WO2012081056A1 - 冷却装置およびそれを備えた空気調和機 - Google Patents

冷却装置およびそれを備えた空気調和機 Download PDF

Info

Publication number
WO2012081056A1
WO2012081056A1 PCT/JP2010/007311 JP2010007311W WO2012081056A1 WO 2012081056 A1 WO2012081056 A1 WO 2012081056A1 JP 2010007311 W JP2010007311 W JP 2010007311W WO 2012081056 A1 WO2012081056 A1 WO 2012081056A1
Authority
WO
WIPO (PCT)
Prior art keywords
control box
cooling
cooling unit
cooling device
air
Prior art date
Application number
PCT/JP2010/007311
Other languages
English (en)
French (fr)
Inventor
岡 浩二
雄次 武田
輝夫 藤社
司 石曽根
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/007311 priority Critical patent/WO2012081056A1/ja
Priority to KR1020127022777A priority patent/KR20130138082A/ko
Priority to CN201080065029.8A priority patent/CN103238031B/zh
Publication of WO2012081056A1 publication Critical patent/WO2012081056A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present invention relates to a cooling device that cools control parts of an air conditioner, and an air conditioner including the same.
  • a control component such as a control board is made of, for example, dust or water It is housed in a control box that can be protected.
  • a control component (a substrate including a heating element) is accommodated in a control box (electric component box), and a cooling member (heat sink) that cools air in the electric component box is provided. It is provided in the electrical component box.
  • the air conditioner described in Patent Document 1 indirectly cools the heating element by a heat sink by utilizing natural convection.
  • the heat sink In the electrical component box, the heat sink is located above the heat generating element, and the air cooled by the heat sink falls toward the heat generating element.
  • the air heated by the heating element rises toward the heat sink.
  • natural convection is generated in the electrical component box, and the heat generating element is indirectly cooled by the heat sink located above it.
  • the present invention provides an air conditioner having high reliability by accommodating and protecting the control part of the air conditioner in the control box, cooling it, and preventing the control part from getting wet by condensed water. This is the issue.
  • a cooling device that cools a control component housed in a control box of an air conditioner having a compressor, an outdoor heat exchanger, a decompression device, an indoor heat exchanger, and a pipe through which the refrigerant flows.
  • a cooling unit disposed in the control box in a state separated from the control component, and cooling the air in the control box by heat exchange with the refrigerant;
  • a cooling device is provided having a fan for agitating the air in the control box.
  • the cooling unit Piping in the control box that is arranged in the control box and through which the refrigerant flows;
  • the cooling device according to the first aspect is provided, which includes a fin structure including a plurality of fins and attached to the pipe in the control box.
  • the cooling device according to the second aspect is provided, wherein the fan blows air toward the fin structure of the cooling unit.
  • the cooling device according to the second or third aspect is provided in which the piping in the control box of the cooling unit is a part of piping connecting the decompression device and the indoor heat exchanger.
  • the cooling device according to any one of the first to fourth aspects is provided, which has a water tray that receives condensed water below the cooling unit.
  • the cooling device according to any one of the first to fifth aspects, including a heat insulating material that insulates the internal space of the control box.
  • the cooling device according to the sixth aspect is provided, wherein the heat insulating material is a vacuum heat insulating material.
  • An air conditioner including the cooling device according to any one of the first to seventh aspects is provided.
  • the fan forcibly stirs the air in the control box, the air around the cooling unit that exchanges heat with the refrigerant moves without remaining.
  • production of the dew condensation water on the surface of a cooling unit is suppressed compared with the case where a fan does not exist.
  • it is possible to suppress the temperature rise of the control component while suppressing the control component of the air conditioner in the control box from being wetted by the dew condensation water, and to realize an air conditioner having high reliability.
  • FIG. 1 Schematic configuration diagram showing the inside of the control box shown in FIG. 1 is a perspective view of the cooling unit shown in FIG.
  • the schematic block diagram which shows the inside of the control box of the air conditioner which concerns on another embodiment of this invention.
  • a cooling device which is disposed in the control box in a state of being separated from the control component, has a cooling unit for cooling the air in the control box by heat exchange with the refrigerant, and a fan for stirring the air in the control box .
  • the cooling unit has a pipe in the control box that is arranged in the control box and through which the refrigerant flows, and a fin structure that includes a plurality of fins and is attached to the pipe in the control box.
  • the fan blows air toward the fin structure of the cooling unit.
  • the air cooled by the fin structure is diffused throughout the control box.
  • production of the dew condensation water on the surface of a fin structure can further be suppressed.
  • the piping in the control box of the cooling unit is a part of the piping connecting the decompression device and the indoor heat exchanger.
  • the cooling device of the fifth aspect of the invention has a water tray that receives condensed water below the cooling unit. Thereby, it can prevent that the component of the air conditioner located under a cooling unit gets wet with the dew condensation water which generate
  • the cooling device of the sixth invention has a heat insulating material that insulates the internal space of the control box. Thereby, the movement of the heat from the outside into the control box is suppressed. As a result, the cooling effect of the control component by the cooling unit is improved as compared with the case where there is no heat insulating material.
  • the heat insulating material is a vacuum heat insulating material.
