WO2024063513A1 - Remote blasting system - Google Patents

Remote blasting system Download PDF

Info

Publication number
WO2024063513A1
WO2024063513A1 PCT/KR2023/014186 KR2023014186W WO2024063513A1 WO 2024063513 A1 WO2024063513 A1 WO 2024063513A1 KR 2023014186 W KR2023014186 W KR 2023014186W WO 2024063513 A1 WO2024063513 A1 WO 2024063513A1
Authority
WO
WIPO (PCT)
Prior art keywords
detonator
detonation
blaster
blasting
charging
Prior art date
Application number
PCT/KR2023/014186
Other languages
French (fr)
Korean (ko)
Inventor
조창열
박시은
박광윤
Original Assignee
조창열
박시은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조창열, 박시은 filed Critical 조창열
Publication of WO2024063513A1 publication Critical patent/WO2024063513A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/06Relative timing of multiple charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a blasting system used in mines, civil engineering sites, etc., and in particular to a remote blasting system configured to improve workability and stability.
  • Blasting refers to the work of destroying a specific object using explosives at industrial sites such as mines or civil engineering sites. Blasting is usually accomplished through the process of forming a hole in an object to be blasted, loading explosives, and then igniting the explosives using a detonator.
  • a detonator is a general term used to detonate an explosive.
  • Detonators are classified into electrical, non-electric, or electronic types depending on the method of activation.
  • electronic detonators have the disadvantages of being expensive, cumbersome to work with, and requiring a lot of work time compared to other detonators.
  • non-electric detonators are widely used in various industrial sites such as tunnels and mines.
  • Non-electric detonators are largely divided into co-detonators and connecting detonators.
  • the joint detonator refers to a detonator used to detonate an explosive by being loaded with an explosive in a blast hole, such as a blasting cap, and the connected detonator is used to transmit detonation energy to the joint detonator or other detonator, or to connect such energy transfer means.
  • Link primers are also referred to as surface primers in a relative sense to co-base primers.
  • connection detonators are classified into, for example, Trunk-Line Delay Detonators (TLD), bunch connectors, starters, etc., depending on their purpose of use or structure.
  • TLD Trunk-Line Delay Detonators
  • the bunch connector or starter is also referred to as a bunch detonator or starter detonator.
  • a non-electrical detonator is usually constructed by combining a detonator with a fuse or, preferably, a signal tube.
  • the signal tube is intended to transmit the detonation signal, more specifically the detonation energy, to the detonator.
  • the signal tube consists of gunpowder applied to the inside of a tube made of synthetic resin. In the signal tube, when the gunpowder inside the tube is detonated, the detonation energy is detonated through the inside of the tube to the detonator, detonating the detonator.
  • a detonator i.e., a hollow detonator, and explosives are loaded into each blast hole.
  • connecting detonators such as TLD, bunch connector, starter, etc. are appropriately connected and combined with the co-detonator as needed.
  • the TLD or bunch connector is used to connect the detonation energy to multiple signal tubes
  • the starter is equipped with a signal tube of 30 to 150 m in length and is mainly used to ensure a safe distance for workers from the blast hole.
  • a detonator or blaster is coupled to the connection detonator, that is, the signal tube of the connection detonator, to properly detonate the signal tube.
  • FIG. 1 is a configuration diagram showing an example of a typical blasting system employing a non-electric detonator.
  • the blasting system basically includes a detonator (1) and a blaster (2). And, if necessary, a detonator (3) is employed between the detonator (1) and the blaster (2).
  • the detonator 3 is also called a spark detonator or spark trigger.
  • the signal tube (4) is coupled to the detonator (1).
  • the signal tube (4) is detonated by the blaster (2) or detonator (3).
  • the blaster (2) and the detonator (3) are electrically coupled.
  • the blaster (2) and the detonator (3) are connected through a conductor called the blast bus bar (5).
  • the blaster 2 is equipped with an operation button to start blasting. When the operator presses the operation button, electrical energy is supplied from the blaster (2) to the detonator (3) through the blasting bus bar (5), and the detonator (3) uses the applied electrical energy to signal the signal tube (4). ) is detonated. And the detonation energy generated at this time detonates through the signal tube (4) and detonates the detonator (1), thereby igniting the explosive.
  • Figure 2 is a configuration diagram showing another configuration example of a blasting system using a non-electric detonator.
  • the configuration of Figure 2 is disclosed in Patent Publication No. 10-2021-0144219 (name: blaster for non-electric detonator and detonation system using the same).
  • FIG. 2A components that are substantially the same as those in FIG. 1 described above are given the same reference numerals.
  • the blaster 6 is connected to the detonator 3 through the first blasting bus bar 5
  • the blaster 8 is connected to the blaster 6 through the second blast bus bar 7. do.
  • FIG. 1 the blaster 6 is connected to the detonator 3 through the first blasting bus bar 5
  • the blaster 8 is connected to the blaster 6 through the second blast bus bar 7. do.
  • FIG. 2B the blaster 9 is connected to the detonator 1 through the signal tube 4, and the percussion device 8 is connected to the blaster 9 through the second blasting bus bar 7.
  • the configuration of FIG. 2 is, for example, in the blasting system of FIG. 1, when the length of the blasting bus bar (5) is extended to ensure a safe distance for workers, the resistance value of the blast bus bar (5) increases, etc., causing damage by the detonator (3). This was done to solve the problem of unstable detonation operation. That is, the configuration of FIG. 2 is additionally provided with a percussion device (8) for operating the blasters (6, 9) and allows the worker to secure a safe distance by using the second blasting bus (7). .
  • the conventional blasting system employing the non-electric detonator described above has the following problems.
  • worker safety is a top priority.
  • the detonator 1 is detonated by the detonation energy from the blaster 2, and the blaster 2 is operated by an operator (explosives management and security officer). Therefore, in order to protect workers from shock caused by blasting, there is usually a safety distance of 200 to 300 m or more from the detonator (1), or more precisely, from the co-bottomed detonator to the blaster (2).
  • the detonator (1) and the detonator (3) are connected through the signal tube (4), and the detonator (3) and the blaster (2) are connected through the blasting bus (5), so during blasting work
  • the work of installing the signal tube (4) and blast bus bar (5) must be carried out at a distance of 200 to 300 m or more.
  • the signal tube (4) must be recovered. This becomes a very cumbersome task when carrying out blasting.
  • a blast bus bar (5) and a signal tube (4) are used between the blaster (2) and the detonator (1), and at this time, the blast bus bar (5) is protected from blast shock and lightning strikes, etc.
  • the length of the signal tube (4) is set as long as possible.
  • the signal tube 4 cannot be reused, unlike the blasting busbar 5, the system results in a lot of loss of the signal tube 4. Excessive use of the signal tube (4) provides undesirable effects from an economic as well as environmental perspective.
  • a percussion device 8 is additionally required in the configuration of the blasting system.
  • the percussion device 8 since the percussion device 8 is operated by an operator, it is necessary to secure a sufficient distance between the detonator 1 and the percussion device 8. In other words, it is necessary to secure the length of the signal tube 4 and the first and second blasting bus bars 5 and 7 of 200 to 300 m or more. This causes a lot of loss in the signal tube 4, as in FIG. 1.
  • the blaster 9 and the percussion device 8 are connected wirelessly in the configuration of FIG. 2B.
  • the percussion device 8 and the blaster 9 are configured as dedicated devices. That is, if the percussion device 8 or the blaster 9 is damaged, the percussion device 8 and the blaster 9 are replaced or discarded together. Therefore, in the configuration of FIG. 2b, there is a need to secure a sufficient distance between the blaster 9 and the detonator 1 to prevent the blaster 9 from being damaged by impact from blasting. And, as in FIG. 1, this causes a lot of loss in the signal tube 4.
  • the conventional blasting system physically combines the blaster (2, 6, 9) and the detonator (1) and blows the detonator (1) through a simple procedural process of manipulating the blaster (2) or the percussion gun (8). ) works. Therefore, there is a risk of misuse or improper use of the blasting system.
  • the present invention was created in consideration of the above circumstances, and its technical purpose is to provide a remote blasting system that can improve workability and stability during blasting.
  • the present invention has another technical purpose in providing a remote blasting system that can minimize the amount of signal tube usage while eliminating the need for a blast bus.
  • the present invention creates conditions in which workers (explosives management and security officers) can concentrate on blasting work and improves the overall precision of blasting work, thereby preventing very large economic losses caused by inappropriate blasting work and management.
  • Another purpose is to provide a remote blasting system that can prevent
  • the present invention was created in consideration of the above circumstances, and its technical purpose is to provide a remote blasting system that can improve workability and stability during blasting.
  • the present invention has another technical purpose in providing a remote blasting system that can minimize the amount of signal tube usage while eliminating the need for a blast bus.
  • the present invention creates conditions in which workers (explosives management and security officers) can concentrate on blasting work and improves the overall precision of blasting work, thereby preventing very large economic losses caused by inappropriate blasting work and management.
  • Another purpose is to provide a remote blasting system that can prevent
  • the detonator and the blaster are connected wirelessly, so the blasting bus bar for connecting the blaster and the detonator is eliminated. Therefore, the problem of damage to the blast bus due to blast shock is eliminated, and the detonator can be installed close to the detonator. In other words, it is possible to minimize the use of physical connection means to transmit detonation energy to the detonator, such as a signal tube.
  • the detonator and the detonator are connected wirelessly, a sufficient distance between the detonator and the detonator can be secured without any additional work. Accordingly, the safety of workers performing blasting work can be improved.
  • Blasting work includes drilling work to form a blast hole in the rock, charging work to install explosives and a co-bottom detonator in the blast hole, and connection work to connect a connecting detonator such as a starter to a detonator or blaster at the end of the tunnel.
  • a connecting detonator such as a starter to a detonator or blaster at the end of the tunnel.
  • multiple workers are required for blasting work, and charging and connection work are usually performed simultaneously.
  • the charging work requires a high degree of concentration, whereas the connection work is a very cumbersome work that involves installing blast busbars or signal tubes.
  • the complexity of the connection operation has a very inadequate effect on maintaining the concentration of the charging operation.
  • Decreased concentration in charging work can lead to various complex problems, such as increased vibration and noise during blasting, increased damage to the host rock and overburden caused by blasting, excessive residual hole generation, and increased risk of rockfall accidents.
  • the present invention provides the effect of improving the worker's work concentration by eliminating the cumbersome work involved in blasting work.
  • the present invention provides the effect of improving the safety of blasting work by improving the worker's work concentration, as well as improving economic efficiency, such as improving construction quality, reducing construction costs, and shortening the construction period.
  • FIG. 1 is a diagram showing the configuration of a conventional blasting system.
  • Figure 2 is a configuration diagram showing another configuration example of a conventional blasting system.
  • Figure 3 is a configuration diagram showing the configuration of a remote blasting system according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing an example of the external shape of the detonator 10 in FIG. 3.
  • FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the igniter 150 along line A-A' in FIG. 4.
  • Figure 6 is a configuration diagram showing the internal circuit configuration of the detonator 10.
  • FIG. 7 is a perspective view showing an example of the external shape of the blaster 20 in FIG. 3.
  • FIG. 8 is a block diagram showing the internal circuit configuration of the blaster 20.
  • a remote blasting system for realizing the above object is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, wherein the detonator is for physical connection with the detonator. It has an igniter for coupling the connecting means, the connecting means transmits detonation energy from the detonator to the detonator, the detonator and the blaster are wirelessly coupled, and the detonator is provided with a first power source for supplying the first operating power.
  • a detonating means driven by the first control means and supplying a detonating voltage to the igniter, a first control means executing a network pairing operation with the blaster and controlling the operation of the detonation means according to a control command from the blaster;
  • It is configured to include a first communication means for communicating with the blaster, wherein the blaster communicates with a second power means for supplying a second operating power, an input means including a charging button or a blast button, and a detonator.
  • It is configured to include a second communication means for executing a network pairing operation with the detonator through the second communication means and a second control means for transmitting a control command to the detonator in response to the operation of the input means.
  • the control command includes a charging command or a blasting command
  • the second control means charges the detonator when the distance between the blaster and the detonator is less than the safe distance or the radio wave reception sensitivity from the detonator is less than the reference level. Characterized in that no command or blast command is transmitted.
  • the blaster and the detonator are characterized in that they are coupled through roller communication.
  • the connecting means is a signal tube
  • the igniter includes a coupler that is hollow on the inside in the longitudinal direction and into which the connecting means is fitted on the outer peripheral surface, and a lead wire that is inserted into the inside of the coupler and is arranged to be spaced apart from the inner peripheral surface of the coupler.
  • the coupler and the lead wire are made of a conductive material, and when a detonation voltage is applied, a spark is generated between the coupler and the lead wire.
  • the detonation means is driven by the first control means and includes a detonation voltage output unit for supplying detonation voltage to the igniter, a charging unit for charging the detonation voltage, and a detonation voltage output unit that is driven by the first control means and is driven by the first control means.
  • a booster unit that boosts the operating power to charge the charging unit with a detonation voltage
  • the detonation voltage output unit has first and second detonation voltage output terminals electrically coupled to the igniter, and the first detonation voltage output terminal is It is electrically coupled to the charging unit, driven by the first control means, and is characterized by comprising a switching unit that electrically couples the second detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
  • the detonating means is characterized by having a charging voltage detection unit for detecting the charging voltage level of the charging unit.
  • the detonating means is driven by the first control means and includes a discharging unit for discharging the charging power of the charging unit, and the discharging unit provides a current path for electrically coupling the charging end of the charging unit with the ground side. It is characterized by including.
  • the first control means detects the voltage level of the first or second detonation voltage output terminal to determine whether detonation has been performed.
  • the blaster is characterized by having a display means.
  • the second control means provides distance information between the blaster and the detonator through the display means.
  • the second control means provides sensitivity for receiving radio waves from the detonator through the display means.
  • the second control means transmits a charge stop command to the detonator when the operator stops operating the charge button, and when the charge stop command is received, the second control means stops driving the booster unit and drives the discharge unit. It is characterized by:
  • the blaster is provided with a data storage means for storing blasting information, and the blasting information includes at least one of a blasting date, a detonator ID, distance information between the blaster and the detonator, and radio wave reception sensitivity from the detonator.
  • the second control means provides blasting information through the display means.
  • the blaster is characterized by being additionally provided with a third communication means for communicating with an external device through wired or wireless communication.
  • the external device provides ID information of a detonator to be used for blasting to the blaster, and the second control means performs network pairing only for detonators whose ID information is provided by the external device.
  • the detonator includes information display means for providing ID information
  • the information display means includes barcode or QR code information
  • the blaster includes information reading means for reading the information display means. It is characterized by
  • one or more repeaters are additionally provided between the blaster and the detonator.
  • the detonator is characterized in that it is set to an operation-inhibited state after execution of the detonation operation.
  • the remote blasting system is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, wherein the detonator is configured to combine a connecting means for physical connection with the detonator. It has an igniter, the connecting means transmits detonation energy from the detonator to the detonator, the detonator and the blaster are wirelessly coupled, the detonator includes a first power means for supplying a first operating power, and a first control device.
  • Detonating means driven by means and supplying a detonating voltage to the igniter, first control means executing a network pairing operation with the blaster and controlling the driving of the detonating means according to a control command from the blaster, and communicating with the blaster. It is configured to include a first communication means for executing the blast, a second power means for supplying a second operating power, an input means including a charging button or a blast button, and a second communication means for executing communication with the detonator.
  • It is configured to include a communication means and a second control means for executing a network pairing operation with the detonator through the second communication means and transmitting a control command to the detonator in response to the operation of the input means, wherein the detonation means a detonation voltage output unit driven by the first control means for supplying detonation voltage to the igniter, a charging part for charging the detonation voltage, and driven by the first control means to boost the first operating power source.
  • the detonation means a detonation voltage output unit driven by the first control means for supplying detonation voltage to the igniter, a charging part for charging the detonation voltage, and driven by the first control means to boost the first operating power source.
  • the detonation voltage output unit has first and second detonation voltage output terminals that are electrically coupled to the igniter, and the first detonation voltage output terminal is electrically coupled to the charging section, It is driven by a first control means and is characterized by comprising a switching unit that electrically couples the second detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
  • the remote blasting system is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, the detonator and the blaster are wirelessly coupled, and the detonator has a housing.
  • the housing In addition to being physically coupled to the detonator, the housing is provided with an inlet for inserting a connection means for transmitting detonation energy to the detonator into the device, and the connection means is provided inside the housing at a position corresponding to the inlet.
  • An igniter for coupling is provided, and the housing is characterized in that a transparent window is provided at a position corresponding to the igniter.
  • an information display means for providing ID information is provided on the outside of the housing, and the information display means includes barcode or QR code information.
  • FIG. 3 is a system configuration diagram showing the configuration of a remote blasting system according to an embodiment of the present invention.
  • the remote blasting system includes a detonator (1), a detonator (10), and a blaster (20).
  • a detonator a non-electric detonator is preferably employed.
  • the detonator 1 and the detonator 10 are combined through a conventional method.
  • the detonator 1 and the detonator 10 are physically coupled through a detonation energy transfer means such as a fuse or signal tube 4.
  • a co-authored detonator or a connected detonator may be applied.
  • any detonator that is physically coupled through a detonation energy transfer means such as the signal tube 4 and can be detonated by detonation energy from the detonator 10 can be applied in the same manner. .
  • the detonator 10 and the blaster 20 are wirelessly coupled.
  • the blaster 20 is used to operate the detonator 10 at a location that is a certain distance or more away from the detonator 10.
  • the communication method between the detonator 10 and the blaster 20 is not specified.
  • the detonator 10 and the blaster 20 are coupled through LoRa (Long Range) communication.
  • LoRa communication uses the frequency band of the ISM (Industry-Science-Medical) band (920.9 ⁇ 923.3 MHz in Korea) and is capable of long-distance wireless communication and low-power communication of around 16km.
  • one or more repeaters may be provided between the detonator 10 and the blaster 20 for smoother communication between the two devices.
  • a repeater may be selectively employed as needed.
  • the blasting busbar for physically connecting the blaster 20 and the detonator 10 is removed.
  • the blasting mothership is removed, it is possible to reduce the cost and time to prepare or manage the blasting mothership prior to blasting work, and the cumbersome task of placing or retrieving the blasting mothership at a distance of 100 m or more during blasting work is eliminated. .
  • the blaster 20 and the detonator 10 are coupled through wireless communication capable of long-distance communication, so the distance between the blaster 20 and the detonator 10 is arbitrarily set sufficiently long. It becomes possible. In other words, it is possible to easily and sufficiently secure the safety distance for workers by using the communication distance between the blaster 20 and the detonator 10. Therefore, the safety of workers can be reliably guaranteed.
  • the above system can secure a safe distance through wireless coupling between the blaster 20 and the detonator 10, making it possible to install the detonator 10 close to the detonator 1. do. Therefore, it is possible to eliminate the disadvantage of having to use a connecting detonator such as a signal tube (4) or a starter to secure a safety distance of 200 to 300 m or more.
  • blasting work includes drilling work to form a blast hole in rock, etc., charging work to install explosives and a co-bottom detonator in the blast hole, and connection work to connect the detonator and blaster to the co-bottom detonator.
  • multiple workers are required for blasting work, and charging and connection work are usually performed simultaneously.
  • the charging work requires a high level of concentration, while the connection work involves the very cumbersome work of installing the blast bus bar and signal tube at a distance of 200 to 300 m or more.
  • the complexity of this connection operation may have an inadequate effect on maintaining the concentration of the charging operation.
  • Decreased concentration in charging work can lead to various complex problems, such as increased vibration and noise during blasting, damage to the host rock and increased overbreak due to blasting, occurrence of residual holes, and increased risk of rockfall accidents.
  • the system provides the effect of improving the worker's work concentration by eliminating the cumbersome work involved in blasting work.
  • this simplification of work content and the improvement of workers' concentration can promote the stability of blasting work and provide many positive effects, such as improving construction quality, reducing construction costs, and shortening the construction period.
  • FIG. 4 is a perspective view showing an example of the external shape of the detonator 10.
  • the detonator 10 has a housing 100.
  • the housing 100 is preferably made of synthetic resin such as plastic. The material and shape of the housing 100 are not specified.
  • a power switch 110 is provided on the outside of the housing 100 to turn on/off the operation of the detonator 10.
  • one side of the housing 100 is provided with an inlet 120 for inserting the signal tube 4 into the housing 100 and coupling the signal tube 4 to the detonator 10.
  • the inlet 120 is preferably provided with a stopper that is detachable. Inside the inlet 120, an igniter 150 is installed close to the inlet 120.
  • the igniter 150 is for coupling and detonating the signal tube (4).
  • the igniter 150 is installed on the substrate 160, and a coupler 152 is installed on one side of the igniter 150, that is, the side opposite to the inlet 120.
  • the signal tube 4 is fitted and coupled to the outside of the coupler 150.
  • FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the igniter 150, which is a cross-sectional view taken along line A-A' of the igniter 150 in FIG. 4.
  • the igniter 150 has a body 151.
  • the body 151 is made of, for example, a synthetic resin material and has a hexahedral shape. However, the material and shape of the body 151 are not specified.
  • a fastening hole 151a is provided in the body 151 in the vertical direction.
  • a screw 170 is fastened to the fastening hole 151a as a fastening member.
  • the igniter 150 is mounted on the board 160 by a screw 170.
  • An insertion groove 151b is provided on one side of the body 151, that is, on the side opposite to the inlet 120.
  • the coupler 152 is inserted into the insertion groove 151b.
  • the coupler 152 has a barrel shape, that is, a cylindrical shape that is hollow in the longitudinal direction.
  • the outer diameter of the coupler 152 is formed to a size corresponding to the inner diameter of the signal tube 4, and an inclined portion 152a is preferably provided at one end, that is, the end where the signal tube 4 is coupled.
  • the inclined portion 152a is for easily coupling the signal tube 4 to the coupler 152.
  • the coupler 152 is made of a conductive material such as copper.
  • the coupler 152 is fixedly coupled to the insertion groove 151b using, for example, an adhesive, or is fitted into the insertion groove 151b. Additionally, at this time, the other end of the coupler 152, that is, the end inserted into the insertion groove 151b, may also preferably be provided with an inclined portion.
  • an insertion hole 151c is formed in the body 151 of the igniter 150 while communicating with the insertion groove 151b.
  • a lead wire 153 is inserted and installed into the insertion hole 151c.
  • the lead wire 153 is composed of a core wire 153b made of a conductive material such as copper provided inside a covering layer 153a made of an insulating material.
  • the lead wire 153 is inserted into the insertion groove 151b through the insertion hole 151c.
  • the lead wire 153 is preferably disposed so that its terminal end is located adjacent to the end of the coupler 152, and the covering layer 153a is removed by a certain length to expose the core wire 153b to the outside.
  • the exposed core wire 153 is arranged to be spaced apart from the inner peripheral surface of the coupler 152.
  • a signal tube 4 is fitted to the outside of the coupler 152.
  • the signal tube 4 is composed of a coating layer 4b made of gunpowder formed on the inner peripheral surface of the tube 4a made of synthetic resin.
  • the coupler 152 and the lead wire 153 of the igniter 150 are electrically coupled to the internal circuit part, specifically the detonator part 12, which will be explained later.
  • the detonator 1 When the detonator 1 is detonated, a high voltage is applied to the coupler 152 and the lead wire 153, and the high voltage generates a spark between the coupler 152 and the core wire 153b of the lead wire 153.
  • the spark generated from the coupler 152 detonates the gunpowder in the coating layer 4b located adjacent to the end of the coupler 152, and this detonation occurs in succession along the application layer 4b. do. Accordingly, the detonation energy generated by the spark in the coupler 152 is detonated toward the detonator 1 through the signal tube 4 to detonate the detonator 1.
  • a transparent window 100a preferably made of a transparent material such as acrylic, is provided at a position corresponding to the igniter 150 of the housing 100.
  • the transparent window 100a is intended to allow the operator to visually recognize the shape and position of the coupler 152 and easily insert the signal tube 4 into the coupler 152.
  • the transparent window 100a can be removed as needed.
  • the coupler 152 is installed so that its end protrudes toward the inlet 120 or the outside thereof so that the operator can easily couple the signal tube 4.
  • an LED 130 is provided on the outside of the housing 100 as an operating status display means.
  • the LED 130 is intended to inform the operator of the operating status of the detonator 4.
  • the LED 130 is driven on/off or blinked depending on the operating state of the detonator 10.
  • an information display unit 140 is provided on the outer surface of the housing 100.
  • This information display unit 140 includes information such as a barcode or QR code (Quick Response code), for example.
  • QR code Quick Response code
  • the detonator 10 is disposable.
  • the information display unit 140 includes identification information such as an ID (ID) for registering the detonator 10 with respect to the blaster 20 or other registration information.
  • the housing 100 is provided with a battery compartment for storing a battery that supplies operating power to the detonator 10, and a cover is provided on the battery compartment to enable opening and closing.
  • the board 160 is provided with a circuit unit for operating the detonator 10.
  • Figure 6 is a configuration diagram showing the configuration of the operation circuit of the detonator 10.
  • the detonator 10 includes a power supply unit 11, a detonation part 12, a control unit 13, and a communication unit 14.
  • the power supply unit 11 is used to supply operating power V1 to the entire device.
  • the power supply unit 11 includes a battery, and a power switch 110 is provided at the output terminal of the power supply unit 11 to control power supply.
  • the detonation part 12 basically includes a detonation voltage output unit 121, a charging unit 122, and a boosting unit 123.
  • the detonation voltage output unit 121 is used to supply detonation voltage to the igniter 150 in FIGS. 4 and 5.
  • the detonation voltage output unit and the output unit will be used interchangeably.
  • the output unit 121 includes first and second output terminals VO1 and VO2 for outputting a detonation voltage. These output terminals VO1 and VO2 are electrically coupled to the coupler 152 and the lead wire 153 of the igniter 150, respectively.
  • the first output terminal (VO1) is electrically coupled to the charging unit 122, and the second output terminal (VO2) is coupled to the switching circuit (SW1).
  • the switching circuit (SW1) is coupled to the digital output terminal (P3) of the control unit 13 and driven by switching by the control unit 13.
  • the switching circuit (SW1) switches the second output terminal (VO2) according to the output voltage from the control unit 13. ) is coupled to or grounded to the first output terminal (VO1).
  • the configuration of the switching circuit SW1 is not specified.
  • the switching circuit (SW1) includes a relay switch (RY1), and the relay switch (RY1) is driven by the transistor (T1).
  • the relay switch RY1 When the relay switch RY1 is in a non-driving state, that is, when no current flows through the coil L1, the relay contact points (a, b) are connected, and in the driving state, the relay contact points (a, c) are connected.
  • the relay switch RY1 When the relay switch RY1 is not driven, the first output terminal VO1 and the second output terminal VO2 are short-circuited by the relay switch RY1, so that the voltage between the two output terminals VO1 and VO2 is always set to be the same. That is, when the relay switch RY1 is in a non-driven state, sparks are reliably prevented from being generated between the coupler 152 and the lead wire 153 of the igniter 150.
  • the charging unit 122 is used to apply a high voltage to the output unit 121, and is preferably provided with a capacitor for charging and discharging.
  • the boosting unit 123 is used to boost the power supply voltage (V1) and charge the charging unit 122 with a high voltage.
  • the booster 123 includes a transformer 1230, a MOS transistor (T2) for switching and driving the transformer 1230, and a diode (D1) for preventing reverse current.
  • the gate of the transistor T2 is coupled to the digital output terminal (P1) of the control unit 13 and is switched and driven by the control unit 13.
  • the control unit 13 switches and drives the transistor T2 at a rate of, for example, 30 KHz to charge the charging unit 122 with a high voltage of, for example, 400 to 500 V.
  • the boosting unit 123 may be provided with an oscillation means. At this time, the oscillation means performs oscillation according to a control signal from the control unit 13, and the oscillation output is applied to the gate of the transistor T2 to drive the transistor T2 in switching.
  • the configuration of the boosting unit 123 is not specified, and any configuration that can appropriately charge the charging unit 122 can be preferably employed.
  • the detonation part 12 is preferably provided with a charging voltage detection unit 124.
  • the charging voltage detection unit 124 includes a resistance voltage dividing circuit (R1, R2) coupled in parallel with the charging unit 122.
  • R1, R2 the connection nodes of the resistors (R1, R2) are coupled to the analog input terminal (A1) of the control unit 13 through the current limiting resistor (R3) and the overvoltage prevention Zener diode (Z1).
  • the resistance voltage dividing circuits R1 and R2 are used to convert the high voltage charged in the charging unit 122 into a low voltage that can be recognized by the control unit 13.
  • the detonator part 12 is provided with a discharge unit 125 for discharging the charging voltage of the charging unit 122.
  • the discharge unit 125 includes a current path for coupling the voltage charging end of the charging unit 122, that is, the positive (+) terminal of the charging and discharging condenser 122, with ground.
  • This current path is, for example, coupled in parallel with the charging unit 122 and has a current limiting resistor R6 and a transistor T3.
  • the resistor R6 is used to prevent excessive discharge current from flowing from the charging unit 122 to the ground and to appropriately set the discharge time of the charging voltage.
  • the transistor T3 is for controlling the current path through the resistor R6.
  • the gate of the transistor T3 is coupled to the digital output terminal (P2) of the control unit 13.
  • control unit 13 turns on the transistor T3 to discharge the charging voltage of the charging unit 122.
  • the discharge unit 125 is used to prevent the detonation operation from being improperly performed due to the charging voltage remaining in the charging unit 122.
  • the discharging unit 125 is appropriately driven when the operator stops charging while charging of the charging unit 122 is completed or in progress.
  • the detonation part 12 is preferably provided with a detonation detection unit 126 for detecting whether the signal tube 4 has been detonated normally.
  • the detonation detection unit 126 is used by the control unit 13 to recognize the voltage level of the output terminal (VO1 or VO2).
  • a resistor voltage dividing circuit is coupled to the first output terminal (VO1) of the output unit 121.
  • the resistance voltage dividing circuit includes resistors (R7, R8) connected in series between the first output terminal (VO1) and ground.
  • the resistor voltage dividing circuits (R7, R8) are used to convert the voltage level of the first output terminal (VO1) into a voltage level that the control unit 13 can recognize.
  • connection nodes of the resistors (R7, R8) are coupled to the interrupt terminal (INT) of the control unit 13 through the current limiting resistor (R9) and the overvoltage prevention Zener diode (Z2).
  • the resistors R7 and R8 are coupled in parallel with the charging unit 122, so before the detonation operation is performed, that is, in a state in which the charging unit 122 is charged with a high voltage, the interrupt terminal ( INT) is set to high level.
  • a detonation operation on the signal tube 4 is performed by the detonator part 12, that is, when a spark is generated between the coupler 152 and the lead wire 153 in the igniter 150 of FIG.
  • the first and second output terminals VO1 and VO2 of the output unit 121 are short-circuited, and the second output terminal VO2 is coupled to the ground through the switching circuit SW1. Therefore, the moment a spark is generated, the voltage level of the interrupt terminal (INT) of the control unit 13 drops to the low level.
  • the control unit 13 determines whether detonation has been performed on the signal tube 4 based on the falling edge of the interrupt (INT) voltage.
  • the control unit 13 includes a microcomputer.
  • a microcomputer has internal program memory and data memory.
  • a control program for controlling the detonator 10 is stored in the program memory.
  • the control unit 13 controls the entire device according to the control program. Additionally, the control unit 13 communicates with the blaster 20 through the communication unit 14.
  • the control unit 13 performs network pairing and unpairing process functions with the blaster 20 and controls the operation of the detonation part 12. The control operation of the control unit 13 will be described in more detail later.
  • the communication unit 14 is provided with a transmission/reception module for LoRa communication (eg, REYAX Technology Co., Ltd., model name RYLR998).
  • the transmitting and receiving modules constituting the communication unit 14 are not limited to specific ones. Additionally, the interface and communication method between the control unit 13 and the communication unit 14 will be appropriately set according to the specifications of the transmitting and receiving module.
  • the control unit 13 and the communication unit 14 perform serial communication.
  • the control unit 13 and the communication unit 14 are equipped with Tx and RX ports for serial communication, and the control unit 13 is allocated appropriate ports, such as digital output terminals, for the Tx and Rx ports.
  • the antenna 141 is coupled to the antenna port (ANT) of the communication unit 14.
  • the antenna 141 is preferably composed of wiring in a predetermined pattern formed on the substrate 160.
  • the detonator 10 is provided with an LED 130.
  • the anode side of the LED 130 is coupled to the power supply voltage (V1), and the cathode side is coupled to the digital output terminal (P4) of the control unit 13 through a resistor (R10).
  • the control unit 13 displays the operating state of the detonator 10 by turning the LED 130 on/off or blinking it.
  • FIG. 7 is a perspective view showing the external shape of the blaster 20 in FIG. 3.
  • the blaster 20 has a housing 201.
  • An antenna 202 for communication with the detonator 10 is provided at the top of the housing 201.
  • a display 203 is provided on the front of the housing 201 to display the operating status of the device and provide various selection menus to the operator.
  • the selection menu includes the registration (search) or selection menu of the detonator (10), the date and time setting menu, and the safety distance setting menu between the blaster (20) and the detonator (10), etc. related to the operation of the blasting system. Menus for registering and entering various information are included.
  • a touch panel is provided on the upper side of the display 203 for the operator to select menu items.
  • the housing 201 is provided with a plurality of operation buttons for the operator to operate the blaster 20.
  • the operation buttons include a power button 204, a direction and confirmation button 205, a charge button 206, and a blast button 207.
  • the power button 204 is used to turn on/off the operation of the device
  • the direction and confirmation button 205 is used to view and select menus on the display 203.
  • the charging button 206 and the blasting button 207 are for the operator to operate the detonator 10. The operation of the detonator 10 according to the operation of the charging button 206 and the blasting button 207 will be described in more detail later.
  • the housing 201 is provided with a display unit 208 such as an LED and a speaker 209. These are intended to provide various operation information of the blasting system to workers as visual or auditory information.
  • FIG. 8 is a functional block diagram showing the internal circuit configuration of the blaster 20.
  • the blaster 20 includes a display 203 as well as a power unit 80, an input unit 81, a control unit 82, and a communication unit 83.
  • the power supply unit 80 includes a battery.
  • a secondary battery is preferably used as the battery, and although not specifically shown in the drawing, a connector is provided for charging the battery.
  • the power supply unit 80 is for supplying operating power (V2) to the entire device. Although not specifically shown in the drawing, when the operator presses the power button 204 (FIG. 7), operating power V2 is supplied from the power supply unit 80 to the entire device.
  • the input unit 81 includes a plurality of operation buttons 204 to 207 shown in FIG. 7, a touch panel, and interfaces related thereto.
  • the touch panel is installed on the display 203 as described above.
  • the input unit 81 is general.
  • the control unit 82 reads the operation contents of the operation buttons 204 to 207 and the touch panel through the input unit 81.
  • the control unit 82 includes a microcomputer.
  • a microcomputer has internal program memory and data memory.
  • a control program for controlling the operation of the entire blasting system, including the blaster 20, is stored in the program memory, and various blasting data related to the blasting operation are stored in the data memory.
  • the blasting data includes information on the detonator 10 used for blasting, blasting date and time information, the distance between the blaster 20 and the detonator 10, and reception sensitivity information. This blasting data can be viewed by the operator through the input unit 81.
  • the control unit 82 performs various control functions according to the control program.
  • the control function by the control unit 82 includes a menu screen provision function through the display 203, a network pairing and unpairing process function with the detonator 10, a blast data storage and provision function, and an operation command from the input unit 81. Includes a control function of the detonator 10, a function to calculate and provide distance information based on the frequency reception sensitivity from the detonator 10, and a function to provide status information according to the blasting operation through linkage with the detonator 10. do.
  • the communication unit 83 is substantially the same as the communication unit 14 in FIG. 6.
  • the communication unit 83 is equipped with a transmission and reception module for LoRa communication and communicates with the control unit 82 based on serial communication.
  • an antenna 202 is coupled to the communication unit 83.
  • FIG. 7 shows an example in which a rod-shaped antenna is used as the antenna 202, the antenna 202 may be configured with a predetermined wiring pattern provided on the substrate.
  • a speaker 209 and LEDs are coupled to the digital output terminals (P1 to P4) of the control unit 82.
  • the speaker 209 is for the control unit 82 to output a warning sound such as a beep
  • the LEDs (LED1 to LED3) constitute the display unit 208 in FIG. 7.
  • the display unit 208 preferably includes LEDs (LED1 to LED3) that output different color lights of red, green, and blue.
  • the control unit 82 provides status information of the blasting operation by appropriately setting the color of the display unit 208.
  • the blaster 20 may be provided with a second communication means for the control unit 82 to communicate with an external device through wired or wireless communication.
  • a communication means for example, an interface for wired communication such as USB (Universal Serial Bus) or a communication module for wireless communication such as Bluetooth or Wi-Fi may be employed.
  • the control unit 82 provides blasting data to an external device or receives information necessary for blasting through such communication means.
  • the blasting-related information that the control unit 82 receives from an external device may preferably include information on the detonator 10 used for blasting, that is, the detonator 10 ID.
  • Network pairing between the blaster 20 and the detonator 10 is performed with both devices in operation.
  • an operator wants to perform blasting using this blasting system he or she first operates the power button 204 of the blaster 20 and the power switch 110 of the detonator 10 to put both devices in an operating state. It is set.
  • the detonator 10 sets the detonator part 12 to an inactive state in the initial state and waits for a pairing request from the blaster 20.
  • the control unit 13 sets the transistors T1 and T2 to the off state and the transistor T3 to the on state. Accordingly, the boosting unit 123 is set to a non-driving state and the charging operation for the charging unit 122 is not performed, and the charging unit 122 is grounded through the discharging unit 125, that is, the resistor R6, so the charging unit ( The charging voltage of 122) is maintained at the ground level.
  • the relay switch (RY1) of the output unit 121 is connected between the contact points (a, b), the first output terminal (VO1) and the second output terminal (VO2) for outputting the detonation voltage to the igniter 150 are mutually connected. short-circuited. That is, when the detonator 10 is in a standby state, the charge level of the charging unit 122 is set to the '0' level, and the first output terminal (VO1) and the second output terminal (VO2) for outputting the detonation voltage are short-circuited with each other. are set to the same voltage. Therefore, improper operation of the igniter 150 due to leakage current or lightning is reliably prevented.
  • the operator executes a search function for the detonator 10 through the input unit 81 of the detonator 20.
  • the control unit 82 transmits a request message requesting identification information, that is, ID information, to the detonator 10 through the communication unit 83. Transmission of the request message is performed, for example, by broadcasting.
  • the detonator 10 receives an ID request message from the blaster 20, it transmits its ID to the blaster 20.
  • the blaster 20 outputs the ID information received from the detonator 10 through the display 203.
  • control unit 82 executes network pairing by transmitting an approval command to approve network access to the corresponding detonator 10, and then the corresponding detonator 10 Communication is performed with (10).
  • the manager managing the blasting site sends the ID information of the detonator to be used for blasting to the blaster 20 in advance. You can register. And the control unit 82 displays only the ID information corresponding to the pre-registered detonator 10 among the ID information of the detonator 10 received through the communication unit 83 on the display 203, thereby preventing inappropriate detonators from being detected. This prevents (10) from being used.
  • the blaster 20 may be equipped with an imaging means such as a camera.
  • This imaging means is for reading the information display unit 140 provided in the housing 100 of the detonator 10 in FIG. 4.
  • the operator instead of selecting the ID information displayed on the display 203, the operator reads and inputs the ID information in the information display unit 140 provided in the detonator 10 to select the detonator 10 to be currently used. You get to choose. This can provide the effect of reliably preventing workers from misidentifying the detonator to be used for blasting.
  • the control unit 13 in FIGS. 4 and 6 displays the pairing progress and completion status as visual information by blinking or lighting the LED 130.
  • the control unit 82 of the blaster 20 when network pairing with the detonator 10 is completed, provides distance information between the blaster 20 and the detonator 10, and the detonator 10. It displays the frequency reception sensitivity for .
  • the reception sensitivity information can be obtained by the control unit 82 reading the register value provided in the communication unit 83, and the distance information can be calculated programmatically by the control unit 822 based on the increase or decrease in reception sensitivity. do.
  • network pairing between the detonator 20 and the detonator 10 is performed with both devices located adjacent to each other. Then, the control unit 82 stores the reception sensitivity of the detonator 10 at the time of network pairing as an initial value, and then adjusts the distance between the blaster 20 and the detonator 10 based on the change in reception sensitivity. It is calculated.
  • the display of distance information is to enable the worker to recognize the safe distance from the detonator (10), and the display of reception sensitivity is to warn that the detonator (10) is outside the control range of the blaster (20). .
  • the operator can take appropriate measures, such as using a repeater, based on the reception sensitivity level displayed on the blaster 20.
  • the operator couples the signal tube 4 to the coupling port 152 of the detonator 10 in FIGS. 4 and 5 and operates the detonator 10 using the blaster 20.
  • the detonation operation by the detonator 10 is performed using the charge button 206 and the blast button 207 of the blaster 20.
  • the operator first presses the charging button 206 of the blaster 20 to finish charging the charging part 122 of the detonator 10, and then presses the blasting button 207 again to charge the signal tube 4. The detonation is carried out.
  • the control unit 82 when the operator presses the charging button 206 of the blaster 20, the control unit 82 first checks the register value of the communication unit 83 to connect the blaster 20 and the detonator ( 10) It is determined whether a safety distance is secured between the two and whether the communication status between the blaster 20 and the detonator 10 is normal. In other words, it is determined whether the current blasting environment is normal.
  • the reference value for determining whether the blasting environment is normal can be registered programmatically in the blaster 20, or the operator can register it through the input unit 81.
  • control unit 82 determines that the blasting environment is inappropriate, it displays abnormal condition information on the display 203 or issues an alarm through other alarm means, that is, the speaker 209 and the display unit 208. Meanwhile, if the current blasting environment is normal, the control unit 82 transmits a charging command to the detonator 10.
  • the control unit 13 sets the discharge unit 125 of the detonator part 12 to a non-driving state and drives the boosting unit 123.
  • a charging operation for the charging unit 122 is performed. That is, the control unit 13 turns off the transistor T3 of the discharge unit 125 and switches and drives the transistor T2 of the booster unit 123 at a predetermined frequency. Also, at this time, the transistor T1 of the output unit 121 is still set to the off state, so that the first and second output terminals VO1 and VO2 remain short-circuited.
  • the control unit 13 detects the charging voltage of the charging unit 122 through the charging voltage detection unit 124. And when the charging voltage rises above a certain voltage, that is, a voltage value that can drive the igniter 150, the control unit 13 transmits a charging completion message to the blaster 20 through the communication unit 14. The charging operation for the charging unit 122 is performed until the charging unit 122 is charged to a preset maximum charging voltage value.
  • the control unit 13 transmits the charging voltage recognized through the charging voltage detection unit 124 to the blaster 20 in a certain time unit, thereby allowing the operator to proceed with charging of the detonator 10. This allows you to visually check the status.
  • the above-mentioned charging operation is carried out only while the operator holds down the charging button 206 of the blaster 20. That is, the operator can stop the charging operation by stopping operation of the charging button 206.
  • the control unit 82 transmits a charging stop command to the detonator 10.
  • the control unit 13 of the detonator 10 sets the boosting unit 123 to a non-driving state and drives the discharging unit 124 to increase the charging power of the charging unit 122. It is discharged.
  • the control unit 82 informs the operator through the display 203 or the alarm means 208 and 209 that charging has been completed normally. Afterwards, the operator can execute a blasting operation by manipulating the blasting button 207.
  • the control unit 82 transmits a detonation command to the detonator 10.
  • the control unit 13 in the detonator 10 turns on the transistor T1 of the output unit 121.
  • the contact points (a, c) of the relay switch (RY1) are short-circuited, and the second output terminal (VO2) is coupled to ground.
  • the charging current of the charging unit 122 is set to a state in which it can flow to ground through the first and second output terminals (V01, VO2), so that the coupler 162 and the lead wire 160 of the igniter 150 in FIG. 5 Sparks are generated between them.
  • V01, VO2 the first and second output terminals
  • the coupler 162 and the lead wire 160 of the igniter 150 in FIG. 5 Sparks are generated between them.
  • the first output terminal (VO1) When a spark is generated between the first and second output terminals (V01 and VO2) of the output unit 121, the first output terminal (VO1) is connected to the ground side and its voltage level is set to a low level. Accordingly, a low-level interrupt signal is input to the interrupt terminal (IINT) of the control unit 13 through the detonation detection unit 126.
  • the control unit 13 determines whether the detonation operation is normally performed based on the input of the interrupt signal. When an interrupt signal is input, the control unit 13 transmits a detonation completion message to the blaster 20. Then, the blaster 20 ends the blasting operation when the control unit 82 outputs a detonation completion message through the display 203.
  • control unit 82 stores blasting information, such as blasting time, detonator ID, blasting distance, and radio wave sensitivity, in the data memory.
  • the data stored in this way can be later viewed by the operator through the input unit 81. Additionally, when the control unit 82 receives a detonation completion message from the detonator 10, it releases the network pairing for the corresponding detonator 10.
  • the detonator 10 when the detonator 10 is activated according to the above operation, the detonator 10 is then set to an operation-inhibited state.
  • the operation prohibition setting is to prevent the detonator 10 from attempting network pairing with the blaster 20 during another subsequent blasting due to the detonator 10 still operating even after blasting is performed.
  • the operation prohibition setting of the detonator 10 can be performed through various methods.
  • the operation prohibition setting can be configured so that the detonator 10 sets itself.
  • the control unit 13 when the interrupt signal (INT) is input from the detonation detection unit 126 by the above-described blasting operation, the control unit 13 first transmits a detonation completion message to the blaster 20 and then activates the detonator 10. It is set to operation prohibited. At this time, the operation prohibition state is executed programmatically, and then the control unit 13 stops all control operations for the detonator 10.
  • the operation prohibition setting can be executed through interlocking of the detonator 10 and the blaster 20.
  • the blaster 20 transmits an operation prohibition command to the detonator 10.
  • the control unit 82 of the blaster 20 may inquire whether to disable the detonator 10 through the display 203 and transmit an operation prohibition command according to the operator's selection. And, in the same manner as the above-described operation, the control unit 13 programmatically sets the detonator 10 to an operation-inhibited state.
  • the operation prohibition setting can be performed by the blaster 20 itself.
  • the control unit 82 sets the ID of the corresponding detonator 10 to the used ID, and thereafter, the detonator 20 with the corresponding ID Control operations such as network pairing are not performed on the device 10.
  • the blaster 10 is provided with a charging button 206 and a blasting button 207, but this means that when the operator operates the blasting button 207, the detonator ( The control unit 82 of 10) can be configured to sequentially perform the charging operation and detonation operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Air Bags (AREA)

Abstract

The present invention relates to a remote blasting system, which is employed for blasting work of a mine, a civil engineering construction site or the like, and thus can provide workability and stability. The remote blasting system, according to the present invention, for executing blasting by igniting a detonator (1) comprises an igniter (10) and a blasting machine (20), wherein the igniter (10) is physically coupled to the detonator (1) through a connecting means (4), the connecting means (4) transmits ignition energy from the igniter (10) to the detonator (1), and the igniter (10) and the blasting machine (20) are wirelessly coupled. In addition, the blasting machine (20) restricts the operation of the igniter (10) if the distance between the blasting machine (20) and the igniter (10) is less than a safe distance.

