an exemplary view illustrating a state of checking a blasting circuit using a resistance measuring device in the blasting construction method using the sparking detonation system using a spark detonation device according to an embodiment of the present invention.
이 방법은 상기의 도통시험기를 이용한 방법과 유사하나 발파회로의 이상 유무를 표시하는 방법에 있어서 숫자로 표시되는 점이 상이하다.This method is similar to the method using the conduction tester described above, but differs in that it is represented by a number in the method of indicating the presence or absence of a blast circuit.
도 12[A]는 발파모선이 단선된 경우의 그림으로 통상 0으로 표시되며 때로는 생산회사에 따라 별도의 부호로 표시한다.12 [A] is a picture of the case where the blast bus is disconnected, and is usually indicated by 0, and sometimes by a separate sign according to the production company.
도 12[B]는 발파모선이 합선된 경우의 그림으로 합선된 부분까지의 저항값으로 표시되며, 합선된 저항값의 최대크기는 발파모선의 최대저항값 이하이다.Fig. 12B is a diagram in which the blast bus is shorted and is expressed as a resistance value up to the shorted part, and the maximum size of the shorted resistance is less than or equal to the maximum resistance of the blast bus.
도 12[C]는 발파모선과 스파크기폭장치에 이상이 없는 경우를 나타낸 그림으로 저항측정기의 저항값은 발파모선(200)의 저항값과 전기저항(34)의 저항값의 합으로 표기된다.12 [C] is a diagram illustrating a case where the blast bus and the spark amplification device have no abnormality, and the resistance value of the resistance meter is expressed as the sum of the resistance of the blast bus 200 and the resistance of the electrical resistance 34.
이상에서와 설명한 바와 같이 회로검사기기를 이용하여 발파회로에 이상이 없는 경우 발파모선을 전기발파기에 연결하여 발파하는 제 3단계 과정인 발파단계가 이루어지며, 전기발파기를 충전하여 고압의 전류를 발파모선에 흘려보내면 스파크 기폭장치가 강력한 스파크를 일으키고 스파크 기폭장치에 연결된 시그널튜브는 스파크충격에 의해 점화되어 비전기식 뇌관을 기폭하게 된다.As described above, when there is no abnormality in the blasting circuit using the circuit inspection device, the blasting step is performed, which is the third step of blasting by connecting the blasting bus to the electric blasting device, and charges the electric blasting device to blast the high voltage current. When spilled into the mothership, the spark detonator causes a strong spark, and the signal tube connected to the spark detonator is ignited by the spark impact to detonate the non-electric primer.
스파크 기폭장치는 터널 막장의 최종 시그널튜브에 직접 연결되므로 매회 발파시 발파암에 의하여 묻히게 되는 소모성 제품이다.The spark detonator is a consumable product that is directly buried by the blasting rock at every blasting because it is directly connected to the final signal tube at the tunnel face.
스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템은 종래 스타터를 이용한 정통적 기폭시스템에 비하여 원가절감 및 환경오염이 적고, 고압전류의 발파기에 의해서만 기폭되기 때문에 전기뇌관을 이용한 기폭시스템에 비하여 전기적으로 안전하다.The non-electric primer detonation system using the spark detonator has less cost reduction and environmental pollution than the conventional detonation system using the starter, and it is electrically safer than the detonation system using the electric primer because it is only detonated by the high-pressure current blasting machine. .
상기와 같은 구성을 같는 본 발명은 비전기식 뇌관을 저가의 비용으로 안전하고 확실하게 기폭시킬 수 있는 산업상 유용한 발명이다.The present invention having the same configuration as described above is an industrially useful invention that can safely and surely trigger non-electric primers at low cost.
Claims (8)
- 고전압의 전류에 의해 스파크를 발생시키는 2개의 전극으로 이루어진 스파크팁이 구비된 기폭회로가 내부에 구성되어 발파모선을 통해 전기발파기로부터 전력을 공급받아 상기 스파크단자에서 스파크를 발생시키고, 상기 스파크단자에서 발생된 스파크를 그 스파크단자에 연결된 시그널튜브를 통해 터널막장에 설치된 비전기식 뇌관에 전달하는 스파크 기폭장치가 구비된 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템에 있어서,Detonator circuit having a spark tip consisting of two electrodes to generate a spark by a high voltage current is configured therein to receive power from the electric blast through the blast bus to generate a spark in the spark terminal, the spark terminal In the non-electric primer detonation system using a spark detonator equipped with a spark detonator for transmitting the spark generated by the spark terminal to the non-electric primer installed in the tunnel through a signal tube connected to the spark terminal,상기 기폭회로는, 상기 발파모선에 연결되어 각각 상기 스파크팁의 각 전극에 전기적으로 연결되는 2개의 리드선과,The detonator circuit includes two lead wires connected to the blast bus and electrically connected to each electrode of the spark tip, respectively.상기 스파크팁과 병렬이 되게 상기 2개의 리드선 사이를 연결하는 전기저항이 구비된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.Detonation system of a non-electric primer using a spark detonator, characterized in that the electrical resistance is connected between the two lead wires in parallel with the spark tip.
