WO2012079363A1 - 低电压穿越智能功率控制单元及其应用 - Google Patents

低电压穿越智能功率控制单元及其应用 Download PDF

Info

Publication number
WO2012079363A1
WO2012079363A1 PCT/CN2011/076944 CN2011076944W WO2012079363A1 WO 2012079363 A1 WO2012079363 A1 WO 2012079363A1 CN 2011076944 W CN2011076944 W CN 2011076944W WO 2012079363 A1 WO2012079363 A1 WO 2012079363A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
control unit
low voltage
power control
voltage ride
Prior art date
Application number
PCT/CN2011/076944
Other languages
English (en)
French (fr)
Inventor
王中
廖恩荣
李更生
李志国
黄晓辉
辛志远
Original Assignee
南京飓能电控自动化设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京飓能电控自动化设备制造有限公司 filed Critical 南京飓能电控自动化设备制造有限公司
Priority to CA2821020A priority Critical patent/CA2821020A1/en
Priority to JP2013543502A priority patent/JP5895001B2/ja
Priority to KR1020137018621A priority patent/KR20130126961A/ko
Priority to EP11849645.4A priority patent/EP2637278A1/en
Priority to US13/994,657 priority patent/US20130265806A1/en
Publication of WO2012079363A1 publication Critical patent/WO2012079363A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a low voltage ride-through intelligent power control unit and its application, and more particularly to a low voltage ride-through intelligent power control unit designed for various types of wind turbines that do not have low voltage ride through functions. It is suitable for retrofitting existing asynchronous wind turbines and also for improving doubly-fed wind turbines with frequency converters.
  • the wind farm must have a low voltage ride-through capability capable of maintaining a grid connection of 625 ms when the voltage drops to 20% of the rated voltage;
  • constant-speed constant-frequency asynchronous generator sets there are four main types of wind turbines in China: constant-speed constant-frequency asynchronous generator sets, finite-speed asynchronous generator sets, variable-speed constant-frequency doubly-fed generator sets, and variable-speed constant-frequency direct-drive generator sets.
  • the constant-speed constant-frequency asynchronous generator set and the finite-speed asynchronous generator set do not have the LVRT capability itself; the variable-speed constant-frequency doubly-fed generator set can currently pass through the rotor side.
  • Adding Crowbar to make it LVRT-capable requires not only major changes to the main controller and pitch controller, but also more complicated control. In the process of traversing, it is necessary to absorb reactive power from the power grid; variable-speed constant-frequency direct drive Due to the use of a full-power inverter in the system, the LVRT is relatively simple.
  • the object of the present invention is: to solve the practical problem that the low voltage crossing capability is common in the current grid-connected operation of the wind power generator, especially the low voltage crossing capability of the constant speed constant frequency asynchronous generator set or the variable speed constant frequency doubly fed generator set.
  • a low voltage ride through intelligent power control unit and its application are provided.
  • a low voltage traversing intelligent power control unit Intelligent Power Control Unit for Low Voltage Ride Through
  • Intelligent Power Control Unit for Low Voltage Ride Through which is characterized by:
  • the IPCU is equipped with an A port, a B port and a C port.
  • the control unit is also provided with a built-in auxiliary inverter that traverses the instantaneous stator voltage and provides reactive power and a controllable active load that absorbs the active power;
  • a high speed switch is arranged between the A port and the B port;
  • a built-in auxiliary frequency converter is provided between the A port and the C port, wherein an AC bus of the built-in auxiliary frequency converter is connected to the A port, and a DC side is connected to the C port;
  • the controllable active load is connected to the DC output of the built-in auxiliary inverter, so that the built-in auxiliary inverter and the controllable active load are connected in series between the A port and the C port; or from the A port through the three-phase bridge rectification and
  • the controllable active load connection enables the built-in auxiliary inverter branch to be connected in parallel with the controllable active load branch.
  • the controllable active load is composed of a brake switch and a braking resistor
  • the brake switch is an insulated gate bipolar transistor IGBT.
  • the AC side of the three-phase bridge rectifier circuit is provided with an LC filter circuit.
  • the high-speed switch is a gate turn-off thyristor GTO, or a thyristor with a related circuit.
  • An application of the above IPCU is characterized in that: the A port is connected to a stator winding of a wind power generator, the B port is connected to a power grid, and the C port is connected to a DC bus of an external auxiliary inverter.
  • the external auxiliary frequency converter is an auxiliary frequency converter connected to the power grid, or a rotor-side frequency converter of the doubly-fed wind power generator, or an auxiliary frequency converter and a double-fed wind power generator rotor side frequency converter connected to the power grid.
  • the grid-connected switch is located on the A port side, and the wind turbine stator winding is connected to the A port through the grid switch.
  • the advantages of the invention are:
  • the IPCU is suitable for all types of wind turbines.
  • wind power systems will have the following advantages:
  • the wind power system will have perfect low voltage ride through capability, and faults including zero voltage drop and grid trip can be reliably traversed;
  • the fan resumes normal operation speed. After the fault, the fan can return to the previous working state within 2s to meet the requirements of the grid for low voltage ride through; no impact on the mechanical transmission system of the fan, and greatly avoid the grid fault. Increase the service life of the fan by affecting the distortion and oscillation of the shafting;
  • Active and reactive support can be provided to the grid during faults; low cost and high reliability.
  • the price of components selected by IPCU is relatively low, so the cost of retrofitting fans using IPCU is also very low, and components such as triacs can also meet the grid-connected wind.
  • FIG. 1 is a schematic structural diagram of an IPCU embodiment involved in the present invention
  • FIG. 2 is a schematic structural diagram of another IPCU embodiment involved in the present invention
  • FIG. 3 is an application mode of an IPCU
  • Figure 4 shows the application of the IPCU to the auxiliary network side inverter
  • Figure 5 shows the application of the matching between the IPCU and the rotor-side inverter in the doubly-fed wind power generation system
  • Figure 6 shows the application of the frequency converter matching of the doubly-fed wind turbines of the IPCU, the grid-side inverter and the rotor-side inverter.
  • the IPCU is provided with an A port, a B port, and a C port.
  • the control unit is also provided with a built-in auxiliary inverter AI that traverses the instantaneous stator voltage and provides reactive power, and a controllable active load that absorbs active power.
  • a high-speed switch GK is disposed between the A port and the B port;
  • a built-in auxiliary inverter AI is disposed between the A port and the C port, wherein an AC bus with an auxiliary inverter AI is built in, and the A port is Connecting, the DC side is connected to the C port;
  • controllable active load is connected to the DC output end of the built-in auxiliary inverter AI, so that the built-in auxiliary inverter AI and the controllable active load are sequentially connected in series between the A port and the C port, and the controllable
  • the active load consists of a brake switch ZK and a braking resistor ZR.
  • the high-speed switch GK is a gate turn-off thyristor GTO or The thyristor with the circuit is broken, and the brake switch ZK selects the IGBT.
  • an LC filter circuit can be provided on the RF AC side of the three-phase bridge rectifier circuit. FL.
  • the high-speed switch GK (gate turn-off thyristor GTO or thyristor with associated circuit) should be selected to meet the turn-off time in lms, and with the wind turbine The output current is matched; the selection of the brake switch ZK should meet the maximum voltage and current requirements of the brake circuit; the braking resistor ZR should be selected to meet the release energy greater than the output energy of the wind turbine, and the power level of the built-in auxiliary inverter AI It should match the wind turbine.
  • FIG. 3 is an application of the IPCU in the wind power generator.
  • the IPCU can select the embodiment shown in FIG. 1 or the embodiment shown in Embodiment 2. For the convenience of description, only FIG. 1 is used. The embodiment is described as an example.
  • the A port of the IPCU is connected to the stator winding of the wind turbine, and the B port is connected to the grid.
  • the gate in the IPCU can turn off the thyristor GTO or the thyristor with the relevant circuit is turned on, the brake IGBT is turned off, because the odd harmonics in the power grid are relatively small, the filter is basically Does not work, the IPCU is equivalent to a closed AC switch.
  • the built-in auxiliary inverter works in the standby mode, that is, its DC bus voltage is kept constant and the output reactive power is equal to zero. At this time, the built-in auxiliary inverter basically does not consume active and reactive power, and has no effect on the normal operation of the wind turbine.
  • the depth of the grid voltage drop has a great impact on the operation of the wind turbine.
  • the grid voltage drop has little effect on the normal operation of the wind turbine.
  • the capability of the wind turbine itself can pass through the past.
  • the allowable range of the voltage drop can be set according to the characteristics of the fan, and the allowable range is generally 90% of the rated voltage of the power grid.
  • the IPCU forcibly turns off the gate to turn off the thyristor GTO or the thyristor with the relevant circuit.
  • the turn-off process can be completed in about 1ms.
  • the brake switch IGBT is turned on, the active power release channel of the wind generator is provided by the braking resistor, and the built-in auxiliary inverter stabilizes the stator voltage of the motor and provides wind power generation.
  • the reactive power required for the operation of the machine enables the wind turbine to operate stably.
  • the gate can turn off the thyristor GTO or the thyristor to reclose, and the brake switch IGBT is turned off, so that the wind turbine is integrated into the grid and resumes normal operation; if the grid voltage cannot be After returning to normal within the time required for low voltage ride through, the IPCU will also stop working, causing the wind turbine to be off-grid and shut down.
  • the application mode shown in FIG. 4 is different from that of FIG. 3 in that the C port of the IPCU is connected to the DC bus of the external auxiliary inverter.
  • the external auxiliary inverter is a network side auxiliary inverter, and this application mode is adopted.
  • the advantages are: During the crossing process, the grid-side auxiliary inverter can provide the active power release channel of the wind turbine together with the braking resistor. At the same time, the grid-side auxiliary inverter can also provide active and reactive power to the grid during fault crossing. Power support.
  • the difference between the application mode shown in Fig. 5 and that of Fig. 4 is that the external auxiliary inverter is a rotor-side doubly-fed inverter of the wind turbine.
  • the advantage of adopting this application mode is: Since the doubly-fed wind turbine itself is equipped with a frequency converter In this way, you can make full use of existing components and reduce the cost of retrofitting. During the traversing process, the doubly-fed rotor-side inverter still maintains the previous control strategy. The built-in auxiliary inverter keeps the stator voltage stable and provides the reactive power required for the doubly-fed motor to operate.
  • the application mode shown in FIG. 6 is actually a combination of the two application modes of FIG. 4 and FIG. 5, and the combination point is that the external auxiliary inverter is connected after the DC bus of the grid side auxiliary frequency converter and the rotor side doubly-fed frequency converter is connected. , connected to the C port of the IPCU.
  • the doubly-fed rotor-side inverter still maintains the previous control strategy, braking resistor and net
  • the side auxiliary inverters jointly provide the active power release channel of the wind turbine.
  • the built-in auxiliary inverter keeps the stator voltage stable and provides the reactive power required for the operation of the doubly-fed motor.
  • the grid-side auxiliary inverter can also provide active and reactive power support for the grid during fault crossing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Description

低电压穿越智能功率控制单元及其应用 技术领域
本发明涉及一种低电压穿越智能功率控制单元及其应用,尤其是 针对不具有低电压穿越功能的各类风力发电机设计的低电压穿越智 能功率控制单元。 即适用于改造现有的异步风力发电机, 也可适用于 改进含有变频器的双馈型风力发电机。
背景技术
随着风力发电的迅速发展, 风电装机容量不断增大, 在发电容量 中所占的比例也不断提高。 当电力系统中风电装机容量比例较大时, 电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳 定性。有研究表明, 当风力发电机具有低电压穿越(Low Voltage Ride Through, LVRT) 能力时, 能提高整个电力系统的稳定性。 因此世界 上风电装机比例较大的国家, 如丹麦、 德国、 美国等颁布的风电并网 规定中, 都要求风电机组都具备 LVRT能力, 保证电力系统发生故障 后风电机组能够不间断并网运行。
尽管各国对风电机组低电压穿越能力的要求各不相同,但都包含 如下几个方面的内容, 以我国颁布的风电场接入电力系统技术规定 (Q/GDW 392-2009) 为例, 在风电场接入电力系统的技术规定在明 确要求:
a) 风电场必须具有在电压跌至 20%额定电压时能够维持并网运 行 625ms的低电压穿越能力;
b )风电场电压在发生跌落后 3s内能够恢复到额定电压的 90%时, 风电场必须保持并网运行;
c) 风电场升压变高压侧电压不低于额定电压的 90%时, 风电场 必须不间断并网运行。
目前我国的风电机组主要的类型有以下四种:恒速恒频异步发电 机组、有限变速异步发电机组、变速恒频双馈发电机组和变速恒频直 驱发电机组。其中恒速恒频异步发电机组和有限变速异步发电机组本 身不具备 LVRT能力;变速恒频双馈发电机组目前可以通过在转子侧 加入 Crowbar来使其具备 LVRT能力,不仅需要对主控制器和变桨控 制器等设备做较大改动, 而且控制比较复杂, 在穿越过程中还需要从 电网吸收无功功率;变速恒频直驱发电机组由于系统中采用了全功率 变频器, 实现 LVRT相对比较简单。
目前我国风电场中安装的绝大多数风电机组都是恒速恒频异步 发电机组或者变速恒频双馈发电机组,而这些机组大多数都没有低电 压穿越能力。 因此对这些机组进行改造, 使其具备低电压穿越能力对 于电网的稳定运行有着十分重要的意义。
发明内容
本发明的目的在于: 针对目前风力发电机并网运行中普遍存在的 低电压穿越能力差,尤其是恒速恒频异步发电机组或者变速恒频双馈 发电机组低电压穿越能力差的实际问题,提供一种低电压穿越智能功 率控制单元及其应用。
本发明的目的是这样实现的: 一种低电压穿越智能功率控制单元 (Intelligent Power Control Unit for Low Voltage Ride Through, 简禾尔 IPCU, 下同), 其特征在于:
a) IPCU设有 A端口、 B端口和 C端口, 控制单元中还设有穿越 瞬间稳定定子电压及提供无功功率的内置辅助变频器和吸收有功功 率的可控有功负载;
b)所述 A端口与所述 B端口之间设有高速开关;
c)所述 A端口与所述 C端口之间设有内置辅助变频器, 其中, 内置辅助变频器的交流母线与所述 A端口连接, 直流侧与所述 C端 口连接;
d)可控有功负载与内置辅助变频器的直流输出端连接, 使内置辅 助变频器与可控有功负载依次串接在 A端口与 C端口之间; 或自 A 端口通过三相桥式整流与可控有功负载连接,使内置辅助变频器支路 与可控有功负载支路并联。
在本发明中: 所述的可控有功负载由制动开关和制动电阻组成, 所述的制动开关为绝缘门极双极性晶体管 IGBT。
在本发明中: 所述三相桥式整流电路交流侧设有 LC滤波电路。 在本发明中: 所述的高速开关为门极可关断晶闸管 GTO, 或者 配有关断电路的晶闸管。
一种上述 IPCU的应用, 其特征在于: 所述的 A端口与风力发电 机组定子绕组连接, 所述的 B端口与电网连接, 所述的 C端口与外 接辅助变频器的直流母线连接。
在 IPCU的应用中, 所述的外接辅助变频器为连接电网的辅助变 频器, 或双馈风力发电机转子侧变频器, 或将连接电网的辅助变频器 和双馈风力发电机转子侧变频器的直流母线对接后的组合。
在 IPCU的应用中:所述 C端口和外接辅助变频器直流母线之间 设有电容。
在 IPCU的应用中: 并网开关设在 A端口侧, 风力发电机组定子 绕组通过并网开关与 A端口连接。
本发明的优点在于: IPCU 适用于各种类型风力发电机。 采用 IPCU之后, 风力发电系统将具有以下优点:
风力发电系统将具有完美的低电压穿越能力,包含零电压跌落和 电网跳闸等在内的故障均能可靠穿越;
对风力发电机的运行无影响,主控制器和变桨控制器不需要做任 何的改动, 应用非常简单;
故障结束后, 风机恢复正常运行的速度快, 故障后, 风机能够在 2s之内恢复到之前的工作状态, 满足电网对低电压穿越的要求; 对风机的机械传动系统无影响,大大避免电网故障对轴系产生的 扭曲、 振荡等影响, 提高风机的使用寿命;
故障期间可以给电网提供有功和无功支持 (可选功能); 成本低、可靠性高。 IPCU选用的元件价格比较低,因此采用 IPCU 改造风机的成本也很低,同时双向晶闸管等元器件也能够满足并网风 采用了 IPCU后, 由于在故障期间将电网和风机隔离开来, 避免 因电网电压突变在电机的定转子上产生的一系列复杂的电磁和机电 暂态过程, 在保证可靠穿越的前提下, 不仅避免了传动系统的冲击, 而且不需要修改主控制器和变桨控制器程序,大大简化了整个风机系 统的设计, 提高了低电压穿越过程的可靠性。
附图说明
图 1是本发明在涉及的一种 IPCU实施例结构示意图;
图 2是本发明在涉及的另一种 IPCU实施例结构示意图; 图 3是 IPCU的一种应用方式;
图 4是 IPCU与辅助网侧变频器匹配的应用方式;
图 5是 IPCU与双馈风力发电系统中转子侧变频器匹配的应用方 式;
图 6是 IPCU、 网侧变频器和转子侧变频器的双馈风力发电机变 频器匹配的应用方式。
具体实施方式
附图非限制性地公开了本发明实施例的具体结构和其几种应用, 下面结合附图对本发明作进一步的描述。
由图 1可见, IPCU设有 A端口、 B端口和 C端口, 控制单元中 还设有穿越瞬间稳定定子电压及提供无功功率的内置辅助变频器 AI 和吸收有功功率的可控有功负载; 所述 A端口与所述 B端口之间设 有高速开关 GK;所述 A端口与所述 C端口之间设有内置辅助变频器 AI, 其中, 内置辅助变频器 AI的交流母线与所述 A端口连接, 直流 侧与所述 C端口连接;
在本实施例中, 可控有功负载与内置辅助变频器 AI的直流输出 端连接, 使内置辅助变频器 AI与可控有功负载依次串接在 A端口与 C端口之间, 所述的可控有功负载由制动开关 ZK和制动电阻 ZR组 成。
具体实施时, 所述的高速开关 GK为门极可关断晶闸管 GTO或 者配有关断电路的晶闸管, 制动开关 ZK选择 IGBT。
由图 2可见, IPCU的另一种实施方式与图 1公开的实施方式存 在的唯一差别在于: 自 A端口通过三相桥式整流 RF与可控有功负载 连接, 使稳定定子电压及提供无功功率的内置辅助变频器 AI支路与 可控有功负载支路并联。
具体实施时, 由于整流桥在工作的过程中会产生谐波电流, 这些 谐波会影响内置辅助变频器输出的电压质量, 因此, 可以在三相桥式 整流电路 RF交流侧设有 LC滤波电路 FL。
在图 1和图 2所述的 IPCU中, 高速开关 GK (门极可关断晶闸 管 GTO或者配有关断电路的晶闸管)的选择应该满足关断时间在 lms 之内, 并与风力发电机的输出电流匹配; 制动开关 ZK的选择应该满 足制动电路允许的最大电压和电流的要求; 制动电阻 ZR的选择应该 满足释放能量大于风力发电机的输出能量, 内置辅助变频器 AI的功 率等级应该与风力发电机匹配。
图 3是 IPCU在风力发电机中的一种应用, 所述的 IPCU即可以 选择图 1所示的实施例, 也可以采用实施例 2所示的实施例, 为了便 于表述, 仅以图 1所示实施例为例予以说明。
在图 3 中, IPCU的 A端口与风力发电机组定子绕组连接, B 端口与电网连接。
使用中, 当电网正常工作时, IPCU中的门极可关断晶闸管 GTO 或者配有关断电路的晶闸管导通, 制动开关 IGBT截止, 由于电网中 的奇次谐波比较少, 滤波器基本不起作用, IPCU整体等效为闭合的 交流开关。 内置辅助变频器工作在准备模式, 即控制其直流母线电压 保持恒定、 输出的无功功率等于 0。 此时内置辅助变频器基本不消耗 有功和无功功率, 对风力发电机的正常工作没有影响。
电网电压跌落的深度对风力发电机的运行有很大影响,当跌落深 度不大时, 电网电压跌落对风力发电机正常运行的影响比较小, 此时 靠风机自身的能力就可以穿越过去。 而深度很大时, 可以根据风机的特点设定电压跌落的容许范围, 该容许范围一般为电网额定电压的 90%。 当超过容许范围时, IPCU 强制关断门极可关断晶闸管 GTO或者配有关断电路的晶闸管, 关断 过程可以在 1ms左右完成。门极可关断晶闸管 GTO或晶闸管截止后, 制动开关 IGBT导通, 由制动电阻提供了风力发电机的有功功率释放 通道,同时内置辅助逆变器稳定了电机定子电压并提供了风力发电机 运行所需的无功功率, 使风力发电机的能够稳定运行。
如果电网电压能够在低电压穿越要求时间内恢复正常,门极可关 断晶闸管 GTO或晶闸管重新闭合, 同时制动开关 IGBT截止, 使得 风力发电机并入电网, 恢复正常工作; 如果电网电压不能够在低电压 穿越要求的时间内恢复正常, IPCU也将停止工作, 使得风力发电机 脱网并停机。
图 4所示的应用方式与图 3的区别在于, IPCU的 C端口与外接 辅助变频器的直流母线连接, 在本实施例中, 外接辅助变频器为网侧 辅助变频器, 采用这种应用方式的优势在于: 穿越过程中, 网侧辅助 变频器可以和制动电阻共同提供了风力发电机的有功功率释放通道, 同时,网侧辅助变频器也可以在故障穿越期间为电网提供有功和无功 功率支持。
图 5所示的应用方式与图 4的区别在于,外接辅助变频器为风力 发电机转子侧双馈变频器, 采用这种应用方式的优势在于: 由于双馈 风力发电机本身就配有变频器, 这样就可以充分利用已有的部件, 减 少改造成本。在穿越过程中, 双馈电机转子侧变频器仍然保持之前的 控制策略,内置辅助变频器保持定子电压稳定并提供双馈电机运行所 需的无功功率。
图 6所示的应用方式实际上是图 4和图 5两种应用方式的结合, 其结合点在于:外接辅助变频器是将网侧辅助变频器和转子侧双馈变 频器的直流母线对接后, 在与 IPCU的 C端口连接。在这种实施方式 中, 双馈电机转子侧变频器仍然保持之前的控制策略, 制动电阻和网 侧辅助变频器共同提供了风力发电机的有功功率释放通道,内置辅助 变频器保持定子电压稳定并提供双馈电机运行所需的无功功率。 同 时,网侧辅助变频器也可以在故障穿越期间为电网提供有功和无功功 率支持。

Claims

权利要求书
1、 一种低电压穿越智能功率控制单元, 其特征在于:
a)低电压穿越智能功率控制单元设有 A端口、 B端口和 C端口, 控制单元中还设有穿越瞬间稳定定子电压及提供无功功率的内置辅 助变频器和吸收有功功率的可控有功负载;
b)所述 A端口与所述 B端口之间设有高速开关;
c)所述 A端口与所述 C端口之间设有内置辅助变频器, 其中, 内置辅助变频器的交流母线与所述 A端口连接, 直流侧与所述 C端 口连接;
d)可控有功负载与内置辅助变频器的直流输出端连接, 使内置辅 助变频器与可控有功负载依次串接在 A端口与 C端口之间; 或自 A 端口通过三相桥式整流与可控有功负载连接,使内置辅助变频器支路 与可控有功负载支路并联。
2、 根据权利要求 1所述的低电压穿越智能功率控制单元, 其特 征在于: 所述的可控有功负载由制动开关和制动电阻组成。
3、 根据权利要求 2所述的低电压穿越智能功率控制单元, 其特 征在于: 所述的制动开关为绝缘门极双极性晶体管 IGBT。
4、 根据权利要求 1所述的低电压穿越智能功率控制单元, 其特 征在于: 所述三相桥式整流电路交流侧设有 LC旁路滤波电路。
5、 根据权利要求 1~4所述的低电压穿越智能功率控制单元, 其 特征在于: 所述的高速开关为门极可关断晶闸管 GTO, 或者配有反 向关断电路的晶闸管。
6、 一种如权利要求 1~4之一所述的低电压穿越智能功率控制单 元的应用, 其特征在于: 所述的 A端口与风力发电机组定子绕组连 接, 所述的 B端口与电网连接。
7、根据权利要求 6所述的低电压穿越智能功率控制单元的应用, 其特征在于: 所述的 C端口与外接辅助变频器的直流母线连接。
8、根据权利要求 7所述的低电压穿越智能功率控制单元的应用, it
特征在于: 所述的外接辅助变频器为连接电网的辅助变频器, 或双馈 风力发电机转子侧双馈变频器,或将连接电网的辅助变频器和双馈风 力发电机转子侧双馈变频器的直流母线对接后的组合。
9、根据权利要求 7所述的低电压穿越智能功率控制单元的应用, 其特征在于: 所述 C端口的外接辅助变频器直流母线之间设有电容。
10、根据权利要求 7或 8所述的低电压穿越智能功率控制单元的 应用, 其特征在于: 风力发电机组定子绕组通过并网开关与 A端口 连接。
PCT/CN2011/076944 2010-12-16 2011-08-19 低电压穿越智能功率控制单元及其应用 WO2012079363A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2821020A CA2821020A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application
JP2013543502A JP5895001B2 (ja) 2010-12-16 2011-08-19 低電圧乗切インテリジェント電力制御ユニット及びその使用
KR1020137018621A KR20130126961A (ko) 2010-12-16 2011-08-19 저 전압 라이드 스루용 인텔리전트 전력 제어 유닛 및 그의 애플리케이션
EP11849645.4A EP2637278A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application
US13/994,657 US20130265806A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105908804A CN102055207B (zh) 2010-12-16 2010-12-16 低电压穿越智能功率控制单元及其应用
CN201010590880.4 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012079363A1 true WO2012079363A1 (zh) 2012-06-21

Family

ID=43959284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076944 WO2012079363A1 (zh) 2010-12-16 2011-08-19 低电压穿越智能功率控制单元及其应用

Country Status (7)

Country Link
US (1) US20130265806A1 (zh)
EP (1) EP2637278A1 (zh)
JP (1) JP5895001B2 (zh)
KR (1) KR20130126961A (zh)
CN (1) CN102055207B (zh)
CA (1) CA2821020A1 (zh)
WO (1) WO2012079363A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555296A (zh) * 2020-05-20 2020-08-18 国网陕西省电力公司电力科学研究院 一种提升双馈风机低电压穿越能力的换流器控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055207B (zh) * 2010-12-16 2012-08-01 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用
CN102299644A (zh) * 2011-08-23 2011-12-28 东北电网有限公司 具有低电压穿越能力的变频器稳压电源装置
CN102957163A (zh) * 2011-08-23 2013-03-06 台达电子企业管理(上海)有限公司 一种双馈型风力发电系统的直流斩波装置及其方法
US20130057227A1 (en) * 2011-09-01 2013-03-07 Ingeteam Technology, S.A. Method and apparatus for controlling a converter
CN102790406B (zh) * 2012-08-07 2014-10-01 南京飓能电控自动化设备制造有限公司 具备可靠低电压穿越能力的双馈变流器
CN102820646B (zh) * 2012-08-10 2014-08-20 沈阳工业大学 一种柔性直流输电系统电网故障穿越控制装置及方法
CN102832641A (zh) * 2012-09-11 2012-12-19 南京飓能电控自动化设备制造有限公司 一种具备可靠低电压穿越能力的双馈变流器
CN106160606B (zh) * 2015-03-24 2019-09-17 台达电子工业股份有限公司 风力发电系统及其控制方法
JP6599700B2 (ja) * 2015-09-08 2019-10-30 マクセルホールディングス株式会社 系統連系装置
CN105743374A (zh) * 2016-04-27 2016-07-06 中国农业大学 一种拓扑结构及控制方法优化的变频器低电压穿越电源装置
CN106099903B (zh) * 2016-07-25 2018-11-30 国网河北省电力公司电力科学研究院 一种双馈风力发电机并入直流输配电网的并网系统及其控制方法
CN111769584B (zh) * 2020-07-15 2022-02-01 华北电力大学 一种高压直流受端系统稳定性评估方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728836A (zh) * 2008-07-01 2010-06-09 美国超导体公司 用于将风力涡轮发电机连接到公用电力网的系统
WO2010082317A1 (ja) * 2009-01-14 2010-07-22 東芝三菱電機産業システム株式会社 ダブルフェッド誘導発電機を備えた風力発電システムに用いられる保護回路
CN101895126A (zh) * 2009-05-20 2010-11-24 天津瑞能电气有限公司 双馈变速恒频风力发电机组的低电压穿越控制电路
CN102055207A (zh) * 2010-12-16 2011-05-11 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750004A (en) * 1972-02-23 1973-07-31 Esb Inc Instantaneous current control for static inverters
JP2877388B2 (ja) * 1989-11-01 1999-03-31 ニチコン株式会社 電圧補償機能付高調波抑制装置
JP3044894B2 (ja) * 1992-01-16 2000-05-22 富士電機株式会社 風車発電機
WO2003065567A1 (de) * 2002-01-29 2003-08-07 Vestas Wind Systems A/S Schaltungsanordnung zum einsatz bei einer windenergieanlage
DE10232423A1 (de) * 2002-07-17 2004-01-29 Ge Wind Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage zum Ausführen derartiger Verfahren
EP1595328B1 (en) * 2003-02-07 2009-09-09 Vestas Wind Systems A/S Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method
WO2007027141A1 (en) * 2005-08-30 2007-03-08 Abb Research Ltd Wind mill power flow control with dump load and power converter
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
JP4773850B2 (ja) * 2006-03-08 2011-09-14 三菱重工業株式会社 風力発電システム、及び風力発電システムの非常用電力供給方法
WO2008081049A1 (es) * 2006-12-28 2008-07-10 Wind To Power System, S.L. Generador asíncrono con control de la tensión aplicada al estator
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
WO2008131799A1 (en) * 2007-04-27 2008-11-06 Abb Technology Ag Method and system to influence the power generation of an adjustable speed generator
CN101299540B (zh) * 2007-04-30 2011-04-27 国网南京自动化研究院 用于实现风力发电机组低电压穿越的装置
JP2008301584A (ja) * 2007-05-30 2008-12-11 Hitachi Ltd 風力発電システムおよび電力変換器の制御方法
JP2008306776A (ja) * 2007-06-05 2008-12-18 Hitachi Ltd 風力発電システムおよびその制御方法
JP4834691B2 (ja) * 2008-05-09 2011-12-14 株式会社日立製作所 風力発電システム
CN101609992A (zh) * 2009-06-24 2009-12-23 北京利德华福电气技术有限公司 低压穿越型双馈风力发电机变流器
CN101710815B (zh) * 2009-11-26 2011-08-31 上海大学 电网三相短路故障时双馈感应风力发电机网侧变换器低电压穿越控制系统及方法
BR112012027761B1 (pt) * 2010-04-29 2019-11-05 Ingeteam Power Technology, S.A. sistema de controle de gerador elétrico e método
CN101860043B (zh) * 2010-05-17 2012-09-19 东南大学 串联型风力发电机组低电压穿越控制装置及控制方法
CA2802810A1 (en) * 2010-06-14 2011-12-22 Jesus Mayor Lusarreta Electricity generation system that withstands voltage dips
CN201966629U (zh) * 2010-12-16 2011-09-07 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728836A (zh) * 2008-07-01 2010-06-09 美国超导体公司 用于将风力涡轮发电机连接到公用电力网的系统
WO2010082317A1 (ja) * 2009-01-14 2010-07-22 東芝三菱電機産業システム株式会社 ダブルフェッド誘導発電機を備えた風力発電システムに用いられる保護回路
CN101895126A (zh) * 2009-05-20 2010-11-24 天津瑞能电气有限公司 双馈变速恒频风力发电机组的低电压穿越控制电路
CN102055207A (zh) * 2010-12-16 2011-05-11 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, SHUJU ET AL.: "Analysis on protection circuits suitable for VSCF-WECS to cope with grid faults.", CONVERTER TECHNOLOGY & ELECTRIC TRACTION., 2008, pages 45 - 49, XP008171627 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555296A (zh) * 2020-05-20 2020-08-18 国网陕西省电力公司电力科学研究院 一种提升双馈风机低电压穿越能力的换流器控制方法

Also Published As

Publication number Publication date
JP5895001B2 (ja) 2016-03-30
CN102055207B (zh) 2012-08-01
JP2014502136A (ja) 2014-01-23
CA2821020A1 (en) 2012-06-21
US20130265806A1 (en) 2013-10-10
KR20130126961A (ko) 2013-11-21
EP2637278A1 (en) 2013-09-11
CN102055207A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2012079363A1 (zh) 低电压穿越智能功率控制单元及其应用
Firouzi et al. LVRT performance enhancement of DFIG-based wind farms by capacitive bridge-type fault current limiter
CN101969201A (zh) 一种用于辅助风力发电机实现低压穿越的动态电压稳定器
CN101950974A (zh) 基于超级电容器储能的电能质量调节系统
CN103414205A (zh) 风电场超级电容储能型统一电能质量调节器
CN104009497B (zh) 一种风电机组低电压穿越和有源滤波补偿装置及切换方法
CN102122827A (zh) 一种高电压冗余的双馈风力发电机变流器及其低电压穿越控制方法
CN102064714B (zh) 双馈型风电变频器
CN101860227A (zh) 直流侧集成超导磁储能的电流源型风能变换装置
CN102280901A (zh) 复合型风力发电机组低电压穿越控制装置及控制方法
Shukla et al. Power electronics applications in wind energy conversion system: A review
CN104578150A (zh) 一种双馈型风力发电机组的控制方法
CN201829955U (zh) 一种用于辅助风力发电机实现低压穿越的动态电压稳定器
CN205141702U (zh) 一种双馈风力发电机低电压穿越系统
CN201869106U (zh) 双馈型风电变频器
CN201398096Y (zh) 直流电机变桨距系统
CN201332277Y (zh) 大型风力发电机组的变频器冗余系统
Khan et al. Hybrid control of a grid-interactive wind energy conversion system
CN201966629U (zh) 低电压穿越智能功率控制单元
Zhang et al. Low voltage ride through control strategy of directly driven wind turbine with energy storage system
Niu et al. The requirements and technical analysis of low voltage ride through for the doubly-fed induction wind turbines
Liu et al. Analysis of commutation failure of HVDC transmission system with wind farm
Blasco-Gimenez et al. Uncontrolled rectifiers for HVDC connection of large off-shore wind farms
CN219372037U (zh) 风力发电机组
Blasco-Gimenez et al. Variable voltage off-shore distribution network for wind farms based on synchronous generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849645

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011849645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011849645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2821020

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013543502

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137018621

Country of ref document: KR

Kind code of ref document: A