Description

원격 발파 시스템remote blasting system
본 발명은 광산이나 토목 공사장 등에서 사용되는 발파 시스템에 관한 것으로서, 특히 작업성과 안정성을 제고할 수 있도록 구성된 원격 발파 시스템에 관한 것이다.The present invention relates to a blasting system used in mines, civil engineering sites, etc., and in particular to a remote blasting system configured to improve workability and stability.
발파(blasting)는 광산이나 토목 공사장 등의 산업 현장에서 폭약을 이용하여 특정한 대상을 파괴하는 작업을 칭한다. 발파는 통상 폭파 대상물에 구멍을 형성하고 폭약을 장전한 후, 뇌관을 이용하여 폭약을 점화시키는 과정을 통해서 이루어진다. 일반적으로 뇌관은 폭약을 기폭시키기 위한 것을 총칭한다. 뇌관은 기동 방식에 따라 전기식, 비전기식 또는 전자식으로 구분하여 지칭한다. 여기서 전자식 뇌관의 경우에는 가격이 고가이고, 작업이 번거로우며, 다른 뇌관에 비해 많은 작업 시간이 요구된다는 단점이 있다. 또한, 전기식 뇌관의 경우에는 누설전류나 정전기 또는 낙뢰 등에 의해 안전사고가 발생될 우려가 있다. 이러한 이유로 터널이나 광산 등의 다양한 산업 현장에서 비전기식 뇌관이 많이 사용되고 있다.Blasting refers to the work of destroying a specific object using explosives at industrial sites such as mines or civil engineering sites. Blasting is usually accomplished through the process of forming a hole in an object to be blasted, loading explosives, and then igniting the explosives using a detonator. In general, a detonator is a general term used to detonate an explosive. Detonators are classified into electrical, non-electric, or electronic types depending on the method of activation. Here, electronic detonators have the disadvantages of being expensive, cumbersome to work with, and requiring a lot of work time compared to other detonators. Additionally, in the case of electric detonators, there is a risk of safety accidents occurring due to leakage current, static electricity, or lightning. For this reason, non-electric detonators are widely used in various industrial sites such as tunnels and mines.
비전기식 뇌관은 크게 공저 뇌관과 연결 뇌관으로 구분된다. 여기서 공저 뇌관은 발파 막장 등의 발파공 내에 폭약과 함께 장전되어 폭약을 기폭시키는데 사용되는 뇌관을 지칭하고, 연결 뇌관은 공저 뇌관이나 기타 다른 뇌관에 기폭 에너지를 전달하거나, 그러한 에너지 전달 수단을 연결하기 위한 뇌관을 지칭한다. 연결 뇌관은 공저 뇌관과 상대적인 의미로서 표면 뇌관으로서 지칭되기도 한다. 또한, 연결 뇌관은 그 사용 목적이나 구조에 따라 예컨대 TLD(Trunk-Line Delay Detonators), 번치 커넥터(bunch connector), 스타터(starter) 등으로 구분되기도 한다. 또한, 번치 커넥터나 스타터는 번치 뇌관이나 스타터 뇌관으로 지칭되기도 한다. 비전기식 뇌관은 통상 뇌관에 도화선이나 바람직하게 시그널 튜브가 결합된 형태로 구성된다. 시그널 튜브는 뇌관에 기폭 신호, 보다 구체적으로 기폭 에너지를 전달하기 위한 것이다. 시그널 튜브는 합성수지로 이루어지는 관 내부에 화약이 도포된 구성으로 이루어진다. 시그널 튜브는 관 내부의 화약이 기폭되면 기폭 에너지가 관 내부를 통해 뇌관으로 폭굉(爆宏)되어 뇌관을 기폭시키게 된다.Non-electric detonators are largely divided into co-detonators and connecting detonators. Here, the joint detonator refers to a detonator used to detonate an explosive by being loaded with an explosive in a blast hole, such as a blasting cap, and the connected detonator is used to transmit detonation energy to the joint detonator or other detonator, or to connect such energy transfer means. Refers to the detonator. Link primers are also referred to as surface primers in a relative sense to co-base primers. In addition, connection detonators are classified into, for example, Trunk-Line Delay Detonators (TLD), bunch connectors, starters, etc., depending on their purpose of use or structure. Additionally, the bunch connector or starter is also referred to as a bunch detonator or starter detonator. A non-electrical detonator is usually constructed by combining a detonator with a fuse or, preferably, a signal tube. The signal tube is intended to transmit the detonation signal, more specifically the detonation energy, to the detonator. The signal tube consists of gunpowder applied to the inside of a tube made of synthetic resin. In the signal tube, when the gunpowder inside the tube is detonated, the detonation energy is detonated through the inside of the tube to the detonator, detonating the detonator.
비전기식 뇌관을 이용하여 발파를 시행하는 경우에는 우선 폭파 대상물에 한 개 이상의 구멍, 즉 발파공을 형성하고, 각각의 발파공에 뇌관, 즉 공저 뇌관과 폭약을 장전하게 된다. 이후, 공저 뇌관에는 필요에 따라 TLD, 번치 커넥터, 스타터 등의 연결 뇌관을 적절하게 연결 및 결합하게 된다. 여기서 TLD나 번치 커넥터는 기폭 에너지를 다수의 시그널 튜브에 연결하는 용도로 사용되고, 스타터는 30~150m 길이의 시그널 튜브를 구비하여 작업자가 발파공으로부터 안전거리를 확보하는 용도로서 주로 사용된다. 그리고 연결 뇌관, 즉 연결 뇌관의 시그널 튜브에는 기폭기나 발파기를 결합하여 시그널 튜브를 적절하게 기폭시키게 된다.When blasting is performed using a non-electric detonator, first, one or more holes, i.e., blast holes, are formed in the object to be blasted, and a detonator, i.e., a hollow detonator, and explosives are loaded into each blast hole. Afterwards, connecting detonators such as TLD, bunch connector, starter, etc. are appropriately connected and combined with the co-detonator as needed. Here, the TLD or bunch connector is used to connect the detonation energy to multiple signal tubes, and the starter is equipped with a signal tube of 30 to 150 m in length and is mainly used to ensure a safe distance for workers from the blast hole. And a detonator or blaster is coupled to the connection detonator, that is, the signal tube of the connection detonator, to properly detonate the signal tube.
도 1은 비전기식 뇌관을 채용하는 전형적인 발파 시스템의 일례를 나타낸 구성도이다. 도면에서 발파 시스템은 기본적으로 뇌관(1)과 발파기(2)를 구비한다. 그리고 필요에 따라 뇌관(1)과 발파기(2)의 사이에는 기폭기(3)가 채용된다. 여기서 기폭기(3)는 스파크 기폭기나 스파크 트리거로서 호칭되기도 한다. 상기 뇌관(1)으로서는 공저 뇌관 또는 연결 뇌관이 적절하게 적용된다. 상기한 바와 같이 뇌관(1)에는 시그널 튜브(4)가 결합된다. 시그널 튜브(4)는 발파기(2)나 기폭기(3)에 의해 기폭된다.Figure 1 is a configuration diagram showing an example of a typical blasting system employing a non-electric detonator. In the drawing, the blasting system basically includes a detonator (1) and a blaster (2). And, if necessary, a detonator (3) is employed between the detonator (1) and the blaster (2). Here, the detonator 3 is also called a spark detonator or spark trigger. As the detonator 1, a co-detonator or a connected detonator is suitably applied. As described above, the signal tube (4) is coupled to the detonator (1). The signal tube (4) is detonated by the blaster (2) or detonator (3).
발파기(2)와 기폭기(3)는 전기적으로 결합된다. 발파기(2)와 기폭기(3)는 발파 모선(5)이라 칭하는 도선을 통해 연결된다. 발파기(2)에는 발파를 개시하기 위한 조작 버튼이 구비된다. 작업자가 조작 버튼을 누르게 되면, 발파 모선(5)을 통해 발파기(2)로부터 기폭기(3)로 전기 에너지가 공급되고, 기폭기(3)는 인가된 전기 에너지를 이용하여 시그널 튜브(4)를 기폭시키게 된다. 그리고 이때 생성되는 기폭 에너지는 시그널 튜브(4)를 통해 폭굉되어 뇌관(1)을 기폭시킴으로써 폭약을 점화시키게 된다. 상기한 발파 시스템과 기폭기(3)에 대해서는 대한민국 등록특허 제10-1230156호(명칭: 스파크 기폭기를 이용한 비전기식 뇌관의 기폭기 및 이를 이용한 발파 시공 방법)와 등록특허 제10-1339081호(명칭: 전기 발파기와 스파크 기폭기를 사용하는 비전기식 뇌관의 기폭기 및 방법) 등에 개시되어 있다.The blaster (2) and the detonator (3) are electrically coupled. The blaster (2) and the detonator (3) are connected through a conductor called the blast bus bar (5). The blaster 2 is equipped with an operation button to start blasting. When the operator presses the operation button, electrical energy is supplied from the blaster (2) to the detonator (3) through the blasting bus bar (5), and the detonator (3) uses the applied electrical energy to signal the signal tube (4). ) is detonated. And the detonation energy generated at this time detonates through the signal tube (4) and detonates the detonator (1), thereby igniting the explosive. Regarding the blasting system and detonator (3) described above, Republic of Korea Patent No. 10-1230156 (name: Detonator of non-electric detonator using spark detonator and blasting construction method using the same) and Registration Patent No. 10-1339081 (name: : Non-electric detonator and method using an electric blaster and a spark detonator), etc.
도 2는 비전기식 뇌관을 사용하는 발파 시스템의 다른 구성 예를 나타낸 구성도이다. 도 2의 구성은 공개특허 제10-2021-0144219호(명칭: 비전기뇌관용 발파기 및 이를 이용한 기폭 시스템)에 개시되어 있다. 또한, 도 2에서 상술한 도 1과 실질적으로 동일한 구성에는 동일한 참조번호가 부가되어 있다. 도 2a에서, 기폭기(3)에는 제1 발파 모선(5)을 통해서 발파기(6)가 연결되고, 발파기(6)에는 제2 발파 모선(7)을 통해서 격발기(8)가 연결된다. 또한, 도 2b에서 뇌관(1)에는 시그널 튜브(4)를 통해서 발파기(9)가 연결되고, 발파기(9)에는 제2 발파 모선(7)을 통해서 격발기(8)가 연결된다. 도 2의 구성은 예컨대 도 1의 발파 시스템에서 작업자의 안전거리 확보를 위해서 발파 모선(5)의 길이를 연장하게 되면, 발파 모선(5)의 저항값 상승 등으로 인하여 기폭기(3)에 의한 기폭 동작이 불안정하게 이루어지는 것을 해결하도록 한 것이다. 즉, 도 2의 구성은 발파기(6, 9)를 작동시키기 위한 격발기(8)를 추가로 구비하고, 제2 발파 모선(7)을 이용하여 작업자가 안전거리를 확보할 수 있도록 한 것이다.Figure 2 is a configuration diagram showing another configuration example of a blasting system using a non-electric detonator. The configuration of Figure 2 is disclosed in Patent Publication No. 10-2021-0144219 (name: blaster for non-electric detonator and detonation system using the same). In addition, in FIG. 2, components that are substantially the same as those in FIG. 1 described above are given the same reference numerals. In FIG. 2A, the blaster 6 is connected to the detonator 3 through the first blasting bus bar 5, and the blaster 8 is connected to the blaster 6 through the second blast bus bar 7. do. In addition, in FIG. 2B, the blaster 9 is connected to the detonator 1 through the signal tube 4, and the percussion device 8 is connected to the blaster 9 through the second blasting bus bar 7. The configuration of FIG. 2 is, for example, in the blasting system of FIG. 1, when the length of the blasting bus bar (5) is extended to ensure a safe distance for workers, the resistance value of the blast bus bar (5) increases, etc., causing damage by the detonator (3). This was done to solve the problem of unstable detonation operation. That is, the configuration of FIG. 2 is additionally provided with a percussion device (8) for operating the blasters (6, 9) and allows the worker to secure a safe distance by using the second blasting bus (7). .
그런데, 상기한 비전기식 뇌관을 채용하는 종래의 발파 시스템에 있어서는 다음과 같은 문제가 있게 된다. 발파를 시행함에 있어서는 작업자의 안전이 최우선적으로 요구된다. 도 1의 구성에서 뇌관(1)의 기폭은 발파기(2)로부터의 기폭 에너지에 의해 실행되고, 발파기(2)는 작업자(화약류 관리보안 책임자)가 조작하게 된다. 따라서 발파에 의한 충격으로부터 작업자를 보호하기 위해 뇌관(1), 보다 정확하게는 공저 뇌관으로부터 발파기(2)까지는 통상 200~300m 이상의 안전거리를 두게 된다.However, the conventional blasting system employing the non-electric detonator described above has the following problems. When performing blasting, worker safety is a top priority. In the configuration of FIG. 1, the detonator 1 is detonated by the detonation energy from the blaster 2, and the blaster 2 is operated by an operator (explosives management and security officer). Therefore, in order to protect workers from shock caused by blasting, there is usually a safety distance of 200 to 300 m or more from the detonator (1), or more precisely, from the co-bottomed detonator to the blaster (2).
도 1의 시스템에서 뇌관(1)과 기폭기(3)는 시그널 튜브(4)를 통해 연결되고, 기폭기(3)와 발파기(2)는 발파 모선(5)을 통해 결합되므로 발파 작업시에는 200~300m 이상의 거리에 시그널 튜브(4)와 발파 모선(5)을 설치하는 작업을 실행하여야 한다. 그리고, 발파 작업 후에는 시그널 튜브(4)를 회수하는 작업을 진행하여야 한다. 이는 발파를 시행함에 있어서 매우 번거로운 작업이 된다,In the system of Figure 1, the detonator (1) and the detonator (3) are connected through the signal tube (4), and the detonator (3) and the blaster (2) are connected through the blasting bus (5), so during blasting work The work of installing the signal tube (4) and blast bus bar (5) must be carried out at a distance of 200 to 300 m or more. In addition, after the blasting operation, the signal tube (4) must be recovered. This becomes a very cumbersome task when carrying out blasting.
또한, 도 1의 시스템에서 발파기(2)와 뇌관(1)의 사이에는 발파 모선(5)과 시그널 튜브(4)가 사용되는데, 이때 발파 충격으로부터 발파 모선(5)을 보호하고, 낙뢰 등에 의한 불의의 폭발로부터 안전을 확보하기 위해 가급적 시그널 튜브(4)의 길이를 길게 설정하게 된다. 그런데, 시그널 튜브(4)는 발파 모선(5)과 달리 재사용이 불가능하므로, 상기 시스템은 시그널 튜브(4)의 많은 손실을 초래한다. 시그널 튜브(4)의 과다한 사용은 경제적인 측면은 물론 환경적인 측면에서 부적절한 영향을 제공한다.In addition, in the system of FIG. 1, a blast bus bar (5) and a signal tube (4) are used between the blaster (2) and the detonator (1), and at this time, the blast bus bar (5) is protected from blast shock and lightning strikes, etc. To ensure safety from unexpected explosion, the length of the signal tube (4) is set as long as possible. However, since the signal tube 4 cannot be reused, unlike the blasting busbar 5, the system results in a lot of loss of the signal tube 4. Excessive use of the signal tube (4) provides undesirable effects from an economic as well as environmental perspective.
또한, 도 1의 시스템에서 시그널 튜브(4)의 사용량을 줄이고 발파 모선(5)의 길이를 연장하는 경우에는 낙뢰나 누설 전류에 의한 위험성이 증가되고, 발파 모선(5)의 길이를 일정 이상으로 증가시키게 되면 상기한 바와 같이 발파 모선(5)의 저항값 증가에 의해 발파가 실패할 가능성이 발생하게 된다.In addition, in the system of FIG. 1, when the amount of signal tube 4 used is reduced and the length of the blasting bus bar 5 is extended, the risk due to lightning or leakage current increases, and the length of the blast bus bar 5 is increased by a certain amount or more. If it is increased, there is a possibility that blasting may fail due to an increase in the resistance value of the blasting bus 5, as described above.
또한, 도 2의 구성에 있어서는 발파 시스템의 구성에 격발기(8)가 추가로 요구된다. 또한, 격발기(8)는 작업자가 조작하게 되므로, 뇌관(1)으로부터 격발기(8) 사이의 거리를 충분하게 확보할 필요가 있게 된다. 즉, 시그널 튜브(4)와 제1 및 제2 발파 모선(5, 7)의 길이를 200~300m 이상 확보할 필요가 있게 된다. 이는 도 1과 마찬가지로 시그널 튜브(4)의 많은 손실을 초래한다.In addition, in the configuration of FIG. 2, a percussion device 8 is additionally required in the configuration of the blasting system. In addition, since the percussion device 8 is operated by an operator, it is necessary to secure a sufficient distance between the detonator 1 and the percussion device 8. In other words, it is necessary to secure the length of the signal tube 4 and the first and second blasting bus bars 5 and 7 of 200 to 300 m or more. This causes a lot of loss in the signal tube 4, as in FIG. 1.
또한, 공개특허 제10-2021-0144219호에 있어서는 도 2b의 구성에서 발파기(9)와 격발기(8)를 무선을 통해서 결합하는 것에 대하여 개시하고 있다. 그런데, 도 2b의 구성에서 격발기(8)와 발파기(9)는 전용의 장치로서 구성된다. 즉 격발기(8) 또는 발파기(9)가 손상되는 경우, 격발기(8)와 발파기(9)는 함께 교체 또는 폐기된다. 따라서 도 2b의 구성에 있어서는 발파기(9)가 발파에 의한 충격으로부터 손상되는 것을 방지하기 위해 발파기(9)와 뇌관(1) 사이의 거리를 충분하게 확보할 필요성이 존재한다. 그리고 이는 도 1과 마찬가지로 시그널 튜브(4)의 많은 손실을 초래하게 된다.Additionally, in Publication Patent No. 10-2021-0144219, it is disclosed that the blaster 9 and the percussion device 8 are connected wirelessly in the configuration of FIG. 2B. However, in the configuration of FIG. 2B, the percussion device 8 and the blaster 9 are configured as dedicated devices. That is, if the percussion device 8 or the blaster 9 is damaged, the percussion device 8 and the blaster 9 are replaced or discarded together. Therefore, in the configuration of FIG. 2b, there is a need to secure a sufficient distance between the blaster 9 and the detonator 1 to prevent the blaster 9 from being damaged by impact from blasting. And, as in FIG. 1, this causes a lot of loss in the signal tube 4.
또한, 종래의 발파 시스템은 발파기(2, 6, 9)와 뇌관(1)을 물리적으로 결합시키고 발파기(2)나 격발기(8)를 조작하는 절차적으로 단순한 과정을 통해 뇌관(1)이 작동된다. 따라서 발파 시스템의 오용이나 부당한 사용에 대한 위험성이 존재한다.In addition, the conventional blasting system physically combines the blaster (2, 6, 9) and the detonator (1) and blows the detonator (1) through a simple procedural process of manipulating the blaster (2) or the percussion gun (8). ) works. Therefore, there is a risk of misuse or improper use of the blasting system.
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 발파에 따른 작업성과 안정성을 제고할 수 있는 원격 발파 시스템을 제공함에 기술적 목적이 있다.The present invention was created in consideration of the above circumstances, and its technical purpose is to provide a remote blasting system that can improve workability and stability during blasting.
또한, 본 발명은 발파 모선에 대한 필요성을 제거함과 더불어 시그널 튜브의 사용량을 최소화 할 수 있는 원격 발파 시스템을 제공함에 기술적으로 다른 목적이 있다.In addition, the present invention has another technical purpose in providing a remote blasting system that can minimize the amount of signal tube usage while eliminating the need for a blast bus.
또한, 본 발명은 작업자(화약류 관리보안 책임자)가 발파 작업에 집중할 수 있는 여건을 조성하고, 전체적으로 발파 작업의 정밀도를 제고할 수 있도록 함으로써 부적절한 발파 작업 및 관리에 의해 매우 큰 경제적 손실이 초래되는 것을 방지할 수 있도록 해주는 원격 발파 시스템을 제공함에 또 다른 목적이 있다.In addition, the present invention creates conditions in which workers (explosives management and security officers) can concentrate on blasting work and improves the overall precision of blasting work, thereby preventing very large economic losses caused by inappropriate blasting work and management. Another purpose is to provide a remote blasting system that can prevent
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 발파에 따른 작업성과 안정성을 제고할 수 있는 원격 발파 시스템을 제공함에 기술적 목적이 있다.The present invention was created in consideration of the above circumstances, and its technical purpose is to provide a remote blasting system that can improve workability and stability during blasting.
또한, 본 발명은 발파 모선에 대한 필요성을 제거함과 더불어 시그널 튜브의 사용량을 최소화 할 수 있는 원격 발파 시스템을 제공함에 기술적으로 다른 목적이 있다.In addition, the present invention has another technical purpose in providing a remote blasting system that can minimize the amount of signal tube usage while eliminating the need for a blast bus.
또한, 본 발명은 작업자(화약류 관리보안 책임자)가 발파 작업에 집중할 수 있는 여건을 조성하고, 전체적으로 발파 작업의 정밀도를 제고할 수 있도록 함으로써 부적절한 발파 작업 및 관리에 의해 매우 큰 경제적 손실이 초래되는 것을 방지할 수 있도록 해주는 원격 발파 시스템을 제공함에 또 다른 목적이 있다.In addition, the present invention creates conditions in which workers (explosives management and security officers) can concentrate on blasting work and improves the overall precision of blasting work, thereby preventing very large economic losses caused by inappropriate blasting work and management. Another purpose is to provide a remote blasting system that can prevent
상기한 구성으로 된 본 발명에 의하면, 기폭기와 발파기가 무선을 통해 결합되므로 발파기와 기폭기를 연결하기 위한 발파 모선이 제거된다. 따라서 발파 충격에 의해 발파 모선이 손상되는 문제가 제거되고, 기폭기를 뇌관에 근접하게 설치할 수 있게 된다. 즉, 시그널 튜브 등 뇌관으로 기폭 에너지를 전달하기 위한 물리적 연결수단의 사용을 최소화 할 수 있게 된다.According to the present invention having the above-described configuration, the detonator and the blaster are connected wirelessly, so the blasting bus bar for connecting the blaster and the detonator is eliminated. Therefore, the problem of damage to the blast bus due to blast shock is eliminated, and the detonator can be installed close to the detonator. In other words, it is possible to minimize the use of physical connection means to transmit detonation energy to the detonator, such as a signal tube.
또한, 뇌관에 기폭기 및 발파기를 연결하기 위한 물리적 연결수단의 사용이 최소화 되므로 200~300m 이상의 거리에 발파 모선과 시그널 튜브 등을 설치해야 하는 작업이 제거된다. 즉, 발파에 따른 작업성이 현저하게 상승된다.In addition, since the use of physical connection means to connect the detonator and blaster to the detonator is minimized, the work of installing blast busbars and signal tubes at a distance of 200 to 300 m or more is eliminated. In other words, workability due to blasting is significantly increased.
또한, 기폭기와 발파기가 무선을 통해 결합되므로 별도의 작업 없이 발파기와 기폭기 사이의 거리를 충분하게 확보할 수 있게 된다. 이에 따라 발파 작업을 실행하는 작업자의 안정성을 제고할 수 있게 된다.In addition, since the detonator and the detonator are connected wirelessly, a sufficient distance between the detonator and the detonator can be secured without any additional work. Accordingly, the safety of workers performing blasting work can be improved.
일반적으로 폭약을 사용하는 발파 작업은 매우 높은 정밀도가 요구된다. 기본적인 설계 요지에 반하는 부적절한 발파 시공은 안전 사고에 대한 위험성을 증가시키고, 여굴이나 잔류공 발생 및 기타 여러가지 부정적 결과를 발생시킬 수 있다. 이러한 부정적인 결과는 많은 경제적 손실을 초래한다. 발파 작업은 암반 등에 발파공을 형성하는 천공 작업과, 발파공에 폭약과 공저 뇌관을 설치하는 장약 작업, 터널 막장 앞에서 기폭기나 발파기에 스타터 등의 연결 뇌관을 연결하는 연결 작업을 포함한다. 일반적으로 발파 작업에는 다수의 작업자가 요구되고, 통상 장약 작업과 연결 작업은 동시적으로 실행된다. 그런데, 이때 장약 작업은 높은 집중도가 요구되는데 작업인데 반하여, 연결 작업은 발파 모선이나 시그널 튜브 등을 설치하는 매우 번거로운 작업이다. 연결 작업의 번잡성은 장약 작업의 집중도 유지에 매우 부적절한 영향을 제공한다. 장약 작업에서의 집중도 저하는 발파 시의 진동과 소음 증가, 발파에 의한 모암 손상과 여굴의 증가, 과도한 잔류공 발생, 낙석 사고의 위험 증가 등 여러가지 복합적인 문제를 초래할 수 있다. 본 발명은 발파 작업에 수반되는 번거로운 작업을 제거함으로써 작업자의 작업 집중도를 제고할 수 있는 효과를 제공한다. 또한, 본 발명은 작업자의 작업 집중도를 제고함으로써 발파 작업의 안정성과 더불어 공사 품질 향상, 공사비 절감, 공기 단축 등 경제성을 제고하는 효과를 제공하게 된다.In general, blasting work using explosives requires very high precision. Improper blasting construction that goes against the basic design principles increases the risk of safety accidents, can cause overburden, residual holes, and various other negative consequences. These negative consequences result in significant economic losses. Blasting work includes drilling work to form a blast hole in the rock, charging work to install explosives and a co-bottom detonator in the blast hole, and connection work to connect a connecting detonator such as a starter to a detonator or blaster at the end of the tunnel. Generally, multiple workers are required for blasting work, and charging and connection work are usually performed simultaneously. However, at this time, the charging work requires a high degree of concentration, whereas the connection work is a very cumbersome work that involves installing blast busbars or signal tubes. The complexity of the connection operation has a very inadequate effect on maintaining the concentration of the charging operation. Decreased concentration in charging work can lead to various complex problems, such as increased vibration and noise during blasting, increased damage to the host rock and overburden caused by blasting, excessive residual hole generation, and increased risk of rockfall accidents. The present invention provides the effect of improving the worker's work concentration by eliminating the cumbersome work involved in blasting work. In addition, the present invention provides the effect of improving the safety of blasting work by improving the worker's work concentration, as well as improving economic efficiency, such as improving construction quality, reducing construction costs, and shortening the construction period.