- 제1항에 있어서,The method of claim 1,상기 기폭회로는, 상기 전기저항과 스파크팁 사이에서 상기 2개의 리드선 중 적어도 어느 하나에 소정의 전압 이상의 전류에 대하여 통전되는 소자로서 상기 스파크팁과 직렬이 되게 연결된 바리스터가 더 구비된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.The detonator circuit may further include a varistor connected between the electrical resistance and the spark tip at least one of the two lead wires with respect to a current equal to or greater than a predetermined voltage, in series with the spark tip. Detonation system of non-electric primer using spark detonator.
- 제1항에 있어서,The method of claim 1,상기 기폭회로는, 상기 전기저항과 스파크팁 사이의 위치에서 상기 스파크팁과 병렬이 되게 상기 2개의 리드선 사이를 연결하는 캐패시터가 더 구비된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.The detonator circuit, a non-electric primer detonator system using a spark detonator, characterized in that the capacitor further connects between the two lead wires in parallel with the spark tip at a position between the electrical resistance and the spark tip. .
- 제2항에 있어서,The method of claim 2,상기 기폭회로는, 상기 캐패시터와 스파크팁 사이에서 상기 2개의 리드선 중 적어도 어느 하나에 소정의 전압 이상의 전류에 의해 통전되는 소자로서 상기 스파크팁과 직렬이 되게 연결된 바리스터가 더 구비된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.The detonator circuit is a device in which at least one of the two lead wires is energized by a current equal to or greater than a predetermined voltage between the capacitor and the spark tip, and further includes a varistor connected in series with the spark tip. Detonation system of non-electric primer using detonator.
- 제1항 내지 제4항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 4,상기 스파크 기폭장치는, 상기 기폭회로가 구비된 전자기판과,The spark detonator includes an electromagnetic plate provided with the detonator circuit,상기 전자기판을 둘러싸는 몸체와, 상기 기폭회로의 스파크팁이 위치되고 상기 시그널튜브가 상기 스파크팁과 연결되게 삽입되며 말단으로 갈수록 직경이 작아지는 원추형으로 형성되어 말단부가 바이스 랙으로 분할된 바이스가 구비된 하우징과,The body surrounding the electromagnetic plate and the spark tip of the detonation circuit are positioned and the signal tube is inserted into the spark tip and is formed in a conical shape having a smaller diameter toward the end thereof so that the end is divided into a vise rack. The housing provided,상기 바이스 랙이 조여져 바이스에 시그널튜브가 결합되게 상기 원추형의 바이스에 결합되면서 상기 바이스 랙을 조이는 바이스 캡이 구비된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.And a vise cap for tightening the vise rack while being coupled to the conical vise so that the vise rack is tightened to couple the signal tube to the vise.
- 제5항에 있어서,The method of claim 5,상기 하우징의 바이스에는 스파크팁이 시그널튜브와 결합된 위치에서 그 결합여부를 확인할 수 있는 시그널튜브 확인홈이 형성되고,The vise of the housing is formed with a signal tube confirmation groove that can confirm whether the spark tip is coupled to the signal tube at the position,상기 바이스 캡은 투명한 재질로 형성된 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템.The vice cap is a non-electric primer detonator system using a spark detonator, characterized in that formed of a transparent material.
