WO2012081157A1 - 可変焦点レンズ用セミフィニッシュトブランクの製造方法 - Google Patents

可変焦点レンズ用セミフィニッシュトブランクの製造方法 Download PDF

Info

Publication number
WO2012081157A1
WO2012081157A1 PCT/JP2011/005834 JP2011005834W WO2012081157A1 WO 2012081157 A1 WO2012081157 A1 WO 2012081157A1 JP 2011005834 W JP2011005834 W JP 2011005834W WO 2012081157 A1 WO2012081157 A1 WO 2012081157A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
adhesive
variable focus
pressure
Prior art date
Application number
PCT/JP2011/005834
Other languages
English (en)
French (fr)
Inventor
本多 健一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/514,436 priority Critical patent/US8815045B2/en
Priority to EP11848495.5A priority patent/EP2653910B1/en
Publication of WO2012081157A1 publication Critical patent/WO2012081157A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a method for producing a semi-finished blank for a variable focus lens with good quality.
  • a semi-finished blank for a variable focus lens is configured to include a lower substrate having a convex curved surface and an upper substrate having a concave curved back surface joined to face the surface. . Between the upper and lower substrates, a variable focal point including a liquid crystal material is disposed. By applying a voltage to the variable focus portion, the refractive index of the variable focus portion can be changed, so that it can be used, for example, as a lens for bifocal glasses.
  • Patent Document 1 when an upper substrate and a lower substrate are bonded, after the upper and lower substrates are bonded together, the upper substrate is pressed near the outer periphery of the upper substrate through a pad while pressing the upper substrate toward the variable focal point side.
  • a method of manufacturing a semi-finished blank for a variable focus lens is disclosed in which an adhesive is introduced from one of two holes provided and air is removed from the other hole while spreading the adhesive over the entire substrates. .
  • the performance of the variable focus lens is deteriorated. That is, in the conventional manufacturing method, in order to prevent the adhesive from entering the variable focal portion, the adhesive is introduced by sufficiently pressing the upper substrate toward the variable focal portion. At this time, the local stress applied to the variable focus section causes problems such as damage to the lens and generation of a space in the variable focus section after decompression, and causes a decrease in performance of the variable focus lens. There is a fear.
  • An object of the present invention is to provide a method for producing a semi-finished blank for a variable focus lens capable of preventing a decrease in performance of the variable focus lens.
  • a method for manufacturing a semi-finished blank for a variable focus lens is configured by disposing a liquid crystal holding portion between a front surface of a first substrate and a back surface of a second substrate facing the first substrate.
  • the method for manufacturing a semi-finished blank for a variable focus lens includes an adhesive application step, a pressure reduction step, a bonding step, a standby step, and a decompression step.
  • an adhesive is applied to at least one of the front surface of the first substrate and the back surface of the second substrate with a non-adhesive region surrounding the liquid crystal holding portion being separated.
  • the inside of the sealed container that houses the first substrate and the second substrate is depressurized with respect to the atmospheric pressure.
  • the bonding step the second substrate is bonded onto the surface of the first substrate in a reduced pressure environment by the pressure reducing step.
  • the standby process after the bonding process, the bonding state of the first substrate and the second substrate is continued for a predetermined time under reduced pressure conditions in the pressure reducing process.
  • the return pressure step the reduced pressure of the sealed container is restored after the standby step.
  • the method for producing a semi-finished blank for a variable focus lens according to the present invention further includes a liquid crystal application step of applying a liquid crystal material to the liquid crystal holding portion using an ink jet.
  • a plurality of liquid crystal particles applied by inkjet may be applied at intervals so as not to overlap each other. preferable.
  • the liquid crystal material is applied on a liquid crystal holding portion formed in a partial region on the surface of the first substrate. Is preferably an amount by which the liquid crystal material is held on the liquid crystal holding part by surface tension after the closed container is returned to atmospheric pressure.
  • the first substrate is spaced apart so as not to overlap each other by a plurality of adhesive grains so as to surround the non-adhesive region. It is preferable that an adhesive is applied to at least one of the top surface and the back surface of the second substrate.
  • FIG. 1 is a perspective view of variable focus glasses according to an embodiment of the present invention.
  • the flowchart which showed the one part step of the manufacturing method of the semifinished blank for variable focus lenses of FIG. (A) is a perspective view which shows the state which apply
  • (A) is a perspective view which shows the state which apply
  • FIG. 3 is a schematic cross-sectional view showing a step of joining the first and second substrates of the semi-finished blank for variable focus lens in FIG. 2 in a sealed container that has been decompressed.
  • (A) is sectional drawing which shows the state in the standby process which is a partial step of the manufacturing method of the semi-finished blank for variable focus lenses of FIG. (B) is the top view.
  • (A) is sectional drawing which shows the stage of the decompression process which is a partial step of the manufacturing method of the semifinished blank for variable focus lenses of FIG. (B) is the top view.
  • FIG. 1 is a schematic configuration diagram of varifocal glasses 3 equipped with a varifocal lens 1 obtained from a semifinished blank for a varifocal lens according to this embodiment through predetermined processes such as surfacing and edging.
  • variable focus portion 5 including a cholesteric liquid crystal material 39 is formed.
  • the eyeglass frame 7 is provided with a circuit unit 9 having a battery and a sensor circuit (not shown).
  • a sensor circuit using an acceleration sensor has a function of outputting an on / off signal according to the vertical angle of the head of a person wearing the variable focus glasses 3 and controls a voltage applied to the variable focus unit 5. .
  • variable focus glasses 3 having such a configuration, the application of a voltage to the variable focus section 5 is switched based on a signal from the sensor circuit, and the apparent refractive index of the variable focus section 5 is changed to be used for both near and near. Functions as glasses.
  • FIG. 2 is a schematic exploded view of the first substrate 13 and the second substrate 15 bonded to face the first substrate 13.
  • the first substrate 13 has a convex curved surface and a concave curved back surface.