첨부된 도면은 본 발명의 실시 예를 설명하기 위한 것이다. 따라서 실시 예의 효과적인 설명을 위해서 일부 구성이 과장되게 묘사되거나 생략될 수 있음을 이해하여야 할 것이다.The attached drawings are for explaining embodiments of the present invention. Therefore, in order to effectively explain the embodiments, it should be understood that some components may be exaggeratedly described or omitted.
도 1은 종래의 발파 시스템의 구성을 나타낸 구성도.1 is a diagram showing the configuration of a conventional blasting system.
도 2는 종래의 발파 시스템의 다른 구성 예를 나타낸 구성도.Figure 2 is a configuration diagram showing another configuration example of a conventional blasting system.
도 3은 본 발명의 일 실시 예에 따른 원격 발파 시스템의 구성을 나타낸 구성도.Figure 3 is a configuration diagram showing the configuration of a remote blasting system according to an embodiment of the present invention.
도 4는 도 3에서 기폭기(10)의 외관 형상의 일례를 나타낸 사시도.FIG. 4 is a perspective view showing an example of the external shape of the detonator 10 in FIG. 3.
도 5는 도 4에서 점화기(150)의 선 A-A'에 따른 단면 구성을 나타낸 단면도.FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the igniter 150 along line A-A' in FIG. 4.
도 6은 기폭기(10)의 내부 회로 구성을 나타낸 구성도.Figure 6 is a configuration diagram showing the internal circuit configuration of the detonator 10.
도 7은 도 3에서 발파기(20)의 외관 형상의 일례를 나탄내 사시도.FIG. 7 is a perspective view showing an example of the external shape of the blaster 20 in FIG. 3.
도 8은 발파기(20)의 내부 회로 구성을 나타낸 블록구성도.Figure 8 is a block diagram showing the internal circuit configuration of the blaster 20.
상기 목적을 실현하기 위한 본 발명의 제1 관점에 따른 원격 발파 시스템은 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서, 기폭기와 발파기를 구비하여 구성되고, 상기 기폭기는 뇌관과의 물리적 연결을 위한 연결수단을 결합하기 위한 점화기를 구비하고, 상기 연결수단은 기폭기로부터 뇌관으로 기폭 에너지를 전달하며, 상기 기폭기와 발파기는 무선으로 결합되고, 상기 기폭기는 제1 동작전원을 공급하기 위한 제1 전원수단과, 제1 제어수단에 의해 구동되고 상기 점화기에 기폭 전압을 공급하는 기폭수단, 발파기와 네트워크 페어링 동작을 실행하고 발파기로부터의 제어 명령에 따라 상기 기폭수단을 구동 제어하는 제1 제어수단 및, 상기 발파기와 통신을 실행하기 위한 제1 통신수단을 구비하여 구성되며, 상기 발파기는 제2 동작전원을 공급하기 위한 제2 전원수단과, 충전 버튼 또는 발파 버튼을 포함하는 입력수단, 기폭기와 통신을 실행하기 위한 제2 통신수단 및, 상기 제2 통신수단을 통해 상기 기폭기와 네트워크 페어링 동작을 실행하고, 상기 입력수단의 조작에 대응하여 기폭기에 제어 명령을 전송하는 제2 제어수단을 구비하여 구성되고, 상기 제어 명령에는 충전 명령 또는 발파 명령이 포함되고, 상기 제2 제어수단은 발파기와 기폭기의 거리가 안전거리 미만이거나, 기폭기로부터의 전파 수신감도가 기준 레벨 미만인 경우에는 기폭기에 대해 충전 명령 또는 발파 명령을 전송하지 않는 것을 특징으로 한다.A remote blasting system according to the first aspect of the present invention for realizing the above object is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, wherein the detonator is for physical connection with the detonator. It has an igniter for coupling the connecting means, the connecting means transmits detonation energy from the detonator to the detonator, the detonator and the blaster are wirelessly coupled, and the detonator is provided with a first power source for supplying the first operating power. means, a detonating means driven by the first control means and supplying a detonating voltage to the igniter, a first control means executing a network pairing operation with the blaster and controlling the operation of the detonation means according to a control command from the blaster; , It is configured to include a first communication means for communicating with the blaster, wherein the blaster communicates with a second power means for supplying a second operating power, an input means including a charging button or a blast button, and a detonator. It is configured to include a second communication means for executing a network pairing operation with the detonator through the second communication means and a second control means for transmitting a control command to the detonator in response to the operation of the input means. The control command includes a charging command or a blasting command, and the second control means charges the detonator when the distance between the blaster and the detonator is less than the safe distance or the radio wave reception sensitivity from the detonator is less than the reference level. Characterized in that no command or blast command is transmitted.
또한, 상기 발파기와 기폭기는 로라 통신을 통해 결합되는 것을 특징으로 한다.In addition, the blaster and the detonator are characterized in that they are coupled through roller communication.
또한, 상기 연결수단은 시그널 튜브이고, 상기 점화기는 내부가 길이 방향으로 중공되고 외주면에 상기 연결수단이 끼움 결합되는 결합구와, 상기 결합구의 내측으로 삽입됨과 더불어 결합구의 내주면과 이격되게 배치되는 리드선을 구비하며, 상기 결합구와 리드선은 도전성 재질로 구성되고, 기폭전압이 인가되면 결합구와 리드선 사이에 스파크가 발생되는 것을 특징으로 한다.In addition, the connecting means is a signal tube, and the igniter includes a coupler that is hollow on the inside in the longitudinal direction and into which the connecting means is fitted on the outer peripheral surface, and a lead wire that is inserted into the inside of the coupler and is arranged to be spaced apart from the inner peripheral surface of the coupler. The coupler and the lead wire are made of a conductive material, and when a detonation voltage is applied, a spark is generated between the coupler and the lead wire.
또한, 상기 기폭수단은 상기 제1 제어수단에 의해 구동되고 상기 점화기로 기폭전압을 공급하기 위한 기폭전압 출력부와, 기폭전압을 충전하기 위한 충전부 및, 상기 제1 제어수단에 의해 구동되고 상기 제1 동작전원을 승압하여 상기 충전부에 기폭전압을 충전하는 승압부를 구비하고, 상기 기폭전압 출력부는 상기 점화기와 전기적으로 결합되는 제1 및 제2 기폭전압 출력단을 구비하고, 상기 제1 기폭전압 출력단은 상기 충전부에 전기적으로 결합되며, 상기 제1 제어수단에 의해 구동되고 상기 제2 기폭전압 출력단을 제1 기폭전압 출력단 또는 접지 측과 전기적으로 결합하는 스위칭부를 구비하여 구성되는 것을 특징으로 한다.In addition, the detonation means is driven by the first control means and includes a detonation voltage output unit for supplying detonation voltage to the igniter, a charging unit for charging the detonation voltage, and a detonation voltage output unit that is driven by the first control means and is driven by the first control means. 1 A booster unit that boosts the operating power to charge the charging unit with a detonation voltage, the detonation voltage output unit has first and second detonation voltage output terminals electrically coupled to the igniter, and the first detonation voltage output terminal is It is electrically coupled to the charging unit, driven by the first control means, and is characterized by comprising a switching unit that electrically couples the second detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
또한, 상기 기폭수단은 상기 충전부의 충전전압 레벨을 검출하기 위한 충전전압 검출부를 구비하는 것을 특징으로 한다.In addition, the detonating means is characterized by having a charging voltage detection unit for detecting the charging voltage level of the charging unit.
또한, 상기 기폭수단은 상기 제1 제어수단에 의해 구동됨과 더불어 상기 충전부의 충전전원을 방전하기 위한 방전부를 구비하고, 상기 방전부는 상기 충전부의 충전단을 접지 측과 전기적으로 결합하기 위한 전류 경로를 포함하는 것을 특징으로 한다.In addition, the detonating means is driven by the first control means and includes a discharging unit for discharging the charging power of the charging unit, and the discharging unit provides a current path for electrically coupling the charging end of the charging unit with the ground side. It is characterized by including.
또한, 상기 제1 제어수단은 상기 제1 또는 제2 기폭전압 출력단의 전압 레벨을 검출하여 기폭이 실행되었는지의 여부를 판정하는 것을 특징으로 한다.Additionally, the first control means detects the voltage level of the first or second detonation voltage output terminal to determine whether detonation has been performed.
또한, 상기 발파기는 디스플레이 수단을 구비하는 것을 특징으로 한다.Additionally, the blaster is characterized by having a display means.
또한, 상기 제2 제어수단은 상기 디스플레이 수단을 통해 발파기와 기폭기 사이의 거리 정보를 제공하는 것을 특징으로 한다.In addition, the second control means provides distance information between the blaster and the detonator through the display means.
또한, 상기 제2 제어수단은 상기 디스플레이 수단을 통해 기폭기로부터의 전파 수신감도를 제공하는 것을 특징으로 한다.Additionally, the second control means provides sensitivity for receiving radio waves from the detonator through the display means.
또한, 상기 제2 제어수단은 작업자가 충전 버튼의 조작을 중지하면 기폭기에 대해 충전중지 명령을 전송하고 상기 제2 제어수단은 충전중지 명령이 수신되면 상기 승압부의 구동을 중지함과 더불어 방전부를 구동하는 것을 특징으로 한다.In addition, the second control means transmits a charge stop command to the detonator when the operator stops operating the charge button, and when the charge stop command is received, the second control means stops driving the booster unit and drives the discharge unit. It is characterized by:
또한, 상기 발파기는 발파 정보를 저장하기 위한 데이터 저장수단을 구비하고, 상기 발파 정보는 발파 일자, 기폭기 아이디, 발파기와 기폭기 사이의 거리 정보, 기폭기로부터의 전파 수신감도 중 적어도 하나를 포함하며, 상기 제2 제어수단은 발파 정보를 상기 디스플레이 수단을 통해 제공하는 것을 특징으로 한다.In addition, the blaster is provided with a data storage means for storing blasting information, and the blasting information includes at least one of a blasting date, a detonator ID, distance information between the blaster and the detonator, and radio wave reception sensitivity from the detonator. And the second control means provides blasting information through the display means.
또한, 상기 발파기는 외부 장치와 유선 또는 무선을 통해 통신을 실행하기 위한 제3 통신수단을 추가로 구비하여 구성되는 것을 특징으로 한다.In addition, the blaster is characterized by being additionally provided with a third communication means for communicating with an external device through wired or wireless communication.
또한, 상기 외부 장치는 발파기에 대해 발파에 사용할 기폭기의 아이디 정보를 제공하고, 상기 제2 제어수단은 상기 외부 장치에 의해 제공된 아이디 정보를 갖는 기폭에 대해서만 네트워크 페어링을 실행하는 것을 특징으로 한다.In addition, the external device provides ID information of a detonator to be used for blasting to the blaster, and the second control means performs network pairing only for detonators whose ID information is provided by the external device.
또한, 상기 기폭기는 아이디 정보를 제공하기 위한 정보 표시수단을 포함하고, 상기 정보 표시수단은 바코드 또는 QR 코드 정보를 포함하며, 상기 발파기는 상기 정보 표시수단을 판독하기 위한 정보 판독수단을 구비하는 것을 특징으로 한다.In addition, the detonator includes information display means for providing ID information, the information display means includes barcode or QR code information, and the blaster includes information reading means for reading the information display means. It is characterized by
또한, 상기 발파기와 기폭기 사이에 한 개 이상의 중계기가 추가로 구비되는 것을 특징으로 한다.In addition, one or more repeaters are additionally provided between the blaster and the detonator.
또한, 상기 기폭기는 기폭 동작의 실행 후에는 동작금지 상태로 설정되는 것을 특징으로 한다.Additionally, the detonator is characterized in that it is set to an operation-inhibited state after execution of the detonation operation.
본 발명의 제2 관점에 따른 원격 발파 시스템은 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서, 기폭기와 발파기를 구비하여 구성되고, 상기 기폭기는 뇌관과의 물리적 연결을 위한 연결수단을 결합하기 위한 점화기를 구비하고, 상기 연결수단은 기폭기로부터 뇌관으로 기폭 에너지를 전달하며, 상기 기폭기와 발파기는 무선으로 결합되고, 상기 기폭기는 제1 동작전원을 공급하기 위한 제1 전원수단과, 제1 제어수단에 의해 구동되고 상기 점화기에 기폭 전압을 공급하는 기폭수단, 발파기와 네트워크 페어링 동작을 실행하고 발파기로부터의 제어 명령에 따라 상기 기폭수단을 구동 제어하는 제1 제어수단 및, 상기 발파기와 통신을 실행하기 위한 제1 통신수단을 구비하여 구성되며, 상기 발파기는 제2 동작전원을 공급하기 위한 제2 전원수단과, 충전 버튼 또는 발파 버튼을 포함하는 입력수단, 기폭기와 통신을 실행하기 위한 제2 통신수단 및, 상기 제2 통신수단을 통해 상기 기폭기와 네트워크 페어링 동작을 실행하고, 상기 입력수단의 조작에 대응하여 기폭기에 제어 명령을 전송하는 제2 제어수단을 구비하여 구성되고, 상기 기폭수단은 상기 제1 제어수단에 의해 구동되고 상기 점화기로 기폭전압을 공급하기 위한 기폭전압 출력부와, 기폭전압을 충전하기 위한 충전부 및, 상기 제1 제어수단에 의해 구동되고 상기 제1 동작전원을 승압하여 상기 충전부에 충전하는 승압부를 구비하며, 상기 기폭전압 출력부는 상기 점화기와 전기적으로 결합되는 제1 및 제2 기폭전압 출력단을 구비하고, 상기 제1 기폭전압 출력단은 상기 충전부에 전기적으로 결합되며, 상기 제1 제어수단에 의해 구동되고 상기 제2 기폭전압 출력단을 제1 기폭전압 출력단 또는 접지 측과 전기적으로 결합하는 스위칭부를 구비하여 구성되는 것을 특징으로 한다.The remote blasting system according to the second aspect of the present invention is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, wherein the detonator is configured to combine a connecting means for physical connection with the detonator. It has an igniter, the connecting means transmits detonation energy from the detonator to the detonator, the detonator and the blaster are wirelessly coupled, the detonator includes a first power means for supplying a first operating power, and a first control device. Detonating means driven by means and supplying a detonating voltage to the igniter, first control means executing a network pairing operation with the blaster and controlling the driving of the detonating means according to a control command from the blaster, and communicating with the blaster. It is configured to include a first communication means for executing the blast, a second power means for supplying a second operating power, an input means including a charging button or a blast button, and a second communication means for executing communication with the detonator. It is configured to include a communication means and a second control means for executing a network pairing operation with the detonator through the second communication means and transmitting a control command to the detonator in response to the operation of the input means, wherein the detonation means a detonation voltage output unit driven by the first control means for supplying detonation voltage to the igniter, a charging part for charging the detonation voltage, and driven by the first control means to boost the first operating power source. It has a voltage booster that charges the charging unit, and the detonation voltage output unit has first and second detonation voltage output terminals that are electrically coupled to the igniter, and the first detonation voltage output terminal is electrically coupled to the charging section, It is driven by a first control means and is characterized by comprising a switching unit that electrically couples the second detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
본 발명의 제3 관점에 따른 원격 발파 시스템은 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서, 기폭기와 발파기를 구비하여 구성되고, 상기 기폭기와 발파기는 무선으로 결합되며, 상기 기폭기는 하우징을 구비하고, 상기 하우징에는 뇌관과 물리적으로 결합됨과 더불어 뇌관에 기폭 에너지를 전달하기 위한 연결수단을 장치 내측으로 인입하기 위한 인입구가 구비되며, 상기 하우징의 내부에는 상기 인입구와 대응하는 위치에 상기 연결수단을 결합하기 위한 점화기가 구비되고, 상기 하우징은 상기 점화기와 대응하는 위치에 투명창이 마련되는 것을 특징으로 한다.The remote blasting system according to the third aspect of the present invention is a blasting system that performs blasting by detonating a detonator, and is comprised of a detonator and a blaster, the detonator and the blaster are wirelessly coupled, and the detonator has a housing. In addition to being physically coupled to the detonator, the housing is provided with an inlet for inserting a connection means for transmitting detonation energy to the detonator into the device, and the connection means is provided inside the housing at a position corresponding to the inlet. An igniter for coupling is provided, and the housing is characterized in that a transparent window is provided at a position corresponding to the igniter.
또한, 상기 하우징의 외측에는 아이디 정보를 제공하기 위한 정보 표시수단이 구비되고, 상기 정보 표시수단은 바코드 또는 QR 코드 정보를 포함하는 것을 특징으로 한다.Additionally, an information display means for providing ID information is provided on the outside of the housing, and the information display means includes barcode or QR code information.
이하, 도면을 참조하여 본 발명에 따른 실시 예를 설명한다. 다만, 이하에서 설명하는 실시 예는 본 발명의 하나의 바람직한 구현 예를 예시적으로 나타낸 것으로서, 이러한 실시 예의 예시는 본 발명의 권리 범위를 제한하기 위한 것이 아니다. 본 발명은 그 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변형시켜 실시할 수 있다.Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. However, the examples described below illustratively show one preferred embodiment of the present invention, and the examples are not intended to limit the scope of the present invention. The present invention can be implemented with various modifications without departing from its technical spirit.
도 3은 본 발명의 일 실시 예에 따른 원격 발파 시스템의 구성을 나타낸 시스템 구성도이다. 본 실시 예에서 원격 발파 시스템은 뇌관(1)과 기폭기(10) 및 발파기(20)를 구비한다. 여기서 뇌관(1)으로서는 바람직하게 비전기식 뇌관이 채용된다. 뇌관(1)과 기폭기(10)는 통상적인 방법을 통해 결합된다. 뇌관(1)과 기폭기(10)는 예컨대 도화선이나 시그널 튜브(4) 등의 기폭 에너지 전달수단을 통해 물리적으로 결합된다. 또한, 도면에서 뇌관(1)으로서는 공저 뇌관이나 연결 뇌관이 적용될 수 있다. 본 발명이 적용되는 뇌관(1)의 용도나 설치 위치는 특정되지 않는다. 본 발명에서 뇌관(1)으로서는 시그널 튜브(4) 등의 기폭 에너지 전달수단을 통해 물리적으로 결합되고, 기폭기(10)로부터의 기폭 에너지에 의해 기폭될 수 있는 어떠한 뇌관도 동일한 방식으로 적용될 수 있다.Figure 3 is a system configuration diagram showing the configuration of a remote blasting system according to an embodiment of the present invention. In this embodiment, the remote blasting system includes a detonator (1), a detonator (10), and a blaster (20). Here, as the detonator 1, a non-electric detonator is preferably employed. The detonator 1 and the detonator 10 are combined through a conventional method. The detonator 1 and the detonator 10 are physically coupled through a detonation energy transfer means such as a fuse or signal tube 4. Additionally, as the detonator 1 in the drawing, a co-authored detonator or a connected detonator may be applied. The purpose or installation location of the detonator 1 to which the present invention is applied is not specified. In the present invention, as the detonator 1, any detonator that is physically coupled through a detonation energy transfer means such as the signal tube 4 and can be detonated by detonation energy from the detonator 10 can be applied in the same manner. .
한편, 기폭기(10)와 발파기(20)는 무선으로 결합된다. 발파기(20)는 기폭기(10)로부터 일정 거리 이상 떨어진 위치에서 기폭기(10)를 작동시키기 위한 것이다. 기폭기(10)와 발파기(20)와의 통신 방식은 특정되지 않는다. 본 발명의 바람직한 구현 예에서 기폭기(10)와 발파기(20)는 로라(LoRa: Long Range) 통신을 통해 결합된다. 로라 통신은 ISM(Industry-Science-Medical) 밴드의 주파수 대역(한국의 경우 920.9 ~ 923.3 MHz)을 사용하고, 16km 안팎의 장거리 무선 통신과 저전력 통신이 가능하다. 또한, 본 발명의 바람직한 구현 예에서 기폭기(10)와 발파기(20)의 사이에는 양 기기 사이의 보다 원활한 통신을 위해 하나 이상의 중계기가 구비될 수 있다. 중계기는 필요에 따라 선택적으로 채용될 수 있다.Meanwhile, the detonator 10 and the blaster 20 are wirelessly coupled. The blaster 20 is used to operate the detonator 10 at a location that is a certain distance or more away from the detonator 10. The communication method between the detonator 10 and the blaster 20 is not specified. In a preferred embodiment of the present invention, the detonator 10 and the blaster 20 are coupled through LoRa (Long Range) communication. LoRa communication uses the frequency band of the ISM (Industry-Science-Medical) band (920.9 ~ 923.3 MHz in Korea) and is capable of long-distance wireless communication and low-power communication of around 16km. Additionally, in a preferred embodiment of the present invention, one or more repeaters may be provided between the detonator 10 and the blaster 20 for smoother communication between the two devices. A repeater may be selectively employed as needed.
상기한 발파 시스템에 있어서는 우선 발파기(20)와 기폭기(10)를 물리적으로 연결하기 위한 발파 모선이 제거된다. 발파 모선이 제거되면, 발파 작업에 앞서 발파 모선을 준비하거나 관리하기 위한 비용과 시간을 절감할 수 있게 되고, 발파 작업 시에 100m 이상의 거리에 발파 모선을 배치하거나 그를 다시 회수해야하는 번거로운 작업이 제거된다.In the blasting system described above, first, the blasting busbar for physically connecting the blaster 20 and the detonator 10 is removed. When the blasting mothership is removed, it is possible to reduce the cost and time to prepare or manage the blasting mothership prior to blasting work, and the cumbersome task of placing or retrieving the blasting mothership at a distance of 100 m or more during blasting work is eliminated. .