- 제1항 내지 4항 중 어느 하나의 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용하여 발파 작업을 시행하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법에 있어서,In the blasting construction method using the non-electric primer detonation system using a spark detonation apparatus using a spark detonation system using the spark detonation system of any one of claims 1 to 4,터널막장에서 최종적으로 결선 된 비전기식 뇌관의 시그널튜브에 상기 스파크 기폭장치를 연결하고 상기 스파크 기폭장치에 발파모선을 연결하여 안전거리까지 대피하는 설치단계와;An installation step of connecting the spark detonator to a signal tube of a non-electric primer that is finally connected at a tunnel curtain and connecting a blast bus to the spark detonator to evacuate to a safe distance;상기 발파모선에 회로검사기기인 도통시험기 또는 저항측정기를 이용하여 발파회로의 단선, 합선, 정상 여부를 확인하여 단선이나 합선이 있는 것으로 확인되는 경우 이를 조치하는 검사단계와;An inspection step of checking the disconnection, short circuit, and normality of the blasting circuit by using a conduction tester or a resistance tester which is a circuit inspection device on the blasting bus and confirming that there is a disconnection or short circuit;발파회로가 정상임을 확인 한 후 발파모선을 전기발파기에 연결하여 발파하는 발파단계로 이루어진 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법.A blasting construction method using the sparking detonation system of the non-electric primer using a sparking detonator, characterized in that the blasting circuit is connected to the blasting bus after confirming that the blasting circuit is normal.
- 제7항에 있어서,The method of claim 7, wherein상기 검사단계는 전류가 흐르지 않는 경우 단선으로 판단하고,The inspection step is determined as disconnection when no current flows,발파모선의 저항과 발파회로의 전기저항의 합에 의힌 저항값에 의한 도통 및 저항이 감지되는 경우 정상으로 판단하며,When conduction and resistance are detected by the resistance value based on the sum of the resistance of the blast bus and the electrical resistance of the blast circuit, it is judged as normal.발파모선의 저항과 발파회로의 전기저항의 합에 의힌 저항값보다 낮은 저항값에 의한 도통 및 저항이 감지되는 경우 합선으로 판단하는 것을 특징으로 하는 스파크 기폭장치를 이용한 비전기식 뇌관의 기폭시스템을 이용한 발파 시공 방법.When the conduction and resistance caused by the resistance value lower than the resistance due to the sum of the resistance of the blasting bus and the electrical resistance of the blasting circuit are detected, the short circuit is determined. Blasting construction method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0129434 | 2010-12-16 | ||
KR1020100129434A KR101230156B1 (en) | 2010-12-16 | 2010-12-16 | The triggering apparatus of nonel detonator using the sparker device and triggering method using thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012081938A2 true WO2012081938A2 (en) | 2012-06-21 |
WO2012081938A3 WO2012081938A3 (en) | 2012-10-11 |
Family
ID=46245247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/009743 WO2012081938A2 (en) | 2010-12-16 | 2011-12-16 | Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101230156B1 (en) |
WO (1) | WO2012081938A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108827095A (en) * | 2018-06-19 | 2018-11-16 | 京工博创(北京)科技有限公司 | A kind of control system of wireless initiator |
CN111239494A (en) * | 2020-02-03 | 2020-06-05 | 杭州晋旗电子科技有限公司 | Method and system for measuring resistance value of communication bus of electronic detonator on line |
CN112539687A (en) * | 2020-12-21 | 2021-03-23 | 融硅思创(北京)科技有限公司 | Universal type detonator |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2912403B1 (en) * | 2012-10-23 | 2019-02-06 | Mas Zengrange (NZ) Limited | Remote initiator receiver |
KR101339081B1 (en) * | 2013-09-02 | 2013-12-09 | 강대진 | Triggering apparatus of nonelectric detonator using the sparker device and electric blasting machine and triggering method using thereof |
KR101971693B1 (en) * | 2017-02-23 | 2019-04-23 | 유선진 | The inspectable Spark ignition device, dedicated tester and blasting method using thereof |
KR101815512B1 (en) * | 2017-05-15 | 2018-01-05 | 윤순덕 | Triggering Device for a non-electric type Detonator using the Tunnel Blasting |
CN108061493A (en) * | 2018-01-07 | 2018-05-22 | 贵州贵安新联爆破工程有限公司 | A kind of long-range igniter for destroying fireworks and firecrackers |
KR102590241B1 (en) * | 2020-05-21 | 2023-10-16 | 유시온 | Non electric detonator ignition system |
KR102590228B1 (en) * | 2020-05-21 | 2023-10-16 | 유시온 | Blasting machine for non-electric detonator and ignition system using same |
KR20220155416A (en) * | 2021-05-15 | 2022-11-22 | 유시온 | Spark ignition device for non-electric detonator controlled by MCU |
KR102618178B1 (en) * | 2021-11-29 | 2023-12-27 | 한화에어로스페이스 주식회사 | Apparatus and method for controlling and operating a plurality of detonation modules |