  • a liquid crystal holding part 19 is formed on the convex curved surface of the first substrate 13.
  • a Fresnel lens portion 21 is formed on the surface of the liquid crystal holding portion 19.
  • a first transparent conductive film 23 and a first silicon dioxide film 25 are formed in order from the first substrate 13 side, and the surface of the first silicon dioxide film 25 (
  • a first alignment film 27 is formed in a region corresponding to the Fresnel lens portion 21.
  • the second substrate 15 has a convex curved surface and a concave curved back surface.
  • a second transparent conductive film 31 and a second silicon dioxide film 33 are formed on the concave curved surface in order from the second substrate 15 side.
  • a second alignment film 35 is formed in the region of the second silicon dioxide film 33 facing the Fresnel lens portion 21.
  • the first and second substrates 13 and 15 are made of plastic such as thiourethane.
  • the semi-finished blank 11 for a variable focus lens having such a configuration is manufactured according to the flowchart shown in FIG.
  • the first transparent conductive film 23 and the second transparent conductive film are almost entirely formed on the convex curved surface of the first substrate 13 and the concave curved surface of the second substrate 15, respectively.
  • a conductive film 31 is formed by sputtering.
  • the first and second transparent conductive films 23 and 31 are preferably formed to a thickness of 10 to 30 nm.
  • internal electrodes of the first and second transparent conductive films 23 and 31 are formed by spin coating using a masking sheet. The internal electrode plays a role of improving the contact property between the external electrode connected to the circuit portion 9 and the transparent conductive film.
  • the first and second silicon dioxide films 25 and 33 are formed by sputtering.
  • the first silicon dioxide film 25 and the second silicon dioxide film 33 are formed on the first transparent conductive film 23 and the second transparent conductive film 31, respectively.
  • the first alignment film 27 is formed on the liquid crystal holding part 19 of the first substrate 13.
  • the second alignment film 35 is formed on the concave curved surface of the second substrate 15 so that the cholesteric liquid crystal material 39 applied on the liquid crystal holding unit 19 in Step 4 is sandwiched with the first alignment film 27.
  • the first alignment film 27 and the second alignment film 35 are stacked on the first silicon dioxide film 25 and the second silicon dioxide film 33, respectively, and are formed so as to face each other.
  • a cholesteric liquid crystal material 39 is applied toward the liquid crystal holding unit 19 using the ink jet 37. More precisely, the cholesteric liquid crystal material 39 is applied on the first alignment film 27 formed on the Fresnel lens portion 21.
  • Application of the cholesteric liquid crystal material 39 by the ink jet 37 can be performed by appropriately selecting the temperature and the nozzle diameter. In this embodiment, a nozzle having a nozzle diameter of 100 ⁇ m is used, and the liquid crystal grains of the cholesteric liquid crystal material 39 (300 pl per particle and 3% error) are applied at a nozzle tip temperature of 70 degrees.
  • the application amount of the cholesteric liquid crystal material 39 is set to such an amount that the cholesteric liquid crystal material 39 is held on the liquid crystal holding part 19 by the surface tension at the stage where the decompression step (step 9) ends.
  • the particles of the cholesteric liquid crystal material 39 are applied at intervals so as not to overlap each other. This is to prevent bubbles from entering the cholesteric liquid crystal material 39.
  • the cholesteric liquid crystal material 39 is preferably applied so as to be slightly extraneous to the Fresnel lens portion 21 on the surface of the liquid crystal holding portion 19. Thereby, it is possible to suppress the occurrence of manufacturing defects of the semi-finished blank 11 for the variable focus lens due to manufacturing variations of the first and second substrates 13 and 15 and the liquid crystal holding unit 19 and variations in the application state of the liquid crystal material. . That is, even if a slight deviation occurs in the application region of the cholesteric liquid crystal material 39 due to these variations, the cholesteric liquid crystal material 39 applied a little more can finally be expanded to a necessary region.
  • FIG. 4 shows a state in which a cholesteric liquid crystal material 39 is applied toward the Fresnel lens portion 21 of the first substrate 13 using the inkjet 37. Specifically, a state in which the cholesteric liquid crystal material 39 is applied onto the first alignment film 27 formed on the Fresnel lens portion 21 is shown. In consideration of the fact that the cholesteric liquid crystal material 39 is finally spread almost entirely on the Fresnel lens portion 21 after the second substrate 15 is bonded to the surface of the first substrate 13, FIG. As shown in FIG. 4, the Fresnel lens portion 21 is not applied near the outermost periphery.
  • Step 5 is an adhesive application process using the jet dispenser 45.
  • the adhesive 43 is applied to the convex curved surface of the first substrate 13 with a predetermined interval so as not to overlap each other. Further, as shown in FIG. 7, the adhesive 43 is applied so that the adjacent adhesives 43 are connected in the bonding step (step 7) so as to create a sealed space 53 around the liquid crystal holding unit 19.
  • the application amount of the adhesive 43 is such that the adhesive 43 spreads over almost the entire convex curved surface of the first substrate 13 excluding the liquid crystal holding part 19 at the end stage of the decompression step (step 9). Is set.
  • the adhesive 43 is applied so as to form a substantially donut-shaped region when the first substrate 13 is viewed from the surface. That is, a non-adhesive region 47 to which the adhesive 43 is not applied is provided in the liquid crystal holding unit 19 (Fresnel lens unit 21) and a certain region from the vicinity to the outer periphery of the first substrate 13.
  • the non-adhesive region 47 is formed in consideration of the application pattern and application amount of the adhesive 43, the final thickness of the adhesive layer, the size and shape of the liquid crystal holding part 19, the degree of decompression (step 6), and the like. . Further, in order to prevent the adhesive 43 from protruding from the outer periphery of the first substrate 13, the adhesive 43 is not applied in the vicinity of the outer periphery of the first substrate 13.
  • the vacuum sealing process includes a pressure reducing process (Step 6), a bonding process (Step 7), a standby process (Step 8), and a pressure reducing process (Step 9).
  • step 6 as shown in FIG. 6, the inside of the sealed container 49 storing the first substrate 13 and the second substrate 15 coated with the cholesteric liquid crystal material 39 and the adhesive 43 is at atmospheric pressure by a vacuum pump 51. The pressure is reduced.
  • Step 7 is a process of bonding the first substrate 13 and the second substrate 15 together.