또한, 상기한 발파 시스템에 있어서는 발파기(20)와 기폭기(10)가 장거리 통신이 가능한 무선 통신을 통해서 결합되므로 발파기(20)와 기폭기(10) 사이의 거리를 임의적으로 충분히 길게 설정할 수 있게 된다. 즉, 발파기(20)와 기폭기(10) 사이의 통신 거리를 이용하여 작업자의 안전거리를 용이하면서도 충분하게 확보할 수 있게 된다. 따라서, 작업자의 안전을 확실하게 보장할 수 있게 된다.In addition, in the blasting system described above, the blaster 20 and the detonator 10 are coupled through wireless communication capable of long-distance communication, so the distance between the blaster 20 and the detonator 10 is arbitrarily set sufficiently long. It becomes possible. In other words, it is possible to easily and sufficiently secure the safety distance for workers by using the communication distance between the blaster 20 and the detonator 10. Therefore, the safety of workers can be reliably guaranteed.
또한, 상기한 시스템은 발파기(20)와 기폭기(10) 사이의 무선 결합을 통해 안전거리를 확보할 수 있게 되므로, 기폭기(10)를 뇌관(1)에 근접하게 설치하는 것이 가능해지게 된다. 따라서 200~300m 이상의 안전거리 확보를 위해 시그널 튜브(4)나 스타터 등의 연결 뇌관을 사용해야 하는 불리함을 제거할 수 있게 된다.In addition, the above system can secure a safe distance through wireless coupling between the blaster 20 and the detonator 10, making it possible to install the detonator 10 close to the detonator 1. do. Therefore, it is possible to eliminate the disadvantage of having to use a connecting detonator such as a signal tube (4) or a starter to secure a safety distance of 200 to 300 m or more.
특히, 상기한 시스템은 발파 모선이나 시그널 튜브의 설치 및 회수 작업을 제거함으로써 발파 작업에 따른 작업자의 작업 효율과 집중도를 제고할 수 있게 된다. 주지된 바와 같이, 발파 작업은 암반 등에 발파공을 형성하는 천공 작업과, 발파공에 폭약과 공저 뇌관을 설치하는 장약 작업, 공저 뇌관에 기폭기와 발파기를 연결하는 연결 작업을 포함한다. 일반적으로 발파 작업에는 다수의 작업자가 요구되고, 통상 장약 작업과 연결 작업은 동시적으로 실행된다. 그런데, 이때 장약 작업은 높은 집중도가 요구되는데 대하여, 연결 작업은 200~300m 이상의 거리에 발파 모선과 시그널 튜브를 설치하는 매우 번거로운 작업을 포함한다. 이러한 연결 작업의 번잡성은 장약 작업의 집중도 유지에 부적절한 영향을 제공할 수 있다. 장약 작업에서의 집중도 저하는 발파 시의 진동 및 소음 증가, 발파에 의한 모암 손상과 여굴의 증가, 잔류공 발생, 낙석 사고의 위험 증가 등 여러가지 복합적인 문제를 초래할 수 있다. 상기 시스템은 발파 작업에 수반되는 번거로운 작업을 제거함으로써 작업자의 작업 집중도를 제고할 수 있는 효과를 제공한다. 그리고 이러한 작업 내용의 단순화와 이를 통한 작업자의 집중도 제고는 발파 작업의 안정성을 도모하고 공사 품질 향상, 공사비 절감, 공기 단축 등 많은 긍정적 효과를 제공할 수 있다.In particular, the above system can improve the worker's work efficiency and concentration during blasting work by eliminating the installation and recovery work of the blasting bus or signal tube. As is well known, blasting work includes drilling work to form a blast hole in rock, etc., charging work to install explosives and a co-bottom detonator in the blast hole, and connection work to connect the detonator and blaster to the co-bottom detonator. Generally, multiple workers are required for blasting work, and charging and connection work are usually performed simultaneously. However, at this time, the charging work requires a high level of concentration, while the connection work involves the very cumbersome work of installing the blast bus bar and signal tube at a distance of 200 to 300 m or more. The complexity of this connection operation may have an inadequate effect on maintaining the concentration of the charging operation. Decreased concentration in charging work can lead to various complex problems, such as increased vibration and noise during blasting, damage to the host rock and increased overbreak due to blasting, occurrence of residual holes, and increased risk of rockfall accidents. The system provides the effect of improving the worker's work concentration by eliminating the cumbersome work involved in blasting work. In addition, this simplification of work content and the improvement of workers' concentration can promote the stability of blasting work and provide many positive effects, such as improving construction quality, reducing construction costs, and shortening the construction period.
도 4는 기폭기(10)의 외관 형상의 일례를 나탄내 사시도이다. 기폭기(10)는 하우징(100)을 구비한다. 하우징(100)은 바람직하게 플라스틱 등의 합성수지로 구성된다. 하우징(100)의 재질과 형상은 특정되지 않는다. 하우징(100)의 외측에는 기폭기(10)의 동작을 온/오프 하기 위한 전원 스위치(110)가 구비된다. 또한, 하우징(100)의 일측면에는 시그널 튜브(4)를 하우징(100) 내측으로 삽입하여 기폭기(10)에 시그널 튜브(4)를 결합하기 위한 인입구(120)가 구비된다. 도면에 구체적으로 나타내지 않았으나 인입구(120)에는 바람직하게 착탈가능하게 마개가 구비된다. 인입구(120)의 내측에는 인입구(120)와 근접하면서 점화기(150)가 설치된다. 점화기(150)는 시그널 튜브(4)의 결합 및 기폭을 위한 것이다. 점화기(150)는 기판(160)에 설치되고, 점화기(150)의 일측, 즉 인입구(120)와 대향하는 측면에는 결합구(152)가 설치된다. 시그널 튜브(4)는 결합구(150)의 외측에 끼워지면서 결합된다.Figure 4 is a perspective view showing an example of the external shape of the detonator 10. The detonator 10 has a housing 100. The housing 100 is preferably made of synthetic resin such as plastic. The material and shape of the housing 100 are not specified. A power switch 110 is provided on the outside of the housing 100 to turn on/off the operation of the detonator 10. In addition, one side of the housing 100 is provided with an inlet 120 for inserting the signal tube 4 into the housing 100 and coupling the signal tube 4 to the detonator 10. Although not specifically shown in the drawings, the inlet 120 is preferably provided with a stopper that is detachable. Inside the inlet 120, an igniter 150 is installed close to the inlet 120. The igniter 150 is for coupling and detonating the signal tube (4). The igniter 150 is installed on the substrate 160, and a coupler 152 is installed on one side of the igniter 150, that is, the side opposite to the inlet 120. The signal tube 4 is fitted and coupled to the outside of the coupler 150.
도 5는 점화기(150)의 단면 구성을 나타낸 단면도로서, 이는 도 4에서 점화기(150)의 선 A-A'에 따른 단면도이다. 도면에서 점화기(150)는 몸체(151)를 구비한다. 본 실시 예에서 몸체(151)는 예컨대 합성수지 재질의 육면체 형상으로 이루어진다. 그러나 몸체(151)의 재질과 형상은 특정되지 않는다. 몸체(151)에는 수직 방향으로 체결공(151a)이 마련된다. 체결공(151a)에는 체결부재로서 예컨대 스크류(170)가 체결된다. 점화기(150)는 스크류(170)에 의해 기판(160)에 장착된다. 몸체(151)의 일측, 즉 인입구(120)와 대향하는 측면에는 삽입홈(151b)이 마련된다. 삽입홈(151b)에는 결합구(152)가 삽입된다.FIG. 5 is a cross-sectional view showing the cross-sectional configuration of the igniter 150, which is a cross-sectional view taken along line A-A' of the igniter 150 in FIG. 4. In the drawing, the igniter 150 has a body 151. In this embodiment, the body 151 is made of, for example, a synthetic resin material and has a hexahedral shape. However, the material and shape of the body 151 are not specified. A fastening hole 151a is provided in the body 151 in the vertical direction. For example, a screw 170 is fastened to the fastening hole 151a as a fastening member. The igniter 150 is mounted on the board 160 by a screw 170. An insertion groove 151b is provided on one side of the body 151, that is, on the side opposite to the inlet 120. The coupler 152 is inserted into the insertion groove 151b.
결합구(152)는 대롱 형상, 즉 길이 방향으로 중공된 원통 형상으로 이루어진다. 결합구(152)의 외경은 시그널 튜브(4)의 내경과 상응하는 크기로 형성되고, 일측 단부, 즉 시그널 튜브(4)가 결합되는 단부에는 바람직하게 경사부(152a)가 구비된다. 경사부(152a)는 결합구(152)에 시그널 튜브(4)를 용이하게 결합하기 위한 것이다. 결합구(152)는 구리 등의 도전성 재질로 구성된다. 바람직하게 결합구(152)는 삽입홈(151b)에 예컨대 접착제 등을 통해 고정적으로 결합되거나 삽입홈(151b)에 끼움 결합된다. 또한, 이때 결합구(152)의 타측 단부, 즉 삽입홈(151b)에 삽입되는 단부에도 바람직하게 경사부가 구비될 수 있다.The coupler 152 has a barrel shape, that is, a cylindrical shape that is hollow in the longitudinal direction. The outer diameter of the coupler 152 is formed to a size corresponding to the inner diameter of the signal tube 4, and an inclined portion 152a is preferably provided at one end, that is, the end where the signal tube 4 is coupled. The inclined portion 152a is for easily coupling the signal tube 4 to the coupler 152. The coupler 152 is made of a conductive material such as copper. Preferably, the coupler 152 is fixedly coupled to the insertion groove 151b using, for example, an adhesive, or is fitted into the insertion groove 151b. Additionally, at this time, the other end of the coupler 152, that is, the end inserted into the insertion groove 151b, may also preferably be provided with an inclined portion.
또한, 점화기(150)의 몸체(151)에는 삽입홈(151b)과 연통되면서 삽입공(151c)이 형성된다. 삽입공(151c)에는 리드선(153)이 삽입되어 설치된다. 리드선(153)은 절연재로 구성되는 피복층(153a)의 내측에 구리 등의 도전성 재질로 구성되는 심선(153b)이 구비된 구성으로 이루어진다. 리드선(153)은 삽입공(151c)을 통해 삽입홈(151b)의 내측으로 삽입된다. 리드선(153)은 종단부가 바람직하게 결합구(152)의 단부와 인접하게 위치하도록 배치되고, 일정 길이만큼 피복층(153a)이 제거되어 심선(153b)이 외측으로 노출된다. 그리고 노출된 심선(153)은 결합구(152)의 내주면과 이격되게 배치된다.Additionally, an insertion hole 151c is formed in the body 151 of the igniter 150 while communicating with the insertion groove 151b. A lead wire 153 is inserted and installed into the insertion hole 151c. The lead wire 153 is composed of a core wire 153b made of a conductive material such as copper provided inside a covering layer 153a made of an insulating material. The lead wire 153 is inserted into the insertion groove 151b through the insertion hole 151c. The lead wire 153 is preferably disposed so that its terminal end is located adjacent to the end of the coupler 152, and the covering layer 153a is removed by a certain length to expose the core wire 153b to the outside. And the exposed core wire 153 is arranged to be spaced apart from the inner peripheral surface of the coupler 152.
상기 결합구(152)의 외측에는 시그널 튜브(4)가 끼움 결합된다. 상기한 바와 같이, 시그널 튜브(4)는 합성수지로 이루어진 튜브(4a)의 내주면에 화약에 의한 도포층(4b)이 형성된 구성으로 이루어진다. 도면에 구체적으로 나타내지 않았으나 점화기(150)의 결합구(152)와 리드선(153)은 내부 회로부, 구체적으로 이후에 설명할 기폭 파트(12)와 전기적으로 결합된다. 뇌관(1)의 기폭 시에 결합구(152)와 리드선(153)에는 고전압이 인가되고, 그 고전압에 의해 결합구(152)와 리드선(153)의 심선(153b) 사이에는 스파크가 발생된다. 결합구(152)에서 발생되는 스파크는 결합구(152)의 단부와 인접하게 위치하는 도포층(4b)의 화약을 기폭시키게 되고, 이러한 기폭은 도포층(4b)을 따라가면서 연쇄적으로 이루어지게 된다. 이에 따라 결합구(152)에서 스파크에 의해 생성된 기폭 에너지가 시그널 튜브(4)를 통해 뇌관(1) 측으로 폭굉되어 뇌관(1)을 기폭시키게 된다.A signal tube 4 is fitted to the outside of the coupler 152. As described above, the signal tube 4 is composed of a coating layer 4b made of gunpowder formed on the inner peripheral surface of the tube 4a made of synthetic resin. Although not specifically shown in the drawing, the coupler 152 and the lead wire 153 of the igniter 150 are electrically coupled to the internal circuit part, specifically the detonator part 12, which will be explained later. When the detonator 1 is detonated, a high voltage is applied to the coupler 152 and the lead wire 153, and the high voltage generates a spark between the coupler 152 and the core wire 153b of the lead wire 153. The spark generated from the coupler 152 detonates the gunpowder in the coating layer 4b located adjacent to the end of the coupler 152, and this detonation occurs in succession along the application layer 4b. do. Accordingly, the detonation energy generated by the spark in the coupler 152 is detonated toward the detonator 1 through the signal tube 4 to detonate the detonator 1.
도 4에서 하우징(100)의 점화기(150)와 대응하는 위치에는 바람직하게 아크릴 등의 투명한 재질로 구성되는 투명창(100a)이 마련된다. 투명창(100a)은 작업자가 결합구(152)의 형상 및 위치를 시각적으로 인식하여 결합구(152)에 대한 시그널 튜브(4)의 끼움 작업을 용이하게 실행할 수 있도록 하기 위한 것이다. 투명창(100a)은 필요에 따라 제거될 수 있다. 또한, 본 발명의 다른 구현 예에서 결합구(152)는 단부가 인입구(120)나 그 외측으로 돌출되게 설치되어 작업자가 시그널 튜브(4)를 용이하게 결합할 수 있도록 구성된다.In FIG. 4, a transparent window 100a, preferably made of a transparent material such as acrylic, is provided at a position corresponding to the igniter 150 of the housing 100. The transparent window 100a is intended to allow the operator to visually recognize the shape and position of the coupler 152 and easily insert the signal tube 4 into the coupler 152. The transparent window 100a can be removed as needed. In addition, in another embodiment of the present invention, the coupler 152 is installed so that its end protrudes toward the inlet 120 or the outside thereof so that the operator can easily couple the signal tube 4.
또한, 하우징(100)의 외측에는 동작 상태 표시수단으로서 예컨대 LED(130)가 구비된다. LED(130)는 작업자에게 기폭기(4)의 동작 상태를 알려주기 위한 것이다. LED(130)는 기폭기(10)의 동작 상태에 따라 온/오프 구동되거나 점멸 구동된다. 또한, 하우징(100)의 외측면에는 정보 표시부(140)가 구비된다. 이 정보 표시부(140)는 예컨대 바코드나 QR 코드(Quick Response code) 등의 정보를 포함한다. 바람직하게 기폭기(10)는 일회용으로서 사용된다. 상기 정보 표시부(140)는 발파기(20)에 대해 기폭기(10)를 등록하기 위한 예컨대 아이디(ID: Identifier) 등의 식별 정보나 그 밖의 다른 등록 정보를 포함한다.In addition, for example, an LED 130 is provided on the outside of the housing 100 as an operating status display means. The LED 130 is intended to inform the operator of the operating status of the detonator 4. The LED 130 is driven on/off or blinked depending on the operating state of the detonator 10. Additionally, an information display unit 140 is provided on the outer surface of the housing 100. This information display unit 140 includes information such as a barcode or QR code (Quick Response code), for example. Preferably the detonator 10 is disposable. The information display unit 140 includes identification information such as an ID (ID) for registering the detonator 10 with respect to the blaster 20 or other registration information.
또한, 도면에 구체적으로 나타내지 않았으나, 하우징(100)에는 기폭기(10)에 동작전원을 공급하는 배터리를 수납하기 위한 배터리 수납부가 구비되고, 배터리 수납부에는 개폐가 가능하게 덮개가 마련된다.In addition, although not specifically shown in the drawings, the housing 100 is provided with a battery compartment for storing a battery that supplies operating power to the detonator 10, and a cover is provided on the battery compartment to enable opening and closing.
도 4에서 기판(160)에는 기폭기(10)의 동작을 위한 회로부가 구비된다. 도 6은 기폭기(10)의 동작 회로의 구성을 나타낸 구성도이다. 도면에서, 기폭기(10)는 전원부(11)와, 기폭 파트(12), 제어부(13) 및 통신부(14)를 구비한다. 전원부(11)는 장치 전체에 동작 전원(V1)을 공급하기 위한 것이다. 전원부(11)는 배터리를 구비하고, 전원부(11)의 출력단에는 전원 공급을 단속하기 위한 전원 스위치(110)가 마련된다.In FIG. 4, the board 160 is provided with a circuit unit for operating the detonator 10. Figure 6 is a configuration diagram showing the configuration of the operation circuit of the detonator 10. In the drawing, the detonator 10 includes a power supply unit 11, a detonation part 12, a control unit 13, and a communication unit 14. The power supply unit 11 is used to supply operating power V1 to the entire device. The power supply unit 11 includes a battery, and a power switch 110 is provided at the output terminal of the power supply unit 11 to control power supply.
기폭 파트(12)는 기본적으로 기폭전압 출력부(121)와, 충전부(122) 및 승압부(123)를 구비한다. 기폭전압 출력부(121)는 도 4 및 도 5에서 점화기(150)에 기폭 전압을 공급하기 위한 것이다. 이하에서는 설명의 편의성을 위해 기폭전압 출력부와 출력부를 혼용하기로 한다. 출력부(121)는 기폭전압을 출력하기 위한 제1 및 제2 출력단(VO1, VO2)을 구비한다. 이들 출력단(VO1, VO2)은 점화기(150)의 결합구(152) 및 리드선(153)과 각각 전기적으로 결합된다. 여기서 제1 출력단(VO1)은 충전부(122)와 전기적으로 결합되고, 제2 출력단(VO2)은 스위칭 회로(SW1)에 결합된다. 스위칭 회로(SW1)는 제어부(13)의 디지탈 출력단(P3)에 결합되어 제어부(13)에 의해 스위칭 구동된다, 스위칭 회로(SW1)는 제어부(13)로부터의 출력전압에 따라 제2 출력단(VO2)을 제1 출력단(VO1)에 결합하거나 접지시킨다. 스위칭 회로(SW1)의 구성은 특정되지 않는다. 본 실시 예에서 스위칭 회로(SW1)는 릴레이 스위치(RY1)를 구비하고, 릴레이 스위치(RY1)는 트랜지스터(T1)에 의해 구동된다. 릴레이 스위치(RY1)가 비구동상태, 즉 코일(L1)에 전류가 흐르지 않는 경우에는 릴레이 접점(a, b) 사이가 접속되고, 구동상태에서는 릴레이 접점(a, c) 사이가 접속된다. 릴레이 스위치(RY1)가 비구동상태에서는 제1 출력단(VO1)과 제2 출력단(VO2)이 릴레이 스위치(RY1)에 의해 단락되어 양 출력단(VO1, VO2) 사이의 전압이 항상 동일하게 설정된다. 즉, 릴레이 스위치(RY1)가 비구동상태에서는 점화기(150)의 결합구(152)와 리드선(153) 사이에 스파크가 발생되는 것이 확실하게 방지된다.The detonation part 12 basically includes a detonation voltage output unit 121, a charging unit 122, and a boosting unit 123. The detonation voltage output unit 121 is used to supply detonation voltage to the igniter 150 in FIGS. 4 and 5. Hereinafter, for convenience of explanation, the detonation voltage output unit and the output unit will be used interchangeably. The output unit 121 includes first and second output terminals VO1 and VO2 for outputting a detonation voltage. These output terminals VO1 and VO2 are electrically coupled to the coupler 152 and the lead wire 153 of the igniter 150, respectively. Here, the first output terminal (VO1) is electrically coupled to the charging unit 122, and the second output terminal (VO2) is coupled to the switching circuit (SW1). The switching circuit (SW1) is coupled to the digital output terminal (P3) of the control unit 13 and driven by switching by the control unit 13. The switching circuit (SW1) switches the second output terminal (VO2) according to the output voltage from the control unit 13. ) is coupled to or grounded to the first output terminal (VO1). The configuration of the switching circuit SW1 is not specified. In this embodiment, the switching circuit (SW1) includes a relay switch (RY1), and the relay switch (RY1) is driven by the transistor (T1). When the relay switch RY1 is in a non-driving state, that is, when no current flows through the coil L1, the relay contact points (a, b) are connected, and in the driving state, the relay contact points (a, c) are connected. When the relay switch RY1 is not driven, the first output terminal VO1 and the second output terminal VO2 are short-circuited by the relay switch RY1, so that the voltage between the two output terminals VO1 and VO2 is always set to be the same. That is, when the relay switch RY1 is in a non-driven state, sparks are reliably prevented from being generated between the coupler 152 and the lead wire 153 of the igniter 150.
충전부(122)는 출력부(121)로 고전압을 인가하기 위한 것으로서, 바람직하게 충방전용 콘덴서를 구비하여 구성된다. 승압부(123)는 전원전압(V1)을 승압하여 충전부(122)를 고전압으로 충전시키기 위한 것이다. 본 실시 예에서 승압부(123)는 트랜스포머(1230)와, 이 트랜스포머(1230)를 스위칭 구동하기 위한 MOS 트랜지스터(T2) 및, 역전류 방지용 다이오드(D1)를 구비하여 구성된다. 트랜지스터(T2)는 게이트가 제어부(13)의 디지탈 출력단(P1)에 결합되어 제어부(13)에 의해 스위칭 구동된다. 제어부(13)는 트랜지스터(T2)를 예컨대 30KHz의 속도로 스위칭 구동하여 충전부(122)에 예컨대 400~500V의 고전압을 충전하게 된다. 본 발명의 다른 구현 예에서 승압부(123)에는 발진수단이 구비될 수 있다. 이때 발진수단은 제어부(13)로부터의 제어신호에 따라 발진을 실행하고, 그 발진 출력은 트랜지스터(T2)의 게이트에 인가되어 트랜지스터(T2)를 스위칭 구동하게 된다. 승압부(123)의 구성은 특정되지 않고, 충전부(122)를 적절하게 충전시킬 수 있는 임의의 구성을 바람직하게 채용할 수 있다.The charging unit 122 is used to apply a high voltage to the output unit 121, and is preferably provided with a capacitor for charging and discharging. The boosting unit 123 is used to boost the power supply voltage (V1) and charge the charging unit 122 with a high voltage. In this embodiment, the booster 123 includes a transformer 1230, a MOS transistor (T2) for switching and driving the transformer 1230, and a diode (D1) for preventing reverse current. The gate of the transistor T2 is coupled to the digital output terminal (P1) of the control unit 13 and is switched and driven by the control unit 13. The control unit 13 switches and drives the transistor T2 at a rate of, for example, 30 KHz to charge the charging unit 122 with a high voltage of, for example, 400 to 500 V. In another embodiment of the present invention, the boosting unit 123 may be provided with an oscillation means. At this time, the oscillation means performs oscillation according to a control signal from the control unit 13, and the oscillation output is applied to the gate of the transistor T2 to drive the transistor T2 in switching. The configuration of the boosting unit 123 is not specified, and any configuration that can appropriately charge the charging unit 122 can be preferably employed.
기폭 파트(12)에는 바람직하게 충전전압 검출부(124)가 구비된다. 충전전압 검출부(124)는 충전부(122)와 병렬로 결합되는 저항 분압회로(R1, R2)를 구비한다. 저항 분압회로에서 저항(R1, R2)의 접속 노드는 전류 제한용 저항(R3)과 과전압 방지용 제너다이오드(Z1)를 통해서 제어부(13)의 아날로그 입력단(A1)에 결합된다. 여기서 저항 분압회로(R1, R2)는 충전부(122)에 충전되는 고전압을 제어부(13)에서 인식가능한 저전압으로 변환하기 위한 것이다.The detonation part 12 is preferably provided with a charging voltage detection unit 124. The charging voltage detection unit 124 includes a resistance voltage dividing circuit (R1, R2) coupled in parallel with the charging unit 122. In the resistor voltage divider circuit, the connection nodes of the resistors (R1, R2) are coupled to the analog input terminal (A1) of the control unit 13 through the current limiting resistor (R3) and the overvoltage prevention Zener diode (Z1). Here, the resistance voltage dividing circuits R1 and R2 are used to convert the high voltage charged in the charging unit 122 into a low voltage that can be recognized by the control unit 13.