WO2024075878A1 (en) * | 2022-10-07 | 2024-04-11 | 유시온 | Mcu-controlled nonelectric detornator triggering apparatus, and nonelectric detornator triggering method and triggering system using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000241099A (en) * | 1999-02-18 | 2000-09-08 | Livbag Snc | Electric igniter for inflammable |
KR20060000164A (en) * | 2003-09-26 | 2006-01-06 | 홍승환 | Triggering device for a detonator and triggering method thereof |
KR20100003347A (en) * | 2009-12-21 | 2010-01-08 | 유선진 | The electric power amplification apparatus and triggering method of non electric detonator by using the it |
KR20120052824A (en) * | 2010-11-16 | 2012-05-24 | 유선진 | Spark amplification device having a built in variable resister |
-
2010
- 2010-12-16 KR KR1020100129434A patent/KR101230156B1/en active IP Right Review Request
-
2011
- 2011-12-16 WO PCT/KR2011/009743 patent/WO2012081938A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000241099A (en) * | 1999-02-18 | 2000-09-08 | Livbag Snc | Electric igniter for inflammable |
KR20060000164A (en) * | 2003-09-26 | 2006-01-06 | 홍승환 | Triggering device for a detonator and triggering method thereof |
KR20100003347A (en) * | 2009-12-21 | 2010-01-08 | 유선진 | The electric power amplification apparatus and triggering method of non electric detonator by using the it |
KR20120052824A (en) * | 2010-11-16 | 2012-05-24 | 유선진 | Spark amplification device having a built in variable resister |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108827095A (en) * | 2018-06-19 | 2018-11-16 | 京工博创(北京)科技有限公司 | A kind of control system of wireless initiator |
CN111239494A (en) * | 2020-02-03 | 2020-06-05 | 杭州晋旗电子科技有限公司 | Method and system for measuring resistance value of communication bus of electronic detonator on line |
CN111239494B (en) * | 2020-02-03 | 2022-08-12 | 杭州晋旗电子科技有限公司 | Method and system for measuring resistance value of communication bus of electronic detonator on line |
CN112539687A (en) * | 2020-12-21 | 2021-03-23 | 融硅思创(北京)科技有限公司 | Universal type detonator |
Also Published As
Publication number | Publication date |
---|---|
KR20120067823A (en) | 2012-06-26 |
KR101230156B1 (en) | 2013-02-05 |
WO2012081938A3 (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012081938A2 (en) | Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same | |
WO2018212471A1 (en) | Non-electric primer detonator for tunnel blasting | |
CA1152377A (en) | Blasting cap including an electronic module for storing and supplying electrical energy to an ignition assembly | |
WO2015046662A1 (en) | Grounding type elbow connector | |
WO2015174572A1 (en) | Ground type elbow connector having electroscope therein | |
KR101339081B1 (en) | Triggering apparatus of nonelectric detonator using the sparker device and electric blasting machine and triggering method using thereof | |
WO2024075878A1 (en) | Mcu-controlled nonelectric detornator triggering apparatus, and nonelectric detornator triggering method and triggering system using same | |
US6655289B1 (en) | Two-piece capsule trigger unit for initiating pyrotechnic elements | |
US3675578A (en) | Apparatus for testing and detonating blasting caps | |
WO2020138798A1 (en) | Communication system and detonation device | |
KR101345618B1 (en) | Spark amplification device having a built in variable resister | |
US20220412195A1 (en) | Addressable Switch with Initiator Detection and Initiator Resistance Measurement | |
KR102634773B1 (en) | Triggering apparatus controlled by mcu for nonelectric detonator and triggering method and system of nonelectric detonator using thereof | |
WO2020138797A1 (en) | Detonation device, detonation device operation method, and communication system | |
CA1134446A (en) | Cable tester | |
RU181891U1 (en) | ISOLATED ADAPTER | |
KR20100003347A (en) | The electric power amplification apparatus and triggering method of non electric detonator by using the it | |
RU66508U1 (en) | EXPLOSION DEVICE | |
KR101511913B1 (en) | Claymore Mine with Error prevention circuit By Power Noise | |
KR20180104816A (en) | Triggering Device for a non-electric type Detonator using the Tunnel Blasting | |
RU57519U1 (en) | CABLE CONNECTOR | |
WO2020141689A1 (en) | Detonator ignition device | |
KR101971693B1 (en) | The inspectable Spark ignition device, dedicated tester and blasting method using thereof | |
WO2019235757A1 (en) | Apparatus for real-time analysis of gas generated inside secondary battery | |
WO2024063513A1 (en) | Remote blasting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848465 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11848465 Country of ref document: EP Kind code of ref document: A2 |