  • the first and second substrates 13 and 15 are fixed by a fixing member (not shown) so as to face each other with a space inside the sealed container 49. Then, the first substrate 13 is moved upward to approach the second substrate 15, and the second substrate 15 is released when it is in contact with the second substrate 15. Thereby, the surface of the first substrate 13 is pressed by the weight of the second substrate 15.
  • Step 8 the state in which the first substrate 13 and the second substrate 15 are bonded together in Step 7 is held for a predetermined time.
  • the adhesive 43 spreads when the particles of the adhesive 43 are pressed by the weight of the second substrate 15 in the standby process, and the adhesives 43 are connected to each other.
  • a sealed space 53 independent from the outside of the variable focus lens semifinished blank 11 is formed separately from the space outside the adhesive 43. That is, the non-adhesive region 47 is converted into a sealed space 53 surrounded by the first substrate 13, the second substrate 15, and the adhesive 43, and a ring-shaped adhesive region is formed on the outer periphery of the sealed space 53.
  • the distance between the outer periphery of the non-adhesive region 47 and the outer periphery of the liquid crystal holding unit 19 is larger than the application interval of each particle of the adhesive 43 near the outer periphery of the non-adhesive region 47.
  • Such a sealed space 53 is easily formed.
  • step 9 the inside of the sealed container 49 that has been in a reduced pressure environment in step 6 is returned to atmospheric pressure.
  • the adhesive 43 since the non-adhesive region 47 around the liquid crystal holding unit 19 is surrounded by the adhesive 43, the adhesive 43 is drawn toward the sealed space 53 of the non-adhesive region 47. Further, since the adhesive 43 has viscosity, the flowing speed cannot catch up with the return pressure speed. For this reason, the inside of the sealed space 53 becomes a negative pressure. Then, the second substrate 15 is pressed against the first substrate 13 at atmospheric pressure by the negative pressure in the sealed space 53.
  • the cholesteric liquid crystal material 39 spreads over the entire Fresnel lens portion 21 of the liquid crystal holding unit 19, and the adhesive 43 spreads over the entire convex curved surface of the first substrate 13 excluding the liquid crystal holding unit 19.
  • the sealed space 53 almost disappears.
  • the application amount of the cholesteric liquid crystal material 39 is set to such an amount that the cholesteric liquid crystal material 39 is held on the liquid crystal holding part 19 by the surface tension in the second substrate 15 in the stage of the decompression process. Therefore, only the adhesive 43 is drawn into the non-adhesive region 47, and the cholesteric liquid crystal material 39 is not drawn. That is, since the adhesive 43 and the cholesteric liquid crystal material 39 are not mixed, the adhesive strength in the adhesive layer can be increased.
  • the adhesive 43 is mainly drawn into the sealed space 53 of the non-adhesive region 47 in the decompression process, but this space is not completely evacuated in the decompression process (step 6). For this reason, this space is inevitably not completely filled with the adhesive 43. Therefore, extremely small bubbles 55 remain in the vicinity of the outer peripheral portion of the liquid crystal holding unit 19 as shown in FIG. In FIG. 8, although the bubble 55 is exaggerated and shown as a large point, the bubble 55 is actually extremely small. Further, since the bubbles 55 are present on the boundary line between the variable focus portion 5 and the other region, it is difficult to understand visually and there is no problem in practical use.
  • Bubbles 55 are likely to occur at two points near the short axis of the ellipse and the outer periphery of the variable focus portion 5 when the variable focus portion 5 has a substantially elliptic shape, and the variable focus portion 5 has a substantially circular shape. In this case, it is presumed that the bubble 55 is likely to be generated at one point on the outer periphery of the variable focus portion 5.
  • the adhesive 43 is cured by irradiating the region where the adhesive 43 has spread with ultraviolet rays or visible light.
  • a step of sufficiently spreading the adhesive 43 between the upper and lower first substrates 13 and the second substrate 15 for a predetermined time before the adhesive 43 is cured may be included as appropriate.
  • the cholesteric liquid crystal material 39 has been described as an example applied on the liquid crystal holding unit 19.
  • the present invention is not limited to this.
  • a cholesteric liquid crystal material 39 may be applied to the region of the second substrate 15 facing the liquid crystal holding unit 19, that is, the second alignment film 35.
  • liquid crystal holding part 19 is formed on the front surface of the first substrate 13, it may be formed on the back surface of the second substrate 15.
  • the adhesive 43 is applied onto the convex curved surface of the first substrate 13 .
  • the present invention is not limited to this.
  • the adhesive 43 may be applied on the concave curved surface of the second substrate 15 or may be applied to both.
  • the liquid crystal holding unit 19 has been described by taking an example in which the liquid crystal holding unit 19 is provided on a pedestal protruding in a partial region on the surface of the first substrate 13.
  • the present invention is not limited to this.
  • a configuration in which the pedestal itself does not exist on the surface of the first substrate 13 and the Fresnel lens portion 21 is provided may be employed.
  • the liquid crystal holding unit 19 is configured by the Fresnel lens unit 21.
  • the liquid crystal holding unit 19 may have a configuration in which a recess is provided on the surface of the first substrate 13.
  • the adhesive 43 is applied so that the sealed space 53 is formed in the non-adhesive region 47 in the standby process under a reduced pressure environment. Then, in the return pressure step, the adhesive 43 existing so as to surround the sealed space 53 in a ring shape is drawn into the sealed space 53 side.
  • the cholesteric liquid crystal material 39 is applied by an amount that is held on the liquid crystal holding part 19 by the surface tension at the stage of the decompression process using the inkjet 37. As a result, the cholesteric liquid crystal material 39 is not drawn into the sealed space 53, and the adhesive 43 can be spread to more necessary locations.
  • the entire blank can be used effectively during lens edging.
  • the manufacturing method of the semi-finished blank for variable focus lens according to the present invention can be widely applied as a manufacturing method for optical members such as eyeglass lenses and cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Eyeglasses (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本製造方法は、第1基板(13)の表面および第2基板(15)の裏面の少なくともいずれか一方へ、液晶保持部(19)を囲う非接着剤領域(47)を隔てて、接着剤(43)を塗布する接着剤塗布工程と、第1基板(13)および第2基板(15)を収容する密閉容器の内部を大気圧に対して減圧する減圧工程と、減圧工程による減圧下で第1基板(13)の表面上に第2基板(15)を貼り合わせる貼り合わせ工程と、貼り合わせ工程の後、減圧工程による減圧下で所定時間、第1基板(13)と第2基板(15)との貼り合せ状態を継続させる待機工程と、この待機工程後に密閉容器の減圧を復圧する復圧工程と、を備えている。