  • the heat transfer from the outside into the control box is further suppressed by the vacuum heat insulating material as compared with the heat insulating material.
  • the cooling effect of the control component by the cooling unit is further improved.
  • Eighth invention is an air conditioner provided with the cooling device of the first to seventh inventions. Thereby, an air conditioner having high reliability can be realized.
  • FIG. 1 is a diagram schematically showing a configuration of an air conditioner according to the present invention.
  • FIG. 2 is a diagram schematically showing the internal configuration of the control box according to the embodiment of the present invention.
  • the air conditioner 10 includes a compressor 12, an outdoor heat exchanger 14, a pressure reducing device 16, an indoor heat exchanger 18, and refrigerant pipes 20 to 26 connecting them.
  • a pressure reducing device 16 As the decompression device 16, an expansion valve or a capillary tube that is a copper capillary tube can be employed.
  • the air conditioner 10 is divided into an outdoor unit that houses the compressor 12, the outdoor heat exchanger 14, and the decompression device 16, and an indoor unit that houses the indoor heat exchanger 18.
  • the air conditioner 10 performs a refrigeration cycle in which the refrigerant returns to the compressor 12 through the outdoor heat exchanger 14, the decompression device 16, and the indoor heat exchanger 18 in order from the compressor 12 through the refrigerant pipes 20 to 26. It is configured to be realized.
  • the refrigerant flows through the refrigerant pipe 20 toward the outdoor heat exchanger 14 in a gas phase after being compressed by the compressor 12.
  • the refrigerant is deprived of heat by heat exchange with outdoor air via the outdoor heat exchanger 14, enters a liquid phase state, and flows through the refrigerant pipe 22 toward the decompression device 16.
  • the refrigerant is expanded by the decompression device 16 to reduce the pressure, and flows through the refrigerant pipe 24 toward the indoor heat exchanger 18.
  • the refrigerant takes heat from the indoor air via the indoor heat exchanger 18 to be in a gas phase, and flows through the refrigerant pipe 26 toward the compressor 12.
  • the air conditioner 10 also has a control board (that is, a control component) 30 that controls the refrigeration cycle, and a control box 32 that protects the control board 30.
  • the control box 32 is provided in the outdoor unit.
  • control component is a component used for controlling the air conditioner 10, for example, an electronic component that controls the output of the compressor 12 and the throttle amount of the expansion valve as the decompression device 16.
  • control component is not limited to a control board on which a plurality of electronic components are mounted, and refers to a component that needs to be cooled because it generates heat partially or entirely.
  • the control board 30 is protected from, for example, dust or water by being accommodated in the control box 32. Therefore, the control box 32 is configured so that dust and water do not enter the inside thereof.
  • a hole through which a cable (not shown) extending from the control board 30 to the outside of the control box 32 passes is sealed.
  • the control box 32 is preferably composed of a main body whose upper surface is open and a lid that covers the upper surface of the main body from the viewpoint of maintainability, and further, the space between the main body and the lid is also sealed. Is desirable.
  • a sponge-like resin material such as an EPT sheet can be used.
  • a cooling unit 34 is provided in the control box 32.
  • the cooling unit 34 is configured to cool the air in the control box 32 by heat exchange with the refrigerant in the refrigeration cycle, and as shown in FIG. 2, the refrigerant pipe 24 and the fin structure attached to the refrigerant pipe 24. 36.
  • a part of the refrigerant pipe 24 passes through the control box 32 as shown in FIG. 1, and a plurality of plate-shaped fins 36a are provided on the refrigerant pipe 24 in the control box 32 as shown in FIG.
  • a fin structure 36 is provided.
  • the cooling unit 34 cools the air in the control box 32 by exchanging heat between the air in the control box 32 and the refrigerant flowing in the refrigerant pipe 24 via the fin structure 36. By such a cooling unit 34, the control board 30 is cooled via air.
  • the refrigerant pipe that constitutes a part of the cooling unit 34 is preferably the refrigerant pipe 24 that connects the decompression device 16 and the indoor heat exchanger 18.
  • the refrigerant pipe 24 By effectively using the refrigerant pipe 24, it is not necessary to separately provide a pipe through which the refrigerant flows through the control box 32 just for cooling the air in the control box 32.
  • the refrigerant pipe 24 is supplied with the refrigerant whose pressure has been reduced by the decompression device 16, the pressure acting and the generated vibration are smaller than those of the other refrigerant pipes 20, 22, and 26 shown in FIG. Therefore, the direction in which the refrigerant pipe 24 is arranged in the control box 32 can suppress vibration compared to the case where the other refrigerant pipes 20, 22, and 26 are arranged. As a result, it is possible to reduce the thickness of the piping disposed in the control box 32, which has a secondary merit that the material used can be reduced and the cost can be reduced. Furthermore, as another reason, since the refrigerant flowing through the refrigerant pipe 24 is originally at a low pressure, the influence of the pressure loss caused by passing through the control box 32 (by lengthening) may be small.
  • the fin structure 36 of the cooling unit 34 is integrally formed of metal such as aluminum as shown in FIG.
  • a plurality of plate-shaped fins 36 a are provided on one surface of the main body portion 36 b of the fin structure 36 so as to be arranged in parallel with each other at equal intervals.
  • the fin structure 36 includes a plurality of grooves 36c that are engaged with a portion of the refrigerant pipe 24 formed in a meandering shape on the surface opposite to the surface on which the fins 36a are provided.
  • the plurality of grooves 36c of the fin structure 36 are formed to extend in a direction orthogonal to the parallel direction of the plurality of fins 36a.