또한, 기폭 파트(12)에는 상기 충전부(122)의 충전 전압을 방전하기 위한 방전부(125)가 구비된다. 방전부(125)는 충전부(122)의 전압 충전단, 즉 충방전용 콘덴서(122)의 정(+) 측 단자를 접지와 결합하기 위한 전류 경로를 포함한다. 이 전류 경로는 예컨대 충전부(122)와 병렬로 결합되고, 전류 제한용 저항(R6)과 트랜지스터(T3)를 구비한다. 저항(R6)은 충전부(122)로부터 접지로 과도한 방전 전류가 흐르는 것을 방지하고, 충전 전압의 방전 시간을 적절하게 설정하기 위한 것이다. 트랜지스터(T3)는 저항(R6)을 경유하는 전류 경로를 단속하기 위한 것이다. 트랜지스터(T3)의 게이트는 제어부(13)의 디지탈 출력단(P2)에 결합된다. 제어부(13)는 필요할 때 트랜지스터(T3)를 턴온시켜 충전부(122)의 충전 전압을 방전시키게 된다. 방전부(125)는 충전부(122)에 잔류된 충전 전압에 의해 기폭 동작이 부적절하게 실행되는 것을 방지하기 위한 것이다. 방전부(125)는 충전부(122)에 대한 충전이 종료되었거나 실행되고 있는 상태에서 작업자가 충전 동작을 중지하는 경우 등에 적절하게 구동된다.Additionally, the detonator part 12 is provided with a discharge unit 125 for discharging the charging voltage of the charging unit 122. The discharge unit 125 includes a current path for coupling the voltage charging end of the charging unit 122, that is, the positive (+) terminal of the charging and discharging condenser 122, with ground. This current path is, for example, coupled in parallel with the charging unit 122 and has a current limiting resistor R6 and a transistor T3. The resistor R6 is used to prevent excessive discharge current from flowing from the charging unit 122 to the ground and to appropriately set the discharge time of the charging voltage. The transistor T3 is for controlling the current path through the resistor R6. The gate of the transistor T3 is coupled to the digital output terminal (P2) of the control unit 13. When necessary, the control unit 13 turns on the transistor T3 to discharge the charging voltage of the charging unit 122. The discharge unit 125 is used to prevent the detonation operation from being improperly performed due to the charging voltage remaining in the charging unit 122. The discharging unit 125 is appropriately driven when the operator stops charging while charging of the charging unit 122 is completed or in progress.
또한, 기폭 파트(12)에는 바람직하게 시그널 튜브(4)가 정상적으로 기폭되었는지를 검출하기 위한 기폭 검출부(126)가 구비된다. 기폭 검출부(126)는 제어부(13)가 출력단(VO1 또는 VO2)의 전압 레벨을 인식하기 위한 것이다. 도면에서 출력부(121)의 제1 출력단(VO1)에는 저항 분압회로가 결합된다. 저항 분압회로는 제1 출력단(VO1)과 접지 사이에 직렬로 결합되는 저항(R7, R8)을 구비한다. 저항 분압회로(R7, R8)는 제1 출력단(VO1)의 전압 레벨을 제어부(13)가 인식할 수 있는 전압 레벨로 변환하기 위한 것이다. 저항(R7, R8)의 접속 노드는 전류 제한용 저항(R9)과 과전압 방지용 제너다이오드(Z2)를 통해서 제어부(13)의 인터럽트단(INT)에 결합된다. 기폭 검출부(126)에서 저항(R7, R8)은 충전부(122)와 병렬로 결합되므로 기폭 동작이 실행되기 전, 즉 충전부(122)에 고전압이 충전되어 있는 상태에서는 제어부(13)의 인터럽트단(INT)은 하이레벨로 설정된다. 한편, 기폭 파트(12)에 의해 시그널 튜브(4)에 대한 기폭 동작이 실행되는 경우, 즉 도 5의 점화기(150)에서 결합구(152)와 리드선(153) 사이에 스파크가 발생되는 경우에는 출력부(121)의 제1 및 제2 출력단(VO1, VO2) 사이는 단락되고, 또한 제2 출력단(VO2)은 스위칭 회로(SW1)를 통해 접지 측과 결합된다. 따라서 스파크가 발생되는 순간 제어부(13)의 인터럽트단(INT)의 전압 레벨은 로우 레벨로 강하하게 된다. 제어부(13)는 인터럽트(INT) 전압의 하강 에지(falling edge)를 근거로 시그널 튜브(4)에 대해 기폭이 실행되었는지의 여부를 판정하게 된다.In addition, the detonation part 12 is preferably provided with a detonation detection unit 126 for detecting whether the signal tube 4 has been detonated normally. The detonation detection unit 126 is used by the control unit 13 to recognize the voltage level of the output terminal (VO1 or VO2). In the drawing, a resistor voltage dividing circuit is coupled to the first output terminal (VO1) of the output unit 121. The resistance voltage dividing circuit includes resistors (R7, R8) connected in series between the first output terminal (VO1) and ground. The resistor voltage dividing circuits (R7, R8) are used to convert the voltage level of the first output terminal (VO1) into a voltage level that the control unit 13 can recognize. The connection nodes of the resistors (R7, R8) are coupled to the interrupt terminal (INT) of the control unit 13 through the current limiting resistor (R9) and the overvoltage prevention Zener diode (Z2). In the detonation detection unit 126, the resistors R7 and R8 are coupled in parallel with the charging unit 122, so before the detonation operation is performed, that is, in a state in which the charging unit 122 is charged with a high voltage, the interrupt terminal ( INT) is set to high level. On the other hand, when a detonation operation on the signal tube 4 is performed by the detonator part 12, that is, when a spark is generated between the coupler 152 and the lead wire 153 in the igniter 150 of FIG. 5, The first and second output terminals VO1 and VO2 of the output unit 121 are short-circuited, and the second output terminal VO2 is coupled to the ground through the switching circuit SW1. Therefore, the moment a spark is generated, the voltage level of the interrupt terminal (INT) of the control unit 13 drops to the low level. The control unit 13 determines whether detonation has been performed on the signal tube 4 based on the falling edge of the interrupt (INT) voltage.
제어부(13)는 마이크로 컴퓨터를 포함한다. 마이크로 컴퓨터는 내부에 프로그램 메모리와 데이터 메모리를 구비한다. 프로그램 메모리에는 기폭기(10)를 제어하기 위한 제어 프로그램이 저장된다. 제어부(13)는 제어 프로그램에 따라 장치 전체를 제어한다. 또한, 제어부(13)는 통신부(14)를 통해 발파기(20)와 통신을 실행한다. 제어부(13)는 발파기(20)와의 네트워크 페어링 및 페어링 해제 프로세스 기능을 수행하고, 상기 기폭 파트(12)의 동작을 제어한다. 제어부(13)의 제어 동작에 대해서는 이후 보다 구체적으로 설명될 것이다.The control unit 13 includes a microcomputer. A microcomputer has internal program memory and data memory. A control program for controlling the detonator 10 is stored in the program memory. The control unit 13 controls the entire device according to the control program. Additionally, the control unit 13 communicates with the blaster 20 through the communication unit 14. The control unit 13 performs network pairing and unpairing process functions with the blaster 20 and controls the operation of the detonation part 12. The control operation of the control unit 13 will be described in more detail later.
통신부(14)는 상기한 바와 같이 로라 통신을 위한 송수신 모듈(예컨대, REYAX Technology Co., Ltd., 모델명 RYLR998)을 구비한다. 통신부(14)를 구성하는 송수신 모듈로서는 특정한 것에 한정되지 않는다. 또한, 제어부(13)와 통신부(14) 사이의 인터페이스와 통신 방식은 송수신 모듈의 사양에 따라 적절하게 설정될 것이다. 본 예에서 제어부(13)와 통신부(14)는 시리얼(Serial) 통신을 실행한다. 제어부(13)와 통신부(14)는 시리얼 통신을 위해 Tx 및 RX 포트를 구비하고, 제어부(13)는 Tx 및 Rx 포트를 위해 예컨대 디지탈 출력단 등의 적절한 포트가 할당된다. 제어부(13)와 통신부(14) 사이의 시리얼 통신을 위한 인터페이스 및 동작은 일반적인 사항이므로 그 구체적인 설명은 생략한다. 그리고, 통신부(14)의 안테나 포트(ANT)에는 안테나(141)가 결합된다. 안테나(141)는 바람직하게 기판(160) 상에 형성된 소정 패턴의 배선으로 구성된다.As described above, the communication unit 14 is provided with a transmission/reception module for LoRa communication (eg, REYAX Technology Co., Ltd., model name RYLR998). The transmitting and receiving modules constituting the communication unit 14 are not limited to specific ones. Additionally, the interface and communication method between the control unit 13 and the communication unit 14 will be appropriately set according to the specifications of the transmitting and receiving module. In this example, the control unit 13 and the communication unit 14 perform serial communication. The control unit 13 and the communication unit 14 are equipped with Tx and RX ports for serial communication, and the control unit 13 is allocated appropriate ports, such as digital output terminals, for the Tx and Rx ports. Since the interface and operation for serial communication between the control unit 13 and the communication unit 14 are general matters, detailed description thereof will be omitted. And, the antenna 141 is coupled to the antenna port (ANT) of the communication unit 14. The antenna 141 is preferably composed of wiring in a predetermined pattern formed on the substrate 160.
또한, 상술한 바와 같이 기폭기(10)에는 LED(130)가 구비된다. LED(130)는 애노드 측이 전원전압(V1)에 결합되고, 캐소드 측은 저항(R10)을 통해 제어부(13)의 디지탈 출력단(P4)에 결합된다. 제어부(13)는 LED(130)를 온/오프 하거나 점멸 구동하는 방식으로 기폭기(10)의 동작 상태를 표시하게 된다. Additionally, as described above, the detonator 10 is provided with an LED 130. The anode side of the LED 130 is coupled to the power supply voltage (V1), and the cathode side is coupled to the digital output terminal (P4) of the control unit 13 through a resistor (R10). The control unit 13 displays the operating state of the detonator 10 by turning the LED 130 on/off or blinking it.
도 7은 도 3에서 발파기(20)의 외관 형상을 나타낸 사시도이다. 도면에서 발파기(20)는 하우징(201)을 구비한다. 하우징(201)의 상단에는 기폭기(10)와의 통신을 위한 안테나(202)가 마련된다. 하우징(201)의 전면에는 장치의 동작 상태를 표시하고, 작업자에게 각종 선택 메뉴를 제공하기 위한 디스플레이(203)가 구비된다. 이때 선택 메뉴에는 기폭기(10)의 등록(검색) 또는 선택 메뉴나, 날자 및 시간 설정 메뉴, 발파기(20)와 기폭기(10) 사이의 안전거리 설정 메뉴 등 본 발파 시스템의 동작과 관련된 각종 정보의 등록 및 입력 메뉴가 포함된다. 디스플레이(203)의 상측에는 작업자가 메뉴 항목을 선택하기 위한 터치 패널이 구비된다.FIG. 7 is a perspective view showing the external shape of the blaster 20 in FIG. 3. In the drawing, the blaster 20 has a housing 201. An antenna 202 for communication with the detonator 10 is provided at the top of the housing 201. A display 203 is provided on the front of the housing 201 to display the operating status of the device and provide various selection menus to the operator. At this time, the selection menu includes the registration (search) or selection menu of the detonator (10), the date and time setting menu, and the safety distance setting menu between the blaster (20) and the detonator (10), etc. related to the operation of the blasting system. Menus for registering and entering various information are included. A touch panel is provided on the upper side of the display 203 for the operator to select menu items.
또한, 하우징(201)에는 작업자가 발파기(20)를 조작하기 위한 다수의 조작 버튼이 구비된다. 조작 버튼에는 전원 버튼(204)과, 방향 및 확인 버튼(205), 충전 버튼(206) 및 발파 버튼(207)이 포함된다. 여기서, 전원 버튼(204)은 장치의 동작을 온/오프 하기 위한 것이고, 방향 및 확인 버튼(205)은 디스플레이(203) 상에서 메뉴를 조회 및 선택하기 위한 것이다. 그리고, 충전 버튼(206) 및 발파 버튼(207)은 작업자가 기폭기(10)를 작동시키기 위한 것이다. 충전 버튼(206)과 발파 버튼(207)의 조작에 따른 기폭기(10)의 동작에 대해서는 이후 보다 구체적으로 설명될 것이다. 그리고, 하우징(201)에는 LED 등의 표시부(208)와 스피커(209)가 구비된다. 이들은 작업자에게 발파 시스템의 각종 동작 정보를 시각적인 정보나 청각적인 정보로서 제공하기 위한 것이다. Additionally, the housing 201 is provided with a plurality of operation buttons for the operator to operate the blaster 20. The operation buttons include a power button 204, a direction and confirmation button 205, a charge button 206, and a blast button 207. Here, the power button 204 is used to turn on/off the operation of the device, and the direction and confirmation button 205 is used to view and select menus on the display 203. And, the charging button 206 and the blasting button 207 are for the operator to operate the detonator 10. The operation of the detonator 10 according to the operation of the charging button 206 and the blasting button 207 will be described in more detail later. Additionally, the housing 201 is provided with a display unit 208 such as an LED and a speaker 209. These are intended to provide various operation information of the blasting system to workers as visual or auditory information.
도 8은 발파기(20)의 내부 회로 구성을 나타낸 기능 블록도이다. 도면에서, 발파기(20)는 디스플레이(203)와 더불어 전원부(80)와, 입력부(81), 제어부(82) 및 통신부(83)를 구비한다. 전원부(80)는 배터리를 포함한다. 배터리로서는 바람직하게 2차 전지가 채용되고, 도면에 구체적으로 나타내지 않았으나 배터리의 충전을 위해 커넥터가 마련된다, 전원부(80)는 장치 전체에 동작전원(V2)을 공급하기 위한 것이다. 도면에 구체적으로 나타내지 않았으나 작업자가 전원버튼(204: 도 7)을 누르게 되면 전원부(80)로부터 장치 전체로 동작전원(V2)이 공급된다.Figure 8 is a functional block diagram showing the internal circuit configuration of the blaster 20. In the drawing, the blaster 20 includes a display 203 as well as a power unit 80, an input unit 81, a control unit 82, and a communication unit 83. The power supply unit 80 includes a battery. A secondary battery is preferably used as the battery, and although not specifically shown in the drawing, a connector is provided for charging the battery. The power supply unit 80 is for supplying operating power (V2) to the entire device. Although not specifically shown in the drawing, when the operator presses the power button 204 (FIG. 7), operating power V2 is supplied from the power supply unit 80 to the entire device.
입력부(81)는 도 7에 나타낸 다수의 조작 버튼(204~207)과 터치패널 및 이들과 관련된 인터페이스를 포함한다. 터치패널은 상기한 바와 같이 디스플레이(203)에 설치된다. 입력부(81)는 일반적인 것이다. 제어부(82)는 입력부(81)를 통해 조작 버튼(204~207)과 터치패널의 조작 내용을 판독하게 된다.The input unit 81 includes a plurality of operation buttons 204 to 207 shown in FIG. 7, a touch panel, and interfaces related thereto. The touch panel is installed on the display 203 as described above. The input unit 81 is general. The control unit 82 reads the operation contents of the operation buttons 204 to 207 and the touch panel through the input unit 81.
제어부(82)는 마이크로 컴퓨터를 포함한다. 마이크로 컴퓨터는 내부에 프로그램 메모리와 데이터 메모리를 구비한다. 프로그램 메모리에는 발파기(20)를 포함하여 전체 발파 시스템의 동작을 제어하기 위한 제어 프로그램이 저장되고, 데이터 메모리에는 발파 동작과 관련된 각종 발파 데이터가 저장된다. 발파 데이터에는 발파에 사용된 기폭기(10) 정보, 발파 일자 및 시간 정보, 발파기(20)와 기폭기(10) 사이의 거리 및 수신감도 정보 등이 포함된다. 이러한 발파 데이터는 작업자가 입력부(81)를 통해 조회할 수 있다. 제어부(82)는 제어 프로그램에 따라 다양한 제어 기능을 수행한다. 제어부(82)에 의한 제어 기능에는 디스플레이(203)를 통한 메뉴화면 제공 기능, 기폭기(10)와의 네트워크 페어링 및 페어링 해제 프로세스 기능, 발파 데이터 저장 및 제공 기능, 입력부(81)로부터의 조작 명령에 따른 기폭기(10)의 제어 기능, 기폭기(10)로부터의 주파수 수신감도에 근거하는 거리정보 산출 및 제공 기능, 기폭기(10)와의 연동을 통한 발파 작업에 따른 상태정보 제공 기능 등이 포함된다.The control unit 82 includes a microcomputer. A microcomputer has internal program memory and data memory. A control program for controlling the operation of the entire blasting system, including the blaster 20, is stored in the program memory, and various blasting data related to the blasting operation are stored in the data memory. The blasting data includes information on the detonator 10 used for blasting, blasting date and time information, the distance between the blaster 20 and the detonator 10, and reception sensitivity information. This blasting data can be viewed by the operator through the input unit 81. The control unit 82 performs various control functions according to the control program. The control function by the control unit 82 includes a menu screen provision function through the display 203, a network pairing and unpairing process function with the detonator 10, a blast data storage and provision function, and an operation command from the input unit 81. Includes a control function of the detonator 10, a function to calculate and provide distance information based on the frequency reception sensitivity from the detonator 10, and a function to provide status information according to the blasting operation through linkage with the detonator 10. do.
통신부(83)는 도 6에서의 통신부(14)와 실질적으로 동일한 것이다. 통신부(83)는 로라 통신을 위한 송수신 모듈을 구비하고, 시리얼 통신을 기반으로 제어부(82)와 통신을 실행한다. 또한, 통신부(83)에는 안테나(202)가 결합된다. 도 7에는 안테나(202)로서 막대형 안테나를 채용한 경우를 예로 들어 나타내었으나, 안테나(202)는 기판 상에 마련되는 소정의 배선 패턴으로 구성될 수 있다.The communication unit 83 is substantially the same as the communication unit 14 in FIG. 6. The communication unit 83 is equipped with a transmission and reception module for LoRa communication and communicates with the control unit 82 based on serial communication. Additionally, an antenna 202 is coupled to the communication unit 83. Although FIG. 7 shows an example in which a rod-shaped antenna is used as the antenna 202, the antenna 202 may be configured with a predetermined wiring pattern provided on the substrate.
또한, 제어부(82)의 디지탈 출력단(P1~P4)에는 스피커(209)와 LED(LED1~LED3)가 결합된다. 여기서 스피커(209)는 제어부(82)가 비프(beep) 등의 경고음을 출력하기 위한 것이고, LED(LED1~LED3)는 도 7에서 표시부(208)를 구성하는 것이다. 표시부(208)는 바람직하게 적색, 녹색, 청색의 각기 다른 색광을 출력하는 LED(LED1~LED3)를 구비한다. 제어부(82)는 표시부(208)의 색상을 적절하게 설정하는 방법을 통해 발파 작업의 상태 정보를 제공한다.Additionally, a speaker 209 and LEDs (LED1 to LED3) are coupled to the digital output terminals (P1 to P4) of the control unit 82. Here, the speaker 209 is for the control unit 82 to output a warning sound such as a beep, and the LEDs (LED1 to LED3) constitute the display unit 208 in FIG. 7. The display unit 208 preferably includes LEDs (LED1 to LED3) that output different color lights of red, green, and blue. The control unit 82 provides status information of the blasting operation by appropriately setting the color of the display unit 208.
또한, 본 발명의 바람직한 구현 예에서, 발파기(20)에는 제어부(82)가 유선이나 무선을 통해 외부 기기와 통신을 실행하기 위한 제2 통신 수단이 구비될 수 있다. 이때 통신 수단으로서는 예컨대 USB(Universal Serial Bus) 등의 유선통신을 위한 인터페이스나, 블루투스나 Wi-Fi 등의 무선 통신을 위한 통신 모듈이 채용될 수 있다. 그리고, 제어부(82)는 그러한 통신 수단을 통해 발파 데이터를 외부 기기로 제공하거나, 발파에 필요한 정보를 수신하게 된다. 제어부(82)가 외부 기기로부터 수신하는 발파 관련 정보에는 바람직하게 발파에 사용되는 기폭기(10) 정보, 즉 기폭기(10) 아이디가 포함될 수 있다.Additionally, in a preferred embodiment of the present invention, the blaster 20 may be provided with a second communication means for the control unit 82 to communicate with an external device through wired or wireless communication. At this time, as a communication means, for example, an interface for wired communication such as USB (Universal Serial Bus) or a communication module for wireless communication such as Bluetooth or Wi-Fi may be employed. And, the control unit 82 provides blasting data to an external device or receives information necessary for blasting through such communication means. The blasting-related information that the control unit 82 receives from an external device may preferably include information on the detonator 10 used for blasting, that is, the detonator 10 ID.
이어, 상기한 구성으로 이루어진 시스템의 동작을 설명한다. 본 발명에 따른 발파 시스템을 이용하여 발파를 실행하는 경우에는 종래와 동일한 방식으로 폭파 대상물에 한 개 이상의 발파공을 형성하고, 각각의 발파공에 대해 폭약을 장전하게 된다. 또한, 상기 폭약의 기폭을 위해 공저 뇌관이나 연결 뇌관 등의 뇌관을 배치 및 연결하게 된다. 그리고 적절한 뇌관(1)에 시그널 튜브(4)를 통해 기폭기(10)를 연결하게 된다. 바람직하게 기폭기(10)는 발파기(20)에 정상적으로 등록된 후 사용된다. 발파기(20)에 대한 기폭기(10)의 등록은 통신 결합, 즉 네트워크 페어링을 통해 실행될 수 있다. 네트워크 페어링은 작업자가 시그널 튜브(4)에 기폭기(10)를 결합하기 전후의 적절한 시기에 실행한다. 네트워크 페어링은 자동 방식이나 수동 방식으로 실행될 수 있다. 이하에서는 네트워크 페어링이 수동 방식으로 실행되는 경우를 예로 들어 설명한다.Next, the operation of the system with the above configuration will be described. When blasting is performed using the blasting system according to the present invention, one or more blast holes are formed in the object to be blasted in the same manner as before, and explosives are charged to each blast hole. Additionally, to detonate the explosive, a detonator such as a co-detonator or a connected detonator is placed and connected. Then, the detonator (10) is connected to the appropriate detonator (1) through the signal tube (4). Preferably, the detonator 10 is used after being properly registered with the blaster 20. Registration of the detonator 10 with the blaster 20 can be effected via communication coupling, i.e. network pairing. Network pairing is performed at an appropriate time before or after the operator engages the detonator (10) to the signal tube (4). Network pairing can be performed automatically or manually. Hereinafter, the case where network pairing is performed manually will be described as an example.
발파기(20)와 기폭기(10) 사이의 네트워크 페어링은 양 기기가 동작 상태에서 실행된다. 작업자는 본 발파 시스템을 이용하여 발파를 실행하고자 하는 경우, 우선적으로 발파기(20)의 전원 버튼(204)과 기폭기(10)의 전원 스위치(110)를 조작하여 양 기기를 모두 작동 상태로 설정하게 된다.Network pairing between the blaster 20 and the detonator 10 is performed with both devices in operation. When an operator wants to perform blasting using this blasting system, he or she first operates the power button 204 of the blaster 20 and the power switch 110 of the detonator 10 to put both devices in an operating state. It is set.