Description

可変焦点レンズ用セミフィニッシュトブランクの製造方法
 本発明は、品質のよい可変焦点レンズ用セミフィニッシュトブランクの製造方法に関するものである。
 従来より、可変焦点レンズ用セミフィニッシュトブランクは、表面が凸湾曲状の下基板と、この表面と対向して接合される凹湾曲状の裏面を有する上基板と、を含むように構成されている。そして、上下基板の間には、液晶材料を含む可変焦点部が配置されている。この可変焦点部へ電圧を印加することで、可変焦点部の屈折率を変化させることができるため、例えば、遠近両用メガネのレンズとして用いることができる。
 例えば、特許文献1には、上基板と下基板とを接合する際に、上下基板を貼り合わせた後、パッドを介して上基板を可変焦点部側へ押圧した状態で上基板の外周付近に設けられた2箇所の穴の一方から接着剤を導入し、他方の穴から空気などを抜きながら接着剤を両基板の全体に行き渡らせる可変焦点レンズ用セミフィニッシュトブランクの製造方法について開示されている。
米国特許出願公開第2009/256977号明細書
 しかしながら従来の製造方法では、可変焦点レンズの性能の低下を招くおそれがある。
 すなわち、従来の製造方法では、可変焦点部内に接着剤を入り込ませないようにするために、上基板を可変焦点部側に十分に押圧をして接着剤を導入する。この際に、可変焦点部へ付与される局所的な応力は、レンズの損傷や、復圧後における可変焦点部内での空間の発生等の問題を発生させ、可変焦点レンズの性能の低下を招くおそれがある。
 本発明は、可変焦点レンズの性能の低下を防止することが可能な可変焦点レンズ用セミフィニッシュトブランクの製造方法を提供することを目的とするものである。
 上記目的を達成するために本発明の可変焦点レンズ用セミフィニッシュトブランクの製造方法は、第1基板の表面とこれに対向する第2基板の裏面との間に液晶保持部を配置して構成される可変焦点レンズ用セミフィニッシュトブランクの製造方法であって、接着剤塗布工程と、減圧工程と、貼り合わせ工程と、待機工程と、復圧工程と、を備えている。接着剤塗布工程は、第1基板の表面および第2基板の裏面の少なくともいずれか一方へ、液晶保持部を囲う非接着剤領域を隔てて、接着剤を塗布する。減圧工程は、第1基板および第2基板を収容する密閉容器の内部を大気圧に対して減圧する。貼り合わせ工程は、減圧工程による減圧環境下において、第1基板の表面上に第2基板を貼り合わせる。待機工程は、貼り合わせ工程の後、減圧工程による減圧条件下において、所定時間、第1基板と第2基板との貼り合わせ状態を継続させる。復圧工程は、待機工程の後に、密閉容器の減圧を復圧する。
 また、本発明の可変焦点レンズ用セミフィニッシュトブランクの製造方法は、インクジェットを用いて液晶保持部へ液晶材料を塗布する液晶塗布工程を、さらに備えていることが好ましい。
 また、本発明の可変焦点レンズ用セミフィニッシュトブランクの製造方法は、液晶塗布工程において、インクジェットにて塗布された複数の液晶粒は、それぞれ重なり合わないように間隔をあけて塗布されていることが好ましい。
 また、本発明の可変焦点レンズ用セミフィニッシュトブランクの製造方法は、液晶塗布工程では、液晶材料は第1基板の表面上の一部領域に形成された液晶保持部上に塗布され、この塗布量は、密閉容器を大気圧へ復圧した後に液晶材料が表面張力によって液晶保持部上に保持される量であることが好ましい。
 さらに、本発明の可変焦点レンズ用セミフィニッシュトブランクの製造方法は、接着剤塗布工程では、非接着剤領域を囲むように複数の接着剤粒によってそれぞれ重なり合わないように間隔をあけて第1基板の表面上および第2基板の裏面のうち少なくとも一方に接着剤が塗布されることが好ましい。
(発明の効果)
 本発明によれば、可変焦点レンズの性能の低下を防止することができる。
 すなわち、減圧環境下において、第1基板の表面上に第2基板を貼り合わせると、液晶保持部の周りに非接着剤領域を介してリング状の接着剤領域が形成される。そして、その後、密閉容器を復圧状態にすることによって液晶保持部の外周である境界まで、接着剤が引き込まれる。つまり、液晶保持部へ押圧をかけることなく液晶保持部の外周である境界まで接着剤を充填させて第1基板と第2基板とを接合させるため、液晶保持部の損傷や、液晶保持部内における空間の発生等の問題を生じさせることなく、可変焦点レンズの性能の低下を防止することができる。
本発明の一実施の形態に係る可変焦点メガネの斜視図。 本発明の一実施の形態に係る可変焦点レンズ用セミフィニッシュトブランクを構成する第1・第2基板の模式的な分解図。 図2の可変焦点レンズ用セミフィニッシュトブランクの製造方法の一部ステップを示したフローチャート。 (a)は、図2の可変焦点レンズ用セミフィニッシュトブランクの第1基板に液晶材料を塗布する状態を示す斜視図。(b)は、その拡大断面図。 (a)は、図2の可変焦点レンズ用セミフィニッシュトブランクの第1基板に接着剤を塗布する状態を示す斜視図。(b)は、その拡大断面図。 図2の可変焦点レンズ用セミフィニッシュトブランクの第1・第2基板を減圧された密閉容器内で接合させる工程を示す模式断面図。 (a)は、図2の可変焦点レンズ用セミフィニッシュトブランクの製造方法の一部ステップである待機工程における状態を示す断面図。(b)は、その平面図。 (a)は、図2の可変焦点レンズ用セミフィニッシュトブランクの製造方法の一部ステップである復圧工程の段階を示す断面図。(b)は、その平面図。
 本発明の可変焦点レンズ用セミフィニッシュトブランクについて、以下で、図面とともに詳細に説明する。図1は、本実施形態の可変焦点レンズ用セミフィニッシュトブランクからサーフェーシング加工、エッジング加工などの所定の工程を経て得られる可変焦点レンズ1を装着した可変焦点メガネ3の概略構成図である。
 可変焦点レンズ1の中心から少し下にずれた下方領域には、コレステリック液晶材料39を含む可変焦点部5が形成されている。また、メガネフレーム7には、図示しない電池およびセンサ回路などを有する回路部9が設けられている。例えば、加速度センサを用いたセンサ回路は、可変焦点メガネ3を装着した人の頭部の上下角度によってオン/オフ信号を出力する機能を備えており、可変焦点部5へ印加する電圧を制御する。
 このような構成を備えた可変焦点メガネ3は、センサ回路からの信号に基づいて可変焦点部5への電圧の印加が切り換えられ、可変焦点部5の見かけ上の屈折率を変えることで遠近両用メガネとして機能する。
 次に、可変焦点レンズ用セミフィニッシュトブランク11の構成について説明する。図2は、第1基板13とこれと対向して接合される第2基板15の模式的な分解図を示している。