  • the fin structure 36 can be produced by pultrusion molding or extrusion molding, and can be produced at a lower cost than other production methods (for example, cutting).
  • the cooling unit 34 be disposed apart from the control board 30 and below the control board 30 as shown in FIG. This is to prevent the control board 30 from getting wet by the condensed water generated on the surface of the cooling unit 34 (specifically, the surface of the fin structure 36 and the surface of the refrigerant pipe 24). As shown in FIG. 4, the cooling unit 34 may be disposed at a position separated from the control board 30 and in the horizontal direction with respect to the control board 30.
  • a dish-shaped water receiving tray 38 for receiving the condensed water below the cooling unit 34 in case the condensed water generated on the surface of the cooling unit 34 drops. Thereby, it can prevent that the component of the air conditioner 10 located under the cooling unit 34 gets wet with dew condensation water.
  • a drain pipe 40 for discharging condensed water in the water tray 38 to the outside of the control box 32 may be connected to the bottom of the water tray 38.
  • cooling unit 34 In addition to the cooling unit 34, several means for cooling another control board 30 are provided.
  • a fin structure 42 different from the fin structure 36 of the cooling unit 34 is directly attached to the control board 30, particularly to a portion (for example, a heating element) that generates high heat of the control board 30.
  • the fin structure 42 is configured to exchange heat between the control board 30 and air outside the control box 32.
  • the fin structure 42 is made of, for example, aluminum, and includes a plurality of fins 42a.
  • the fins 42 a of the fin structure 42 are configured to be exposed to the outside of the control box 32. Further, the fin 42a is provided so as to be located leeward of a fan (not shown) for discharging the air around the outdoor heat exchanger 14 to the outside of the outdoor unit.
  • the control board 30 is cooled by a fan (not shown) of the outdoor unit through such a fin structure 42.
  • a fan 44 for forcibly stirring the air in the control box 32 is provided in the control box 32.
  • the fan 44 agitates the air in the control box 32 to make the temperature distribution in the control box 32 uniform and increase the cooling efficiency of the control board 30.
  • the fan 44 can also suppress the generation of condensed water on the surface of the cooling unit 34 by forcibly stirring the air in the control box 32. More specifically, since the air around the cooling unit 34 is moved by the fan 44, the condensed water is less likely to be generated on the surface of the cooling unit 34 than when the fan 44 is not present, and the condensed water is generated. It is difficult to grow greatly.
  • the fan 44 is preferably arranged so as to blow air toward the fin structure 36 of the cooling unit 34 as shown in FIG. 2 (or FIG. 4).
  • the air cooled by the cooling unit 34 is diffused throughout the control box 32.
  • the flow of air around the cooling unit 34 becomes faster, and the condensed water is less likely to be generated on the surface of the cooling unit 34.
  • the internal space of the control box 32 is insulated by a heat insulating material 46 in order to suppress the movement of heat from the outside to the inside of the control box 32.
  • the heat insulating material 46 is provided on the outer surface of the control box 32 as shown in FIG. With this heat insulating material 46, the cooling effect on the control board 30 by the cooling unit 34 is improved as compared to the case without the heat insulating material 46.
  • the heat insulating material 46 is preferably provided on the outer surface of the control box 32 from the viewpoint of effective use of the space in the control box 32, but may be provided on the inner surface of the control box 32.
  • examples of the heat insulating material include fiber heat insulating materials such as glass wool, foam heat insulating materials such as urethane foam, and vacuum heat insulating materials. It is preferable to use a vacuum heat insulating material having higher heat insulating performance than the heat insulating material.
  • examples of the vacuum heat insulating material include those obtained by packing glass fibers with a laminate film and reducing the internal pressure thereof.
  • the fan 44 forcibly agitates the air in the control box 32, the air around the cooling unit 34 that exchanges heat with the refrigerant moves without remaining. Thereby, compared with the case where the fan 44 does not exist, generation
  • the cooling unit 34 is disposed in the control box 32 below the control board 30 as shown in FIG. 2 or at a horizontal position with respect to the control board 30 as shown in FIG.
  • the cooling unit 34 can be disposed above the control board 30 if condensed water that drops on the surface of the cooling unit 34 is not generated by forced stirring of the air in the control box 32 by the fan 44.
  • the air conditioner 10 in which the refrigerant flows in the order of the compressor 12, the outdoor heat exchanger 14, the decompression device 16, and the indoor heat exchanger 18, that is, the air conditioner 10 that performs the cooling operation has been described.
  • the present invention is not limited to this.
  • the present invention is also applicable to the air conditioner 10 in which the refrigerant flows in the order of the compressor 12, the indoor heat exchanger 18, the decompression device 16, and the outdoor heat exchanger 14, that is, the air conditioner 10 that performs the heating operation. It is.
  • the cooling unit 34 is configured to cool the air in the control box 32 using all the refrigerant flowing in the refrigerant pipe 24, but the present invention is not limited thereto. Absent. A part of the refrigerant flowing in any one of the refrigerant pipes 22 to 26 may be used for cooling the air in the control box 32.
  • a cooling unit may be configured by attaching a fin structure to the bypass pipe. In this case, although the cooling capacity with respect to the control board 30 falls compared with the above-mentioned embodiment, the cooling capacity of the air conditioner 10 improves.
  • the present invention cools the air in the control box using a refrigerant
  • the present invention is not limited to an air conditioner and can be applied to any apparatus that handles a refrigerant such as a refrigerator.