기폭기(10)는 전원 스위치(110)에 의해 기기가 기동되면, 초기 상태에서 기폭 파트(12)를 비동작상태로 설정함과 더불어, 발파기(20)로부터의 페어링 요구를 대기하게 된다. 대기상태에서, 제어부(13)는 트랜지스터(T1, T2)를 오프 상태, 트랜지스터(T3)를 온 상태로 설정한다. 이에 따라 승압부(123)는 비구동상태로 설정되어 충전부(122)에 대한 충전동작은 실행되지 않게 되고, 충전부(122)는 방전부(125), 즉 저항(R6)을 통해서 접지되므로 충전부(122)의 충전 전압은 접지 레벨을 유지하게 된다. 또한, 출력부(121)의 릴레이 스위치(RY1)는 접점(a, b) 사이가 접속되므로 점화기(150)로 기폭 전압을 출력하기 위한 제1 출력단(VO1)과 제2 출력단(VO2)이 상호 단락된다. 즉, 기폭기(10)는 대기 상태에서 충전부(122)의 충전 레벨은 '0'레벨로 설정되고, 기폭 전압의 출력을 위한 제1 출력단(VO1) 및 제2 출력단(VO2)은 상호 단락되어 동일한 전압으로 설정된다. 따라서, 누설전류나 낙뢰의 유입 등에 의해 점화기(150)가 부적절하게 작동되는 것이 확실하게 방지된다.When the device is started by the power switch 110, the detonator 10 sets the detonator part 12 to an inactive state in the initial state and waits for a pairing request from the blaster 20. In the standby state, the control unit 13 sets the transistors T1 and T2 to the off state and the transistor T3 to the on state. Accordingly, the boosting unit 123 is set to a non-driving state and the charging operation for the charging unit 122 is not performed, and the charging unit 122 is grounded through the discharging unit 125, that is, the resistor R6, so the charging unit ( The charging voltage of 122) is maintained at the ground level. In addition, since the relay switch (RY1) of the output unit 121 is connected between the contact points (a, b), the first output terminal (VO1) and the second output terminal (VO2) for outputting the detonation voltage to the igniter 150 are mutually connected. short-circuited. That is, when the detonator 10 is in a standby state, the charge level of the charging unit 122 is set to the '0' level, and the first output terminal (VO1) and the second output terminal (VO2) for outputting the detonation voltage are short-circuited with each other. are set to the same voltage. Therefore, improper operation of the igniter 150 due to leakage current or lightning is reliably prevented.
네트워크 페어링을 실행하는 경우, 작업자는 발파기(20)의 입력부(81)를 통해 기폭기(10)에 대한 검색 기능을 실행하게 된다. 기폭기 검색기능이 선택되면, 제어부(82)는 통신부(83)를 통해 기폭기(10)에 대해 식별 정보, 즉 아이디 정보를 요구하는 요구 메시지를 송출하게 된다. 요구 메시지의 송출은 예컨대 브로드캐스팅(broadcasting) 방식으로 실행된다. 기폭기(10)는 발파기(20)로부터 아이디 요구 메시지가 수신되면, 발파기(20)에 대해 자신의 아이디를 송출하게 된다. 발파기(20)는 기폭기(10)로부터 수신된 아이디 정보를 디스플레이(203)를 통해 출력하게 된다. 그리고 작업자가 발파에 사용할 기폭기(10)의 아이디를 선택하면, 제어부(82)는 해당 기폭기(10)에 대해 네트워크 접속을 승인하는 승인 명령을 송출하여 네트워크 페어링을 실행하고, 이후 해당 기폭기(10)와 통신을 실행하게 된다.When executing network pairing, the operator executes a search function for the detonator 10 through the input unit 81 of the detonator 20. When the detonator search function is selected, the control unit 82 transmits a request message requesting identification information, that is, ID information, to the detonator 10 through the communication unit 83. Transmission of the request message is performed, for example, by broadcasting. When the detonator 10 receives an ID request message from the blaster 20, it transmits its ID to the blaster 20. The blaster 20 outputs the ID information received from the detonator 10 through the display 203. Then, when the operator selects the ID of the detonator 10 to be used for blasting, the control unit 82 executes network pairing by transmitting an approval command to approve network access to the corresponding detonator 10, and then the corresponding detonator 10 Communication is performed with (10).
본 발명의 바람직한 구현 예에서, 발파기(20)에 상술한 제2 통신수단이 구비되는 경우, 발파 현장을 관리하는 관리자는 해당 발파에 사용할 기폭기의 아이디 정보를 사전에 발파기(20)에 등록할 수 있다. 그리고 제어부(82)는 통신부(83)를 통해 수신된 기폭기(10)의 아이디 정보 중 사전에 등록되어 있는 기폭기(10)에 상응하는 아이디 정보만 디스플레이(203)를 통해 표시함으로써 부적절한 기폭기(10)가 사용되는 것을 방지하게 된다.In a preferred embodiment of the present invention, when the blaster 20 is equipped with the above-described second communication means, the manager managing the blasting site sends the ID information of the detonator to be used for blasting to the blaster 20 in advance. You can register. And the control unit 82 displays only the ID information corresponding to the pre-registered detonator 10 among the ID information of the detonator 10 received through the communication unit 83 on the display 203, thereby preventing inappropriate detonators from being detected. This prevents (10) from being used.
또한, 본 발명의 다른 바람직한 구현 예에서 발파기(20)에는 카메라 등의 촬상수단이 구비될 수 있다. 이 촬상수단은 도 4에서 기폭기(10)의 하우징(100)에 구비되는 정보 표시부(140)를 판독하기 위한 것이다. 본 구현 예에서, 작업자는 디스플레이(203)에 표시되는 아이디 정보를 선택하는 대신에 기폭기(10)에 구비되는 정보 표시부(140)의 아이디 정보를 판독하여 입력함으로써 현재 사용할 기폭기(10)를 선택하게 된다. 이는 작업자가 발파에 사용할 기폭기를 오인하는 것을 확실하게 방지하는 효과를 제공할 수 있다. Additionally, in another preferred embodiment of the present invention, the blaster 20 may be equipped with an imaging means such as a camera. This imaging means is for reading the information display unit 140 provided in the housing 100 of the detonator 10 in FIG. 4. In this implementation example, instead of selecting the ID information displayed on the display 203, the operator reads and inputs the ID information in the information display unit 140 provided in the detonator 10 to select the detonator 10 to be currently used. You get to choose. This can provide the effect of reliably preventing workers from misidentifying the detonator to be used for blasting.
또한, 상기한 네트워크 페어링 동작 시에, 도 4 및 도 6에서 제어부(13)는 LED(130)를 점멸 구동하거나 점등함으로써 페어링 진행 상태 및 완료 상태를 시각적인 정보로서 표시하게 된다. 또한, 도 8에서 발파기(20)의 제어부(82)는 기폭기(10)와의 네트워크 페어링이 완료되면, 발파기(20)와 기폭기(10) 사이의 거리 정보와, 기폭기(10)에 대한 주파수 수신감도를 표시하게 된다. 여기서 수신감도 정보는 제어부(82)가 통신부(83)에 구비된 레지스터 값을 판독함으로써 획득할 수 있게 되고, 거리 정보는 이러한 수신 감도의 증감을 근거로 하여 제어부(822)가 프로그램적으로 산출하게 된다. 바람직한 구현 예에서 발피기(20)와 기폭기(10) 사이의 네트워크 페어링은 양 기기가 인접하게 위치된 상태에서 실행된다. 그리고, 제어부(82)는 네트워크 페어링 시의 기폭기(10)에 대한 수신 감도를 초기값으로 저장하고, 이후 수신 감도의 변화량을 근거로 발파기(20)와 기폭기(10) 사이의 거리를 산출하게 된다. 거리 정보의 표시는 작업자가 기폭기(10)와의 안전거리를 인식할 수 있도록 하기 위한 것이고, 수신감도의 표시는 기폭기(10)가 발파기(20)의 제어 범위를 벗어나는 것을 경고하기 위한 것이다. 작업자는 발파기(20)에 표시되는 수신 감도 레벨을 근거로 중계기를 사용하는 등의 적절한 조치를 취할 수 있게 된다.In addition, during the network pairing operation described above, the control unit 13 in FIGS. 4 and 6 displays the pairing progress and completion status as visual information by blinking or lighting the LED 130. In addition, in FIG. 8, when network pairing with the detonator 10 is completed, the control unit 82 of the blaster 20 provides distance information between the blaster 20 and the detonator 10, and the detonator 10. It displays the frequency reception sensitivity for . Here, the reception sensitivity information can be obtained by the control unit 82 reading the register value provided in the communication unit 83, and the distance information can be calculated programmatically by the control unit 822 based on the increase or decrease in reception sensitivity. do. In a preferred embodiment, network pairing between the detonator 20 and the detonator 10 is performed with both devices located adjacent to each other. Then, the control unit 82 stores the reception sensitivity of the detonator 10 at the time of network pairing as an initial value, and then adjusts the distance between the blaster 20 and the detonator 10 based on the change in reception sensitivity. It is calculated. The display of distance information is to enable the worker to recognize the safe distance from the detonator (10), and the display of reception sensitivity is to warn that the detonator (10) is outside the control range of the blaster (20). . The operator can take appropriate measures, such as using a repeater, based on the reception sensitivity level displayed on the blaster 20.
작업자는 도 4 및 도 5에서 기폭기(10)의 결합구(152)에 시그널 튜브(4)를 결합하고, 발파기(20)를 이용하여 기폭기(10)를 작동시키게 된다. 기폭기(10)에 의한 기폭 동작은 발파기(20)의 충전 버튼(206)과 발파 버튼(207)을 이용하여 실행한다. 작업자는 우선 발파기(20)의 충전 버튼(206)을 눌러서 기폭기(10)의 충전부(122)에 대한 충전 작업을 종료한 후, 다시 발파 버튼(207)을 눌러서 시그널 튜브(4)에 대한 기폭을 실행하게 된다.The operator couples the signal tube 4 to the coupling port 152 of the detonator 10 in FIGS. 4 and 5 and operates the detonator 10 using the blaster 20. The detonation operation by the detonator 10 is performed using the charge button 206 and the blast button 207 of the blaster 20. The operator first presses the charging button 206 of the blaster 20 to finish charging the charging part 122 of the detonator 10, and then presses the blasting button 207 again to charge the signal tube 4. The detonation is carried out.
본 발명의 바람직한 구현 예에서, 작업자가 발파기(20)의 충전 버튼(206)을 누르게 되면, 제어부(82)는 우선 통신부(83)의 레지스터 값을 조회함으로써 발파기(20)와 기폭기(10) 사이에 안전거리가 확보되어 있는지, 발파기(20)와 기폭(10)의 통신 상태는 정상인지의 여부를 판정하게 된다. 즉, 현재의 발파 환경이 정상인지의 여부를 판정하게 된다. 여기서 발파 환경의 정상여부를 판정하기 위한 기준 값은 발파기(20)에 프로그램적으로 등록되거나, 작업자가 입력부(81)를 통해 등록할 수 있다. 제어부(82)는 발파 환경이 부적절한 것으로 판정되면, 그 이상상태 정보를 디스플레이(203)를 통해 표시하거나, 다른 경보 수단, 즉 스피커(209)와 표시부(208)를 통해 경보를 실행하게 된다. 한편, 현재 발파 환경이 정상인 경우, 제어부(82)는 기폭기(10)에 대해 충전 명령을 송출하게 된다.In a preferred embodiment of the present invention, when the operator presses the charging button 206 of the blaster 20, the control unit 82 first checks the register value of the communication unit 83 to connect the blaster 20 and the detonator ( 10) It is determined whether a safety distance is secured between the two and whether the communication status between the blaster 20 and the detonator 10 is normal. In other words, it is determined whether the current blasting environment is normal. Here, the reference value for determining whether the blasting environment is normal can be registered programmatically in the blaster 20, or the operator can register it through the input unit 81. If the control unit 82 determines that the blasting environment is inappropriate, it displays abnormal condition information on the display 203 or issues an alarm through other alarm means, that is, the speaker 209 and the display unit 208. Meanwhile, if the current blasting environment is normal, the control unit 82 transmits a charging command to the detonator 10.
기폭기(10)에서는 발파기(20)로부터 충전 명령이 수신되면, 제어부(13)는 기폭 파트(12)의 방전부(125)를 비구동상태로 설정함과 더불어 승압부(123)를 구동하여 충전부(122)에 대한 충전동작을 실행하게 된다. 즉, 제어부(13)는 방전부(125)의 트랜지스터(T3)를 오프시키고, 승압부(123)의 트랜지스터(T2)를 소정의 주파수로 스위칭 구동하게 된다. 또한, 이때 출력부(121)의 트랜지스터(T1)는 여전히 오프상태로 설정되어 제1 및 제2 출력단(VO1, VO2)은 상호 단락상태를 유지하게 된다. 또한, 제어부(13)는 상기한 충전 동작이 실행되면, 충전전압 검출부(124)를 통해 충전부(122)의 충전전압을 검출하게 된다. 그리고 그 충전전압이 일정 전압, 즉 점화기(150)를 구동할 수 있는 전압값 이상으로 상승하면, 제어부(13)는 통신부(14)를 통해 발파기(20)로 충전완료 메시지를 전송하게 된다. 충전부(122)에 대한 충전동작은 충전부(122)가 미리 설정된 최대 충전전압값으로 충전될 때까지 실행된다. 또한, 본 발명의 바람직한 구현 예에서, 제어부(13)는 충전전압 검출부(124)를 통해 인식한 충전 전압을 일정 시간 단위로 발파기(20)로 전송함으로써 작업자가 기폭기(10)의 충전 진행상태를 시각적으로 확인할 수 있도록 하게 된다.In the detonator 10, when a charging command is received from the blaster 20, the control unit 13 sets the discharge unit 125 of the detonator part 12 to a non-driving state and drives the boosting unit 123. Thus, a charging operation for the charging unit 122 is performed. That is, the control unit 13 turns off the transistor T3 of the discharge unit 125 and switches and drives the transistor T2 of the booster unit 123 at a predetermined frequency. Also, at this time, the transistor T1 of the output unit 121 is still set to the off state, so that the first and second output terminals VO1 and VO2 remain short-circuited. Additionally, when the above-described charging operation is performed, the control unit 13 detects the charging voltage of the charging unit 122 through the charging voltage detection unit 124. And when the charging voltage rises above a certain voltage, that is, a voltage value that can drive the igniter 150, the control unit 13 transmits a charging completion message to the blaster 20 through the communication unit 14. The charging operation for the charging unit 122 is performed until the charging unit 122 is charged to a preset maximum charging voltage value. In addition, in a preferred embodiment of the present invention, the control unit 13 transmits the charging voltage recognized through the charging voltage detection unit 124 to the blaster 20 in a certain time unit, thereby allowing the operator to proceed with charging of the detonator 10. This allows you to visually check the status.
본 발명의 바람직한 구현 예에서, 상기한 충전 동작은 작업자가 발파기(20)의 충전 버튼(206)을 누르고 있는 동안에만 실행된다. 즉, 작업자는 충전 버튼(206)의 조작을 중단함으로써 충전 동작을 중지할 수 있다. 작업자가 충전 버튼(206)의 조작을 중단하면, 제어부(82)는 충전중지 명령을 기폭기(10)로 전송하게 된다. 그리고, 기폭기(10)의 제어부(13)는 충전중지 명령이 수신되면, 승압부(123)를 비구동상태로 설정함과 더불어 방전부(124)를 구동함으로써 충전부(122)의 충전 전원을 방전시키게 된다.In a preferred embodiment of the present invention, the above-mentioned charging operation is carried out only while the operator holds down the charging button 206 of the blaster 20. That is, the operator can stop the charging operation by stopping operation of the charging button 206. When the operator stops operating the charging button 206, the control unit 82 transmits a charging stop command to the detonator 10. And, when a charging stop command is received, the control unit 13 of the detonator 10 sets the boosting unit 123 to a non-driving state and drives the discharging unit 124 to increase the charging power of the charging unit 122. It is discharged.
발파기(20)에서, 기폭기(10)로부터 충전완료 메시지가 수신되면, 제어부(82)는 디스플레이(203)나 경보 수단(208, 209)을 통해 작업자에게 충전이 정상적으로 완료되었음을 알려주게 된다. 이후 작업자는 발파 버튼(207)을 조작하여 발파 동작을 실행할 수 있게 된다. 작업자가 발파 버튼(207)을 조작하면, 제어부(82)는 기폭기(10)에 대해 기폭 명령을 송출하게 된다. 기폭기(10)에서 제어부(13)는 기폭 명령이 수신되면, 출력부(121)의 트랜지스터(T1)를 온시키게 된다. 트랜지스터(T1)가 온되면 릴레이 스위치(RY1)의 접점(a, c) 사이가 단락되어 제2 출력단(VO2)이 접지에 결합된다. 이에 따라 충전부(122)의 충전전류가 제1 및 제2 출력단(V01, VO2)을 통해 접지로 흐를 수 있는 상태로 설정됨으로써 도 5에서 점화기(150)의 결합구(162)와 리드선(160) 사이에서 스파크가 발생되게 된다. 상술한 바와 같이 점화기(150)에서 스파크가 발생되면, 시그널 튜브(4)가 기폭되면서 기폭 에너지가 시그널 튜브(4)를 통해 뇌관(1) 측으로 폭굉됨으로써 발파가 실행된다.In the blaster 20, when a charging completion message is received from the detonator 10, the control unit 82 informs the operator through the display 203 or the alarm means 208 and 209 that charging has been completed normally. Afterwards, the operator can execute a blasting operation by manipulating the blasting button 207. When the operator operates the blast button 207, the control unit 82 transmits a detonation command to the detonator 10. When a detonation command is received, the control unit 13 in the detonator 10 turns on the transistor T1 of the output unit 121. When the transistor T1 is turned on, the contact points (a, c) of the relay switch (RY1) are short-circuited, and the second output terminal (VO2) is coupled to ground. Accordingly, the charging current of the charging unit 122 is set to a state in which it can flow to ground through the first and second output terminals (V01, VO2), so that the coupler 162 and the lead wire 160 of the igniter 150 in FIG. 5 Sparks are generated between them. As described above, when a spark is generated from the igniter 150, the signal tube 4 is detonated and the detonation energy is detonated toward the detonator 1 through the signal tube 4, thereby performing blasting.
출력부(121)의 제1 및 제2 출력단(V01, VO2) 사이에 스파크가 발생되면, 제1 출력단(VO1)이 접지 측과 연결되면서 그 전압 레벨이 로우레벨로 설정된다. 이에 따라 제어부(13)의 인터럽트단(IINT)에는 기폭 검출부(126)를 통해 로우레벨의 인터럽트 신호가 입력된다. 제어부(13)는 인터럽트 신호의 입력을 근거로 기폭 동작의 정상 실행 여부를 판정하게 된다. 제어부(13)는 인터럽트 신호가 입력되면, 발파기(20)에 대해 기폭완료 메시지를 송출하게 된다. 그리고, 발파기(20)는 제어부(82)가 디스플레이(203)를 통해 기폭 완료 메시지를 출력함으로써 발파 작업을 종료하게 된다. 또한, 제어부(82)는 발파 정보, 즉 발파 시간, 기폭기 아이디, 발파 거리, 전파 감도 등의 정보를 데이터 메모리에 저장하게 된다. 이와 같이 저장된 데이터는 이후 작업자가 입력부(81)를 통해 조회할 수 있게 된다. 또한, 제어부(82)는 기폭기(10)로부터 기폭완료 메시지가 수신되면, 해당 기폭기(10)에 대한 네트워크 페어링을 해제하게 된다.When a spark is generated between the first and second output terminals (V01 and VO2) of the output unit 121, the first output terminal (VO1) is connected to the ground side and its voltage level is set to a low level. Accordingly, a low-level interrupt signal is input to the interrupt terminal (IINT) of the control unit 13 through the detonation detection unit 126. The control unit 13 determines whether the detonation operation is normally performed based on the input of the interrupt signal. When an interrupt signal is input, the control unit 13 transmits a detonation completion message to the blaster 20. Then, the blaster 20 ends the blasting operation when the control unit 82 outputs a detonation completion message through the display 203. Additionally, the control unit 82 stores blasting information, such as blasting time, detonator ID, blasting distance, and radio wave sensitivity, in the data memory. The data stored in this way can be later viewed by the operator through the input unit 81. Additionally, when the control unit 82 receives a detonation completion message from the detonator 10, it releases the network pairing for the corresponding detonator 10.
본 발명의 바람직한 구현 예에서, 상기한 동작에 따라 기폭기(10)가 기동되면, 이후 해당 기폭기(10)는 동작금지 상태로 설정된다. 동작금지 설정은 발파가 실행된 이후에도 기폭기(10)가 여전히 동작함으로 인하여 이후의 다른 발파 시에 기폭기(10)가 발파기(20)와 네트워크 페어링을 시도하는 것을 방지하기 위한 것이다. 기폭기(10)의 동작금지 설정은 다양한 방식을 통해 실행될 수 있다.In a preferred embodiment of the present invention, when the detonator 10 is activated according to the above operation, the detonator 10 is then set to an operation-inhibited state. The operation prohibition setting is to prevent the detonator 10 from attempting network pairing with the blaster 20 during another subsequent blasting due to the detonator 10 still operating even after blasting is performed. The operation prohibition setting of the detonator 10 can be performed through various methods.
우선, 동작금지 설정은 기폭기(10)가 자체적으로 설정하도록 구성될 수 있다. 도 6에서 제어부(13)는 상술한 발파 동작에 의해 기폭 검출부(126)로부터 인터럽트 신호(INT)가 입력되면, 우선 발파기(20)에 대해 기폭완료 메시지를 송출한 후 기폭기(10)를 동작금지 상태로 설정하게 된다. 이때의 동작금지 상태는 프로그램적으로 실행되고, 이후 제어부(13)는 기폭기(10)에 대한 일체의 제어동작을 중지하게 된다.First, the operation prohibition setting can be configured so that the detonator 10 sets itself. In FIG. 6, when the interrupt signal (INT) is input from the detonation detection unit 126 by the above-described blasting operation, the control unit 13 first transmits a detonation completion message to the blaster 20 and then activates the detonator 10. It is set to operation prohibited. At this time, the operation prohibition state is executed programmatically, and then the control unit 13 stops all control operations for the detonator 10.
또한, 동작금지 설정은 기폭기(10)와 발파기(20)의 연동을 통해 실행될 수 있다. 본 예에서 발파기(20)는 기폭기(10)로부터 기폭완료 메시지가 수신되면, 기폭기(10)에 대해 동작금지 명령을 송출하게 된다. 또한, 이때 발파기(20)의 제어부(82)는 디스플레이(203)를 통해 기폭기(10)를 동작금지시킬 것인지를 문의하고, 작업자의 선택에 따라 동작금지 명령을 송출할 수 있다. 그리고 기폭기(10)는 상술한 동작과 동일하게 제어부(13)가 프로그램적으로 기폭기(10)를 동작금지 상태로 설정하게 된다.Additionally, the operation prohibition setting can be executed through interlocking of the detonator 10 and the blaster 20. In this example, when the detonation completion message is received from the detonator 10, the blaster 20 transmits an operation prohibition command to the detonator 10. Also, at this time, the control unit 82 of the blaster 20 may inquire whether to disable the detonator 10 through the display 203 and transmit an operation prohibition command according to the operator's selection. And, in the same manner as the above-described operation, the control unit 13 programmatically sets the detonator 10 to an operation-inhibited state.
또한, 동작금지 설정은 발파기(20)에서 자체적으로 실행할 수 있다. 본 예에서 발파기(20)는 기폭기(10)로부터 기폭완료 메시지가 수신되면, 제어부(82)는 해당 기폭기(10)의 아이디를 사용 완료 아이디로 설정하고, 이후에는 해당 아이디를 갖는 기폭기(10)에 대해서는 네트워크 페어링 등의 제어동작을 실행하지 않게 된다.Additionally, the operation prohibition setting can be performed by the blaster 20 itself. In this example, when the blaster 20 receives the detonation completion message from the detonator 10, the control unit 82 sets the ID of the corresponding detonator 10 to the used ID, and thereafter, the detonator 20 with the corresponding ID Control operations such as network pairing are not performed on the device 10.
이상으로 본 발명에 따른 실시 예를 설명하였다. 그러나 본 발명은 상술한 실시 예에 한정되지 않고 그 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변형시켜 실시할 수 있다.Above, embodiments according to the present invention have been described. However, the present invention is not limited to the above-described embodiments and can be implemented with various modifications without departing from the technical spirit.
예를 들어, 상술한 실시 예에 있어서는 발파기(10)에 충전 버튼(206)과 발파 버튼(207)이 각각 구비되는 것으로 설명하였으나, 이는 작업자가 발파 버튼(207)을 조작할 때 기폭기(10)의 제어부(82)가 충전동작과 기폭 동작을 순차적으로 실행하도록 구성할 수 있다.For example, in the above-described embodiment, it was explained that the blaster 10 is provided with a charging button 206 and a blasting button 207, but this means that when the operator operates the blasting button 207, the detonator ( The control unit 82 of 10) can be configured to sequentially perform the charging operation and detonation operation.