 図2に示すように、第1基板13は、凸状に湾曲した表面と凹状に湾曲した裏面とを有している。そして、第1基板13の凸状の湾曲面には、液晶保持部19が形成されている。液晶保持部19の表面には、フレネルレンズ部21が形成されている。さらに、第1基板13の凸状の湾曲面には、第1基板13側から順に、第1透明導電膜23および第1二酸化珪素膜25が製膜され、第1二酸化珪素膜25の表面(凸状の湾曲面)には、フレネルレンズ部21に対応する領域に、第1配向膜27が製膜されている。
 第2基板15は、凸状に湾曲した表面と凹状に湾曲した裏面とを有している。凹状の湾曲面には、第2基板15側から順に、第2透明導電膜31および第2二酸化珪素膜33が製膜されている。そして、フレネルレンズ部21と対向する第2二酸化珪素膜33の領域には、第2配向膜35が製膜されている。
 なお、第1・第2基板13,15は、チオウレタン等のプラスチックから構成されている。
 このような構成の可変焦点レンズ用セミフィニッシュトブランク11は、図3に示すフローチャートに従って製造される。
 ステップ1の透明導電膜の製膜工程では、第1基板13の凸状の湾曲面上および第2基板15の凹状の湾曲面上のほぼ全域に、それぞれ第1透明導電膜23および第2透明導電膜31をスパッタリングによって製膜する。第1・第2透明導電膜23,31は、10~30nmの厚みで製膜されていることが好ましい。なお、詳細な説明は省略するが、ステップ1の直前または直後に、第1・第2透明導電膜23,31の内部電極がマスキングシートを用いてスピンコートによって形成されている。この内部電極は、回路部9と接続される外部電極と透明導電膜とのコンタクト性を高める役割を担っている。
 ステップ2の絶縁層形成工程では、第1・第2二酸化珪素膜25,33をスパッタリングによって製膜する。第1二酸化珪素膜25および第2二酸化珪素膜33は、それぞれ第1透明導電膜23および第2透明導電膜31上に積層されて製膜される。
 ステップ3の配向膜の製膜工程では、第1配向膜27を、第1基板13の液晶保持部19上に製膜する。そして、第2配向膜35を、ステップ4において液晶保持部19上に塗布されるコレステリック液晶材料39を、第1配向膜27とともに挟み込むように、第2基板15の凹状の湾曲面上に製膜する。すなわち、第1配向膜27および第2配向膜35は、それぞれ第1二酸化珪素膜25および第2二酸化珪素膜33上に積層され、互いに対向するように製膜される。
 ステップ4の液晶塗布工程では、インクジェット37を用いて液晶保持部19に向けてコレステリック液晶材料39を塗布する。より正確には、フレネルレンズ部21上に製膜された第1配向膜27上にコレステリック液晶材料39を塗布する。インクジェット37によるコレステリック液晶材料39の塗布は、温度とノズル径を適宜選択することで可能となる。本実施形態においては、ノズル径が100μmのものを用いており、ノズル先端の温度70度としてコレステリック液晶材料39の液晶粒(1粒子当たり300plで誤差は3%)を塗布している。
 コレステリック液晶材料39の塗布量は、復圧工程(ステップ9)が終了する段階において、コレステリック液晶材料39が表面張力によって液晶保持部19上に保持される程度の量としている。また、コレステリック液晶材料39の粒子は、それぞれ重なり合わないように間隔をあけて塗布されている。これは、コレステリック液晶材料39中に気泡が混入するのを防止するためである。
 ここで、コレステリック液晶材料39は、液晶保持部19の表面のフレネルレンズ部21に対して若干余分となるように塗布されることが好ましい。これにより、第1・第2基板13,15や液晶保持部19の製造バラツキ、液晶材料の塗布状態のバラツキに起因する可変焦点レンズ用セミフィニッシュトブランク11の製造不良の発生を抑制することができる。すなわち、これらのバラツキによってコレステリック液晶材料39の塗布領域に僅かなズレが生じたとしても、若干余分に塗布されたコレステリック液晶材料39によって、最終的に必要な領域まで広げることができる。
 図4は、インクジェット37を用いて第1基板13のフレネルレンズ部21に向けてコレステリック液晶材料39を塗布している状態を示している。具体的には、フレネルレンズ部21上に形成された第1配向膜27上へコレステリック液晶材料39を塗布する状態を示す。なお、コレステリック液晶材料39は、第1基板13の表面上に第2基板15を貼り合わせた後、最終的にフレネルレンズ部21上のほぼ全体に広がることを考慮して、図4(b)に示すように、フレネルレンズ部21の最外周部分付近には塗布していない。
 ステップ5は、ジェットディスペンサー45を用いた接着剤塗布工程である。接着剤43は、図5に示すように、それぞれが重なり合わないように所定の間隔をあけて第1基板13の凸状の湾曲面に塗布される。また、図7に示すように、接着剤43は、貼り合わせ工程(ステップ7)で隣り合う接着剤43同士がつながって液晶保持部19の周りに密閉空間53を作り出すように塗布される。なお、ここでは、復圧工程(ステップ9)の終了段階において接着剤43が液晶保持部19を除く第1基板13の凸状の湾曲面のほぼ全体に広がるように、接着剤43の塗布量が設定されている。
 接着剤43は、第1基板13を表面から見て、ほぼドーナツ形状の領域を形成するように塗布されている。すなわち、液晶保持部19(フレネルレンズ部21)とこの周辺付近から第1基板13の外周へ向けた一定領域には、接着剤43が塗布されない非接着剤領域47が設けられている。非接着剤領域47は、接着剤43の塗布パターンや塗布量、最終的な接着剤層の厚み、液晶保持部19の大きさや形状、減圧の程度(ステップ6)などを考慮して形成される。また、接着剤43が第1基板13の外周からはみ出すのを防止するために、第1基板13の外周付近には接着剤43が塗布されていない。
 なお、本実施形態では、ほぼ同量の粒状の接着剤43を用いているが、線状の接着剤を用いてもよい。
 次に、真空封止工程について詳細に説明する。真空封止工程は、減圧工程(ステップ6)、貼り合わせ工程(ステップ7)、待機工程(ステップ8)および復圧工程(ステップ9)からなる。
 ステップ6では、図6に示すように、コレステリック液晶材料39と接着剤43とが塗布された第1基板13および第2基板15を格納した密閉容器49に対し、内部を真空ポンプ51によって大気圧に対して減圧状態とする。
 ステップ7は、第1基板13と第2基板15とを貼り合わせる工程である。第1・第2基板13,15は、密閉容器49の内部において間隔をあけて対面するように固定部材(図示せず)によって固定される。そして、第1基板13を上方へ移動させることで第2基板15に近づけ、第2基板15と接した段階で第2基板15の固定を解除する。これにより、第2基板15の自重によって第1基板13の表面が押圧される。