Abstract

 圧縮機12、室外熱交換器14、減圧装置16、室内熱交換器18、およびこれらを接続して冷媒が流れる配管20~26を有する空気調和機10の制御ボックス32内に収容された制御部品30を冷却する冷却装置であって、制御部品30と離れた状態で制御ボックス32内に配置され、冷媒との熱交換によって制御ボックス32内の空気を冷却する冷却ユニット34と、制御ボックス32内の空気を攪拌するファン44とを有する。

Description

冷却装置およびそれを備えた空気調和機
 本発明は、空気調和機の制御部品を冷却する冷却装置、およびそれを備えた空気調和機に関する。
 従来より、圧縮機、室外熱交換器、減圧装置、室内熱交換器、およびこれらを接続して冷媒が流れる配管を有する空気調和機において、制御基板などの制御部品を、例えば粉塵や水などから保護することができる制御ボックス内に収容することが行われている。
 制御部品を制御ボックス内に収容する場合、制御部品の安定動作を保証するために、制御部品の冷却を考慮する必要がある。例えば特許文献1に記載する空気調和機においては、制御部品(発熱素子を備える基板)が制御ボックス(電装品箱)内に収容され、電装品箱内の空気を冷却する冷却部材(ヒートシンク)が電装品箱内に設けられている。
 この特許文献1に記載の空気調和機は、具体的には、自然対流を利用することにより、ヒートシンクによって発熱素子を間接的に冷却する。電装品箱内において、ヒートシンクが発熱素子の上方に離れて位置し、ヒートシンクによって冷却された空気が発熱素子に向かって降下する。一方、発熱素子によって暖められた空気はヒートシンクに向かって上昇する。これにより、電装品箱内において自然対流が発生し、発熱素子がその上方に位置するヒートシンクによって間接的に冷却される。
特開2010-2120号公報
 しかしながら、特許文献1に記載の空気調和機の場合、ヒートシンクが発熱素子の上方に位置するため、使用環境によってはヒートシンクの表面に結露水が発生し、その結露水が滴下することにより発熱素子が濡れ、発熱素子がショートする可能性がある。したがって、このような空気調和機は、信頼性に欠ける。
 そこで、本発明は、空気調和機の制御部品を制御ボックス内に収容して保護するとともに冷却し、且つ結露水によって制御部品が濡れることを抑制し、高い信頼性を備える空気調和機を提供することを課題とする。
 上述の課題を解決するために、本発明の第1の態様によれば、
 圧縮機、室外熱交換器、減圧装置、室内熱交換器、およびこれらを接続して冷媒が流れる配管を有する空気調和機の制御ボックス内に収容された制御部品を冷却する冷却装置であって、
 制御部品と離れた状態で制御ボックス内に配置され、冷媒との熱交換によって制御ボックス内の空気を冷却する冷却ユニットと、
 制御ボックス内の空気を攪拌するファンとを有する冷却装置が提供される。
 本発明の第2の態様によれば、
 冷却ユニットが、
 制御ボックス内に配置されて冷媒が流れる制御ボックス内配管と、
 複数のフィンを備えて制御ボックス内配管に取り付けられたフィン構造体とを有する、第1の態様に記載の冷却装置が提供される。
 本発明の第3の態様によれば、
 ファンが、冷却ユニットのフィン構造体に向かって送風する、第2の態様に記載の冷却装置が提供される。
 本発明の第4の態様によれば、
 冷却ユニットの制御ボックス内配管が、減圧装置と室内熱交換器とを接続する配管の一部である、第2または第3の態様に記載の冷却装置が提供される。
 本発明の第5の態様によれば、
 冷却ユニットの下方に結露水を受ける水受け皿を有する、第1から第4の態様のいずれか一に記載の冷却装置が提供される。
 本発明の第6の態様によれば、
 制御ボックスの内部空間を断熱する断熱材を有する、第1から第5の態様のいずれか一に記載の冷却装置が提供される。
 本発明の第7の態様によれば、
 断熱材が真空断熱材である、第6の態様に記載の冷却装置が提供される。
 本発明の第8の態様によれば、
 第1から第7の態様のいずれか一に記載の冷却装置を備える空気調和機が提供される。
 本発明によれば、ファンが制御ボックス内の空気を強制的に攪拌するため、冷媒と熱交換を行う冷却ユニットまわりの空気が留まることなく移動する。これにより、ファンが存在しない場合に比べて冷却ユニットの表面での結露水の発生が抑制される。その結果、制御ボックス内の空気調和機の制御部品が結露水によって濡れることを抑制しつつ、制御部品の温度上昇を抑えることができ、高い信頼性を備える空気調和機を実現することができる。
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
本発明の実施の形態に係る空気調和機の概略的構成図 図1に示す制御ボックスの内部を示す概略的構成図 図1に示す冷却ユニットの斜視図 本発明の別の実施形態に係る空気調和機の制御ボックスの内部を示す概略的構成図
 第1の発明は、圧縮機、室外熱交換器、減圧装置、室内熱交換器、およびこれらを接続して冷媒が流れる配管を有する空気調和機の制御ボックス内に収容された制御部品を冷却する冷却装置であって、制御部品と離れた状態で制御ボックス内に配置され、冷媒との熱交換によって制御ボックス内の空気を冷却する冷却ユニットと、制御ボックス内の空気を攪拌するファンとを有する。
 この構成によれば、ファンが制御ボックス内の空気を強制的に攪拌するため、冷媒と熱交換を行う冷却ユニットまわりの空気が留まることなく移動する。これにより、ファンが存在しない場合に比べて冷却ユニットの表面での結露水の発生が抑制される。その結果、制御ボックス内の制御基板が結露水によって濡れることが抑制される。
 第2の発明の冷却装置は、冷却ユニットが、制御ボックス内に配置されて冷媒が流れる制御ボックス内配管と、複数のフィンを備えて制御ボックス内配管に取り付けられたフィン構造体とを有する。これにより、制御ボックス内の空気と制御ボックス内配管を流れる冷媒との間の熱交換が効率よく行なわれる。
 第3の発明の冷却装置は、ファンが、冷却ユニットのフィン構造体に向かって送風する。これにより、フィン構造体によって冷却された空気が制御ボックス内全体に拡散される。また、フィン構造体の表面での結露水の発生をさらに抑制することができる。
 第4の発明の冷却装置は、冷却ユニットの制御ボックス内配管が、減圧装置と室内熱交換器とを接続する配管の一部である。減圧装置と室内熱交換器とを接続する配管を有効的に利用することにより、制御ボックス内の空気の冷却のためだけに新たな配管を設ける必要がなくなる。
 第5の発明の冷却装置は、冷却ユニットの下方に結露水を受ける水受け皿を有する。これにより、冷却ユニットの下方に位置する空気調和機の構成要素が冷却ユニットの表面に発生した結露水によって濡れることを防止することができる。
 第6の発明の冷却装置は、制御ボックスの内部空間を断熱する断熱材を有する。これにより、制御ボックス内への外部からの熱の移動が抑制される。その結果、冷却ユニットによる制御部品の冷却効果が、断熱材がない場合に比べて向上する。
 第7の発明の冷却装置は、断熱材が真空断熱材である。真空断熱材により、制御ボックス内への外部からの熱の移動が、断熱材に比べて、さらに抑制される。その結果、冷却ユニットによる制御部品の冷却効果がさらに向上する。
 第8の発明は、第1~第7の発明の冷却装置を備える空気調和機である。これにより、高い信頼性を備える空気調和機を実現することができる。
 図1は、本発明に係る空気調和機の構成を概略的に示す図である。また、図2は、本発明の実施の形態に係る制御ボックスの内部構成を概略的に示す図である。
 図1に示すように、空気調和機10は、圧縮機12、室外熱交換器14、減圧装置16、室内熱交換器18、およびこれらを接続する冷媒配管20~26を有する。減圧装置16としては、膨張弁や銅製の毛細管であるキャピラリーチューブを採用することができる。なお、空気調和機10は、圧縮機12、室外熱交換器14、および減圧装置16を収容する室外機と、室内熱交換器18を収容する室内機とに分かれている。
 空気調和機10は、冷媒が、冷媒配管20~26を介して、圧縮機12から順に、室外熱交換器14、減圧装置16、室内熱交換器18を経て再び圧縮機12に戻る冷凍サイクルを実現するように構成されている。
 冷凍サイクルにおいて、冷媒は、圧縮機12によって圧縮された後、気相状態で室外熱交換器14に向かって冷媒配管20内を流れる。次に、冷媒は、室外熱交換器14を介する室外空気との熱交換によって熱を奪われて液相状態になり、減圧装置16に向かって冷媒配管22を流れる。続いて、冷媒は、減圧装置16によって膨張されて圧力が低下し、室内熱交換器18に向かって冷媒配管24を流れる。そして、冷媒は、室内熱交換器18を介して室内空気から熱を奪って気相状態になり、圧縮機12に向かって冷媒配管26を流れる。
 また、空気調和機10は、冷凍サイクルを制御する制御基板(すなわち制御部品)30と、制御基板30を保護する制御ボックス32とを有する。なお、制御ボックス32は、室外機に設けられている。
 なお、本発明で言う「制御部品」は、空気調和機10の制御に使用されるための部品、例えば圧縮機12の出力や減圧装置16としての膨張弁の絞り量を制御する電子部品であって、複数の電子部品が実装された制御基板に限定されず、部分的にまたは全体が発熱するために冷却が必要な部品を言う。
 制御基板30は、制御ボックス32内に収容されることにより、例えば粉塵や水などから保護されている。そのために、制御ボックス32は、その内部に粉塵や水が浸入しないように構成されている。例えば、制御ボックス32において、制御基板30から制御ボックス32の外部に延びるケーブル(図示せず)が通過する穴はシールされている。また、制御ボックス32は、上面が開口した本体と、本体の上面を覆う蓋とから構成されていることが、メンテナンス性の面から望ましく、さらに、本体と蓋との間もシールされていることが望ましい。なお、このようなシールには、EPTシートなどのスポンジ状の樹脂材料を用いることができる。
 制御基板30は、制御ボックス32内に収容されているため、冷却を必要とする。そのために、制御ボックス32内に冷却ユニット34が設けられている。
 冷却ユニット34は、冷凍サイクルの冷媒との熱交換により制御ボックス32内の空気を冷却するように構成され、図2に示すように、冷媒配管24と、冷媒配管24に取り付けられたフィン構造体36とから構成される。
 具体的には、図1に示すように冷媒配管24の一部分が制御ボックス32内を通過し、図2に示すように制御ボックス32内の冷媒配管24の部分に板形状の複数のフィン36aを備えるフィン構造体36が取り付けられている。冷却ユニット34は、フィン構造体36を介して制御ボックス32内の空気と冷媒配管24内を流れる冷媒との間で熱交換することにより、制御ボックス32内の空気を冷却する。このような冷却ユニット34により、制御基板30は空気を介して冷却される。
 なお、冷却ユニット34の一部を構成する冷媒配管は、減圧装置16と室内熱交換器18とを接続する冷媒配管24が好ましい。冷媒配管24を有効的に利用することにより、制御ボックス32内の空気の冷却のためだけに、制御ボックス32内を通過して冷媒が流れる配管を別途設ける必要がなくなる。
 また、冷媒配管24は、減圧装置16によって低圧にされた冷媒が流れるので、図1に示す他の冷媒配管20、22、26に比べて作用する圧力や発生する振動が小さい。そのため、冷媒配管24を、制御ボックス32内に配設した方が、他の冷媒配管20、22、26を配設する場合に比べて振動を抑制することができる。また、その結果として制御ボックス32内へ配設する配管を薄肉化することが可能となり、使用する材料を低減できてコストを抑えることができるという副次的なメリットも有する。さらに、別の理由としては、冷媒配管24を流れる冷媒は元々低圧であるため、制御ボックス32を経由することによる(長尺化による)圧力損失の影響が小さいことがある。
 冷却ユニット34のフィン構造体36は、例えば、図3に示すように、アルミなどの金属によって一体的に形成されている。板形状の複数のフィン36aが、フィン構造体36の本体部36bの一方の表面に、互いに平行に等間隔をあけて並んで設けられている。また、フィン構造体36は、フィン36aが設けられた表面と反対側の表面に、蛇行形状に成形された冷媒配管24の部分と係合する複数の溝36cを備えている。
 図3に示すように、フィン構造体36の複数の溝36cは、複数のフィン36aの並列方向と直交する方向に延びるように形成されている。これにより、フィン構造体36を、引き抜き成形または押し出し成形によって作製することができ、他の作製方法(例えば切削加工)に比べて安価に作製することができる。
 なお、可能であれば、冷却ユニット34は、図2に示すように、制御基板30と離れた状態で且つ該制御基板30の下方に配置されるのが好ましい。これは、制御基板30が、確実に、冷却ユニット34の表面(具体的にはフィン構造体36の表面と冷媒配管24の表面)に発生した結露水によって濡れないようにするためである。なお、図4に示すように、冷却ユニット34を、制御基板30と離れた状態で且つ制御基板30に対して水平方向の位置に配置してもよい。
 冷却ユニット34の表面に発生した結露水が滴下する場合に備えて、結露水を受ける皿形状の水受け皿38を冷却ユニット34の下方に設けるのが好ましい。これにより、冷却ユニット34の下方に位置する空気調和機10の構成要素が結露水によって濡れることを防止することができる。
 なお、図2(または図4)に示すように、水受け皿38内の結露水を制御ボックス32の外部に排出するための排水管40を、水受け皿38の底に接続してもよい。
 冷却ユニット34に加えて、別の制御基板30を冷却するための手段がいくつか設けられている。
 冷却ユニット34のフィン構造体36とは別のフィン構造体42が、制御基板30に、特に制御基板30の高熱を発する部分(例えば発熱素子)に直接取り付けられている。このフィン構造体42は、制御基板30と制御ボックス32の外部の空気との間で熱交換するように構成されている。
 具体的には、フィン構造体42は、冷却ユニット34のフィン構造体36と同様に、例えばアルミなどから作製されており、複数のフィン42aを備える。フィン構造体42のフィン42aは、制御ボックス32の外部に露出するように構成されている。また、フィン42aは、室外熱交換器14まわりの空気を室外機の外部に排出するためのファン(図示せず)の風下に位置するように設けられている。このようなフィン構造体42を介することにより、制御基板30は室外機のファン(図示せず)によって冷却される。
 また、制御ボックス32の空気を強制的に攪拌するファン44が、制御ボックス32内に設けられている。このファン44は、制御ボックス32内の空気を攪拌することにより、該制御ボックス32内の温度分布を一様にし、制御基板30の冷却効率を高める役割をする。
 ファン44はまた、制御ボックス32内の空気を強制的に攪拌することにより、冷却ユニット34の表面に結露水が発生することを抑制することができる。具体的に説明すると、ファン44によって冷却ユニット34周辺の空気が移動するため、ファン44が存在しない場合に比べて、冷却ユニット34の表面に結露水が発生し難く、また結露水が発生しても大きく成長し難い。
 なお、ファン44は、図2(または図4)に示すように、冷却ユニット34のフィン構造体36に向かって送風するように配置するのが好ましい。ファン44がフィン構造体36に向かって送風することにより、冷却ユニット34によって冷却された空気が制御ボックス32内全体に拡散する。また、冷却ユニット34まわりの空気の流れが速くなり、冷却ユニット34の表面に結露水がさらに発生し難くなる。
 さらに、制御ボックス32の内部への外部からの熱の移動を抑制するために、制御ボックス32の内部空間は断熱材46によって断熱されるのが好ましい。断熱材46は、例えば、図2に示すように制御ボックス32の外側表面に設けられる。この断熱材46により、冷却ユニット34による制御基板30に対する冷却効果が、断熱材46がない場合に比べて向上する。なお、断熱材46は、制御ボックス32の外側表面に設けられることが制御ボックス32内の空間の有効利用の点から望ましいが、制御ボックス32の内側表面に設けてもよい。
 なお、断熱材として、グラスウールなどの繊維系断熱材、ウレタンフォームなどの発泡系断熱材、真空断熱材などが挙げられる。断熱材に比べて断熱性能が高い真空断熱材を使用するのが好ましい。真空断熱材として、例えば、ガラス繊維をラミネートフィルムでパッキングし、その内部圧力を減圧してなるものが挙げられる。
 本実施の形態によれば、ファン44が制御ボックス32内の空気を強制的に攪拌するため、冷媒と熱交換を行う冷却ユニット34まわりの空気が留まることなく移動する。これにより、ファン44が存在しない場合に比べて冷却ユニット34の表面での結露水の発生が抑制される。その結果、制御ボックス32内の空気調和機10の制御基板30が結露水によって濡れることが抑制され、高い信頼性を備える空気調和機10を実現することができる。
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明は上述の実施の形態に限定されない。
 例えば、冷却ユニット34は、制御ボックス32内において、図2に示すように制御基板30の下方に配置される、または図4に示すように制御基板30に対して水平方向の位置に配置されるが、ファン44による制御ボックス32内の空気の強制攪拌によって冷却ユニット34の表面に滴下するような結露水が発生しないのであれば、冷却ユニット34を制御基板30の上方に配置可能である。しかしながら、この場合、冷却ユニット34と制御基板30の間に水受け皿38を配置するのが好ましい。
 また、上述では、冷媒が、圧縮機12、室外熱交換器14、減圧装置16、室内熱交換器18と順に流れる空気調和機10、すなわち冷房運転を実行する空気調和機10について説明したが、本発明はこれに限らない。冷媒が、圧縮機12、室内熱交換器18、減圧装置16、室外熱交換器14と順に流れる空気調和機10、すなわち暖房運転を実行する空気調和機10に対しても、本発明は適用可能である。
 さらに、上述の実施の形態の場合、冷却ユニット34は、冷媒配管24内を流れる冷媒全てを利用して制御ボックス32内の空気を冷却するように構成されているが、本発明はこれに限らない。冷媒配管22~26のいずれか1つに流れる冷媒の一部を、制御ボックス32内の空気の冷却に利用してもよい。
 例えば、減圧装置16の下流側近傍の冷媒配管24の部分から分枝し、制御ボックス32内を通過し、そして室内熱交換器18の上流側近傍の冷媒配管24の部分に至る、バイパスする配管を設け、このバイパス配管にフィン構造体を取り付けて、冷却ユニットを構成してもよい。この場合、上述の実施の形態に比べて、制御基板30に対する冷却能力は低下するものの、空気調和機10の冷房能力は向上する。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明は、冷媒を用いて制御ボックス内の空気を冷却するものであるため、空気調和機に限らず、例えば冷蔵庫などの冷媒を扱うものであれば適用可能である。
 10  空気調和機
 12  圧縮機
 14  室外熱交換器
 16  減圧装置
 18  室内熱交換器
 30  制御部品(制御基板)
 32  制御ボックス
 34  冷却ユニット
 44  ファン