Claims (20)

  1. 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서,In a blasting system that performs blasting by igniting a detonator,
    기폭기와 발파기를 구비하여 구성되고,It is composed of a detonator and a blaster,
    상기 기폭기는 뇌관과의 물리적 연결을 위한 연결수단을 결합하기 위한 점화기를 구비하고, 상기 연결수단은 기폭기로부터 뇌관으로 기폭 에너지를 전달하며,The detonator has an igniter for coupling a connecting means for physical connection with the detonator, and the connecting means transfers detonation energy from the detonator to the detonator,
    상기 기폭기와 발파기는 무선으로 결합되고,The detonator and blaster are wirelessly coupled,
    상기 기폭기는 제1 동작전원을 공급하기 위한 제1 전원수단과, 제1 제어수단에 의해 구동되고 상기 점화기에 기폭 전압을 공급하는 기폭수단, 발파기와 네트워크 페어링 동작을 실행하고 발파기로부터의 제어 명령에 따라 상기 기폭수단을 구동 제어하는 제1 제어수단 및, 상기 발파기와 통신을 실행하기 위한 제1 통신수단을 구비하여 구성되며,The detonator includes a first power means for supplying the first operating power, a detonation means that is driven by the first control means and supplies a detonation voltage to the igniter, performs a network pairing operation with the detonator, and receives a control command from the detonator. It is configured to include a first control means for driving and controlling the detonation means and a first communication means for communicating with the blaster,
    상기 발파기는 제2 동작전원을 공급하기 위한 제2 전원수단과, 충전 버튼 또는 발파 버튼을 포함하는 입력수단, 기폭기와 통신을 실행하기 위한 제2 통신수단 및, 상기 제2 통신수단을 통해 상기 기폭기와 네트워크 페어링 동작을 실행하고, 상기 입력수단의 조작에 대응하여 기폭기에 제어 명령을 전송하는 제2 제어수단을 구비하여 구성되고,The blaster includes a second power means for supplying a second operating power, an input means including a charging button or a blast button, a second communication means for communicating with the detonator, and the detonator through the second communication means. It is configured to include a second control means that performs a network pairing operation with the detonator and transmits a control command to the detonator in response to the operation of the input means,
    상기 제어 명령에는 충전 명령 또는 발파 명령이 포함되고,The control command includes a charging command or a blasting command,
    상기 제2 제어수단은 발파기와 기폭기의 거리가 안전거리 미만이거나, 기폭기로부터의 전파 수신감도가 기준 레벨 미만인 경우에는 기폭기에 대해 충전 명령 또는 발파 명령을 전송하지 않는 것을 특징으로 하는 원격 발파 시스템.The second control means is a remote blasting system characterized in that it does not transmit a charging command or blasting command to the detonator when the distance between the blaster and the detonator is less than the safety distance or when the radio wave reception sensitivity from the detonator is less than the standard level. .
  2. 제1항에 있어서,According to paragraph 1,
    상기 발파기와 기폭기는 로라 통신을 통해 결합되는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the blaster and the detonator are coupled through roller communication.
  3. 제1항에 있어서,According to paragraph 1,
    상기 연결수단은 시그널 튜브이고,The connecting means is a signal tube,
    상기 점화기는 내부가 길이 방향으로 중공되고 외주면에 상기 연결수단이 끼움 결합되는 결합구와, 상기 결합구의 내측으로 삽입됨과 더불어 결합구의 내주면과 이격되게 배치되는 리드선을 구비하고,The igniter includes a coupling member that is hollow on the inside in the longitudinal direction and into which the connecting means is fitted on an outer peripheral surface, and a lead wire that is inserted into the inner peripheral surface of the coupling member and is disposed to be spaced apart from the inner peripheral surface of the coupling member,
    상기 결합구와 리드선은 도전성 재질로 구성되며, 기폭전압이 인가되면 결합구와 리드선 사이에 스파크가 발생되는 것을 특징으로 하는 원격 발파 시스템.The coupler and the lead wire are made of a conductive material, and a remote blasting system is characterized in that a spark is generated between the coupler and the lead wire when a detonation voltage is applied.
  4. 제1항에 있어서,According to paragraph 1,
    상기 기폭수단은 상기 제1 제어수단에 의해 구동되고 상기 점화기로 기폭전압을 공급하기 위한 기폭전압 출력부와, 기폭전압을 충전하기 위한 충전부 및, 상기 제1 제어수단에 의해 구동되고 상기 제1 동작전원을 승압하여 상기 충전부에 기폭전압을 충전하는 승압부를 구비하고,The detonation means is driven by the first control means and includes a detonation voltage output unit for supplying detonation voltage to the igniter, a charging unit for charging the detonation voltage, and is driven by the first control means and performs the first operation. A booster unit for boosting the power source to charge the charging unit with a detonation voltage,
    상기 기폭전압 출력부는 상기 점화기와 전기적으로 결합되는 제1 및 제2 기폭전압 출력단을 구비하고, 상기 제1 기폭전압 출력단은 상기 충전부에 전기적으로 결합되며, 상기 제1 제어수단에 의해 구동되고 상기 제2 기폭전압 출력단을 제1 기폭전압 출력단 또는 접지 측과 전기적으로 결합하는 스위칭부를 구비하여 구성되는 것을 특징으로 하는 원격 발파 시스템.The detonation voltage output unit has first and second detonation voltage output ends electrically coupled to the igniter, and the first detonation voltage output end is electrically coupled to the charging unit, driven by the first control means, and the first detonation voltage output end is electrically coupled to the charger. 2. A remote blasting system comprising a switching unit that electrically couples the detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
  5. 제4항에 있어서,According to clause 4,
    상기 기폭수단은 상기 충전부의 충전전압 레벨을 검출하기 위한 충전전압 검출부를 구비하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the detonation means includes a charging voltage detection unit for detecting the charging voltage level of the charging unit.
  6. 제4항에 있어서,According to paragraph 4,
    상기 기폭수단은 상기 제1 제어수단에 의해 구동됨과 더불어 상기 충전부의 충전전원을 방전하기 위한 방전부를 구비하고, 상기 방전부는 상기 충전부의 충전단을 접지 측과 전기적으로 결합하기 위한 전류 경로를 포함하는 것을 특징으로 하는 원격 발파 시스템.The detonating means is driven by the first control means and includes a discharge unit for discharging the charging power of the charging unit, and the discharging unit includes a current path for electrically coupling the charging end of the charging unit with the ground side. A remote blasting system characterized in that.
  7. 제1항에 있어서,According to paragraph 1,
    상기 제1 제어수단은 상기 제1 또는 제2 기폭전압 출력단의 전압 레벨을 검출하여 기폭이 실행되었는지의 여부를 판정하는 것을 특징으로 하는 원격 발파 시스템.The first control means detects the voltage level of the first or second detonation voltage output terminal to determine whether detonation has been performed.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,According to any one of claims 1 to 7,
    상기 발파기는 디스플레이 수단을 구비하는 것을 특징으로 하는 원격 발파 시스템. A remote blasting system, characterized in that the blaster has display means.
  9. 제8항에 있어서,According to clause 8,
    상기 제2 제어수단은 상기 디스플레이 수단을 통해 발파기와 기폭기 사이의 거리 정보를 제공하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, wherein the second control means provides distance information between the blaster and the detonator through the display means.
  10. 제8항에 있어서,According to clause 8,
    상기 제2 제어수단은 상기 디스플레이 수단을 통해 기폭기로부터의 전파 수신감도를 제공하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the second control means provides sensitivity for receiving radio waves from the detonator through the display means.
  11. 제6항에 있어서,According to clause 6,
    상기 제2 제어수단은 작업자가 충전 버튼의 조작을 중지하면 기폭기에 대해 충전중지 명령을 전송하고 상기 제2 제어수단은 충전중지 명령이 수신되면 상기 승압부의 구동을 중지함과 더불어 방전부를 구동하는 것을 특징으로 하는 원격 발파 시스템. The second control means transmits a charge stop command to the detonator when the operator stops operating the charge button, and when the charge stop command is received, the second control means stops driving the booster unit and drives the discharge unit. Features a remote blasting system.
  12. 제8항에 있어서,According to clause 8,
    상기 발파기는 발파 정보를 저장하기 위한 데이터 저장수단을 구비하고,The blaster is provided with data storage means for storing blasting information,
    상기 발파 정보는 발파 일자, 기폭기 아이디, 발파기와 기폭기 사이의 거리 정보, 기폭기로부터의 전파 수신감도 중 적어도 하나를 포함하며,The blasting information includes at least one of the blasting date, detonator ID, distance information between the blaster and the detonator, and radio wave reception sensitivity from the detonator,
    상기 제2 제어수단은 발파 정보를 상기 디스플레이 수단을 통해 제공하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, wherein the second control means provides blasting information through the display means.
  13. 제1항에 있어서,According to paragraph 1,
    상기 발파기는 외부 장치와 유선 또는 무선을 통해 통신을 실행하기 위한 제3 통신수단을 추가로 구비하여 구성되는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the blaster is additionally provided with a third communication means for communicating with an external device via wired or wireless.
  14. 제13항에 있어서,According to clause 13,
    상기 외부 장치는 발파기에 대해 발파에 사용할 기폭기의 아이디 정보를 제공하고, 상기 제2 제어수단은 상기 외부 장치에 의해 제공된 아이디 정보를 갖는 기폭에 대해서만 네트워크 페어링을 실행하는 것을 특징으로 하는 원격 발파 시스템.The external device provides ID information of a detonator to be used for blasting to the blaster, and the second control means performs network pairing only for detonators having ID information provided by the external device. .
  15. 제1항에 있어서,According to paragraph 1,
    상기 기폭기는 아이디 정보를 제공하기 위한 정보 표시수단을 포함하고,The detonator includes information display means for providing ID information,
    상기 정보 표시수단은 바코드 또는 QR 코드 정보를 포함하며,The information display means includes barcode or QR code information,
    상기 발파기는 상기 정보 표시수단을 판독하기 위한 정보 판독수단을 구비하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the blaster is provided with information reading means for reading the information display means.
  16. 제1항에 있어서,According to paragraph 1,
    상기 발파기와 기폭기 사이에 한 개 이상의 중계기가 추가로 구비되는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that one or more repeaters are additionally provided between the blaster and the detonator.
  17. 제1항에 있어서,According to paragraph 1,
    상기 기폭기는 기폭 동작의 실행 후에는 동작금지 상태로 설정되는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the detonator is set to an operation prohibited state after execution of the detonation operation.
  18. 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서,In a blasting system that performs blasting by igniting a detonator,
    기폭기와 발파기를 구비하여 구성되고,It is composed of a detonator and a blaster,
    상기 기폭기는 뇌관과의 물리적 연결을 위한 연결수단을 결합하기 위한 점화기를 구비하고, 상기 연결수단은 기폭기로부터 뇌관으로 기폭 에너지를 전달하며,The detonator has an igniter for coupling a connecting means for physical connection with the detonator, and the connecting means transfers detonation energy from the detonator to the detonator,
    상기 기폭기와 발파기는 무선으로 결합되고,The detonator and blaster are wirelessly coupled,
    상기 기폭기는 제1 동작전원을 공급하기 위한 제1 전원수단과, 제1 제어수단에 의해 구동되고 상기 점화기에 기폭 전압을 공급하는 기폭수단, 발파기와 네트워크 페어링 동작을 실행하고 발파기로부터의 제어 명령에 따라 상기 기폭수단을 구동 제어하는 제1 제어수단 및, 상기 발파기와 통신을 실행하기 위한 제1 통신수단을 구비하여 구성되며,The detonator includes a first power means for supplying the first operating power, a detonation means that is driven by the first control means and supplies a detonation voltage to the igniter, performs a network pairing operation with the detonator, and receives a control command from the detonator. It is configured to include a first control means for driving and controlling the detonation means and a first communication means for communicating with the blaster,
    상기 발파기는 제2 동작전원을 공급하기 위한 제2 전원수단과, 충전 버튼 또는 발파 버튼을 포함하는 입력수단, 기폭기와 통신을 실행하기 위한 제2 통신수단 및, 상기 제2 통신수단을 통해 상기 기폭기와 네트워크 페어링 동작을 실행하고, 상기 입력수단의 조작에 대응하여 기폭기에 제어 명령을 전송하는 제2 제어수단을 구비하여 구성되고,The blaster includes a second power means for supplying a second operating power, an input means including a charging button or a blast button, a second communication means for communicating with the detonator, and the detonator through the second communication means. It is configured to include a second control means that performs a network pairing operation with the detonator and transmits a control command to the detonator in response to the operation of the input means,
    상기 기폭수단은 상기 제1 제어수단에 의해 구동되고 상기 점화기로 기폭전압을 공급하기 위한 기폭전압 출력부와, 기폭전압을 충전하기 위한 충전부 및, 상기 제1 제어수단에 의해 구동되고 상기 제1 동작전원을 승압하여 상기 충전부에 충전하는 승압부를 구비하며,The detonation means is driven by the first control means and includes a detonation voltage output unit for supplying detonation voltage to the igniter, a charging unit for charging the detonation voltage, and is driven by the first control means and performs the first operation. It has a booster unit that boosts the power and charges the charging unit,
    상기 기폭전압 출력부는 상기 점화기와 전기적으로 결합되는 제1 및 제2 기폭전압 출력단을 구비하고, 상기 제1 기폭전압 출력단은 상기 충전부에 전기적으로 결합되며, 상기 제1 제어수단에 의해 구동되고 상기 제2 기폭전압 출력단을 제1 기폭전압 출력단 또는 접지 측과 전기적으로 결합하는 스위칭부를 구비하여 구성되는 것을 특징으로 하는 원격 발파 시스템.The detonation voltage output unit has first and second detonation voltage output ends electrically coupled to the igniter, and the first detonation voltage output end is electrically coupled to the charging unit, driven by the first control means, and the first detonation voltage output end is electrically coupled to the charger. 2. A remote blasting system comprising a switching unit that electrically couples the detonation voltage output terminal to the first detonation voltage output terminal or the ground side.
  19. 뇌관을 기폭시켜 발파를 실행하는 발파 시스템에 있어서,In a blasting system that performs blasting by igniting a detonator,
    기폭기와 발파기를 구비하여 구성되고,It is composed of a detonator and a blaster,
    상기 기폭기와 발파기는 무선으로 결합되며,The detonator and blaster are wirelessly coupled,
    상기 기폭기는 하우징을 구비하고,The detonator has a housing,
    상기 하우징에는 뇌관과 물리적으로 결합됨과 더불어 뇌관에 기폭 에너지를 전달하기 위한 연결수단을 장치 내측으로 인입하기 위한 인입구가 구비되며,The housing is physically coupled to the detonator and is provided with an inlet for introducing a connection means for transmitting detonation energy to the detonator into the device,
    상기 하우징의 내부에는 상기 인입구와 대응하는 위치에 상기 연결수단을 결합하기 위한 점화기가 구비되고,An igniter is provided inside the housing to couple the connection means to a position corresponding to the inlet,
    상기 하우징은 상기 점화기와 대응하는 위치에 투명창이 마련되는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system, characterized in that the housing is provided with a transparent window at a position corresponding to the igniter.
  20. 제19항에 있어서,According to clause 19,
    상기 하우징의 외측에는 아이디 정보를 제공하기 위한 정보 표시수단이 구비되고, 상기 정보 표시수단은 바코드 또는 QR 코드 정보를 포함하는 것을 특징으로 하는 원격 발파 시스템.A remote blasting system characterized in that an information display means for providing ID information is provided on the outside of the housing, and the information display means includes barcode or QR code information.
PCT/KR2023/014186 2022-09-20 2023-09-19 Remote blasting system WO2024063513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220118741A KR102629935B1 (en) 2022-09-20 2022-09-20 Remote blasting system
KR10-2022-0118741 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024063513A1 true WO2024063513A1 (en) 2024-03-28

Family

ID=89716815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014186 WO2024063513A1 (en) 2022-09-20 2023-09-19 Remote blasting system

Country Status (2)

Country Link
KR (2) KR102629935B1 (en)
WO (1) WO2024063513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013047A (en) * 1994-09-15 1996-04-20 배순훈 New Region Filling Device and its Filling Method in Contour Coding
KR101339081B1 (en) * 2013-09-02 2013-12-09 강대진 Triggering apparatus of nonelectric detonator using the sparker device and electric blasting machine and triggering method using thereof
KR102129303B1 (en) * 2018-12-28 2020-07-02 주식회사 한화 Operator terminal of blasting system
KR20210144219A (en) * 2020-05-21 2021-11-30 유시온 Blasting machine for non-electric detonator and ignition system using same
KR20220070593A (en) * 2020-11-23 2022-05-31 주식회사 한화 Apparatus and method for controlling detonator blasting based on danger radius

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013047A (en) * 1994-09-15 1996-04-20 배순훈 New Region Filling Device and its Filling Method in Contour Coding
KR101339081B1 (en) * 2013-09-02 2013-12-09 강대진 Triggering apparatus of nonelectric detonator using the sparker device and electric blasting machine and triggering method using thereof
KR102129303B1 (en) * 2018-12-28 2020-07-02 주식회사 한화 Operator terminal of blasting system
KR20210144219A (en) * 2020-05-21 2021-11-30 유시온 Blasting machine for non-electric detonator and ignition system using same
KR20220070593A (en) * 2020-11-23 2022-05-31 주식회사 한화 Apparatus and method for controlling detonator blasting based on danger radius

Also Published As

Publication number Publication date
KR102629935B1 (en) 2024-01-29
KR20240039994A (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN201764910U (en) Wireless detonator assembly and explosion device
FI72600C (en) Device and method of igniting explosions.
WO2020138796A1 (en) Blasting system and operation method of same
EP2062007B1 (en) Remote initiator for the remote initiation of explosive charges
WO2020138783A1 (en) Blasting system and operating method therefor
AU2005207595B2 (en) Remote firing system
WO2012081938A2 (en) Detonation system of a non-electric detonator using a spark detonation apparatus and blasting construction method using same
WO2020130495A1 (en) Blasting system including electronic detonator device
US11541766B2 (en) Apparatus for sensing temperature of electric vehicle charger
CN112393653A (en) Electronic detonator blasting control system for improving anti-interference performance
CN215984240U (en) Wireless detonating system
WO2020153606A1 (en) Blasting system and operation method thereof
WO2024063513A1 (en) Remote blasting system
JP2019066091A (en) Detonator
CN204788092U (en) Safe type electric cap initiating device
CN112414236A (en) Electronic detonator for improving communication reliability
WO2020138798A1 (en) Communication system and detonation device
KR102634773B1 (en) Triggering apparatus controlled by mcu for nonelectric detonator and triggering method and system of nonelectric detonator using thereof
CN110442057A (en) A kind of the delayed exploding control system and control method of fire extinguishing bomb
WO2019054712A1 (en) Battery pack having communication terminal isolation function
CN213879394U (en) Remote controller with wireless charging function for coal mine
KR102590228B1 (en) Blasting machine for non-electric detonator and ignition system using same
KR20230174421A (en) Remote blasting system
RU66508U1 (en) EXPLOSION DEVICE
CN114136162A (en) Wireless detonation control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868565

Country of ref document: EP

Kind code of ref document: A1