 ステップ8の待機工程では、ステップ7で第1基板13および第2基板15を貼り合わせた状態を所定時間保持する。接着剤43は、図7に示すように、待機工程において、接着剤43の粒子が第2基板15の自重によって押圧されることによって広がり、接着剤43同士がつながる。すると、非接着剤領域47には、可変焦点レンズ用セミフィニッシュトブランク11の外部から独立した密閉空間53が、接着剤43より外側の空間と切り離されて形成される。すなわち、非接着剤領域47は、第1基板13、第2基板15および接着剤43に囲まれる密閉空間53へと変換され、密閉空間53の外周にリング状の接着剤領域が形成される。
 本実施形態では、非接着剤領域47の外周と液晶保持部19の外周との距離を、非接着剤領域47の外周付近における接着剤43の各粒子の塗布間隔よりも大きくしているので、このような密閉空間53が形成されやすい。
 ステップ9では、ステップ6において減圧環境下とした密閉容器49内を大気圧に復圧させる。このとき、液晶保持部19の周囲の非接着剤領域47は、接着剤43によって囲まれているために、非接着剤領域47の密閉空間53に向かって接着剤43が引き込まれていく。また、接着剤43は粘性を持っているので、流れ込む速度が復圧速度に追いつかない。このため、密閉空間53内は負圧となる。そして、第2基板15は、密閉空間53内の負圧によって大気圧で第1基板13に押し付けられる。その結果、コレステリック液晶材料39は、液晶保持部19のフレネルレンズ部21の全体に行き渡るとともに、接着剤43は液晶保持部19を除く第1基板13の凸状の湾曲面全体に行き渡って、図8(a)および図8(b)に示すように、密閉空間53はほぼ消滅する。
 ここで、コレステリック液晶材料39の塗布量は、復圧工程の段階において、コレステリック液晶材料39が第2基板15における表面張力によって液晶保持部19上に保持される程度の量としている。そのため、非接着剤領域47へ引き込まれるのは、接着剤43のみであり、コレステリック液晶材料39が引き込まれることはない。すなわち、接着剤43とコレステリック液晶材料39とが混ざることはないため、接着層における接着強度を高めることができる。
 なお、接着剤43は、主として、復圧工程において非接着剤領域47の密閉空間53へ引き込まれるが、減圧工程(ステップ6)においてもこの空間が完全に真空となるわけではない。このため、必然的にこの空間が、接着剤43によって完全に埋められることはない。そのため、液晶保持部19の外周部付近に、図8に示すように、極めて小さな気泡55が残存してしまう。図8では、気泡55を誇張して大きな点として示しているが、実際には、気泡55は極めて小さい。さらに、気泡55は、可変焦点部5とそれ以外の領域との境界線上に存在することになるため、目視では判りにくく実用に際して全く不都合がない。
 気泡55は、可変焦点部5を略楕円形状とした場合、楕円の短軸線と可変焦点部5の外周とが交差する付近の2点に発生しやすく、可変焦点部5を略円形状とした場合は、気泡55は可変焦点部5の外周上の1点に発生しやすいと推測される。
 最後に、ステップ10の接着剤硬化工程では、接着剤43が行き渡った領域に紫外線や可視光線などを照射して接着剤43を硬化させる。この工程では、接着剤43の硬化前に所定時間、上下の第1基板13、第2基板15の間に接着剤43を十分に行き渡らせる工程も適宜含めてもよい。
 なお、本実施形態では、コレステリック液晶材料39は、液晶保持部19上に塗布される例を挙げて説明した。しかし、本発明はこれに限定されるものではない。例えば、この代わりに、あるいはこれとともに、液晶保持部19と対面する第2基板15の領域、すなわち第2配向膜35上にコレステリック液晶材料39を塗布してもよい。
 また、液晶保持部19が第1基板13の表面に形成されていたが、第2基板15の裏面に形成されていてもよい。
 また、本実施形態では、接着剤43を第1基板13の凸状の湾曲面上に塗布した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。例えば、接着剤43を、第2基板15の凹状の湾曲面上に塗布してもよいし、両方へ塗布してもよい。
 さらに本実施形態では、液晶保持部19は、第1基板13の表面上の一部領域に突出した台座上に設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。例えば、第1基板13の表面上に、台座そのものが存在せず、フレネルレンズ部21が設けられている構成であってもよい。この場合には、フレネルレンズ部21によって液晶保持部19が構成される。また、液晶保持部19として、第1基板13の表面上に凹部を設けた構成であってもよい。
 以上のように、本実施形態では、接着剤43は、減圧環境下における待機工程において、非接着剤領域47に密閉空間53が形成されるように塗布されている。そして、復圧工程において、密閉空間53をリング状に囲うように存在する接着剤43が、密閉空間53側へ引き込まれる。
 したがって、従来技術のように液晶保持部へ押圧をかけて第1基板と第2基板とを接合させる必要がないため、液晶保持部の損傷や、液晶保持部内における空間の発生等の問題は生じることがない。よって、性能の低下を防止した可変焦点レンズ用セミフィニッシュトブランク11を製造することができる。
 また、本実施形態では、コレステリック液晶材料39は、インクジェット37を用いて復圧工程の段階で表面張力によって液晶保持部19上に保持される量だけ塗布されている。これにより、コレステリック液晶材料39が密閉空間53にまで引き込まれることがなく、接着剤43をより必要な箇所へ行き渡らせることができる。
 さらに、従来技術のように上基板に穴を設ける必要がないため、レンズのエッジング加工の際、ブランク全体を有効利用することができる。
 本発明に係る可変焦点レンズ用セミフィニッシュトブランクの製造方法は、メガネのレンズやカメラなどの光学部材などのための製法として広く適用可能である。
 1   可変焦点レンズ
 3   可変焦点メガネ
 5   可変焦点部
 7   メガネフレーム
 9   回路部
11   可変焦点レンズ用セミフィニッシュトブランク
13   第1基板
15   第2基板
19   液晶保持部
21   フレネルレンズ部
23   第1透明導電膜
25   第1二酸化珪素膜
27   第1配向膜
31   第2透明導電膜
33   第2二酸化珪素膜
35   第2配向膜
37   インクジェット
39   コレステリック液晶材料
43   接着剤
45   ジェットディスペンサー
47   非接着剤領域
49   密閉容器
51   真空ポンプ
53   密閉空間
55   気泡