Claims (8)

  1.  圧縮機、室外熱交換器、減圧装置、室内熱交換器、およびこれらを接続して冷媒が流れる配管を有する空気調和機の制御ボックス内に収容された制御部品を冷却する冷却装置であって、
     制御部品と離れた状態で制御ボックス内に配置され、冷媒との熱交換によって制御ボックス内の空気を冷却する冷却ユニットと、
     制御ボックス内の空気を攪拌するファンとを有する冷却装置。
  2.  冷却ユニットが、
     制御ボックス内に配置されて冷媒が流れる制御ボックス内配管と、
     複数のフィンを備えて制御ボックス内配管に取り付けられたフィン構造体とを有する請求項1に記載の冷却装置。
  3.  ファンが、冷却ユニットのフィン構造体に向かって送風する請求項2に記載の冷却装置。
  4.  冷却ユニットの制御ボックス内配管が、減圧装置と室内熱交換器とを接続する配管の一部である請求項2または3に記載の冷却装置。
  5.  冷却ユニットの下方に結露水を受ける水受け皿を有する請求項1から4のいずれか一項に記載の冷却装置。
  6.  制御ボックスの内部空間を断熱する断熱材を有する請求項1から5のいずれか一項に記載の冷却装置。
  7.  断熱材が真空断熱材である請求項6に記載の冷却装置。
  8.  請求項1から7のいずれか一項に記載の冷却装置を備える空気調和機。
PCT/JP2010/007311 2010-12-16 2010-12-16 冷却装置およびそれを備えた空気調和機 WO2012081056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/007311 WO2012081056A1 (ja) 2010-12-16 2010-12-16 冷却装置およびそれを備えた空気調和機
KR1020127022777A KR20130138082A (ko) 2010-12-16 2010-12-16 냉각 장치 및 그것을 구비한 공기 조화기
CN201080065029.8A CN103238031B (zh) 2010-12-16 2010-12-16 冷却装置和具有该冷却装置的空气调节机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007311 WO2012081056A1 (ja) 2010-12-16 2010-12-16 冷却装置およびそれを備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2012081056A1 true WO2012081056A1 (ja) 2012-06-21

Family

ID=46244193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007311 WO2012081056A1 (ja) 2010-12-16 2010-12-16 冷却装置およびそれを備えた空気調和機

Country Status (3)

Country Link
KR (1) KR20130138082A (ja)
CN (1) CN103238031B (ja)
WO (1) WO2012081056A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3017255A4 (en) * 2013-07-05 2017-03-01 LG Electronics Inc. Air conditioner
FR3086888A1 (fr) * 2018-10-09 2020-04-10 Renault S.A.S Systeme de refroidissement d'un calculateur d'un vehicule automobile utilisant le fluide frigorigene du dispositif de climatisation du vehicule
EP3715156A1 (de) * 2019-03-25 2020-09-30 Konvekta Aktiengesellschaft Frequenzumrichterkühlung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387532A (zh) * 2015-11-16 2016-03-09 珠海格力电器股份有限公司 空调器和换热系统
CN111076389A (zh) * 2019-12-18 2020-04-28 珠海格力电器股份有限公司 一种散热装置及具有其的空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420993U (ja) * 1990-06-14 1992-02-21
JPH05322224A (ja) * 1992-05-26 1993-12-07 Mitsubishi Electric Corp 空気調和装置
JPH09138044A (ja) * 1995-11-17 1997-05-27 Hitachi Ltd 密閉筐体とその湿度制御法
JPH1123075A (ja) * 1997-07-08 1999-01-26 Denso Corp 発熱体冷却装置
JP2010266132A (ja) * 2009-05-15 2010-11-25 Mitsubishi Heavy Ind Ltd インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592412B (zh) * 2009-07-01 2011-05-18 东南大学 可调节多温度制冷装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420993U (ja) * 1990-06-14 1992-02-21
JPH05322224A (ja) * 1992-05-26 1993-12-07 Mitsubishi Electric Corp 空気調和装置
JPH09138044A (ja) * 1995-11-17 1997-05-27 Hitachi Ltd 密閉筐体とその湿度制御法
JPH1123075A (ja) * 1997-07-08 1999-01-26 Denso Corp 発熱体冷却装置
JP2010266132A (ja) * 2009-05-15 2010-11-25 Mitsubishi Heavy Ind Ltd インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3017255A4 (en) * 2013-07-05 2017-03-01 LG Electronics Inc. Air conditioner
US10021809B2 (en) 2013-07-05 2018-07-10 Lg Electronics Inc. Air conditioner
FR3086888A1 (fr) * 2018-10-09 2020-04-10 Renault S.A.S Systeme de refroidissement d'un calculateur d'un vehicule automobile utilisant le fluide frigorigene du dispositif de climatisation du vehicule
EP3715156A1 (de) * 2019-03-25 2020-09-30 Konvekta Aktiengesellschaft Frequenzumrichterkühlung

Also Published As

Publication number Publication date
CN103238031B (zh) 2016-11-16
CN103238031A (zh) 2013-08-07
KR20130138082A (ko) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5709507B2 (ja) 冷却装置およびそれを備えた空気調和機
JP2013015295A (ja) 冷却装置およびそれを備えた空気調和機
JP2011122779A (ja) 冷凍サイクル装置
AU699379B2 (en) Cooling apparatus using boiling and condensing refrigerant
JP2013096642A (ja) 冷却装置およびそれを備えた空気調和機
JP6349729B2 (ja) 電装品ユニット
JP2010025515A (ja) 空気調和機
WO2012081056A1 (ja) 冷却装置およびそれを備えた空気調和機
JP6750611B2 (ja) 相変化冷却装置および相変化冷却方法
JP2010002120A (ja) 冷凍装置
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP2012127590A (ja) 冷却装置およびそれを備えた空気調和機
WO2012081055A1 (ja) 冷却装置およびそれを備えた空気調和機
JP6689359B2 (ja) 空気調和装置
JPWO2011086859A1 (ja) 環境試験装置及びその製造方法
JP2013011392A (ja) 空気調和装置
JP2005331141A (ja) 冷却システム、空調機、冷凍空調装置、冷却方法
JP2013096641A (ja) 冷却装置およびそれを備えた空気調和機
RU2431088C2 (ru) Радиатор конденсатора
CN212179162U (zh) 电器设备及电器盒
JP2010002121A (ja) 冷凍装置
JP5569054B2 (ja) 冷凍装置
JP2013015294A (ja) 冷却装置およびそれを備えた空気調和機
JP2016125734A (ja) 冷凍装置
JP2010085054A (ja) 空気調和装置の室外機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022777

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9196/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201004399

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP