WO2012077769A1 - 光発生装置および光発生方法 - Google Patents

光発生装置および光発生方法 Download PDF

Info

Publication number
WO2012077769A1
WO2012077769A1 PCT/JP2011/078485 JP2011078485W WO2012077769A1 WO 2012077769 A1 WO2012077769 A1 WO 2012077769A1 JP 2011078485 W JP2011078485 W JP 2011078485W WO 2012077769 A1 WO2012077769 A1 WO 2012077769A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident light
frequency
resonator structure
polarized
Prior art date
Application number
PCT/JP2011/078485
Other languages
English (en)
French (fr)
Inventor
一 石原
篤幸 小山田
聡 葛原
久将 北口
惠司 江畑
Original Assignee
公立大学法人大阪府立大学
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学, 住友電気工業株式会社 filed Critical 公立大学法人大阪府立大学
Priority to JP2012547914A priority Critical patent/JP5809643B2/ja
Priority to CN201180059536.5A priority patent/CN103250093B/zh
Priority to US13/992,576 priority patent/US9036248B2/en
Priority to EP11846888.3A priority patent/EP2650723A4/en
Publication of WO2012077769A1 publication Critical patent/WO2012077769A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Definitions

  • the present invention relates to a light generation apparatus and a light generation method.
  • Terahertz waves are considered to be applied to a wide variety of physical property measurement using spectroscopic techniques and imaging technologies that take advantage of the characteristics of the terahertz waves, and their application fields are industrial, medical, agriculture, bio, security, etc. It is very widespread. For this reason, much attention has been focused on improving the technology for generating terahertz waves.
  • Non-Patent Document 1 As a method for generating a terahertz wave using a nonlinear optical crystal, a method using birefringence (for example, refer to the following Non-Patent Document 1), a method using pseudo phase matching (for example, refer to the following Non-Patent Document 2) ), A method using a double resonator (for example, see Non-Patent Document 3 below), and a method using parametric oscillation have been tried.
  • Non-Patent Documents 1 to 3 are techniques that use laser light having a strong intensity of the order of GW / cm 2 for the pump light source, or techniques that use pulsed light that makes it difficult to reduce the line width. In many cases, it is a technology that in principle increases the size of the element, or the efficiency of light generation is low, which is not practical as a method for generating light having a desired frequency.
  • Non-Patent Documents 1 to 3 are all techniques using pulsed light as a pump light source and have not been evaluated as a continuous light source. Continuous light has better spectral resolution in the frequency domain than pulsed light. Therefore, although a continuous light source is demanded in the market, few satisfy the market demands such as frequency variable region, generation intensity, and miniaturization.
  • a continuous light source a cascade laser (for example, see Non-Patent Document 4 above) and a photomixing technique (for example, see Non-Patent Document 5 above) are known. In the range of 0.5 to 3.0 THz required for detection, the former is a low-temperature operation, and the latter has an output order of 100 nW or less.
  • the output decreases as the frequency increases, and the output is 1 nW or less at 2 THz or more.
  • the generated intensity can be increased by increasing the incident light intensity.
  • the incident light intensity becomes higher than a certain level, thermal destruction of the electrode portion occurs, so that the output intensity can be improved by increasing the incident light intensity.
  • the present invention has been made in view of the above, and an object thereof is to provide a light generation apparatus and a light generation method capable of efficiently generating light having a desired frequency.
  • a light generation device of the present invention includes a resonator structure that enhances and outputs incident light, and an input unit that inputs the incident light to the resonator structure.
  • the input section is inclined at an angle inclined from a direction perpendicular to a main surface of the resonator structure.
  • the second incident light is input, and the resonator structure includes light having a frequency corresponding to a difference between a frequency of the first incident light and a frequency of the second incident light.
  • a light generation method of the present invention is a light generation device comprising: a resonator structure that enhances and outputs incident light; and an input unit that inputs the incident light to the resonator structure.
  • the incident light is first incident light and second incident light having different polarization states and different frequencies, and the input unit is inclined at an angle inclined from a direction perpendicular to a main surface of the resonator structure.
  • the light generation device includes a resonator structure and an input unit, and the input unit transmits the first incident light and the second incident light to the main surface of the resonator structure. Is input at an angle, the resonator structure outputs light having a frequency corresponding to the difference between the frequency of the first incident light and the frequency of the second incident light as output light.
  • the two incident lights have different polarization states, for example, the first incident light is in the s-polarization state and the second incident light is in the p-polarization state. Alternatively, the first incident light may be in the p-polarized state and the second incident light may be in the s-polarized state.
  • the two incident lights have different frequencies.
  • the frequency of the incident light in the s-polarized state matches the resonant frequency of the s-polarized light according to the tilt angle of the input unit, and the incident light in the p-polarized state. Is preferably the same as the resonance frequency of the p-polarized light according to the tilt angle of the input unit.
  • the resonance frequency here is a frequency that generates the resonator mode, and the resonance frequency is not limited to one value of the frequency, but has a certain range for generating the resonator mode. It may be a frequency band.
  • the resonance frequency of the resonator structure is shifted with respect to light having different polarization states.
  • This is considered to be a phenomenon caused by the structural birefringence caused by the periodic thin film structure, and is considered to be caused by the change in the effective refractive index due to the polarization.
  • light having a frequency corresponding to the deviation is output as output light. Therefore, the input unit adjusts the incident angle according to the desired frequency to be generated, so that light having the desired frequency can be generated.
  • the present invention is a frequency-variable light generating apparatus and light generating method. Furthermore, according to the present apparatus and method, the efficiency of light generation is improved, and the overall size of the apparatus can be reduced.
  • the present invention may further include a temperature adjusting unit that controls the resonance frequency of the s-polarized light and the resonance frequency of the p-polarized light by adjusting the temperature of the resonator structure.
  • the resonant frequency of the s-polarized light and the resonant frequency of the p-polarized light are controlled by adjusting the temperature of the resonator structure, so that either one of the two resonant frequencies is controlled to be constant. can do. Moreover, since temperature control can be said to be a relatively easy control method, the convenience of the apparatus configuration can be improved.
  • the resonator structure may be a simple resonator structure including a defect layer made of a GaAs layer and a reflecting mirror made of a laminate of a GaAs layer and an AlAs layer.
  • the resonator structure is a composite including a photonic crystal formed by stacking an active layer made of a GaAs layer and a non-active layer made of an AlAs layer, and a reflecting mirror made of a stack of a GaAs layer and an AlAs layer. It may be a photonic crystal structure.
  • the resonator structure may be a simple photonic crystal structure including a photonic crystal composed of a stacked layer of an active layer composed of a GaAs layer and an inactive layer composed of an AlAs layer.
  • the film thicknesses of the GaAs layer and the AlAs layer in the reflector having the composite photonic crystal structure may be different.
  • the efficiency of light generation is further improved, and further downsizing of the entire apparatus is achieved.
  • the resonator structure is different as a result of structural birefringence caused by the input unit inputting the first incident light and the second incident light at the inclined angle.
  • Light having a frequency corresponding to the difference between the resonance frequency of the s-polarized light and the resonance frequency of the p-polarized light having a value may be output.
  • the present invention it is possible to provide a light generation apparatus and a light generation method capable of efficiently generating light having a desired frequency.
  • FIG. 1 is a schematic configuration diagram of a terahertz light generation device 1.
  • FIG. FIG. 3 is a diagram illustrating a state in which laser oscillation units 10 and 11 input first incident light and second incident light to a resonator structure 12 at an angle.
  • the laser oscillation units 10 and 11 are angled and input the first incident light in the s-polarized state and the second incident light in the p-polarized state to the resonator structure 12, a shift occurs in the frequency generated by the resonator mode. It is a figure for demonstrating.
  • FIG. 5 is a flowchart showing a procedure for generating output light in a desired terahertz region using the terahertz light generation device 1.
  • FIG. 1 it is a diagram showing the relationship between the incident angle ⁇ and the frequency of the light to be generated.
  • FIG. 6 is a diagram illustrating a relationship between an incident angle ⁇ and a temperature in Configuration Example 1; In Configuration Example 1, it is a diagram showing a relationship between the incident angle ⁇ and the conversion efficiency. 6 is a conceptual diagram of a composite photonic crystal structure 122 employed as a resonator structure 12 in Configuration Example 2.
  • FIG. In Configuration Example 2 it is a diagram showing the relationship between the incident angle ⁇ and the frequency of light to be generated.
  • Configuration Example 2 it is a diagram showing the relationship between the incident angle ⁇ and the temperature.
  • Configuration Example 2 it is a diagram showing a relationship between the incident angle ⁇ and the conversion efficiency.
  • FIG. 11 is a conceptual diagram of a simple photonic crystal 123 employed as a resonator structure 12 in Configuration Example 3.
  • 2nd Embodiment it is a figure which shows the relationship between incident angle (theta) and temperature.
  • 2nd Embodiment it is a figure which shows the relationship between incident angle (theta) and conversion efficiency. It is a figure for comparing and showing the conversion efficiency in the example 2 of composition of a 1st embodiment, and that of a 2nd embodiment. It is a figure for comparing and showing the half value width in composition example 2 of a 1st embodiment, and that of a 2nd embodiment. It is the figure which displayed the half value width comparison of FIG. 27 on the log scale. It is a figure for showing performance comparison with 2nd Embodiment and other technologies. It is a figure for demonstrating that the optical system in FIG. 1 can be comprised as an optical system using a fiber. It is a figure for demonstrating that the optical system in FIG. 1 can be comprised as an optical system using a polarization beam splitter.
  • FIG. 1 is a schematic configuration diagram of the terahertz light generation device 1.
  • the terahertz light generator 1 includes laser oscillation units 10 and 11 (corresponding to “input unit” in the claims), a resonator structure 12, and a temperature regulator 13 (in the claims). Equivalent to “temperature control unit”).
  • the laser oscillation units 10 and 11 input incident light to the resonator structure 12 via the mirror 14 and the lens 15.
  • the resonator structure 12 enhances the incident light input from the laser oscillation units 10 and 11 and outputs it as output light.
  • the incident lights that the laser oscillation units 10 and 11 enter the resonator structure 12 are two incident lights of the first incident light and the second incident light.
  • the two incident lights have different polarization states, for example, the first incident light may be in the s-polarized state and the second incident light may be in the p-polarized state, or the first incident light is in the p-polarized state.
  • the second incident light may be in the s-polarized state.
  • the first incident light is in the s-polarized state
  • the second incident light is in the p-polarized state
  • the laser oscillation unit 10 converts the first incident light in the s-polarized state into a resonator structure. 12 and the laser oscillation unit 11 makes the p-polarized second incident light incident on the resonator structure 12.
  • the laser oscillation units 10 and 11 input the first incident light and the second incident light to the resonator structure 12 at an angle inclined from a direction perpendicular to the main surface of the resonator structure 12.
  • FIG. 2 it is imagined that the laser oscillation units 10 and 11 input the first incident light and the second incident light to the resonator structure 12 at an angle.
  • the laser oscillation units 10 and 11 input the first incident light and the second incident light in a direction D2 that is inclined by an angle ⁇ with respect to a direction D1 that is a direction perpendicular to the main surface 12a in the resonator structure 12.
  • the laser oscillation units 10 and 11 cause the first incident light and the second incident light to enter at an equal angle, and the inclination angle ⁇ is adjusted in the range of 0 ° to 90 °. .
  • the frequency at which the resonator mode is generated (hereinafter referred to as "resonance frequency").
  • the resonance frequency is not limited to indicating one value of the frequency, and may be a frequency band having a certain width for generating the resonator mode. 3 and 4, this is imaged as the transmittance with respect to the wavelength.
  • FIG. 3 shows graphs G1 and G2 when the laser oscillation units 10 and 11 input the first incident light in the s-polarized state and the second incident light in the p-polarized state perpendicular to the main surface 12a of the resonator structure 12. Is displayed.
  • the resonance frequency in the graph G1 of the first incident light in the s-polarized state is a frequency corresponding to the wavelength H1 (for example, 1064 nm)
  • the resonance frequency in the graph G2 of the second incident light in the p-polarized state is in the wavelength H2 (for example, 1064 nm). Corresponding frequency.
  • H1 for example, 1064 nm
  • the laser oscillation units 10 and 11 input the first incident light in the s-polarized state and the second incident light in the p-polarized state at an angle of 15 ° to the main surface 12 a of the resonator structure 12.
  • Cases are displayed in graphs G3 and G4, respectively.
  • the resonance frequency in the graph G3 of the first incident light in the s-polarized state is a frequency corresponding to the wavelength H3
  • the resonance frequency in the graph G4 of the second incident light in the p-polarized state is a frequency corresponding to the wavelength H4.
  • FIG. 3 in the case of normal incidence, there is no resonance frequency shift between s-polarized light and p-polarized light. That is, the wavelength H1 and the wavelength H2 are the same. Therefore, in FIG.
  • the graphs G1 and G2 are displayed overlapping each other.
  • the shift is indicated by reference sign Z1.
  • the graph G3 is shifted from the graph G1, and the wavelength of the resonance frequency is shifted from the wavelength H1 to the wavelength H3.
  • the graph G4 is shifted from the graph G2, and the wavelength of the resonance frequency is shifted from the wavelength H2. This indicates that the wavelength has been shifted to H4.
  • 3 and 4 show a case where a simple photonic crystal 123 is employed as the resonator structure 12 in the configuration example 3 described later, and the incident angles ⁇ are set to 0 ° and 15 °, respectively.
  • the output light of the terahertz light generation device 1 according to the first embodiment has a frequency corresponding to the shift Z1 shown in FIG. 4 when the temperature adjustment described later is not performed.
  • the two incident lights input to the resonator structure 12 by the laser oscillation units 10 and 11 have different frequencies.
  • the frequency of the first incident light in the s-polarized state matches the resonance frequency of the s-polarized light according to the tilt angle ⁇ of the laser oscillator 10
  • the frequency of the second incident light in the p-polarized state is the laser oscillator 11. This coincides with the resonance frequency of the p-polarized light according to the inclination angle ⁇ .
  • the transmittance of the s-polarized light has a peak at the wavelength H3, and the first incident light in the s-polarized state is at the wavelength H3. It has a corresponding frequency.
  • the transmittance of p-polarized light has a peak at the wavelength H4, and the second incident light in the p-polarized state has a frequency corresponding to the wavelength H4.
  • the wavelength H4 is 1060.85 nm in the case of the simple resonator of the configuration example 1, and the composite photonic of the configuration example 2
  • the wavelength H4 was 1060.4 nm
  • the wavelength H4 was 1060.15 nm.
  • FIG. 5 is a diagram showing how the resonance frequency changes due to temperature adjustment in the situation shown in FIG.
  • the frequency of the first incident light in the s-polarized state is v1 (frequency corresponding to the wavelength H5) and the frequency of the second incident light in the p-polarized state is v2 (frequency corresponding to the wavelength H6)
  • the output light is the difference
  • the temperature controller 13 When the incident angle ⁇ is increased, the frequency of the resonator mode is shifted to the high frequency side. This is shown in FIGS. 3 and 4 described above. Therefore, the temperature adjuster 13 adjusts the temperature of the resonator structure 12 to control the refractive index in order to return the moved resonance frequency to the original resonance frequency. Accordingly, the resonance frequency of the first incident light in the s-polarized state and the resonance frequency of the second incident light in the p-polarized state are controlled, and either one of the two resonance frequencies is controlled to be constant.
  • the resonance frequency of the second incident light in the p-polarized state is controlled so as to be constant by returning to the resonance frequency in the state where the incident angle is zero (normal incidence state). In FIG. 5, this is imaged by an arrow.
  • the resonance frequency of the first incident light in the s-polarized state is changed from the wavelength H3 to the wavelength H5.
  • the resonance frequency (frequency corresponding to the wavelength H4) of the second incident light in the p-polarized state is changed to the wavelength H6 by temperature adjustment.
  • the wavelength H6 is a wavelength that coincides with or is close to the resonance frequency at the time of vertical incidence (frequency corresponding to the wavelengths H1 and H2, see FIGS. 3 and 4).
  • the frequency difference corresponding to the wavelength difference indicated by the symbol Z2 in FIG. 5 becomes the frequency of the output light of the terahertz light generation device 1 of the first embodiment.
  • the difference in frequency corresponding to the difference in wavelength indicated by the symbol Z1 in FIGS. 4 and 5 is the output of the terahertz light generation device 1 of the first embodiment. It becomes the frequency of light.
  • the temperature adjustment range at this time is, for example, a range of 220K to 390K. Note that the temperature adjustment range varies depending on the resonator structure used, that is, depending on the number of films, the film thickness, and the material of the resonator structure.
  • the temperature dependence of the refractive index is shown in the following formulas (1) and (2).
  • the expression (1) indicates the temperature dependence of the refractive index in the portion.
  • the formula (2) shows the temperature dependence of the refractive index in the portion.
  • n represents the refractive index
  • T represents the temperature of the resonator structure 12.
  • the following reference 1 is a reference relating to a technique for performing frequency control by temperature adjustment. ⁇ Reference 1> J. Talghader and J. S. Smith, Appl. Phys. Lett. 66, 335, 1995
  • the resonator structure 12 uses the first incident light in the s-polarized state having the frequency v1 as signal light and the second incident light in the p-polarized state having the frequency v2 as pump light.
  • the resonator structure 12 outputs light in the terahertz region as idler light.
  • the first configuration example is a case where a simple resonator is employed as the resonator structure 12.
  • FIG. 6 is a conceptual diagram of the simple resonator 121 in this case.
  • the simple resonator 121 has a structure including a defect layer made of a GaAs layer and a reflecting mirror (DBR: Distributed Bragg Reflector) made of a stack of a GaAs layer and an AlAs layer.
  • DBR Distributed Bragg Reflector
  • the parameters in the simple resonator 121 are summarized as follows. 1. About GaAs layer in DBR Film thickness: 99.09 nm Number of layers: 17 Refractive index: 3.588 (wavelength: 1064 nm) 2. About the AlAs layer in DBR Film thickness: 65.73 nm Number of layers: 17 Refractive index: 2.989 (wavelength: 1064 nm) 3. About the defective GaAs layer Film thickness: 2391.7 nm Number of layers: 1 layer Refractive index: 3.588 (wavelength: 1064 nm) 4). 4. Number of periods in DBR: 17 periods each before and after, a total of 34 periods Total crystal length: 7995.24 nm
  • FIG. 7 is a flowchart illustrating a procedure for generating output light in a desired terahertz region using the terahertz light generating apparatus 1 including the simple resonator 121 having such a structure.
  • the frequency of the terahertz wave to be generated is determined according to the application (step S1).
  • the type of the resonator structure 12 is determined (step S2). It is assumed that the simple resonator 121 is determined in this configuration example.
  • the incident angle ⁇ of the first incident light (signal light) in the s-polarized state and the second incident light (pump light) in the p-polarized state is determined according to the frequency of the terahertz wave to be generated (step S3). .
  • the incident angle ⁇ is determined by the frequency of light to be generated.
  • FIG. 8 shows the relationship between the incident angle ⁇ and the frequency of light to be generated when the simple resonator 121 is determined as the resonator structure 12. Show. As shown in FIG. 8, for example, when it is desired to generate 0.31 THz light, the incident angle ⁇ can be determined to be 65 °.
  • the frequency and intensity of the pump light, the frequency and intensity of the signal light, and the temperature of the simple resonator 121 are determined (step S4).
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm), and the intensity is determined to be 1 MW / cm 2. In view of conversion efficiency, higher strength is desirable if possible.
  • the frequency of the signal light can be determined by 281.95 THz-difference frequency (frequency of light to be generated), it is determined to be about 281.64 THz.
  • the intensity of the signal light is the same as or lower than that of the pump light. Further, as shown in FIG.
  • the temperature of the simple resonator 121 may be determined to be 340 K as an absolute temperature when the incident angle ⁇ is determined to be 65 ° in order to generate, for example, 0.31 THz light. it can.
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm).
  • FIG. 10 shows the conversion efficiency at this time.
  • the conversion efficiency at that time is 2.1e-006%.
  • the conversion efficiency increases as the incident angle ⁇ is increased, and the maximum value of the conversion efficiency appears around 65 °.
  • the maximum conversion efficiency is displayed as 2.1e-006%. This is because the confinement effect is weakened in consideration of the performance of the laser light source that can be used immediately. By changing, a higher conversion efficiency value can be obtained.
  • the excellent points of this configuration example are: 1. Thinness of the element 2.
  • the generation frequency is variable.
  • One example is that it can be a high-power continuous light source.
  • the thinness of the element, that is, the resonator structure 12 is thin on the order of three orders of magnitude compared to the conventionally known one.
  • the conversion efficiency increases in proportion to the square of the thickness, it can be said that the device of the present configuration example has an unparalleled performance, taking this into account.
  • the device of Non-Patent Document 3 is completely different from the device of this configuration example and is not an object of comparison, only the thinness of the resonator structure is of the same order as this configuration example. It is thought that.
  • the numerical value of the conversion efficiency is higher for pulsed light having a higher peak value than continuous light. For this reason, many studies (for example, Non-Patent Documents 1 to 3 above) calculate the conversion efficiency in pulsed light, but the frequency domain resolution of pulsed light is inferior to that of continuous light. Sometimes the accuracy is inferior. Since there are very few documents that have attempted to generate terahertz of continuous light using a wavelength conversion technique that uses a nonlinear optical effect, in this specification, comparison with pulsed light is unavoidable. Compared to the case of pulsed light, the numerical value of the conversion efficiency in the first embodiment is inferior.
  • the output in photomixing decreases in order units as the frequency increases, but the output in the first embodiment also decreases so much in the frequency range of 0.5 to 3.0 THz. do not do.
  • the line width of the generated terahertz light is considered to be on the order of substantially the same as the line width of the pump light / signal light.
  • the configuration example in the first embodiment assumes a line width on the order of GHz, a continuous light source of kHz or MHz is currently available on the market. Therefore, a further increase in conversion efficiency can be expected with a design according to that.
  • the conversion efficiency value may be higher than the above-mentioned value due to the difference in the structure of the resonator structure 12 (the difference in structure itself or the difference in growth surface as shown in the following configuration examples 2 and 3). is there.
  • FIG. 11 is a conceptual diagram of the composite photonic crystal structure 122 in this case.
  • the composite photonic crystal structure 122 includes a photonic crystal composed of a stack of an active layer composed of a GaAs layer and a non-active layer composed of an AlAs layer, and a reflecting mirror composed of a stack of a GaAs layer and an AlAs layer. (DBR).
  • the parameters in the composite photonic crystal structure 122 are summarized as follows. 1. About GaAs layer in DBR Film thickness: 79.18nm Number of layers: 14 layers Refractive index: 3.382 (wavelength: 1064 nm, temperature: 200K) 2. About the AlAs layer in DBR Film thickness: 92.49nm Number of layers: 14 layers Refractive index: 2.895 (wavelength: 1064 nm, temperature: 200K) 3. About GaAs layer in photonic crystal Film thickness: 72.53 nm Number of layers: 13 layers Refractive index: 3.382 (wavelength: 1064 nm, temperature: 200K) 4).
  • the procedure for generating output light in a desired terahertz region using the terahertz light generator 1 having the composite photonic crystal structure 122 having such a structure is as shown in the flowchart of FIG.
  • the frequency of the terahertz wave to be generated is determined according to the application (step S1).
  • the type of the resonator structure 12 is determined (step S2). In this configuration example, it is assumed that the composite photonic crystal structure 122 is determined.
  • the incident angle ⁇ of the first incident light (signal light) in the s-polarized state and the second incident light (pump light) in the p-polarized state is determined according to the frequency of the terahertz wave to be generated (step S3).
  • the incident angle ⁇ is determined by the frequency of light to be generated.
  • FIG. 12 shows the relationship between the incident angle ⁇ and the frequency of light to be generated when the composite photonic crystal structure 122 is determined as a resonator structure. Indicates. As shown in FIG. 12, for example, when it is desired to generate 1.55 THz light, the incident angle ⁇ can be determined to be 67 °.
  • the frequency and intensity of the pump light, the frequency and intensity of the signal light, and the temperature of the composite photonic crystal structure 122 are determined (step S4).
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm), and its intensity is determined to be 1 MW / cm 2. In view of conversion efficiency, higher strength is desirable if possible.
  • the frequency of the signal light can be determined by 281.95 THz-difference frequency (frequency of light to be generated), it is determined to be about 280.4 THz.
  • the intensity of the signal light is the same as or lower than that of the pump light. Further, as shown in FIG.
  • the temperature of the composite photonic crystal structure 122 is determined to be 380 K as an absolute temperature when the incident angle ⁇ is determined to be 67 ° in order to generate light of 1.55 THz, for example. be able to.
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm).
  • FIG. 14 shows the conversion efficiency at this time.
  • the conversion efficiency at that time is 6e-005%.
  • the conversion efficiency increases as the incident angle ⁇ increases, and the maximum value of the conversion efficiency appears around 67 °.
  • the maximum conversion efficiency is displayed as 6e-005%. This is because the confinement effect is weakened in consideration of the performance of the laser light source that can be used immediately, and the conditions are changed. Thus, a higher conversion efficiency value can be obtained. Note that the excellent points of this configuration example are the same as those described in the configuration example 1, and thus the description thereof is omitted.
  • FIG. 15 is a conceptual diagram of the simple photonic crystal 123 in this case.
  • the simple photonic crystal 123 has a structure including a photonic crystal formed by stacking an active layer formed of a GaAs layer and an inactive layer formed of an AlAs layer.
  • the parameters in the simple photonic crystal 123 are summarized as follows. 1. About GaAs layer in photonic crystal Film thickness: 74.74nm Number of layers: 70 layers Refractive index: 3.588 (wavelength: 1064 nm) 2. About the AlAs layer in the photonic crystal Film thickness: 87.31 nm Number of layers: 69 layers Refractive index: 2.989 (wavelength: 1064 nm) 3. Total crystal length: 11256.19 nm
  • the procedure for generating output light in a desired terahertz region using the terahertz light generator 1 having the simple photonic crystal 123 having such a structure is as shown in the flowchart of FIG.
  • the frequency of the terahertz wave to be generated is determined according to the application (step S1).
  • the type of the resonator structure 12 is determined (step S2). It is assumed that the simple photonic crystal 123 is determined in this configuration example.
  • the incident angle ⁇ of the first incident light (signal light) in the s-polarized state and the second incident light (pump light) in the p-polarized state is determined according to the frequency of the terahertz wave to be generated (step S3).
  • the incident angle ⁇ is determined by the frequency of light to be generated.
  • FIG. 16 shows the relationship between the incident angle ⁇ and the frequency of light to be generated when the simple photonic crystal 123 is determined as a resonator structure. Show. As shown in FIG. 16, for example, when it is desired to generate 3 THz light, the incident angle ⁇ can be determined to be 85 °.
  • the frequency and intensity of the pump light, the frequency and intensity of the signal light, and the temperature of the simple photonic crystal 123 are determined (step S4).
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm), and the intensity is determined to be 1 MW / cm 2. In view of conversion efficiency, higher strength is desirable if possible.
  • the frequency of the signal light can be determined by 281.95 THz-difference frequency (frequency of light to be generated), it is determined to be about 278.95 THz.
  • the intensity of the signal light is the same as or lower than that of the pump light. Further, as shown in FIG.
  • the temperature of the simple photonic crystal 123 can be determined to be 420 K as an absolute temperature when the incident angle ⁇ is determined to be, for example, 85 ° in order to generate 3 THz light. .
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm).
  • FIG. 18 shows the conversion efficiency at this time.
  • the conversion efficiency at that time is 3.9e-005%.
  • the conversion efficiency increases as the incident angle ⁇ increases, and the maximum value of the conversion efficiency appears near 85 °.
  • the maximum conversion efficiency is displayed as 3.9e-005%. This is because the confinement effect is weakened in consideration of the performance of the laser light source that can be used immediately. By changing, a higher conversion efficiency value can be obtained. Note that the excellent points of this configuration example are the same as those described in the configuration example 1, and thus the description thereof is omitted.
  • a terahertz wave is generated using a GaAs / AlAs resonator structure 12.
  • the transmittance spectrum shifts as the angle increases, but there is a difference in the width of the shifted frequency between s-polarized light and p-polarized light (see FIG. 3). .
  • This is considered to be a phenomenon caused by the structural birefringence caused by the periodic thin film structure, and it is considered that the effective refractive index changes depending on the polarization.
  • the photoelectric field is enhanced inside the resonator structure, and a strong difference frequency generation (DFG) is generated. be able to.
  • the generated difference frequency reaches the terahertz region, and its conversion efficiency is high as described above.
  • the conversion efficiency according to the first embodiment is the conventional technique (particularly the intensity of incident light is GW / cm 2). It can be said that it is very superior to the case of order).
  • the terahertz light generation device 1 of the first embodiment can be used as a frequency variable terahertz light source. .
  • the total crystal length of the simple resonator 121 is 8.0 ⁇ m
  • the total crystal length of the composite photonic crystal structure 122 is 6.9 ⁇ m
  • the total crystal length of the simple photonic crystal 123 is 11.26 ⁇ m.
  • the crystal length of the resonator structure 12 in the terahertz light generation device 1 of the first embodiment is about several tens of ⁇ m at most. Therefore, downsizing of the entire apparatus can be achieved, and the terahertz light generation apparatus 1 of the first embodiment can be applied as a highly versatile terahertz light source.
  • the laser oscillation units 10 and 11 enter the first incident light and the second incident light to the resonator structure 12 at equal angles, and the temperature adjuster 13 adjusts the temperature of the resonator structure 12. ing.
  • the resonant frequency of s-polarized light and the resonant frequency of p-polarized light are controlled, and either one of both resonant frequencies is controlled to be constant.
  • temperature control can be said to be a relatively easy control method, the convenience of the apparatus configuration can be improved.
  • the description of the points common to the configuration example 2 of the first embodiment will be omitted as much as possible, and differences will be mainly described.
  • the ratio of the effective film thicknesses of the GaAs layer and the AlAs layer in the configuration example 2 of the first embodiment is as follows.
  • the effective film thickness is a value obtained by multiplying the film thickness by the refractive index. 1.
  • FIG. 19 is a conceptual diagram of the composite photonic crystal structure 124 of the second embodiment.
  • the composite photonic crystal structure 124 includes a photonic crystal composed of a stacked layer of an active layer composed of a GaAs layer and an inactive layer composed of an AlAs layer, and a reflecting mirror composed of a stacked layer of a GaAs layer and an AlAs layer. (DBR).
  • the parameters in the composite photonic crystal structure 124 are summarized as follows. 1. About GaAs layer in DBR Film thickness: 31.00nm Number of layers: 30 layers Refractive index: 3.382 (wavelength: 1064 nm, temperature: 200K) 2. About the AlAs layer in DBR Film thickness: 145.00nm Number of layers: 30 layers Refractive index: 2.895 (wavelength: 1064 nm, temperature: 200K) 3. About GaAs layer in photonic crystal Film thickness: 74.50nm Number of layers: 45 layers Refractive index: 3.382 (wavelength: 1064 nm, temperature: 200K) 4).
  • the effective thicknesses of the GaAs layer and the AlAs layer in the photonic crystal portion are the same, but the effective thicknesses of the GaAs layer and the AlAs layer in the DBR portion are 1 : 4 is different.
  • the effective film thickness of the GaAs layer and the effective film thickness of the AlAs layer different, that is, by changing the ratio of the effective film thickness of the GaAs layer and the AlAs layer, the frequency of the transmission peak of p-polarized light and the transmission peak of s-polarized light.
  • the difference ⁇ (corresponding to Z1 and Z2 in FIGS. 4 and 5) can be changed.
  • FIG. 20 shows this.
  • X on the horizontal axis indicates the ratio of the effective film thickness, and the vertical axis indicates ⁇ .
  • X is a value expressed by the following mathematical formula.
  • X effective thickness of AlAs layer / (effective thickness of GaAs layer + effective thickness of AlAs layer)
  • 20B and 20C graphs G7 and G9 show the transmittance spectrum of s-polarized light, and graphs G8 and G10 show the transmittance spectrum of p-polarized light.
  • X indicates the ratio of the effective film thickness. However, since the same ⁇ behavior is exhibited even in the ratio of the film thickness not multiplied by the refractive index, the ratio of the effective film thickness is described below. Is simply referred to as the film thickness ratio.
  • FIG. 21 is a diagram for explaining a difference in transmittance spectrum between the case of the configuration example 2 of the first embodiment and the case of the second embodiment.
  • FIG. 4A shows the case of the configuration example 2 of the first embodiment
  • FIG. 4B shows the case of the second embodiment.
  • the photonic crystal (PC) is configured with a film thickness ratio of 1: 1, and the maximum ⁇ is used.
  • the film thickness ratio is 1: 1 in the case of the configuration example 2 of the first embodiment in FIG. 1A, and in the second embodiment in FIG. , One is thick.
  • G11, 13, 15, 17, 19, and 21 indicate the transmittance spectrum of s-polarized light
  • graphs G12, 14, 16, 18, 20, and 22 indicate the transmittance spectrum of p-polarized light.
  • the DBR is highly reflective at the PC peak wavelength w1 of p-polarized light (the PC peak wavelength w1 of p-polarized light is the central part of the concave portion of the graph G14). , I.e., corresponding to the central part of the photonic band gap), and DBR has a high reflectance even at the PC peak wavelength w2 of s-polarized light (the PC peak wavelength w2 of s-polarized light corresponds to the central part of the concave portion of the graph G13, In other words, both the p-polarized light and the s-polarized light correspond to the DBR having the same degree of reflectance.
  • the DBR is highly reflective at the PC peak wavelength w3 of p-polarized light (the PC peak wavelength w3 of p-polarized light is at the center of the concave portion of the graph G20.
  • the PC peak wavelength w4 of s-polarized light does not correspond to the central portion of the concave portion of the graph G19. That is, it does not correspond to the central part of the photonic band gap), and only DB polarization is a DBR with a high confinement effect.
  • the composite photonic crystal is used, in the case of the configuration example 2 of the first embodiment shown in FIG. 6A, as shown in the lowermost stage of FIG. While the difference
  • the full width at half maximum (full width at half maximum, FWHM) is a value indicating a difference in wavelength (frequency) that is 0.5 times the peak value of the transmission peak.
  • FIG. 22 is a diagram showing an operation at a low angle incidence and a high angle incidence in the second embodiment.
  • FIG. 4A shows the case of low angle incidence
  • FIG. 4B shows the case of high angle incidence.
  • both the p- and s-polarized light have the PC peak wavelengths (w5, w6) in the DBR high reflection portion, so both have high reflectivity DBR.
  • the DBR for the PC peak wavelength w7 of p-polarized light has a high reflectance
  • the DBR for the PC peak wavelength w8 of s-polarized light has a low reflectance.
  • the procedure for generating output light in a desired terahertz region using the terahertz light generator 1 having the composite photonic crystal structure 124 having such a structure is as shown in the flowchart of FIG.
  • the frequency of the terahertz wave to be generated is determined according to the application (step S1).
  • the type of the resonator structure 12 is determined (step S2). In this embodiment, it is assumed that the composite photonic crystal structure 124 is determined.
  • the incident angle ⁇ of the first incident light (signal light) in the s-polarized state and the second incident light (pump light) in the p-polarized state is determined according to the frequency of the terahertz wave to be generated (step S3). .
  • the incident angle ⁇ is determined by the frequency of light to be generated.
  • FIG. 23 shows the relationship between the incident angle ⁇ and the frequency of light to be generated when the composite photonic crystal structure 124 is determined as a resonator structure. Indicates. As shown in FIG. 23, for example, when it is desired to generate 1.2 THz light, the incident angle ⁇ can be determined to be 40 °.
  • the difference ( ⁇ ) between the transmittance spectrum of p-polarized light and the transmittance spectrum of s-polarized light increases, and the generated frequency accordingly increases.
  • the frequency and intensity of the pump light, the frequency and intensity of the signal light, and the temperature of the composite photonic crystal structure 124 are determined (step S4).
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm), and the intensity is determined to be 1 MW / cm 2. In view of conversion efficiency, higher strength is desirable if possible.
  • the frequency of the signal light can be determined by 281.95 THz-difference frequency (frequency of light to be generated), it is determined to be about 280.85 THz.
  • the intensity of the signal light is the same as or lower than that of the pump light.
  • the temperature of the composite photonic crystal structure 124 is determined to be 290 K as an absolute temperature when the incident angle ⁇ is determined to be 40 °, for example, in order to generate 1.2 THz light. be able to.
  • the frequency of the pump light is kept constant at about 281.95 THz (wavelength: 1064 nm).
  • the incident angle increases, the shift of the transmittance spectrum increases. Therefore, it is necessary to change the sample temperature accordingly.
  • FIG. 25 shows the conversion efficiency at this time.
  • the conversion efficiency at that time is 1.8e-003%.
  • FIG. 26 is a diagram for comparing the conversion efficiency in the configuration example 2 of the first embodiment with that of the second embodiment.
  • a graph G35 shows the conversion efficiency in Configuration Example 2 of the first embodiment
  • a graph G36 shows the conversion efficiency in the second embodiment. It can be seen that the conversion efficiency of the second embodiment is higher than that of the configuration example 2 of the first embodiment at all incident angles.
  • FIG. 26 shows conversion efficiency on a log scale.
  • FIG. 27 is a diagram for comparing and showing the half-value width in the configuration example 2 of the first embodiment and that of the second embodiment.
  • the graph G37 shows the half-value width of p-polarized light in the configuration example 2 of the first embodiment
  • the graph G38 shows the half-value width of s-polarized light in the configuration example 2 of the first embodiment
  • the graph G39 shows p-polarized light in the second embodiment.
  • the graph G40 shows the half width of the s-polarized light in the second embodiment. In the case of the second embodiment shown by the graphs G39 and 40, both polarizations are close to 0.01 [nm], which is the ideal half-value width, and 0.055 [nm] at the maximum.
  • the half-value width of the s-polarized light is 0.01 [nm] near the incident angle of 70 °.
  • the full width at half maximum of the polarization increases to 0.35 [nm].
  • FIG. 28 is a diagram showing the half-value width comparison of FIG. 27 displayed on a log scale for convenience of display.
  • the symbols of the graph are the same numbers.
  • the difference between the half-value widths of the p-polarized light and the s-polarized light increases as the incident angle increases (see graphs G37 ′ and G38 ′).
  • the difference between the half-value widths of the p-polarized light and the s-polarized light is small (see graphs G39 'and G40').
  • both p-polarized light and s-polarized light can be incident on the crystal even at higher angles, which can contribute to generation of terahertz waves. Furthermore, since the half width of p-polarized light and s-polarized light is small, the effect of enhancing the electric field inside the crystal is high, and an increase in conversion efficiency can be expected.
  • FIG. 29 is a diagram for illustrating a performance comparison between the second embodiment and another technology.
  • Another technique to be compared in FIG. 29 is a technique described in Reference Document 2 below in the case of GaAs pseudo phase matching, for example.
  • it refers to the technique described in Reference Document 3 below.
  • the examples in References 2 and 3 below are examples of the highest conversion efficiency among recent papers.
  • the second embodiment is certainly inferior in conversion efficiency and output intensity.
  • the conversion efficiency and output intensity in the pulse response in the techniques of Reference Documents 2 and 3 and the conversion efficiency and output intensity in the continuous light source in the second embodiment.
  • the conversion efficiency and output intensity in the second embodiment are simply inferior to those in the techniques of References 2 and 3. It's hard to say.
  • the conversion efficiency and output intensity in a continuous light source cannot be calculated.
  • the conversion efficiency and output intensity can be calculated for a continuous light source that has higher needs in the market.
  • the crystals themselves in References 2 and 3 are both about 6 mm, but since the conversion efficiency is increased by attaching a resonator, the size of the resonator is the element length. On the other hand, in the second embodiment, since the crystal itself is like a resonator, it can be expected that the optical system becomes small.
  • the generation of light in the terahertz region is taken as an example, but the idea of the present invention is not limited to this, and the present invention can be applied to the generation of light in regions other than the terahertz. it can.
  • the laser oscillation units 10 and 11 are incident on the resonator structure 12 with the first incident light and the second incident light at an equal angle.
  • the angle and the incident angle of the second incident light may be different.
  • the simple resonator 121, the composite photonic crystal structure 122, and the simple photonic crystal 123 are mentioned as an example of the resonator structure 12, it is not restricted to this,
  • nonpatent literature 3 The double resonator described in 1 is also a structure to which the method of the present invention can be applied.
  • the material of the resonator structure 12 is limited to GaAs or AlAs for convenience of explanation.
  • the material is not limited to this, and for example, ZnTe—MgTe, MgSe—ZnTe, CdTe—MgTe, InGaP / GaAs.
  • any material such as GaAs / InGaAs, GaAs / Ge, and GaAs / AlGaAs that can be lattice-matched to produce a multilayer structure and has a crystal structure with broken inversion symmetry may be used.
  • the first incident light is in the s-polarized state and the second incident light is in the p-polarized state. May be in the p-polarized state, and the second incident light may be in the s-polarized state.
  • the optical system shown in FIG. 1 can be configured as an optical system using a fiber as shown in FIG.
  • This optical system includes a polarization maintaining fiber 16 and a fiber array 17 instead of the mirror 14 and the lens 15 shown in FIG.
  • a laser light source in the laser oscillation units 10 and 11 may be a product called TA pro of TOPTICA.
  • the generation wavelength range is 1035 to 1085 nm
  • the generation intensity is 1000 mW
  • the line width is 0.1 to 1 MHz (typical linewidth., 5 ⁇ s).
  • the same product having a generation wavelength region of 1060 to 1083 nm, a generation intensity of 2000 mW, and a line width of 0.1 to 1 MHz (typical linewidth., 5 ⁇ s) may be used.
  • SFL-PM which is a product having a generation wavelength range of 1064 nm, a generation intensity of 2000 mW, and a line width of less than 100 kHz may be used as a product of Nova Wave.
  • a fiber having a wavelength range of 1060 to 1080 nm and a polarization maintaining fiber capable of simultaneously transmitting p-polarized light and s-polarized light may be used.
  • the optical system as shown in FIG. 1 can be configured as an optical system using a polarizing beam splitter as shown in FIG. 31, for example.
  • This optical system includes a polarization beam splitter 18 instead of the mirror 14 shown in FIG.
  • the same laser light source as that used in the optical system using the fiber can be used as the laser light source in the laser oscillation units 10 and 11.
  • the polarizing beam splitter 18 a PBS-HP series manufactured by Sigma Kogyo Co., Ltd. or 05BC15PH.9 manufactured by Newport Co. can be used.
  • the lens 15 the NYTL series or NYDL series of Sigma Kogyo Co., Ltd. can be used.
  • SYMBOLS 1 Terahertz light generator 10, 10 ... Laser oscillation part, 12 ... Resonator structure, 12a ... Main surface in resonator structure 12, 13 ... Temperature controller, 14 ... Mirror, 15 ... Lens, 16 ... Polarization maintenance Fiber 17, fiber array 18, polarization beam splitter 121, simple resonator 122, 124 composite photonic crystal structure, 123 simple photonic crystal
  • the present invention provides a light generation apparatus and a light generation method capable of efficiently generating light having a desired frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 テラヘルツ光発生装置1は、入射光を増強して出力する共振器構造12と、入射光を共振器構造12に入力するレーザ発振部10,11と、を備える。入射光は、異なる偏光状態および異なる周波数を有する第1入射光および第2入射光である。レーザ発振部10,11は、共振器構造12における主面に垂直の方向から傾斜した角度で、第1入射光および第2入射光を入力する。共振器構造12は、第1入射光の周波数と第2入射光の周波数との差分に相当する周波数を有する光を出力する。

Description

光発生装置および光発生方法
 本発明は、光発生装置および光発生方法に関するものである。
 近年、所望の周波数を有する光に対する研究として、特にテラヘルツ領域の光源の研究が盛んに行われている。テラヘルツ波は、分光技術を利用した多岐にわたる物性値測定や、当該テラヘルツ波の特性を生かしたイメージング技術に適用されることが考えられ、その応用分野は工業、医療、農業、バイオ、セキュリティなど、非常に広範囲に広がっている。その為、テラヘルツ波を発生させるための技術の向上に大いに注目が集まっている。例えば、非線形光学結晶を用いたテラヘルツ波の発生法として、複屈折を利用したもの(例えば、下記の非特許文献1を参照)、擬似位相整合によるもの(例えば、下記の非特許文献2を参照)、二重共振器を利用したもの(例えば、下記の非特許文献3を参照)、パラメトリック発振によるものなど、様々な方法が試みられている。
W. Shi and Y.J. Ding,Appl. Phys. Lett. 84, 2004, Number 10 K. L.Vodopyanov and M.N.Fejer et al., Appl. Phys. Lett. 89, 14119, 2006 Kitada et al.,Appl. Phys.Lett. 95, 111106, 2009 ChristophWalther, et al. "Quantum cascade lasers operating from 1.2 to 1.6 THz, " Appl. Phys. Lett. 91, 131122, 2007 F. Hindle et al., C. R. Physique 9, 262-275, 2008
 しかし、上記の非特許文献1~3で例示した従来の技術は、ポンプ光源にGW/cmオーダーの強い強度のレーザ光を用いる技術であったり、線幅を小さくしにくいパルス光を用いる技術であったり、原理的に素子が大きくなってしまう技術であったり、光発生の効率が低かったりする場合が多く、所望の周波数を有する光の発生法として現実的なものとは言えない。
 前述したように、上記の非特許文献1~3で例示した従来の技術は、全てポンプ光源にパルス光を用いた技術で、連続光源として評価したものはない。連続光は、パルス光より周波数領域のスペクトル分解能が優れている。そのため連続光の光源が市場で求められているものの、周波数可変領域、発生強度、小型化などの市場の要求を満たすものは少ない。連続光源には、カスケードレーザ(例えば、上記の非特許文献4を参照)やフォトミキシング技術(例えば、上記の非特許文献5を参照)が知られているが、THz周波数帯の、特に指紋スペクトル検出に必要とされている0.5~3.0THzにおいては、前者は低温動作、後者は出力のオーダーが100nW以下である。また、後者は周波数が高くなるにつれて出力が低下し、2THz以上では1nW以下の出力となってしまう。なお、後者は入射光強度を上げることで発生強度を上げることが出来るが、入射光強度が一定以上高くなると、電極部分の熱破壊が生じるため、入射光強度を上げることによる出力強度向上には上限が存在する。
 そこで、本発明は上記に鑑みてなされたもので、所望の周波数を有する光を効率良く発生させることが可能な光発生装置および光発生方法を提供することを目的とする。
 上記課題を解決するために、本発明の光発生装置は、入射光を増強して出力する共振器構造と、前記入射光を前記共振器構造に入力する入力部と、を備え、前記入射光は、異なる偏光状態および異なる周波数を有する第1入射光および第2入射光であり、前記入力部は、前記共振器構造における主面に垂直の方向から傾斜した角度で、前記第1入射光および前記第2入射光を入力し、前記共振器構造は、前記第1入射光の周波数と前記第2入射光の周波数との差分に相当する周波数を有する光を出力する、を備えることを特徴とする。
 上記課題を解決するために、本発明の光発生方法は、入射光を増強して出力する共振器構造と、前記入射光を前記共振器構造に入力する入力部と、を備える光発生装置において、前記入射光は、異なる偏光状態および異なる周波数を有する第1入射光および第2入射光であり、前記入力部が、前記共振器構造における主面に垂直の方向から傾斜した角度で、前記第1入射光および前記第2入射光を入力するステップと、前記共振器構造が、前記第1入射光の周波数と前記第2入射光の周波数との差分に相当する周波数を有する光を出力するステップと、を備えることを特徴とする。
 このような本発明の光発生装置および光発生方法によれば、光発生装置は共振器構造および入力部を備え、入力部が、第1入射光および第2入射光を共振器構造における主面に対して角度をつけて入力すると、共振器構造は第1入射光の周波数と第2入射光の周波数との差分に相当する周波数を有する光を出力光として出力する。ここで、2つの入射光は互いに異なる偏光状態を有し、例えば第1入射光がs偏光状態であり且つ第2入射光がp偏光状態である。または第1入射光がp偏光状態であり且つ第2入射光がs偏光状態であっても良い。また、2つの入射光は互いに異なる周波数を有し、例えばs偏光状態の入射光の周波数は、入力部の当該傾斜角度に応じたs偏光の共振周波数と一致し、且つp偏光状態の入射光の周波数は、入力部の当該傾斜角度に応じたp偏光の共振周波数と一致することが好ましい。なお、ここでいう共振周波数とは、共振器モードを発生させる周波数のことであり、当該共振周波数は周波数の一つの値を指すことに限られることなく、共振器モードを発生させるある程度の幅をもつ周波数帯であっても良い。以上のような本発明の光発生装置および光発生方法においては、入力部が角度をつけて入射光を入力することにより、異なる偏光状態の光に対して共振器構造の共振周波数にずれが発生する。これは、周期的薄膜構造が起こす構造性複屈折のために生じる現象と捉えられ、偏光によって有効屈折率が変化することが原因と考えられる。そして、当該ずれに相当する周波数を有する光が出力光として出力される。従って、発生すべき所望の周波数に応じて入力部が入射角度を調整することにより、所望の周波数の光を発生させることができる。つまり、本発明は周波数可変の光発生装置および光発生方法である。更に、本装置および方法によれば、光発生の効率が向上され、且つ装置全体の小型化が達成される。
 また、本発明においては、前記共振器構造の温度を調節することにより、前記s偏光の共振周波数および前記p偏光の共振周波数を制御する温度調節部を更に備えても良い。
 この発明によれば、共振器構造の温度を調節することにより、s偏光の共振周波数およびp偏光の共振周波数を制御し、これにより両方の共振周波数のうち何れか一方が一定となるように制御することができる。また、温度調節は比較的容易な制御手法といえるので、装置構成の利便性を向上させることができる。
 また、本発明において、前記共振器構造は、GaAs層からなる欠陥層と、GaAs層およびAlAs層の積層からなる反射鏡を備えた単純共振器構造であっても良い。
 また、本発明において、前記共振器構造は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶と、GaAs層およびAlAs層の積層からなる反射鏡を備えた複合フォトニック結晶構造であっても良い。
 また、本発明において、前記共振器構造は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶を備えた単純フォトニック結晶構造であっても良い。
 これらの発明によれば、本発明における共振器構造を構成するための具体的手法が提示される。
 また、本発明において、複合フォトニック結晶構造の反射鏡におけるGaAs層およびAlAs層の膜厚が異なっても良い。ここで、例えば、フォトニック結晶におけるGaAs層およびAlAs層の有効膜厚の比は、GaAs層:AlAs層=1:1であり、反射鏡におけるGaAs層およびAlAs層の有効膜厚の比は、GaAs層:AlAs層=1:4であるようにして、フォトニック結晶と反射鏡で有効膜厚の比が異なっても良い。
 これらの発明によれば、光発生の効率が更に向上され、且つ装置全体の更なる小型化が達成される。
 また、本発明において、前記共振器構造は、前記入力部が前記傾斜した角度で前記第1入射光および前記第2入射光を入力したことにより、構造性複屈折が引き起こされ、その結果として異なる値を有するようになった前記s偏光の共振周波数および前記p偏光の共振周波数の差分に相当する周波数を有する光を出力しても良い。
 本発明によれば、所望の周波数を有する光を効率良く発生させることが可能な光発生装置および光発生方法を提供することができる。
テラヘルツ光発生装置1の構成概要図である。 レーザ発振部10,11が角度をつけて第1入射光および第2入射光を共振器構造12に入力する様子をイメージしている図である。 レーザ発振部10,11が角度をつけてs偏光状態の第1入射光およびp偏光状態の第2入射光を共振器構造12に入力すると、共振器モードの発生する周波数にずれが発生することを説明するための図である。 レーザ発振部10,11が角度をつけてs偏光状態の第1入射光およびp偏光状態の第2入射光を共振器構造12に入力すると、共振器モードの発生する周波数にずれが発生することを説明するための図である。 温度調節により、ずれた共振周波数に変化が発生する様子を示す図である。 構成例1において共振器構造12として採用された単純共振器121の概念図である。 テラヘルツ光発生装置1を用いて所望のテラヘルツ領域の出力光を発生させる手順を示すフローチャートである。 構成例1において、入射角度θと発生させたい光の周波数の関係を示す図である。 構成例1において、入射角度θと温度の関係を示す図である。 構成例1において、入射角度θと変換効率の関係を示す図である。 構成例2において共振器構造12として採用された複合フォトニック結晶構造122の概念図である。 構成例2において、入射角度θと発生させたい光の周波数の関係を示す図である。 構成例2において、入射角度θと温度の関係を示す図である。 構成例2において、入射角度θと変換効率の関係を示す図である。 構成例3において共振器構造12として採用された単純フォトニック結晶123の概念図である。 構成例3において、入射角度θと発生させたい光の周波数の関係を示す図である。 構成例3において、入射角度θと温度の関係を示す図である。 構成例3において、入射角度θと変換効率の関係を示す図である。 第2実施形態の複合フォトニック結晶構造124の概念図である。 GaAs層およびAlAs層の有効膜厚の比率を異ならせることで、p偏光の透過ピークとs偏光の透過ピークの周波数差Δωを変えることができることを説明するための図である。 第1実施形態の構成例2の場合(A)と第2実施形態の場合(B)とで、透過率スペクトルの違いを説明するための図である。 第2実施形態において、低角度入射時(A)と高角度入射時(B)の動作を示した図である。 第2実施形態において、入射角度θと発生させたい光の周波数の関係を示す図である。 第2実施形態において、入射角度θと温度の関係を示す図である。 第2実施形態において、入射角度θと変換効率の関係を示す図である。 第1実施形態の構成例2における変換効率と、第2実施形態のそれを比較して示すための図である。 第1実施形態の構成例2における半値幅と、第2実施形態のそれを比較して示すための図である。 図27の半値幅比較をlogスケールで表示した図である。 第2実施形態と、他の技術との性能比較を示すための図である。 図1における光学系を、ファイバを用いた光学系として構成できることを説明するための図である。 図1における光学系を、偏光ビームスプリッタを用いた光学系として構成できることを説明するための図である。
 以下、添付図面を参照して本発明にかかる光発生装置および光発生方法の好適な実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 [第1実施形態]
 (テラヘルツ光発生装置1の全体構成)
 まず、本発明の第1実施形態に係るテラヘルツ光発生装置1(特許請求の範囲における「光発生装置」に相当)の構成について、図1を参照しながら説明する。図1は、テラヘルツ光発生装置1の構成概要図である。図1に示すように、テラヘルツ光発生装置1は、レーザ発振部10,11(特許請求の範囲における「入力部」に相当)、共振器構造12、および温度調節器13(特許請求の範囲における「温度調節部」に相当)を主に備えて構成される。レーザ発振部10,11は、入射光をミラー14やレンズ15を介して共振器構造12に入力するものである。共振器構造12は、レーザ発振部10,11より入力した入射光を増強して出力光として出力するものである。
 レーザ発振部10,11が共振器構造12に入射する入射光は、第1入射光および第2入射光の二つの入射光である。2つの入射光は互いに異なる偏光状態を有し、例えば第1入射光がs偏光状態であり且つ第2入射光がp偏光状態であっても良く、または第1入射光がp偏光状態であり且つ第2入射光がs偏光状態であっても良い。なお、第1実施形態では、第1入射光がs偏光状態であり、且つ第2入射光がp偏光状態であることとし、レーザ発振部10がs偏光状態の第1入射光を共振器構造12に入射し、且つレーザ発振部11がp偏光状態の第2入射光を共振器構造12に入射することとする。
 レーザ発振部10,11は、共振器構造12における主面に垂直の方向から傾斜した角度で、第1入射光および第2入射光を共振器構造12に入力する。図2には、レーザ発振部10,11が角度をつけて第1入射光および第2入射光を共振器構造12に入力する様子がイメージされている。レーザ発振部10,11は、共振器構造12における主面12aに垂直の方向である方向D1に対して角度θだけ傾斜した方向である方向D2で、第1入射光および第2入射光を入力する。第1実施形態において、レーザ発振部10,11は、第1入射光および第2入射光を等角度で傾斜して入射させるとともに、当該傾斜角度θは0°~90°の範囲において調整される。
 レーザ発振部10,11が角度をつけてs偏光状態の第1入射光およびp偏光状態の第2入射光を共振器構造12に入力すると、共振器モードの発生する周波数(以下、「共振周波数」ともいう。共振周波数は周波数の一つの値を指すことに限られることなく、共振器モードを発生させるある程度の幅をもつ周波数帯であっても良い。)にずれが発生する。図3、4にはこれが波長に対する透過率としてイメージされている。図3には、レーザ発振部10,11が共振器構造12における主面12aに垂直にs偏光状態の第1入射光およびp偏光状態の第2入射光を入力した場合が、グラフG1およびG2で表示されている。s偏光状態の第1入射光のグラフG1における共振周波数は波長H1(例えば1064nm)に相当する周波数であり、p偏光状態の第2入射光のグラフG2における共振周波数は波長H2(例えば1064nm)に相当する周波数である。また、図4には、レーザ発振部10,11が共振器構造12における主面12aに15°だけ角度をつけてs偏光状態の第1入射光およびp偏光状態の第2入射光を入力した場合が、グラフG3およびG4でそれぞれ表示されている。s偏光状態の第1入射光のグラフG3における共振周波数は波長H3に相当する周波数であり、p偏光状態の第2入射光のグラフG4における共振周波数は波長H4に相当する周波数である。図3に示されるように、垂直入射の場合は、s偏光とp偏光との間に共振周波数のずれは生じない。つまり、波長H1と波長H2は一致している。したがって、図3においてはグラフG1およびG2が重なって表示されている。一方、15°傾斜して入射した場合には、共振周波数のずれが発生しており、図4においては、当該ずれが符号Z1で表示されている。また、図4において、グラフG3はグラフG1からシフトされ、共振周波数の波長が波長H1から波長H3にシフトされたことを表し、グラフG4はグラフG2からシフトされ、共振周波数の波長が波長H2から波長H4にシフトされたことを表す。なお、図3、4は後述の構成例3において、共振器構造12として単純フォトニック結晶123を採用し、入射角度θをそれぞれ0°、15°とした場合である。また、後述するが、第1実施形態のテラヘルツ光発生装置1の出力光は、後述の温度調節を施さない場合には、図4に示したずれZ1に相当する周波数を有する。
 レーザ発振部10,11により共振器構造12に入力される2つの入射光は、互いに異なる周波数を有する。例えば、s偏光状態の第1入射光の周波数は、レーザ発振部10の傾斜角度θに応じたs偏光の共振周波数と一致し、p偏光状態の第2入射光の周波数は、レーザ発振部11の傾斜角度θに応じたp偏光の共振周波数と一致する。具体的に、図4の例において15°傾斜して入射した場合に、s偏光に対しては波長H3でその透過率がピークとなっており、s偏光状態の第1入射光は波長H3に相当する周波数を有する。また、p偏光に対しては波長H4でその透過率がピークとなっており、p偏光状態の第2入射光は波長H4に相当する周波数を有する。なお、後述の構成例1~3のそれぞれの場合において15°傾斜して入射した場合に、構成例1の単純共振器の場合は波長H4が1060.85nmであり、構成例2の複合フォトニック結晶の場合は波長H4が1060.4nmであり、構成例3の単純フォトニック結晶の場合は波長H4が1060.15nmであった。しかし、実際には装置設計の便宜を図り、後述するような温度調節を行い、s偏光状態の第1入射光が図5に示す波長H5に相当する周波数を有するように、且つp偏光状態の第2入射光が図5に示す波長H6(例えば1064nm)に相当する周波数を有するように制御する。図5は、図4のような状況において、温度調節により共振周波数に変化が発生する様子を示す図である。s偏光状態の第1入射光の周波数をv1(波長H5に相当する周波数)とし、p偏光状態の第2入射光の周波数をv2(波長H6に相当する周波数)とした場合に、出力光の周波数はその差分の|v1―v2|である。
 ここで、温度調節器13について詳細に説明する。入射角度θを大きくすると、共振器モードの周波数が高周波数側に移動してしまう。これを表したのが上述の図3および図4である。そこで、温度調節器13が、移動してしまった共振周波数を元の共振周波数に戻すため、共振器構造12に温度調節を施して屈折率を制御する。これにより、s偏光状態の第1入射光の共振周波数およびp偏光状態の第2入射光の共振周波数を制御し、両方の共振周波数のうち何れか一方が一定となるように制御される。第1実施形態においては、p偏光状態の第2入射光の共振周波数が、入射角度がゼロの状態(垂直入射の状態)の共振周波数に戻って一定となるように制御される。図5にはそれが矢印でイメージされており、温度調節を施した後に、s偏光状態の第1入射光の共振周波数は波長H3から波長H5に変化されている。また、p偏光状態の第2入射光の共振周波数(波長H4に相当する周波数)は温度調節により波長H6に変化されている。なお、波長H6は、垂直入射時の共振周波数(波長H1およびH2に相当する周波数、図3、4参照)と一致またはその近傍の波長である。そして、このような温度調節後は、図5にて符号Z2で表示される波長の差分に相当する周波数の差分が、第1実施形態のテラヘルツ光発生装置1の出力光の周波数となる。なお、上述した通り、温度調節を施さない場合には、図4、5にて符号Z1で表示される波長の差分に相当する周波数の差分が、第1実施形態のテラヘルツ光発生装置1の出力光の周波数となる。
 このときの温度調節の範囲は、例えば220K~390Kの範囲である。なお、温度調節の範囲は、使用する共振器構造によって、つまり共振器構造の膜数、膜厚、材料によって変化する。なお、屈折率の温度依存性を下記の式(1)および(2)に示す。式(1)は共振器構造12がGaAsからなる部分を含む場合に、当該部分における屈折率の温度依存性を示す。また、式(2)は共振器構造12がAlAsからなる部分を含む場合に、当該部分における屈折率の温度依存性を示す。なお、式(1)および(2)において、nは屈折率を示し、Tは共振器構造12の温度を示す。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
 なお、下記の参考文献1は、温度調節により周波数制御を行う技術に関する参考文献である。
<参考文献1> J. Talghader and J. S. Smith, Appl. Phys. Lett. 66, 335, 1995
 図1に戻り、共振器構造12は、上記のv1の周波数を有するs偏光状態の第1入射光をシグナル光として、且つ上記のv2の周波数を有するp偏光状態の第2入射光をポンプ光としてレーザ発振部10,11よりそれぞれ入力し、両入射光の周波数の差分、つまり|v1―v2|に相当する周波数を有する出力光をアイドラー光として出力する。つまり、共振器構造12は、レーザ発振部10,11が上記傾斜した角度θでs偏光状態の第1入射光をシグナル光として、且つp偏光状態の第2入射光をポンプ光として入力したことにより、構造性複屈折が引き起こされ、その結果として異なる値を有するようになったs偏光の共振周波数およびp偏光の共振周波数の差分に相当する周波数を有する光を出力する。第1実施形態では、下記の構成例1~3により、共振器構造12がテラヘルツ領域の光をアイドラー光として出力することとなる。
 以下、複数種類の共振器構造12を利用した第1実施形態のテラヘルツ光発生装置1の構成例について説明する。
 (構成例1)
 最初の構成例は、共振器構造12として単純共振器を採用した場合である。図6は、この場合の単純共振器121の概念図である。図6に示されるように、単純共振器121は、GaAs層からなる欠陥層と、GaAs層およびAlAs層の積層からなる反射鏡(DBR: Distributed BraggReflector)を備えた構造を有する。
 単純共振器121におけるパラメータをまとめると以下の通りである。
 1.DBRにおけるGaAs層について、
 膜厚:99.09nm
 層数:17層
 屈折率:3.588(波長:1064nm)
 2.DBRにおけるAlAs層について、
 膜厚:65.73nm
 層数:17層
 屈折率:2.989(波長:1064nm)
 3.欠陥層のGaAs層について、
 膜厚:2391.7nm
 層数:1層
 屈折率:3.588(波長:1064nm)
 4.DBRにおける周期数:前後それぞれ17周期ずつ、合計34周期
 5.合計結晶長:7995.24nm
 このような構造の単純共振器121を備えたテラヘルツ光発生装置1を用いて所望のテラヘルツ領域の出力光を発生させる手順を図7のフローチャートに示す。最初に、用途に応じて発生させたいテラヘルツ波の周波数を決定する(ステップS1)。次に、共振器構造12の種類を決定する(ステップS2)。本構成例においては単純共振器121が決定されたとする。
 次に、発生させたいテラヘルツ波の周波数に応じて、s偏光状態の第1入射光(シグナル光)およびp偏光状態の第2入射光(ポンプ光)の入射角度θを決定する(ステップS3)。入射角度θは発生させたい光の周波数によって決定されるものであり、図8は単純共振器121が共振器構造12として決定された場合に、入射角度θと発生させたい光の周波数の関係を示す。図8に示されるように、例えば0.31THzの光を発生させたい場合には、入射角度θを65°と決定することができる。
 図7に戻り、次の手順として、ポンプ光の周波数および強度、シグナル光の周波数および強度、そして単純共振器121の温度を決定する(ステップS4)。上記例のように、例えば0.31THzの光を発生させたい場合に、ポンプ光の周波数を約281.95THz(波長:1064nm)として一定に保ち、その強度は1MW/cm2と決定する。なお、変換効率を考慮すると、できれば高い強度の方が望ましい。また、シグナル光の周波数は281.95THz-差周波(発生させたい光の周波数)で決定することが出来るため、約281.64THzと決定する。シグナル光の強度については、ポンプ光の強度と同程度か、それ以下の強度とする。また、単純共振器121の温度は、図9に示されるように、例えば0.31THzの光を発生させるために入射角度θを65°と決定した場合に、絶対温度として340Kと決定することができる。温度調節によりポンプ光の周波数が上記の約281.95THz(波長:1064nm)として一定に保たれる。
 以上により、所望の0.31THzの光が発生される。図10は、このときの変換効率を示す。図10に示されるように、入射角度θを65°とし、且つ340Kで単純共振器121を温度調節した場合に、そのときの変換効率は2.1e‐006%である。他の周波数範囲での結果を参酌すると、入射角度θを大きくするにつれ、変換効率は高くなり、65°付近で変換効率の最大値が現れる。なお、図10では最大の変換効率が2.1e‐006%と表示されているが、これは、現在のすぐに使用可能なレーザ光源の性能を考慮し、閉じ込め効果を弱めたためであり、条件を変えることにより、より高い変換効率の値を得ることができる。
 本構成例の優れた点は、1.素子の薄さ、2.発生周波数が可変であること、3.高出力の連続光源となり得ること、が一例として挙げられる。素子、つまり共振器構造12の薄さにおいては、従来知られているものと比べると3桁のオーダーで薄いものになっている。また、変換効率は厚さの2乗に比例して上昇するので、それを加味すると、本構成例の装置が比類ない性能を有した装置であることがいえる。ここで、非特許文献3の装置は、その構成が本構成例の装置と全く異なるため比較の対象にならないものの、共振器構造の薄さだけにおいては、本構成例と同程度のオーダーのものであると考えられる。同文献では未だ変換効率の議論に達してさえいないので、本構成例の装置との間で変換効率の比較をすることはできない。しかし、本発明者の知見では、入射光の強度や素子の厚さ等の条件を同等なものにした場合に、本構成例の方が変換効率の面で比べ物にならないほど優れていると考えられる。
 更に、発生周波数や入射光の周波数が可変であることは、テラヘルツ波の応用に非常に有利に働く。これは非特許文献2の疑似位相整合や非特許文献3の2重共振器にはない性能であり、両文献の技術に比べて、本構成例の方が応用に適した装置であるといえる。
 また、変換効率は入射光強度に比例するので、連続光より尖頭値が高いパルス光の方が変換効率の数値は高くなる。そのため、多くの研究(例えば、上記の非特許文献1~3)でパルス光における変換効率を計算しているが、パルス光の周波数領域分解能は連続光のそれに劣るので、例えば吸収スペクトル等を得る時には精度が劣る。非線形光学効果を用いた波長変換技術で連続光のテラヘルツ発生の試みを行った文献は非常に少ないため、本明細書では、仕方なく、パルス光との比較を行う。パルス光の場合に比べて、第1実施形態における変換効率の数値そのものが劣るのは、仕方のないことである。
 ここで、フォトミキシング(例えば、上記の非特許文献5)における出力は周波数が高くなるにつれてオーダー単位で低下するが、第1実施形態における出力は0.5-3.0THzの周波数領域でもそれほど低下しない。また、発生するテラヘルツ光の線幅は、ポンプ光・シグナル光の線幅とほぼ同等のオーダーとなると考えられる。第1実施形態における構成例ではGHzオーダーの線幅を想定してはいるものの、現在kHzやMHzの連続光源も市販されているため、それに合わせた設計で、変換効率の更なる上昇が望める。また、現在の構成例でも、GHz以下の線幅の光源を入射させると、ほぼ同じオーダーの線幅の光が発生できる。また、共振器構造12の構造の相違(下記の構成例2や3で示すように構造そのものの違いや、成長面の差異)によっても、変換効率の値が上記示した値より高くなる場合がある。
 (構成例2)
 次の構成例は、共振器構造12として複合フォトニック結晶構造122を採用した場合である。図11は、この場合の複合フォトニック結晶構造122の概念図である。図11に示されるように、複合フォトニック結晶構造122は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶と、GaAs層およびAlAs層の積層からなる反射鏡(DBR)を備えた構造を有する。
 複合フォトニック結晶構造122におけるパラメータをまとめると以下の通りである。
 1.DBRにおけるGaAs層について、
 膜厚:79.18nm
 層数:14層
 屈折率:3.382(波長:1064nm、温度:200K)
 2.DBRにおけるAlAs層について、
 膜厚:92.49nm
 層数:14層
 屈折率:2.895(波長:1064nm、温度:200K)
 3.フォトニック結晶におけるGaAs層について、
 膜厚:72.53nm
 層数:13層
 屈折率:3.382(波長:1064nm、温度:200K)
 4.フォトニック結晶におけるAlAs層について、
 膜厚:84.72nm
 層数:12層
 屈折率:2.895(波長:1064nm、温度:200K)
 5.DBRにおける周期数:前後それぞれ14周期ずつ、合計28周期
 6.合計結晶長:6766.01nm
 このような構造の複合フォトニック結晶構造122を備えたテラヘルツ光発生装置1を用いて所望のテラヘルツ領域の出力光を発生させる手順は、図7のフローチャートに示した通りである。最初に、用途に応じて発生させたいテラヘルツ波の周波数を決定する(ステップS1)。次に、共振器構造12の種類を決定する(ステップS2)。本構成例においては複合フォトニック結晶構造122が決定されたとする。
 次に、発生させたいテラヘルツ波の周波数に応じて、s偏光状態の第1入射光(シグナル光)およびp偏光状態の第2入射光(ポンプ光)の入射角度θを決定する(ステップS3)。入射角度θは発生させたい光の周波数によって決定されるものであり、図12は複合フォトニック結晶構造122が共振器構造として決定された場合に、入射角度θと発生させたい光の周波数の関係を示す。図12に示されるように、例えば1.55THzの光を発生させたい場合には、入射角度θを67°と決定することができる。
 図7に戻り、次の手順として、ポンプ光の周波数および強度、シグナル光の周波数および強度、そして複合フォトニック結晶構造122の温度を決定する(ステップS4)。上記例のように、例えば1.55THzの光を発生させたい場合に、ポンプ光の周波数を約281.95THz(波長:1064nm)として一定に保ち、その強度は1MW/cm2と決定する。なお、変換効率を考慮すると、できれば高い強度の方が望ましい。また、シグナル光の周波数は281.95THz-差周波(発生させたい光の周波数)で決定することが出来るため、約280.4THzと決定する。シグナル光の強度については、ポンプ光の強度と同程度か、それ以下の強度とする。また、複合フォトニック結晶構造122の温度は、図13に示されるように、例えば1.55THzの光を発生させるために入射角度θを67°と決定した場合に、絶対温度として380Kと決定することができる。温度調節によりポンプ光の周波数が上記の約281.95THz(波長:1064nm)として一定に保たれる。
 以上により、所望の1.55THzの光が発生される。図14は、このときの変換効率を示す。図14に示されるように、入射角度θを67°とし、且つ380Kで複合フォトニック結晶構造122を温度調節した場合に、そのときの変換効率は6e‐005%である。他の周波数範囲での結果を参酌すると、入射角度θを大きくするにつれ、変換効率は高くなり、67°付近で変換効率の最大値が現れる。なお、図14では最大の変換効率が6e‐005%と表示されているが、これは、現在のすぐに使用可能なレーザ光源の性能を考慮し、閉じ込め効果を弱めたためであり、条件を変えることにより、より高い変換効率の値を得ることができる。なお、本構成例の優れた点については、上記構成例1で述べたことと同様のことがいえるので、記載を省略する。
 (構成例3)
 次の構成例は、共振器構造12として単純フォトニック結晶123を採用した場合である。図15は、この場合の単純フォトニック結晶123の概念図である。図15に示されるように、単純フォトニック結晶123は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶を備えた構造を有する。
 単純フォトニック結晶123におけるパラメータをまとめると以下の通りである。
 1.フォトニック結晶におけるGaAs層について、
 膜厚:74.74nm
 層数:70層
 屈折率:3.588(波長:1064nm)
 2.フォトニック結晶におけるAlAs層について、
 膜厚:87.31nm
 層数:69層
 屈折率:2.989(波長:1064nm)
 3.合計結晶長:11256.19nm
 このような構造の単純フォトニック結晶123を備えたテラヘルツ光発生装置1を用いて所望のテラヘルツ領域の出力光を発生させる手順は、図7のフローチャートに示した通りである。最初に、用途に応じて発生させたいテラヘルツ波の周波数を決定する(ステップS1)。次に、共振器構造12の種類を決定する(ステップS2)。本構成例においては単純フォトニック結晶123が決定されたとする。
 次に、発生させたいテラヘルツ波の周波数に応じて、s偏光状態の第1入射光(シグナル光)およびp偏光状態の第2入射光(ポンプ光)の入射角度θを決定する(ステップS3)。入射角度θは発生させたい光の周波数によって決定されるものであり、図16は単純フォトニック結晶123が共振器構造として決定された場合に、入射角度θと発生させたい光の周波数の関係を示す。図16に示されるように、例えば3THzの光を発生させたい場合には、入射角度θを85°と決定することができる。
 図7に戻り、次の手順として、ポンプ光の周波数および強度、シグナル光の周波数および強度、そして単純フォトニック結晶123の温度を決定する(ステップS4)。上記例のように、例えば3THzの光を発生させたい場合に、ポンプ光の周波数を約281.95THz(波長:1064nm)として一定に保ち、その強度は1MW/cm2と決定する。なお、変換効率を考慮すると、できれば高い強度の方が望ましい。また、シグナル光の周波数は281.95THz-差周波(発生させたい光の周波数)で決定することが出来るため、約278.95THzと決定する。シグナル光の強度については、ポンプ光の強度と同程度か、それ以下の強度とする。また、単純フォトニック結晶123の温度は、図17に示されるように、例えば3THzの光を発生させるために入射角度θを85°と決定した場合に、絶対温度として420Kと決定することができる。温度調節によりポンプ光の周波数が上記の約281.95THz(波長:1064nm)として一定に保たれる。
 以上により、所望の3THzの光が発生される。図18は、このときの変換効率を示す。図18に示されるように、入射角度θを85°とし、且つ420Kで単純フォトニック結晶123を温度調節した場合に、そのときの変換効率は3.9e‐005%である。他の周波数範囲での結果を参酌すると、入射角度θを大きくするにつれ、変換効率は高くなり、85°付近で変換効率の最大値が現れる。なお、図18では最大の変換効率が3.9e‐005%と表示されているが、これは、現在のすぐに使用可能なレーザ光源の性能を考慮し、閉じ込め効果を弱めたためであり、条件を変えることにより、より高い変換効率の値を得ることができる。なお、本構成例の優れた点については、上記構成例1で述べたことと同様のことがいえるので、記載を省略する。
 (第1実施形態の作用および効果)
 続いて、第1実施形態にかかるテラヘルツ光発生装置1の作用および効果について説明する。第1実施形態のテラヘルツ光発生装置1では、GaAs/AlAs共振器構造12を用いてテラヘルツ波を発生させている。共振器構造12に角度をつけて光を入射すると、角度が大きくなるにつれて透過率スペクトルはシフトするが、s偏光とp偏光でそのシフトする周波数の幅に差が生じてくる(図3参照)。これは、周期的薄膜構造が起こす構造性複屈折のために生じる現象と捉えられ、偏光によって有効屈折率が変化するためと考えられる。そのとき、それぞれの偏光の透過率スペクトルに合わせた2つの周波数の光を入射させることによって、共振器構造の内部で光電場が増強され、強い差周波発生(DFG:Difference Frequency Generation)を生じさせることができる。生じた差周波はテラヘルツ領域に達し、上記で述べたようにその変換効率も高い。なお、第1実施形態において入射光の強度がMW/cm2オーダーでの連続光発生であることを考慮すれば、第1実施形態による変換効率は従来の技術(特に入射光の強度がGW/cm2オーダーの場合)に比べて非常に優れているといえる。更に、入射角度θとともに差周波の周波数も変化するため(図8、図12、図16参照)、第1実施形態のテラヘルツ光発生装置1は周波数可変のテラヘルツ光源として活用することが可能である。
 また、単純共振器121の合計結晶長が8.0μmであり、複合フォトニック結晶構造122の合計結晶長が6.9μmであり、単純フォトニック結晶123の合計結晶長が11.26μmであることからわかるように、第1実施形態のテラヘルツ光発生装置1における共振器構造12の結晶長は長くても数十μm程度である。したがって、装置全体の小型化が達成でき、第1実施形態のテラヘルツ光発生装置1は汎用性の高いテラヘルツ光源として適用されることができる。
 また、第1実施形態では、レーザ発振部10,11が等角度で第1入射光および第2入射光を共振器構造12に入射し、温度調節器13が共振器構造12に温度調節を施している。これにより、s偏光の共振周波数およびp偏光の共振周波数が制御され、両方の共振周波数のうち何れか一方が一定となるように制御される。また、温度調節は比較的容易な制御手法といえるので、装置構成の利便性を向上させることができる。
 [第2実施形態]
 以下、本発明の第2実施形態について説明する。第2実施形態は第1実施形態の構成例2と共通点が多く、差異点としては、反射鏡におけるGaAs層およびAlAs層の膜厚が異なることである。より具体的には、第2実施形態では、反射鏡におけるGaAs層およびAlAs層の有効膜厚の比が、GaAs層:AlAs層=1:4である。これに対して、第1実施形態の構成例2では、反射鏡におけるGaAs層およびAlAs層の有効膜厚の比が、GaAs層:AlAs層=1:1である。以下、第1実施形態の構成例2との共通点についてはなるべく説明を省略し、差異点を中心に説明する。
 すなわち、第1実施形態の構成例2におけるGaAs層およびAlAs層の有効膜厚の比は、以下の通りである。なお、有効膜厚は、膜厚に屈折率を乗じた値である。
 1.DBR部分において
 GaAs層の有効膜厚=79.18×3.382=267.8
 AlAs層の有効膜厚=92.49×2.895=267.8
 GaAs層およびAlAs層の有効膜厚の比=267.8:267.8=1:1
2.フォトニック結晶部分において
 GaAs層の有効膜厚=72.53×3.382=245.3
 AlAs層の有効膜厚=84.72×2.895=245.3
 GaAs層およびAlAs層の有効膜厚の比=245.3:245.3=1:1
 一方で、第2実施形態では、図1の共振器構造12として第1実施形態の構成例2と同様に複合フォトニック結晶構造を採用しているが、DBR部分における膜厚が異なる。図19は、第2実施形態の複合フォトニック結晶構造124の概念図である。図19に示されるように、複合フォトニック結晶構造124は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶と、GaAs層およびAlAs層の積層からなる反射鏡(DBR)を備えた構造を有する。
 複合フォトニック結晶構造124におけるパラメータをまとめると以下の通りである。
 1.DBRにおけるGaAs層について、
 膜厚:31.00nm
 層数:30層
 屈折率:3.382(波長:1064nm、温度:200K)
 2.DBRにおけるAlAs層について、
 膜厚:145.00nm
 層数:30層
 屈折率:2.895(波長:1064nm、温度:200K)
 3.フォトニック結晶におけるGaAs層について、
 膜厚:74.50nm
 層数:45層
 屈折率:3.382(波長:1064nm、温度:200K)
 4.フォトニック結晶におけるAlAs層について、
 膜厚:87.00nm
 層数:44層
 屈折率:2.895(波長:1064nm、温度:200K)
 5.DBRにおける周期数:前後それぞれ30周期ずつ、合計60周期
 6.合計結晶長:17740.5nm
 したがって、第2実施形態におけるGaAs層およびAlAs層の有効膜厚の比は、以下の通りである。
 1.DBR部分において
 GaAs層の有効膜厚=31.00×3.382=104.8
 AlAs層の有効膜厚=145.00×2.895=419.8
 GaAs層およびAlAs層の有効膜厚の比=104.8:419.8=1:4
2.フォトニック結晶部分において
 GaAs層の有効膜厚=74.50×3.382=252.0
 AlAs層の有効膜厚=87.00×2.895=251.9
 GaAs層およびAlAs層の有効膜厚の比=252.0:251.9=1:1
 以上で示したように、第2実施形態では、フォトニック結晶部分においてはGaAs層およびAlAs層の有効膜厚が一致しているものの、DBR部分におけるGaAs層およびAlAs層の有効膜厚は比率1:4で異なる。
 GaAs層の有効膜厚とAlAs層の有効膜厚を異ならせることで、つまりGaAs層およびAlAs層の有効膜厚の比率を異ならせることで、p偏光の透過ピークとs偏光の透過ピークの周波数差Δω(図4、5におけるZ1、Z2に相当)を変えることができる。図20はこれを示しており、同図(A)の横軸のXは有効膜厚の比率を示し、縦軸はΔωを示す。なお、Xは以下の数式で表現される値である。
 X=AlAs層の有効膜厚/(GaAs層の有効膜厚+AlAs層の有効膜厚)
 図20(A)で示されるように、有効膜厚の比率が1:1であるX=0.5の場合(同図(B)、第1実施形態の構成例2の場合)には、大きい値(1.07THz)の差周波が得られ、有効膜厚の比率が1:4であるX=0.8の場合(同図(C)、第2実施形態)には、小さい値(0.3THz)の差周波が得られる。なお、図20(B)、(C)において、グラフG7、9はs偏光の透過率スペクトルを示し、グラフG8、10はp偏光の透過率スペクトルを示す。なお、図20において、Xは有効膜厚の比を示しているが、屈折率を乗じない膜厚の比でも同じようなΔωの挙動を示すので、以下の説明においては、有効膜厚の比を単に膜厚比と記載する。
 図21は、第1実施形態の構成例2の場合と第2実施形態の場合とで、透過率スペクトルの違いを説明するための図である。同図(A)は第1実施形態の構成例2の場合を示し、同図(B)は第2実施形態の場合を示す。どちらもフォトニック結晶(PC)は、1:1の膜厚比で構成し、Δωは最大のものを使用している。しかし、DBRにおいては、同図(A)の第1実施形態の構成例2の場合は1:1の膜厚比であり、同図(B)の第2実施形態では、例えば1:4など、一方が厚いものを使用している。なお、同図において、G11、13、15、17、19、21はs偏光の透過率スペクトルを示し、グラフG12、14、16、18、20、22はp偏光の透過率スペクトルを示す。
 同図(A)に示す第1実施形態の構成例2の場合では、p偏光のPCピーク波長w1でDBRが高反射率であり(p偏光のPCピーク波長w1がグラフG14の凹部の中心部に対応、つまりフォトニックバンドギャップの中心部に対応)、且つs偏光のPCピーク波長w2でもDBRが高反射率であり(s偏光のPCピーク波長w2がグラフG13の凹部の中心部に対応、つまりフォトニックバンドギャップの中心部に対応)、p偏光およびs偏光ともに同程度の反射率をもつDBRとなっている。一方で、同図(B)に示す第2実施形態の場合では、p偏光のPCピーク波長w3でDBRが高反射率であり(p偏光のPCピーク波長w3がグラフG20の凹部の中心部に対応、つまりフォトニックバンドギャップの中心部に対応)、且つs偏光のPCピーク波長w4ではDBRが低反射率であり(s偏光のPCピーク波長w4がグラフG19の凹部の中心部に対応しない、つまりフォトニックバンドギャップの中心部に対応しない)、p偏光のみ閉じ込め効果が高いDBRとなっている。結果として、複合フォトニック結晶にすると、同図(A)の第1実施形態の構成例2の場合では、同図(A)の最下段に示すように、p偏光の半値幅h1、およびs偏光の半値幅h2の差|h1-h2|が大きい一方、同図(B)の第2実施形態の場合では、同図(B)の最下段に示すように、p偏光の半値幅h3、およびs偏光の半値幅h4の差|h3-h4|が小さい。なお、半値幅(full width at half maximum、FWHM)は、透過ピークのピーク値の0.5倍となる波長(周波数)の差を指す値である。
 図22は、第2実施形態において、低角度入射時と高角度入射時の動作を示した図である。同図(A)は低角度入射時の場合を示し、同図(B)は高角度入射時の場合を示す。同図(A)の低角度入射においては、p、s偏光ともにPCピーク波長(w5、w6)がDBRの高反射部分にあるので、ともに高反射率DBRとなっている。一方、同図(B)の高角度入射においては、p偏光のPCピーク波長w7に対するDBRは高反射率、s偏光のPCピーク波長w8に対するDBRは低反射率となっている。第1実施形態の構成例2では、角度が大きくなるにつれて、p偏光の閉じ込め効果の減少とs偏光の閉じ込め効果の増加が生じる可能性があり、s偏光しか上手く利用できないおそれがあったが、第2実施形態では、GaAs層とAlAs層の膜厚比に調整を加えたことで、角度が大きくなっても、適切な半値幅を保つことができ、結果として、低角度においても高角度においてもちょうどいい半値幅を保つことができる。なお、同図において、G23、25、27、29、31、33はs偏光の透過率スペクトルを示し、グラフG24、26、28、30、32、34はp偏光の透過率スペクトルを示す。
 このような構造の複合フォトニック結晶構造124を備えたテラヘルツ光発生装置1を用いて所望のテラヘルツ領域の出力光を発生させる手順は、図7のフローチャートに示した通りである。最初に、用途に応じて発生させたいテラヘルツ波の周波数を決定する(ステップS1)。次に、共振器構造12の種類を決定する(ステップS2)。本実施形態においては複合フォトニック結晶構造124が決定されたとする。
 次に、発生させたいテラヘルツ波の周波数に応じて、s偏光状態の第1入射光(シグナル光)およびp偏光状態の第2入射光(ポンプ光)の入射角度θを決定する(ステップS3)。入射角度θは発生させたい光の周波数によって決定されるものであり、図23は複合フォトニック結晶構造124が共振器構造として決定された場合に、入射角度θと発生させたい光の周波数の関係を示す。図23に示されるように、例えば1.2THzの光を発生させたい場合には、入射角度θを40°と決定することができる。なお、第2実施形態では、入射角度が大きくなるにつれて、p偏光の透過率スペクトルとs偏光の透過率スペクトルの差(Δω)が大きくなるので、その分発生周波数も大きくなる。
 図7に戻り、次の手順として、ポンプ光の周波数および強度、シグナル光の周波数および強度、そして複合フォトニック結晶構造124の温度を決定する(ステップS4)。上記例のように、例えば1.2THzの光を発生させたい場合に、ポンプ光の周波数を約281.95THz(波長:1064nm)として一定に保ち、その強度は1MW/cm2と決定する。なお、変換効率を考慮すると、できれば高い強度の方が望ましい。また、シグナル光の周波数は281.95THz-差周波(発生させたい光の周波数)で決定することが出来るため、約280.85THzと決定する。シグナル光の強度については、ポンプ光の強度と同程度か、それ以下の強度とする。また、複合フォトニック結晶構造124の温度は、図24に示されるように、例えば1.2THzの光を発生させるために入射角度θを40°と決定した場合に、絶対温度として290Kと決定することができる。温度調節によりポンプ光の周波数が上記の約281.95THz(波長:1064nm)として一定に保たれる。なお、第2実施形態では、入射角度が大きくなるにつれて透過率スペクトルのシフトが大きくなるので、その分試料温度を変える必要がある。
 以上により、所望の1.2THzの光が発生される。図25は、このときの変換効率を示す。図25に示されるように、入射角度θを40°とし、且つ290Kで複合フォトニック結晶構造124を温度調節した場合に、そのときの変換効率は1.8e‐003%である。図14に示した第1実施形態の構成例2の結果と比較すると、2桁以上の変換効率の向上が達成されていることが分かる。図26は、第1実施形態の構成例2における変換効率と、第2実施形態のそれを比較して示すための図である。グラフG35は第1実施形態の構成例2における変換効率を示し、グラフG36は第2実施形態における変換効率を示す。全ての入射角度において、第2実施形態の変換効率が第1実施形態の構成例2のそれより高いことが分かる。なお、表示上の便宜のため、図26ではlogスケールで変換効率を示している。
 図27は、第1実施形態の構成例2における半値幅と、第2実施形態のそれを比較して示すための図である。グラフG37は第1実施形態の構成例2におけるp偏光の半値幅を示し、グラフG38は第1実施形態の構成例2におけるs偏光の半値幅を示し、グラフG39は第2実施形態におけるp偏光の半値幅を示し、グラフG40は第2実施形態におけるs偏光の半値幅を示す。グラフG39および40で示される第2実施形態の場合は、両偏光とも、理想の半値幅としている0.01[nm]近くで、最大でも0.055[nm]である。一方、グラフG37および38で示される第1実施形態の構成例2の場合は、s偏光の半値幅が0.01[nm]となるのは入射角度70°付近であるが、この場合のp偏光の半値幅は0.35[nm]まで増加している。
 図28は、図27の半値幅比較を表示の便宜上logスケールで表示した図である。図27と対応させるために、グラフの符号を同じ数字としている。図28で示すように、第1実施形態の構成例2の場合は、入射角度が大きくなるにつれ、p偏光とs偏光の半値幅の差が大きくなっていく(グラフG37’およびG38’参照)。一方で、第2実施形態の場合は、入射角度が大きくなっても、p偏光とs偏光の半値幅の差が小さい(グラフG39’およびG40’参照)。このように、半値幅の差が一定であることにより、より高角度でもp偏光、s偏光ともに結晶内部に入射することが可能となり、テラヘルツ波発生に寄与することが出来る。更に、p偏光とs偏光の半値幅が小さいことから、結晶内部の電場増強効果が高く、変換効率の上昇が望める。
 図29は、第2実施形態と、他の技術との性能比較を示すための図である。図29における比較対象の他の技術は、例えばGaAs疑似位相整合の場合は下記の参考文献2に記載されている技術をいう。また、例えばGaP疑似位相整合の場合は下記の参考文献3に記載されている技術をいう。なお、下記の参考文献2および3の例は、最近の論文の中でも最も変換効率の高いものの例示である。
<参考文献2> Joseph E. Schaar,et al. “Terahertz Sources Basedon Intracavity Parametric Down-conversion in Quasi-Phase-Matched GarlliumArsenide,” IEEE Jounal Topics InQuantum Electronics, vol. 14, No. 2, 2008
<参考文献3> Eliot B.Petersen, et al. “Efficientparametric terahertz generation in quasi-phase-matched GaP through cavityenhanced difference-frequency genaration,” Appl. Phys. Lett. 98, 121119, 2011
 参考文献2および3の技術と、第2実施形態を比較すると、変換効率および出力強度では第2実施形態の方が確かに劣っている。しかし、ここで注目すべき点は、参考文献2および3の技術ではパルス応答における変換効率および出力強度であり、第2実施形態では連続光源における変換効率および出力強度であることである。一般的に変換効率はパルス応答の方が連続光源に比べて強くなる傾向にあるので、第2実施形態における変換効率および出力強度が参考文献2および3の技術におけるそれらに比べて、単純に劣っているとは言い難い。また、参考文献2および3の技術においては、連続光源における変換効率および出力強度が計算できない点にも注目すべきである。これに対して、第2実施形態では、市場でよりニーズが高い連続光源に対する変換効率および出力強度が計算できている。
 現在、連続光源に対する論文自体があまりないため、敢えて連続光源との比較を行うならカスケードレーザとの比較になる。しかし、下記の参考文献4に示されるように、カスケードレーザは、常温の場合、出力強度が300nW程度で、周波数を可変しているとは言い難い。つまり、第2実施形態で達成できている出力強度向上および周波数可変の効果をカスケードレーザでは期待できない。しかも、上記の非特許文献4に示されるように、最も重要と言われている0.5~3THzの領域を、カスケードレーザでは例えば10Kの低温化でしか高強度出力できないという問題点がある。これに対して、第2実施形態では、低温状態でしか動作できないといった制限はない。
<参考文献4> Mikhail A.Belkin, et al. “Room temperature terahertz quantum cascade laser source basedon intracavity difference-frequency generation,” Appl. Phys. Lett. 92, 201101,2008
 また、参考文献2および3における結晶自体はどちらも6mm程度であるが、共振器をつけることで変換効率を上げているので、共振器の大きさを素子長としている。一方で、第2実施形態では、結晶自体が共振器のようなものなので、光学系が小さくなることが期待できる。
 以上、本発明の好適な実施形態について説明したが、本発明が上記実施形態に限定されないことは言うまでもない。
 例えば、上記実施形態においては、テラヘルツ領域の光の発生を一例としているが、本発明の思想はこれに限定されることなく、テラヘルツ以外の領域の光の発生にも本発明を適用することができる。
 また、上記実施形態においては、レーザ発振部10,11が等角度で第1入射光および第2入射光を共振器構造12に入射しているが、これに限らず、第1入射光の入射角度と第2入射光の入射角度とが異なっていてもかまわない。入射角度を異ならせることにより、s偏光およびp偏光の共振周波数を異ならせることができ、結果的に出力光の周波数を変化させることができる。
 また、上記実施形態においては、共振器構造12の例として、単純共振器121、複合フォトニック結晶構造122、および単純フォトニック結晶123を挙げているが、これに限らず、例えば非特許文献3に記載の2重共振器も本発明の方式を当てはまることが出来る構造である。
 また、上記実施形態においては、説明の便宜上、共振器構造12の材料をGaAsやAlAsに限定しているが、これに限らず、例えばZnTe-MgTe、MgSe-ZnTe、CdTe-MgTe、InGaP/GaAs、GaAs/InGaAs、GaAs/Ge、GaAs/AlGaAs等、一般に多層構造作製のため格子整合出来る材料で、反転対称性が破れた結晶構造を有する物質であれば良い。
 また、上記実施形態においては、説明の便宜上、第1入射光がs偏光状態であり、且つ第2入射光がp偏光状態であることとしているが、これに限らず、例えば、第1入射光がp偏光状態であり、且つ第2入射光がs偏光状態であっても良い。
 ここで、本実施形態における光学系について、より詳細に説明する。なお、以下の内容は第1実施形態および第2実施形態に共通する内容である。すなわち、図1に示したような光学系を例えば図30に示すようにファイバを用いた光学系として構成することもできる。この光学系では、図1のミラー14およびレンズ15の代わりに、偏波保持ファイバ16およびファイバアレイ17を備えて構成される。この場合の装置構成例としては、例えばレーザ発振部10,11におけるレーザ光源は、TOPTICA社のTA proという製品を用いることができる。この場合の発生波長域は1035~1085nmであり、発生強度は1000mWであり、線幅は0.1~1MHz(typical linewidth.、,5μs)である。または、同製品において、1060~1083nmの発生波長域、2000mWの発生強度、0.1~1MHz(typical linewidth.、,5μs)の線幅を有するものを用いても良い。更に、Nova Wave社の製品として、発生波長域1064nm、発生強度2000mW、線幅100kHz未満の製品であるSFL-PMを用いても良い。また、偏波保持ファイバ16およびファイバアレイ17に対しては、1060~1080nm波長域のものを用い、p偏光s偏光を同時伝送できる偏波保持ファイバを用いても良い。
 また、図1に示したような光学系を例えば図31に示すように偏光ビームスプリッタを用いた光学系として構成することもできる。この光学系では、図1のミラー14の代わりに、偏光ビームスプリッタ18を備えて構成される。この場合の装置構成例としては、例えばレーザ発振部10,11におけるレーザ光源は、上記のファイバを用いた光学系で用いたものと同じものを用いることができる。また、偏光ビームスプリッタ18としては、シグマ光機社のPBS-HPシリーズ、またはNewport社の05BC15PH.9を用いることができる。また、レンズ15としては、シグマ光機社のNYTLシリーズまたはNYDLシリーズを用いることができる。
 1…テラヘルツ光発生装置、10,11…レーザ発振部、12…共振器構造、12a…共振器構造12における主面、13…温度調節器、14…ミラー、15…レンズ、16…偏波保持ファイバ、17…ファイバアレイ、18…偏光ビームスプリッタ、121…単純共振器、122,124…複合フォトニック結晶構造、123…単純フォトニック結晶。
 本発明は、所望の周波数を有する光を効率良く発生させることが可能な光発生装置および光発生方法を提供する。

Claims (12)

  1.  入射光を増強して出力する共振器構造と、
     前記入射光を前記共振器構造に入力する入力部と、
     を備え、
     前記入射光は、異なる偏光状態および異なる周波数を有する第1入射光および第2入射光であり、
     前記入力部は、前記共振器構造における主面に垂直の方向から傾斜した角度で、前記第1入射光および前記第2入射光を入力し、
     前記共振器構造は、前記第1入射光の周波数と前記第2入射光の周波数との差分に相当する周波数を有する光を出力する、
     を備えることを特徴とする光発生装置。
  2.  前記第1入射光がs偏光状態であり且つ前記第2入射光がp偏光状態である、または前記第1入射光がp偏光状態であり且つ前記第2入射光がs偏光状態である、
     ことを特徴とする請求項1に記載の光発生装置。
  3.  前記s偏光状態の入射光の周波数は、前記入力部の当該傾斜角度に応じたs偏光の共振周波数であり、
     前記p偏光状態の入射光の周波数は、前記入力部の当該傾斜角度に応じたp偏光の共振周波数である、
     ことを特徴とする請求項2に記載の光発生装置。
  4.  前記共振器構造の温度を調節することにより、前記s偏光の共振周波数および前記p偏光の共振周波数を制御する温度調節部を更に備える、
     ことを特徴とする請求項3に記載の光発生装置。
  5.  前記共振器構造は、GaAs層からなる欠陥層と、GaAs層およびAlAs層の積層からなる反射鏡を備えた単純共振器構造である、
     ことを特徴とする請求項1~4の何れか1項に記載の光発生装置。
  6.  前記共振器構造は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶と、GaAs層およびAlAs層の積層からなる反射鏡を備えた複合フォトニック結晶構造である、
     ことを特徴とする請求項1~4の何れか1項に記載の光発生装置。
  7.  前記反射鏡における前記GaAs層および前記AlAs層の膜厚が異なる、
     ことを特徴とする請求項6に記載の光発生装置。
  8.  前記フォトニック結晶における前記GaAs層および前記AlAs層の有効膜厚の比は、前記GaAs層:前記AlAs層=1:1であり、前記反射鏡における前記GaAs層および前記AlAs層の有効膜厚の比は、前記GaAs層:前記AlAs層=1:4であり、前記フォトニック結晶と前記反射鏡で有効膜厚の比が異なることを特徴とする請求項7に記載の光発生装置。
  9.  前記共振器構造は、GaAs層からなる活性層およびAlAs層からなる非活性層の積層からなるフォトニック結晶を備えた単純フォトニック結晶構造である、
     ことを特徴とする請求項1~4の何れか1項に記載の光発生装置。
  10.  前記共振器構造は、前記入力部が前記傾斜した角度で前記第1入射光および前記第2入射光を入力したことにより、構造性複屈折が引き起こされ、その結果として異なる値を有するようになった前記s偏光の共振周波数および前記p偏光の共振周波数の差分に相当する周波数を有する光を出力する、
     ことを特徴とする請求項3に記載の光発生装置。
  11.  入射光を増強して出力する共振器構造と、前記入射光を前記共振器構造に入力する入力部と、を備える光発生装置において、
     前記入射光は、異なる偏光状態および異なる周波数を有する第1入射光および第2入射光であり、
     前記入力部が、前記共振器構造における主面に垂直の方向から傾斜した角度で、前記第1入射光および前記第2入射光を入力するステップと、
     前記共振器構造が、前記第1入射光の周波数と前記第2入射光の周波数との差分に相当する周波数を有する光を出力するステップと、
     を備えることを特徴とする光発生方法。
  12.  前記第1入射光がs偏光状態であり且つ前記第2入射光がp偏光状態であり、または前記第1入射光がp偏光状態であり且つ前記第2入射光がs偏光状態であり、
     前記s偏光状態の入射光の周波数は、前記入力部の当該傾斜角度に応じたs偏光の共振周波数であり、
     前記p偏光状態の入射光の周波数は、前記入力部の当該傾斜角度に応じたp偏光の共振周波数であり、
     前記光発生装置は温度調節部を更に備え、
     前記温度調節部が、前記共振器構造の温度を調節することにより、前記s偏光の共振周波数および前記p偏光の共振周波数を制御するステップを更に備える、
     ことを特徴とする請求項11に記載の光発生方法。
PCT/JP2011/078485 2010-12-09 2011-12-08 光発生装置および光発生方法 WO2012077769A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012547914A JP5809643B2 (ja) 2010-12-09 2011-12-08 光発生装置および光発生方法
CN201180059536.5A CN103250093B (zh) 2010-12-09 2011-12-08 光发生装置及光发生方法
US13/992,576 US9036248B2 (en) 2010-12-09 2011-12-08 Light generation device and light generation method
EP11846888.3A EP2650723A4 (en) 2010-12-09 2011-12-08 LIGHT GENERATING DEVICE AND LIGHT GENERATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275013 2010-12-09
JP2010-275013 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077769A1 true WO2012077769A1 (ja) 2012-06-14

Family

ID=46207251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078485 WO2012077769A1 (ja) 2010-12-09 2011-12-08 光発生装置および光発生方法

Country Status (5)

Country Link
US (1) US9036248B2 (ja)
EP (1) EP2650723A4 (ja)
JP (1) JP5809643B2 (ja)
CN (1) CN103250093B (ja)
WO (1) WO2012077769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543482A (zh) * 2013-10-31 2014-01-29 武汉邮电科学研究院 通信波段的热不敏感的全角度全偏振反射镜及其制造方法
KR20170024644A (ko) * 2015-08-25 2017-03-08 삼성디스플레이 주식회사 레이저 결정화 장치
WO2023163032A1 (ja) * 2022-02-24 2023-08-31 国立大学法人大阪大学 テラヘルツ波出力装置およびテラヘルツ波出力方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279604A (ja) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd 波長変換装置
JP2008170582A (ja) * 2007-01-10 2008-07-24 Ricoh Co Ltd 非線形光学結晶、レーザ装置、光源装置、光走査装置、画像形成装置、表示装置及び分析装置
WO2011001521A1 (ja) * 2009-07-01 2011-01-06 パイオニア株式会社 テラヘルツ光発生装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063977A1 (de) * 2000-12-14 2002-07-25 Eckhard Zanger Optischer resonanter Frequenzwandler
JP4402901B2 (ja) * 2003-04-10 2010-01-20 国立大学法人東北大学 テラヘルツ波発生装置
JP4187030B2 (ja) * 2006-09-28 2008-11-26 セイコーエプソン株式会社 レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置並びにモニター装置
US8254415B2 (en) * 2007-10-18 2012-08-28 Panasonic Corporation Short wavelength light source and optical device
US20110235163A1 (en) * 2007-12-12 2011-09-29 Osaka Prefecture University Public Corporation Composite photonic structure element, surface emitting laser using the composite photonic structure element, wavelength conversion element, and laser processing device using the wavelength conversion element
US7912101B2 (en) * 2008-12-02 2011-03-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlling second harmonic efficiency of laser beam interactions
FR2960354B1 (fr) * 2010-05-18 2012-07-13 Centre Nat Rech Scient Dispositif de production de très hautes fréquences par battement de fréquences lumineuses.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279604A (ja) * 2003-03-13 2004-10-07 Fuji Xerox Co Ltd 波長変換装置
JP2008170582A (ja) * 2007-01-10 2008-07-24 Ricoh Co Ltd 非線形光学結晶、レーザ装置、光源装置、光走査装置、画像形成装置、表示装置及び分析装置
WO2011001521A1 (ja) * 2009-07-01 2011-01-06 パイオニア株式会社 テラヘルツ光発生装置及び方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH WALTHER ET AL.: "Quantum cascade lasers operating from 1.2 to 1.6 THz", APPL. PHYS. LETT., vol. 91, 2007, pages 131122
ELIOT B.PETERSEN ET AL.: "Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency genaration", APPL. PHYS. LETT., vol. 98, 2011, pages 121119, XP012139775, DOI: doi:10.1063/1.3571550
F. HINDLE ET AL., C. R. PHYSIQUE, vol. 9, 2008, pages 262 - 275
J. TALGHADER; J. S. SMITH, APPL. PHYS. LETT., vol. 66, 1995, pages 335
JOSEPH E. SCHAAR ET AL.: "Terahertz Sources Basedon Intracavity Parametric Down-conversion in Quasi-Phase-Matched Garllium Arsenide", IEEE JOUNAL TOPICS IN QUANTUM ELECTRONICS, vol. 14, no. 2, 2008
K. L. VODOPYANOV; M. N. FEJER ET AL., APPL. PHYS. LETT., vol. 89, 2006, pages 14119
KITADA ET AL., APPL. PHYS. LETT., vol. 95, 2009, pages 111106
KITADA ET AL.: "GaAs/ AlAs coupled multilayer cavity structures for terahertz emission devices", APPLIED PHYSICS LETTERS, vol. 95, no. 11, September 2009 (2009-09-01), pages 111106-1 - 111106-3, XP012122029 *
MIKHAIL A. BELKIN ET AL.: "Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation", APPL. PHYS. LETT., vol. 92, 2008, pages 201101, XP012107095, DOI: doi:10.1063/1.2919051
See also references of EP2650723A4 *
W. SHI; Y. J. DING, APPL. PHYS. LETT., vol. 84, no. 10, 2004

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543482A (zh) * 2013-10-31 2014-01-29 武汉邮电科学研究院 通信波段的热不敏感的全角度全偏振反射镜及其制造方法
KR20170024644A (ko) * 2015-08-25 2017-03-08 삼성디스플레이 주식회사 레이저 결정화 장치
KR102427155B1 (ko) * 2015-08-25 2022-07-29 삼성디스플레이 주식회사 레이저 결정화 장치
WO2023163032A1 (ja) * 2022-02-24 2023-08-31 国立大学法人大阪大学 テラヘルツ波出力装置およびテラヘルツ波出力方法

Also Published As

Publication number Publication date
JP5809643B2 (ja) 2015-11-11
CN103250093A (zh) 2013-08-14
CN103250093B (zh) 2016-02-24
US9036248B2 (en) 2015-05-19
EP2650723A1 (en) 2013-10-16
US20130293945A1 (en) 2013-11-07
EP2650723A4 (en) 2016-09-14
JPWO2012077769A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
Lippert et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator
WO2006028078A1 (ja) 受動qスイッチレーザ装置
Ru et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser
US20090274177A1 (en) Turnable laser device
Lippert et al. High power and efficient long wave IR ZnGeP2 parametric oscillator
Ganikhanov et al. Narrow-linewidth middle-infrared ZnGeP 2 optical parametric oscillator
US9036249B2 (en) Method of sum-frequency conversion and frequency converter with optical active rotator
JPWO2009075360A1 (ja) 複合フォトニック構造素子、その複合フォトニック構造素子を用いた面発光レーザ、波長変換素子、その波長変換素子を備えたレーザ加工装置
IL138795A (en) Optical parametric oscillator with monolithic dual ppln elements with intrinsic mirrors
JP5809643B2 (ja) 光発生装置および光発生方法
CN117578187A (zh) 一种基于宽带增益谱的可见光单频激光器
Yanovsky et al. Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity
WO2005003845A2 (en) Method and apparatus for generating mid and long ir wavelength radiation
Arisholm et al. Efficient conversion from 1 to 2 µm by a KTP-based ring optical parametric oscillator
KR100862518B1 (ko) 광파라메트릭 공진기
Watanabe et al. High-power second-harmonic generation with picosecond and hundreds-of-picosecond pulses of a cw mode-locked Ti: sapphire laser
JP2008135689A (ja) レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置
Kaneda et al. Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser
Mes et al. Third-harmonic generation of a continuous-wave Ti: Sapphire laser in external resonant cavities
Henriksson et al. Tandem PPKTP and ZGP OPO for mid-infrared generation
US20110122899A1 (en) Semiconductor laser
Awasthi et al. Wide-angle, broadband plate polarizer in Terahertz frequency region
FR2896629A1 (fr) "laser continu, triple en frequence en intra-cavite et monofrequence"
WO2011123822A2 (en) Apparatus and method for generating continuous wave ultraviolet light
Zhang et al. Generation of quasi-cw deep ultraviolet light below 200 nm by an external cavity with a Brewster-input KBBF prism coupling device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180059536.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011846888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011846888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13992576

Country of ref document: US