Claims (5)

  1.  第1基板の表面とこれに対向する第2基板の裏面との間に液晶保持部を配置して構成される可変焦点液晶レンズ用セミフィニッシュトブランクの製造方法であって、
     前記第1基板の表面および前記第2基板の裏面の少なくともいずれか一方へ、前記液晶保持部を囲う非接着剤領域を隔てて、接着剤を塗布する接着剤塗布工程と、
     前記第1基板および前記第2基板を収容する密閉容器の内部を大気圧に対して減圧する減圧工程と、
     前記減圧工程による減圧環境下において、前記第1基板の表面上に前記第2基板を貼り合わせる貼り合わせ工程と、
     前記貼り合わせ工程の後、前記減圧工程による減圧環境下において、所定時間、前記第1基板と前記第2基板との貼り合わせ状態を継続させる待機工程と、
     前記待機工程の後に、前記密閉容器の減圧を復圧する復圧工程と、
    を備えている可変焦点レンズ用セミフィニッシュトブランクの製造方法。
  2.  インクジェットを用いて前記液晶保持部へ液晶材料を塗布する液晶塗布工程を、
    さらに備えている、
    請求項1に記載の可変焦点レンズ用セミフィニッシュトブランクの製造方法。
  3.  前記液晶塗布工程において、前記インクジェットにて塗布された複数の液晶粒は、それぞれ重なり合わないように間隔をあけて塗布されている、
    請求項2に記載の可変焦点レンズ用セミフィニッシュトブランクの製造方法。
  4.  前記液晶塗布工程では、前記液晶材料は前記第1基板の表面上の一部領域に形成された液晶保持部上に塗布され、
     この塗布量は、前記密閉容器を大気圧へ復圧した後に前記液晶材料が表面張力によって前記液晶保持部上に保持される量である、
    請求項2または3に記載の可変焦点レンズ用セミフィニッシュトブランクの製造方法。
  5.  前記接着剤塗布工程では、前記非接着剤領域を囲むように複数の接着剤粒によってそれぞれ重なり合わないように間隔をあけて前記第1基板の表面上および前記第2基板の裏面のうち少なくとも一方に前記接着剤が塗布される、
    請求項1から4のいずれか1項に記載の可変焦点レンズ用セミフィニッシュトブランクの製造方法。
PCT/JP2011/005834 2010-12-15 2011-10-19 可変焦点レンズ用セミフィニッシュトブランクの製造方法 WO2012081157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/514,436 US8815045B2 (en) 2010-12-15 2011-10-19 Method for manufacturing semi-finished blank for varifocal lens
EP11848495.5A EP2653910B1 (en) 2010-12-15 2011-10-19 Method for manufacturing semi-finished blank for variable-focus lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279340 2010-12-15
JP2010279340A JP4955807B1 (ja) 2010-12-15 2010-12-15 可変焦点レンズ用セミフィニッシュトブランクの製造方法

Publications (1)

Publication Number Publication Date
WO2012081157A1 true WO2012081157A1 (ja) 2012-06-21

Family

ID=46244277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005834 WO2012081157A1 (ja) 2010-12-15 2011-10-19 可変焦点レンズ用セミフィニッシュトブランクの製造方法

Country Status (4)

Country Link
US (1) US8815045B2 (ja)
EP (1) EP2653910B1 (ja)
JP (1) JP4955807B1 (ja)
WO (1) WO2012081157A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523354B2 (en) * 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
DE102015114990B4 (de) * 2015-09-07 2022-05-12 tooz technologies GmbH Linsenanordnung, insbesondere Brillenglasanordnung, Anzeigevorrichtung und Verfahren zum Herstellen einer Linsenanordnung
WO2019156143A1 (ja) * 2018-02-09 2019-08-15 三井化学株式会社 レンズおよびレンズの製造方法
IT201900002339A1 (it) * 2019-02-18 2020-08-18 Thelios S P A Metodo per realizzare una lente di occhiali rivestita mediante deposizione fisica di vapore pvd e corpo di supporto per uno sbozzato di lente
EP3988289A1 (en) * 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988288A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624853A (ja) * 1992-07-03 1994-02-01 Daihen Corp セラミックス製閉ループ構造体の製造方法
JP2005088351A (ja) * 2003-09-17 2005-04-07 Seiko Epson Corp 成形型の製造方法及び成形型
JP2005536782A (ja) * 2002-08-20 2005-12-02 イー・ビジョン・エルエルシー 電気活性レンズを製造する方法
US20090256977A1 (en) 2008-04-11 2009-10-15 Pixeloptics Inc. Electro-active diffractive lens and method for making the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69636422T2 (de) * 1995-10-25 2007-02-15 Toppan Printing Co. Ltd. Lentikuläre blattförmige Linse, Durchlicht-Projektionsschirm oder Fernseher mit einer derartigen Linse und Herstellungsverfahren einer solchen Linse
WO2003032066A1 (en) 2001-10-05 2003-04-17 E-Vision, Llc Hybrid electro-active lens
US6885427B2 (en) * 2002-03-15 2005-04-26 Lg.Philips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device having alignment system with one end provided inside vacuum chamber
JP3693972B2 (ja) * 2002-03-19 2005-09-14 富士通株式会社 貼合せ基板製造装置及び基板貼合せ方法
JP2004093760A (ja) 2002-08-30 2004-03-25 Fujitsu Display Technologies Corp 液晶表示装置の製造方法
JP4605499B2 (ja) * 2004-10-28 2011-01-05 富士電機ホールディングス株式会社 有機elディスプレイの封止構造
FR2883984B1 (fr) * 2005-04-04 2007-06-22 Essilor Int Appareil pour conformer un film plan sur une lentille optique, procedes de fonctionnalisation d'une lentille optique au moyen dudit appareil, et lentille ainsi obtenue
US20090220708A1 (en) * 2008-02-28 2009-09-03 Peter Schmitt System for lenticular printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624853A (ja) * 1992-07-03 1994-02-01 Daihen Corp セラミックス製閉ループ構造体の製造方法
JP2005536782A (ja) * 2002-08-20 2005-12-02 イー・ビジョン・エルエルシー 電気活性レンズを製造する方法
JP2005088351A (ja) * 2003-09-17 2005-04-07 Seiko Epson Corp 成形型の製造方法及び成形型
US20090256977A1 (en) 2008-04-11 2009-10-15 Pixeloptics Inc. Electro-active diffractive lens and method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653910A4 *

Also Published As

Publication number Publication date
EP2653910A1 (en) 2013-10-23
JP2012128173A (ja) 2012-07-05
EP2653910A4 (en) 2014-01-08
US20120267045A1 (en) 2012-10-25
JP4955807B1 (ja) 2012-06-20
US8815045B2 (en) 2014-08-26
EP2653910B1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2012081157A1 (ja) 可変焦点レンズ用セミフィニッシュトブランクの製造方法
US8994885B2 (en) Pre-edging lens and method for manufacturing edged lens
KR101387095B1 (ko) 곡면 기판에 필름을 접합하는 방법
JP4841031B2 (ja) 液晶装置の製造方法
JP6083925B2 (ja) 光学構造を備えた基板及びそれを用いた光学素子
JP3888223B2 (ja) 液晶表示素子の製造方法
CN101443181A (zh) 将分层结构贴覆在镜片上的方法
KR102381327B1 (ko) 응력발생을 최소화하기 위하여 글라스층에 응력감소용 홈을 구비한 폴더블 디스플레이 및 그의 제조방법
US9759859B2 (en) Display device and manufacturing method thereof
JP2007094368A (ja) マイクロレンズ基板、マイクロレンズ基板の製造方法、液晶パネルおよび投射型表示装置
JP6076523B1 (ja) 積層光学フィルムの製造方法
US20120013979A1 (en) Process for applying a layered structure on a lens
US20160033781A1 (en) Stereoscopic display device and cell-aligning packaging method of the same
JP5237479B2 (ja) 可変焦点レンズ用セミフィニッシュトブランクの製造方法
CN103091808A (zh) 免调焦光学摄像头模组
JP4255948B2 (ja) 表示デバイスの製造方法および表示デバイスの製造装置
KR20120066946A (ko) 렌즈 및 이의 제조방법
JP5654768B2 (ja) エッジング前レンズ及びエッジングレンズの製造方法
JP5665375B2 (ja) 液晶レンズの製造方法
JP2017049584A (ja) 液晶セルの製造方法、調光フィルムの製造方法、液晶セル及び調光フィルム
JP5233139B2 (ja) レンズの製造方法
JP5656529B2 (ja) 液晶光学素子及びその製造方法
TWI526766B (zh) 彩色顯示裝置及其製造方法
TWM591630U (zh) 顯示模組
JP2012198338A (ja) 光学素子の製造方法及び光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13514436

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848495

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011848495

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011848495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE