WO2012077684A1 - Method for producing sugar - Google Patents

Method for producing sugar Download PDF

Info

Publication number
WO2012077684A1
WO2012077684A1 PCT/JP2011/078204 JP2011078204W WO2012077684A1 WO 2012077684 A1 WO2012077684 A1 WO 2012077684A1 JP 2011078204 W JP2011078204 W JP 2011078204W WO 2012077684 A1 WO2012077684 A1 WO 2012077684A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
enzyme
endoglucanase
raw material
hours
Prior art date
Application number
PCT/JP2011/078204
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 川野
晃範 小川
斎藤 和広
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2012547877A priority Critical patent/JPWO2012077684A1/en
Publication of WO2012077684A1 publication Critical patent/WO2012077684A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose

Definitions

  • the present invention relates to a method for producing sugar and a method for increasing the amount of glucose produced.
  • Cellulose-containing raw materials are used as industrial raw materials such as cellulose ether raw materials, cosmetics, foods, and biomass materials.
  • attempts have been made to produce sugar from biomass materials and to convert it into ethanol, lactic acid, etc. by fermentation or the like from efforts to address environmental problems (see Patent Document 1).
  • an acid saccharification method using an acid such as sulfuric acid
  • an enzyme saccharification method using an enzyme such as cellulase are known, and a more environmentally friendly enzyme saccharification method is desired.
  • Cellulases are roughly divided into three types of enzymes, endoglucanase (EG), cellobiohydrolase (CBH), and ⁇ -glucosidase (BG), which have different functions. In order to produce glucose from biomass, these three types of cellulases are used. is needed. In the commercially available cellulase preparation, cellulase derived from Trichoderma reesei is said to have good saccharification efficiency, but its protein composition ratio is about 80% CBH and about 20% EG, and the ratio of BG is low. ing.
  • BG activity is such that the total enzyme amount can be reduced to about half by increasing the ratio of BG activity to cellulase preparation (Cell Crust 1.5L) derived from T. reesei.
  • Cell Crust 1.5L cellulase preparation
  • Patent Document 2 cellulase preparation
  • Patent Documents 3 and 4 a method of hydrolyzing cellulose or hemicellulose treated with hydrogen peroxide
  • the present invention provides a method for producing a saccharide with excellent productivity and a method for increasing the amount of glucose produced, which can efficiently obtain a saccharide.
  • the present inventors have found that the above problem can be solved by saccharifying cellulose having a specific crystallinity and / or specific surface area using a specific enzyme compounding agent. That is, the present invention includes the following [1] and [2].
  • [1] A method for producing a saccharide by saccharifying a cellulose having a cellulose I type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the following formula (1) with an enzyme compounding agent.
  • the enzyme compounding agent contains 20% or more of endoglucanase in the total protein content of the enzyme compounding agent, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer.
  • Cellulose type I crystallinity (%) [(I 22.6 -I 18.5 ) / I 22.6 ] ⁇ 100 (1)
  • Cellulose I-type crystallinity represented by the following calculation formula (1) is 50% or less and / or cellulose having a specific surface area of 180 m 2 / g or more is saccharified with an enzyme compounding agent.
  • the enzyme compound contains endoglucanase in an amount of 20% or more of the total protein content of the enzyme compound, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer.
  • sugar can be efficiently produced, and therefore productivity can be improved.
  • the method for increasing the production amount of glucose of the present invention glucose can be produced efficiently, so that the production amount of glucose can be remarkably increased and productivity can be improved.
  • the present invention is a method for producing a saccharide in which cellulose having a cellulose I type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the above formula (1) is saccharified with an enzyme compounding agent.
  • the enzyme compounding agent contains endoglucanase in an amount of 20% or more in the total protein content of the enzyme compounding agent, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer. It is.
  • the present invention provides a glucose saccharification treatment of cellulose having a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the above formula (1) with an enzyme compounding agent.
  • the enzyme compound contains endoglucanase in an amount of 20% or more of the total protein content of the enzyme compound, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer. This is a method for increasing the amount of glucose produced.
  • cellulose I type crystallinity may be simply referred to as “crystallinity”.
  • the cellulose used in the present invention has a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more.
  • the cellulose I type crystallinity is the ratio of the amount of crystal region of cellulose to the total amount.
  • Cellulose type I is a crystalline form of natural cellulose.
  • the degree of crystallinity is also related to the physical and chemical properties of cellulose, and the larger the value, the higher the crystallinity of cellulose and the less non-crystalline parts, so the hardness, density, etc. increase, but elongation, flexibility, Solubility and chemical reactivity in water and solvent decrease.
  • the cellulose I type crystallinity in the present invention is calculated by the Segal method from the diffraction intensity value by the X-ray diffraction method, and is defined by the following calculation formula (1).
  • Cellulose type I crystallinity (%) [(I 22.6 -I 18.5 ) / I 22.6 ] ⁇ 100 (1)
  • the cellulose type I crystallinity of the cellulose used in the present invention is 50% or less. If the degree of crystallinity is 50% or less, the chemical reactivity of cellulose is improved, and a mixture of glucose or oligosaccharides such as cellobiose and cellotriose can be efficiently obtained by enzyme treatment with an enzyme compounding agent containing endoglucanase. it can. In addition, in the production of cellulose ether, when an alkali is added, alkali celluloseation easily proceeds and the reaction conversion rate of the cellulose etherification reaction can be improved.
  • the degree of crystallinity is preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, and still more preferably no type I crystal is detected by analysis.
  • the cellulose I type crystallinity defined by the calculation formula (1) may be a negative value in calculation, but the cellulose I type crystallinity in the case of a negative value is 0%.
  • the specific surface area of the cellulose used in the present invention is 180 m 2 / g or more.
  • the specific surface area is 180 m 2 / g or more, the chemical reactivity of cellulose is improved, and the saccharification treatment can be efficiently performed with an enzyme compounding agent containing endoglucanase. Therefore, from the above viewpoint, the specific surface area is preferably 200 m 2 / g or more, more preferably 250 m 2 / g or more, more preferably 270 m 2 / g or more, and further preferably 290 m 2 / g or more.
  • the specific surface area of the said cellulose is 500 m ⁇ 2 > / g or less.
  • the specific surface area here is the value measured by the method as described in an Example.
  • the molecular weight of the cellulose used by this invention is 130,000 or less. If the molecular weight is 130,000 or less, the chemical reactivity of cellulose is improved, and the saccharification treatment can be efficiently performed with an enzyme compounding agent containing endoglucanase. Therefore, from the above viewpoint, the molecular weight is more preferably 110,000 or less, more preferably 90,000 or less, still more preferably 70,000 or less, and still more preferably 50,000 or less. Moreover, there is no restriction
  • the cellulose used in the present invention is not limited as long as it belongs to any one of the above-mentioned crystallinity and specific surface area, but improves the chemical reactivity of cellulose and is more efficient with an enzyme compounding agent containing endoglucanase. From the viewpoint of performing a saccharification treatment, cellulose belonging to any suitable range of the above-described crystallinity and specific surface area is preferable, and cellulose belonging to the above-described preferable range of molecular weight is more preferable.
  • the cellulose having the above specific crystallinity and / or specific surface area is obtained by pulverizing a cellulose-containing raw material with a pulverizer.
  • the cellulose-containing raw material preferably has a cellulose content of 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more in the remaining components obtained by removing water from the raw material.
  • the upper limit of the cellulose content in the cellulose-containing raw material is usually 99% by mass or less in the remaining components obtained by removing water from the cellulose-containing raw material.
  • the cellulose content means the total amount of cellulose and hemicellulose.
  • a cellulose containing raw material For example, various wood chips, pruned branch materials, thinning materials, branch wood, etc .; wood pulp manufactured from wood, cotton obtained from the fiber around cotton seeds Pulp such as linter pulp; Paper such as newspapers, cardboard, magazines, fine paper; plant stems, leaves, fruit bunches such as bagasse (sugar cane squeezed), palm empty fruit bunches (EFB), rice straw, corn stalks, etc. And the like: plant shells such as rice husk, palm husk, coconut husk etc.
  • pulps, papers, plant stems / leaves / fruits, plant shells, and woods are preferred, pulps, papers, and plant stems / leaves / fruits are more preferred, and pulps And bagasse are more preferred.
  • These cellulose-containing raw materials may be powdery or sheet-like.
  • the cellulose content in the remaining components excluding water is generally 75 to 99% by mass, and other components include lignin and the like.
  • the cellulose I type crystallinity degree of a commercially available sheet-like pulp is 60% or more normally.
  • the water content in the cellulose-containing raw material (water content in the cellulose-containing raw material immediately before the pulverization treatment) is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less. If the water content in the cellulose-containing raw material is 20% by mass or less, it can be easily pulverized, and the crystallinity can be easily reduced by the pulverization process described later, and the subsequent sugar production can be efficiently performed. it can.
  • the cellulose which has the above-mentioned crystallinity degree and / or specific surface area is obtained by grind
  • a pulverization treatment By carrying out a pulverization treatment with a pulverizer, cellulose having a specific crystallinity and / or specific surface area can be obtained efficiently.
  • a medium pulverizer is preferable from the viewpoint of increasing the saccharification efficiency and increasing the production amount of glucose.
  • the medium pulverizer includes a container driven pulverizer and a medium stirring pulverizer.
  • Examples of the container-driven crusher include a rolling mill, a vibration mill, a planetary mill, and a centrifugal fluid mill.
  • a vibration mill is preferable and a vibration mill filled with a rod is more preferable from the viewpoint of high grinding efficiency and improvement of productivity.
  • vibration mills vibration mills manufactured by Chuo Kako Co., Ltd., small vibration rod mill model 1045 manufactured by Yoshida Seisakusho, vibration cup mill P-9 model manufactured by Fritsch, Germany, and small vibration mill NB-O manufactured by Nikko Chemical Co., Ltd. Examples include molds.
  • a medium agitation type pulverizer a tower type pulverizer such as a tower mill; an agitating tank type pulverizer such as an attritor, an aquamizer, a sand grinder; a distribution tank type pulverizer such as a visco mill and a pearl mill;
  • a continuous dynamic type pulverizer a medium agitation mill of an agitation tank type pulverizer is preferable from the viewpoint that the crushing efficiency is high and productivity can be improved.
  • the peripheral speed at the tip of the stirring blade is preferably 0.5 to 20 m / s, more preferably 1 to 15 m / s.
  • the kind of grinder can refer to "Progress of chemical engineering 30th particle control" (Chemical Engineering Society, Tokai branch edition, published on October 10, 1996, Kashiwa Shoten).
  • the processing method may be either a batch type or a continuous type.
  • Examples of media include balls, rods, and tubes. Of these, balls and rods are preferable from the viewpoint of high crushing efficiency and productivity can be improved, and rods are more preferable from the viewpoint of shortening the processing time.
  • a material of a medium For example, iron, stainless steel, an alumina, a zirconia, silicon carbide, silicon nitride, glass etc. are mentioned.
  • the rod used as the medium is a rod-shaped medium, and a cross section having a square shape, a polygonal shape such as a hexagon, a circular shape, an elliptical shape, or the like can be used.
  • the outer diameter of the rod is preferably in the range of 0.5 to 200 mm, more preferably 1 to 100 mm, and still more preferably 5 to 50 mm.
  • the length of the rod is not particularly limited as long as it is shorter than the length of the pulverizer container. If the size of the rod is in the above range, the desired pulverizing force can be obtained, and the cellulose used in the present invention can be obtained without contamination of the cellulose-containing raw material by mixing fragments of the rod and the like.
  • the outer diameter of the ball used as the medium is preferably 1 to 100 mm, more preferably 3 to 50 mm, and still more preferably 6 to 30 mm. If the outer diameter of the ball is in the above range, a desired crushing force can be obtained.
  • the medium filling rate varies depending on the type of the pulverizer, but is preferably 10 to 97%, more preferably 15 to 95%. When the filling rate is within this range, the contact frequency between the cellulose and the medium is improved, and the grinding efficiency can be improved without hindering the movement of the medium.
  • the filling rate refers to the apparent volume of the medium relative to the volume of the pulverizer.
  • the processing time of the pulverizer cannot be determined unconditionally depending on the type of pulverizer, the type of medium, the size, the filling rate, etc., but from the viewpoint of reducing the crystallinity, it is preferably 0.01 to 50 hr, more preferably 0.05 to 20 hr, more preferably 0.1 to 10 hr.
  • the treatment temperature is not particularly limited, but is preferably 5 to 250 ° C., more preferably 10 to 200 ° C. from the viewpoint of preventing deterioration due to heat.
  • cellulose having a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more can be efficiently obtained from the cellulose-containing raw material.
  • the average particle size of the obtained cellulose is preferably 25 to 150 ⁇ m, more preferably 30 to 100 ⁇ m, from the viewpoint of chemical reactivity and handleability when the cellulose is used as an industrial raw material.
  • the average particle size is 25 ⁇ m or more, it is possible to suppress “mamako (dama)” when cellulose is brought into contact with a liquid such as water.
  • the pulverized raw material when using a powdery raw material as the cellulose-containing raw material supplied to the pulverizer, from the viewpoint of efficiently dispersing the pulverized raw material in the pulverizer, those having an average particle diameter of the raw material in the range of 1 mm or less are preferable. . If this average particle size is 1 mm or less, when supplying into the pulverizer, the pulverized raw material can be efficiently dispersed in the pulverizer, and the predetermined particle size can be reached without taking a long time. Can do. On the other hand, the lower limit of the average particle diameter is preferably 0.03 mm or more from the viewpoint of productivity.
  • the average particle diameter is more preferably 0.03 to 0.7 mm, and further preferably 0.05 to 0.5 mm.
  • the average particle size is measured at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device, treated with ultrasonic waves for 1 minute before measuring the particle size, and using water as a dispersion solvent during the measurement. It is the value.
  • the pulverization can be efficiently and easily performed.
  • the method for coarsely pulverizing the cellulose-containing raw material into chips include a method using a shredder or a rotary cutter. When using a rotary cutter, the magnitude
  • the opening of the screen is preferably 1 to 50 mm, more preferably 1 to 30 mm. If the opening of the screen is 1 mm or more, the cellulose-containing raw material does not become cottony and the handleability is improved. If the opening of the screen is 50 mm or less, the load can be reduced because it has an appropriate size as a cellulose-containing raw material used in the subsequent pulverizer treatment. Therefore, the load can be reduced.
  • the cellulose-containing raw material is preferably alkali-treated before the saccharification treatment described later, from the viewpoint of increasing saccharification efficiency and increasing the amount of glucose produced, and before the pulverization treatment. More preferably, an alkali treatment is performed.
  • the alkali treatment is preferably an immersion treatment using an alkaline solution from the viewpoint of increasing the saccharification efficiency and increasing the amount of glucose produced.
  • the concentration of the alkali compound in the alkaline solution in the immersion treatment is preferably 0.1 to 60% by mass, more preferably 0.1 to 50% by mass, more preferably 0.1 to 50% by mass from the viewpoint of increasing saccharification efficiency and increasing the amount of glucose produced.
  • the content is 0.1 to 40% by mass.
  • the amount of the alkaline solution used in the immersion treatment is preferably 50 to 99% by mass, more preferably 60 to 99% by mass, and still more preferably 80 to 99% by mass with respect to the dry weight of the raw material cellulose.
  • the treatment time for the alkali treatment is preferably 0.5 to 50 hours, more preferably 1 to 24 hours, still more preferably 1.5 to 10 hours.
  • alkali compound used for the alkali treatment examples include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; sodium oxide Alkali metal oxides such as potassium oxide; alkaline earth metal oxides such as magnesium oxide and calcium oxide; alkali metal sulfides such as sodium sulfide and potassium sulfide; alkaline earth metal sulfides such as magnesium sulfide and calcium sulfide Is mentioned.
  • an alkali metal hydroxide or an alkaline earth metal hydroxide is preferable, an alkali metal hydroxide is more preferable, and sodium hydroxide or potassium hydroxide is still more preferable.
  • these alkali compounds can be used individually or in combination of 2 or more types.
  • the cellulose-containing raw material may be neutralized or washed with acetic acid or the like and lyophilized before the saccharification treatment described below from the viewpoint of removing alkali compounds, improving saccharification efficiency, and improving the amount of glucose produced. preferable.
  • saccharification treatment In the present invention, a specific enzyme compounding agent is allowed to act on the cellulose that has been subjected to the above-mentioned pulverization treatment to obtain a sugar.
  • the enzyme compounding agent used in the present invention contains endoglucanase in an amount of 20% or more in the total protein of the enzyme compounding agent.
  • the content of endoglucanase is 20% or more in the total protein of the enzyme compounding agent, preferably 25 to 100%, more preferably 33 to 90%, still more preferably 50 to 90%.
  • the content of endoglucanase is less than 20% of the total protein of the enzyme compounding agent, the function of endoglucanase is not sufficiently exhibited and saccharification efficiency is inferior.
  • Endoglucanase is a type of cellulase that is an enzyme that hydrolyzes the glycosidic bond of ⁇ -1,4-glucan in cellulose.
  • the endoglucanase used in the present invention is not particularly limited, but from the viewpoint of cellulose saccharification efficiency, endoglucanase I (EGI) and endoglucanase II (EGII) derived from the genus Trichoderma are preferable. It may be expressed and used. There are no particular restrictions on the preparation method for expression in a heterologous host, but examples include the methods described in the Examples.
  • the endoglucanase used in the present invention may be a commercially available cellulase preparation or a product obtained by purifying a cellulase derived from animals, plants, or microorganisms.
  • a cellulase preparation or a product obtained by purifying a cellulase derived from animals, plants, or microorganisms Although there is no restriction
  • Examples of cellulases to be purified include cellulase preparations derived from Trichoderma reesei such as Cellcrust 1.5L (Novozymes) and Bacillus sp. KSM-N145 (FERM P-19727). ) line-derived cellulase, or Bacillus sp.
  • a cellulase derived from Trichoderma reesei , Trichoderma viride , or Humicola insolens such as Cell Crust 1.5L (Novozymes), TP-60 (Meiji Seika Co., Ltd.) Company) or Ultraflo L (Novozymes).
  • the enzyme compounding agent used in the present invention may contain an enzyme other than endoglucanase.
  • an enzyme other than endoglucanase those containing one or more enzymes selected from the group consisting of cellobiohydrolase, hemicellulase, and ⁇ -glucosidase are preferred.
  • ⁇ -glucosidase that degrades cellobiose produced by the action of cellobiohydrolase needs to be added or enhanced, but it is used in the present invention. If it is an enzyme compounding agent, glucose can be efficiently produced even without ⁇ -glucosidase.
  • Cellobiohydrolase is a type of cellulase, an enzyme that mainly breaks down cellulose to produce the disaccharide cellobiose.
  • Cellobiohydrolase I CBHI
  • CBHII cellobiohydrolase II
  • CBHII cellobiohydrolase II
  • Cellobiohydrolase is a commercially available cellulase preparation similar to endoglucanase, or purified cellulase derived from animals, plants, or microorganisms, and the purification method is not particularly limited. For example, the method described in the Examples Can be mentioned.
  • Hemicellulase is an enzyme that degrades hemicellulose and includes xylanase, mannanase and the like.
  • the hemicellulase to be used is not particularly limited, and commercially available preparations and those derived from animals, plants and microorganisms are used.
  • a xylanase derived from Bacillus sp. KSM-N546 (FERM P-19729) is used.
  • Aspergillus niger (Aspergillus niger), Trichoderma viride (Trichoderma viride), Humicola insolens (Humicola insolens), Bacillus alcalophilus (Bacillus alcalophilus) derived from a xylanase, further Thermomyces (Thermomyces), Ou Leo bus Shijiumu (Aureobasidium), Streptomyces (Streptomyces), Clostridium (Clostridium), Thermotoga (Thermotoga), Thermoascus (Thermoascus), Karudoseramu (Caldocellum), thermo mono Supora (Thermomonospora) genus xylanase like from like.
  • An enzyme having hemicellulase activity contained in the cellulase mixture can also be used.
  • ⁇ -Glucosidase is a kind of cellulase and is an enzyme that decomposes cellobiose and finally produces glucose.
  • the ⁇ -glucosidase to be used is not particularly limited, and commercially available preparations, those derived from animals, plants and microorganisms are used.
  • an enzyme derived from Aspergillus niger for example, ⁇ -glucosidase manufactured by Megazyme
  • Agrobacterium Agrobacterium
  • Thermotoga maritima Thermotoga maritima
  • Trichoderma reesei Trichoderma reesei
  • Penicillium Emerusonii include enzymes such as the origin.
  • the reaction conditions for saccharifying cellulose with the above-mentioned specific enzyme compounding agent can be appropriately selected depending on the crystallinity of cellulose, the specific surface area, the molecular weight, and the components in the enzyme compounding agent to be used.
  • the pH for the saccharification treatment is preferably selected according to the type of enzyme used, preferably pH 2 to 10, more preferably pH 3 to 7, still more preferably pH 4 to 6, and still more preferably around pH 5 ( pH 4.7-5.3).
  • the treatment temperature for the saccharification treatment is preferably selected according to the type of enzyme used, preferably 10 to 90 ° C., more preferably 20 to 70 ° C., still more preferably 35 to 60 ° C., and still more preferably 45. ⁇ 55 ° C.
  • the treatment time for the saccharification treatment is preferably 5 to 168 hours, more preferably 24 to 120 hours, and still more preferably 48 to 96 hours.
  • reaction temperature 10 to 90 ° C. (preferably an appropriate temperature is selected depending on the type of enzyme used. Properly it is 35 ⁇ 60 ° C., even more preferably be saccharification treatment under the condition of 45 ⁇ 55 °C), from the viewpoint of efficiently obtaining a sugar.
  • the present invention discloses the following sugar production method [1].
  • Cellulose type I crystallinity represented by the following formula (1) is 50% or less, preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, more preferably 0% type I crystal is not detected by the analysis, and / or a specific surface area of 180 m 2 / g or more, preferably 180 m 2 / g or more 500 meters 2 / g or less, more preferably 200 meters 2 / g or more 500 meters 2 / g or less, more preferably 250 meters 2 / g or more 500 meters 2 / g or less, more preferably 270 meters 2 / g or more 500 meters 2 / g or less, more preferably cellulose enzyme formulation is less than 290 m 2 / g or more 500 meters 2 / g
  • a method for producing a sugar that is saccharified with an agent The enzyme compounding agent contains endoglucanas
  • Cellulose is a method for producing sugar, obtained by pulverizing a cellulose-containing raw material with a pulverizer.
  • Cellulose type I crystallinity (%) [(I 22.6 -I 18.5 ) / I 22.6 ] ⁇ 100 (1)
  • the present invention preferably further includes the following sugar production methods [2] to [12].
  • the molecular weight of the cellulose is 130,000 or less, more preferably 1000 or more and 130,000 or less, more preferably 1000 or more and 110,000 or less, more preferably 1000 or more and 90,000 or less, still more preferably 1000 or more and 70,000 or less, and still more preferably.
  • the method for producing a saccharide according to the above [1], wherein is from 1,000 to 50,000.
  • [4] The method for producing sugar according to any one of [1] to [3] above, wherein the cellulose-containing raw material is subjected to an alkali treatment before the saccharification treatment, more preferably an alkali treatment before the pulverization treatment.
  • the alkali treatment is an immersion treatment using an alkaline solution.
  • the endoglucanase is at least one selected from Trichoderma-derived endoglucanase I (EGI) and endoglucanase II (EGII). Production method.
  • [7] The sugar composition according to any one of [1] to [6], wherein the enzyme compounding agent further contains one or more selected from the group consisting of cellobiohydrolase, hemicellulase, and ⁇ -glucosidase.
  • Production method [8] The method for producing a saccharide according to any one of [1] to [7], wherein the enzyme compounding agent further contains cellobiohydrolase and / or hemicellulase as an enzyme and does not contain ⁇ -glucosidase. .
  • the above saccharification treatment temperature is 10 to 90 ° C., more preferably 20 to 70 ° C., still more preferably 35 to 60 ° C., and still more preferably 45 to 55 ° C.
  • sugar in any one of. [10] The saccharification treatment according to any one of [1] to [9] above, wherein a treatment time of the saccharification treatment is 5 to 168 hours, more preferably 24 to 120 hours, and still more preferably 48 to 96 hours. Production method. [11] The above [1] to [10], wherein the cellulose-containing raw material is at least one selected from the group consisting of pulps, papers, plant stems / leaves / fruit bunches, plant shells, and woods. ] The manufacturing method of the saccharide
  • the cellulose content in the remaining components excluding water from the raw material is 20% by mass or more, more preferably 20% by mass or more and 99% by mass or less, and further preferably 40% by mass or more.
  • the present invention further discloses a method for increasing the production amount of glucose described in [13] below.
  • the cellulose I type crystallinity represented by the following calculation formula (1) is 50% or less, preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, more preferably 0% type I crystal is not detected by the analysis, and / or a specific surface area of 180 m 2 / g or more, preferably 180 m 2 / g or more 500 meters 2 / g or less, more preferably 200 meters 2 / g or more 500 meters 2 / g or less, more preferably 250 meters 2 / g or more 500 meters 2 / g or less, more preferably 270 meters 2 / g or more 500 meters 2 / g or less, more preferably cellulose enzyme formulation is less than 290 m 2 / g or more 500 meters 2 / g
  • a method for increasing the amount of glucose produced by saccharification with an agent The enzyme compounding agent contains endoglu
  • Cellulose is a method of increasing the amount of glucose produced by pulverizing a cellulose-containing raw material with a pulverizer.
  • Cellulose type I crystallinity (%) [(I 22.6 -I 18.5 ) / I 22.6 ] ⁇ 100 (1)
  • the X-ray diffraction intensity, water content, specific surface area, average molecular weight, and cellulose content of the mechanically treated cellulose-containing raw material were measured by the methods described below. Moreover, the saccharification reaction of various celluloses such as pulverized pulp or powdered pulp was performed under the conditions described below.
  • (1) Measurement of X-ray diffraction intensity X-ray diffraction intensity was measured using the “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation under the following conditions, and based on the above formula (1), cellulose type I Crystallinity was calculated.
  • the measurement sample was prepared by compressing a pellet having an area of 320 mm 2 ⁇ thickness 1 mm.
  • the X-ray scan speed was measured at 10 ° / min.
  • (2) Measurement of water content The water content was measured at 150 ° C. using an infrared moisture meter (“FD-610” manufactured by Kett Science Laboratory Co., Ltd.).
  • (3) Measurement of specific surface area The specific surface area of cellulose was measured by a water vapor adsorption method. The raw material was vacuum degassed at 80 ° C.
  • the white residue is filtered through a glass filter (1G-3), washed with cold water and acetone, and then dried at 105 ° C. until a constant weight is obtained.
  • the residue weight is obtained, and the cellulose content (from the cellulose-containing raw material to The cellulose content in the remaining components excluding) was calculated.
  • Cellulose content (mass%) [residue weight (g) / dry weight of raw material corresponding to 2.5 g of degreased sample (g)] ⁇ 100
  • SDS-polyacrylamide gel electrophoresis SDS-PAGE is performed at 20 mA / gel using Ready Gel J-12.5% (BioRad) according to the method of Laemmli (UK Laemmli, Nature, 227, 680-685, 1970). Electrophoresis was performed for about 90 minutes. The marker was SDS-PAGE Standard Low (manufactured by Bio-Rad), and the staining after electrophoresis was Bio-Safe Coomasie (manufactured by Bio-Rad).
  • EGI Cellobiohydrolase I
  • EGI endoglucanase I
  • EGII endoglucanase II
  • CBHII cellobiohydrolase II
  • heterogeneous purified from 1.5 L of cell crust Expressed EGI is the respective enzymes (Endoglucanase EG-1 (P07981), EG2: Endoglucanase EG-II (P07982), CBH1: UniProtKB / Swiss-Prot (http://au.expasy.org/sprot/). It confirmed by comparing with the molecular weight and partial amino acid sequence of Exoglucanase 1 (P62694), CBH2: Exoglucanase 2 (P07987)).
  • the pass fraction passed through the cation exchanger (b) was concentrated using a UF membrane, and then replaced with 20 mM Tris hydrochloride buffer (pH 7.8) using a desalting column. 40 mL of this pass fraction was applied to an anion exchanger (c) SuperQ Toyopearl 650M ( ⁇ 2.5 cm ⁇ 25 cm) equilibrated with the same buffer, and the inside of the column was washed with 250 mL of the same buffer. A linear concentration gradient elution was performed with 2000 mL of sodium chloride. The adsorbed fraction adsorbed on the anion exchanger (c) was pooled and concentrated to 12 mL with a UF membrane.
  • the pass fraction that was confirmed to be almost single by SDS-PAGE was concentrated on a UF membrane and replaced with 10 mM citrate buffer (pH 5.0) on a desalting column. Endoglucanase II (EGII) was obtained.
  • CBHII Cellobiohydrolase II
  • heterologous expression EGI (heterologous expression EGI)
  • the heterologous expression EGI was prepared by the following procedure. (Synthesis of Trichoderma reesei cDNA) Trichoderma reesei QM9414 (NBRC31329) was cultured on a PDA agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • PCR was performed using DNA Engine PTC-200 (manufactured by MJ Japan). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, 72 ° C for 8 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
  • Forward primers (SEQ ID NO: 1: gtgaattcgagctcggtaccattacgcactacccgaatcg) designed based on the amyB promoter region using the obtained EGI gene and the PCR fragments derived from the A. oryzae-derived ⁇ -amylase gene (amyB) -derived promoter and terminator region as template DNA PCR was performed using a reverse primer (SEQ ID NO: 2: tgattacgccaagcttgagttgtacctagaggagac) designed based on the amyB terminator region.
  • PCR was performed with GeneAmp PCR System 9700 (manufactured by PE Applied Biosystems). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 20 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
  • Hind III and Kpn I were added to a solution containing the pPTRI vector (TaKaRa), and a restriction enzyme reaction was performed overnight at 37 ° C. After inactivating the restriction enzyme at 70 ° C. for 15 minutes, purification was performed with a High Pure PCR Product Purification kit (Roche). The linearized pPTRI vector was mixed with 3 times the ligated EGI fragment (molar ratio) and mixed, and the In-fusion reaction (37 ° C) was performed using In-Fusion TM Advantage PCR Cloning Kit (Clontech). For 15 minutes and at 50 ° C. for 15 minutes).
  • a transformed colony in which a band of the target insert size was confirmed by agarose electrophoresis analysis was inoculated into an LB liquid medium containing 100 ppm ampicillin, and cultured overnight (37 ° C., 120 rpm) using a Sakaguchi flask. It was. The culture solution was centrifuged (6000 ⁇ g, 4 ° C., 15 minutes) to recover the bacterial cells, and then the plasmid was extracted and purified using QIAfilter Plasmid Midi Kit (manufactured by QIAGEN).
  • A. oryzae RIB40 strain (official name: Aspergillus oryzae (Ahlburg) Cohn var brunneus Murakami) purchased from NITE (NBRC100959) was used. This strain was cultured on a PDA agar plate medium at 25 ° C. for 7 days and then subcultured on a PDA slant medium at 25 ° C. for 7 days. The strain was refrigerated and used as a host for transformation. Using the A. oryzae RIB40 strain as a host, transformation with the constructed plasmid was carried out, and the cells were cultured at 30 ° C. for 7 days using a regeneration CD agar medium containing 0.2 ppm pyrithiamine. The transformed colonies that had grown on the CD agar medium were subcultured twice on a CD agar medium at 30 ° C. for 7 days.
  • A. oryzae transformed strain was inoculated on a CD agar medium with a platinum loop and cultured at 30 ° C. for 5-7 days, and then a spore suspension was prepared.
  • [Vibration mill treatment] 100 g of the obtained chip-like pulp was put into a vibration mill (manufactured by Chuo Kako Co., Ltd., “MB-1”, container total capacity 3.5 L), and as a rod, diameter 30 mm, length 218 mm, material stainless steel, cross-sectional shape Thirteen circular rods were filled into a vibration mill (filling rate 57%) and treated for 0.5 to 8 hours under the conditions of an amplitude of 8 mm and a circular rotation of 1200 cpm to obtain pulps A to F.
  • Table 1 shows the crystallinity, specific surface area, and molecular weight of the obtained pulp.
  • Comparative production example 1 Chip-like pulp obtained in the same manner as in Production Examples 1 to 6 was charged into a twin-screw extruder (“EA-20” manufactured by Suehiro EPM Co., Ltd.) at 2 kg / hr, a shear rate of 660 sec ⁇ 1 , and a screw rotation speed of 300 rpm. Then, a one-pass treatment was performed while flowing cooling water from the outside.
  • the twin-screw extruder is a fully meshing type co-rotating twin-screw extruder, and the screws arranged in two rows are combined with a screw portion having a screw diameter of 40 mm and 12 blocks alternately (90 °). The two screws have the same configuration.
  • Table 1 shows the crystallinity, specific surface area, and molecular weight of the obtained pulp G.
  • Pulp H Powdered pulp (“W-400G” manufactured by Nippon Paper Chemical Co., Ltd., 400 mesh pass 90 or more, cellulose content 99% by mass, moisture content 1% by mass)
  • Pulp H is a medium agitated mill (Attritor, Mitsui Mining Co., Ltd.) Made of “MA1D-X”, total volume of container: 5.5 L), filled with attritor (diameter: 10 mm, material: zirconia, zirconia balls: 11 kg, filling rate: 59%), rotation speed: 307 rpm
  • the pulp I was obtained by performing the treatment for 2 hours under the conditions. Table 2 shows the crystallinity, specific surface area, and molecular weight of pulp H before pulverization and pulp I after pulverization.
  • Comparative Examples 1 to 3 The pulp G obtained in Comparative Production Example 1 was subjected to a saccharification reaction with an enzyme preparation consisting of Cellcrust 1.5L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and endoglucanase I (EGI). In the same manner as in Examples 1 to 6, the amount of glucose after completion of the reaction was quantified. The results are shown in Table 3.
  • Examples 7-9 The pulp C obtained in Production Example 3 was subjected to a saccharification reaction using an enzyme preparation composed of endoglucanase I (EGI), endoglucanase II (EGII), and heterologous expression endoglucanase I (heterologous expression EGI). Specifically, 0.05 g of pulp C is suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 5 hours, 24 hours, 48 hours and 72 hours with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 4.
  • an enzyme reaction solution 100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein
  • Comparative Examples 16-18 The saccharification of the pulp C obtained in Production Example 3 with an enzyme preparation composed of Celclast 1.5 L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and cellobiohydrolase II (CBHII), respectively.
  • the reaction was carried out in the same manner as in Examples 7 to 9, and the amount of glucose after completion of the reaction was quantified. The results are shown in Table 4.
  • pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining endoglucanase I (EGI) and Cellcrust 1.5 L (manufactured by Novozymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00125 to 0.00417% (w / v) protein and 0.00083 to The suspension was suspended in a cell crust equivalent to 0.00375% (w / v) (1.5 L), and the enzyme reaction was carried out for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
  • pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining endoglucanase I (EGI) and cellobiohydrolase I (CBHI). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00125 to 0.00417% (w / v) protein and 0.00083 to The enzyme reaction was carried out for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
  • pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining heterologous expression endoglucanase I (heterologous expression EGI) and Cellcrust 1.5L (manufactured by Novozymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), 0.00125 to 0.0045% (w / v) of protein equivalent to EGI and 0. The suspension was suspended in 0005 to 0.00375% (w / v) equivalent to 1.5 L of Celcrust), and the enzyme reaction was performed for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. . After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
  • Example 34 For the pulp D obtained in Production Example 4, a saccharification reaction with an enzyme preparation comprising a combination of endoglucanase I (EGI), Cellcrust 1.5 L (manufactured by Novozymes), and xylanase M1 (XYN, produced by Megazymes) Went. Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00113% (w / v) protein, 0.00338% (w / v) protein. ) Corresponding cell crust 1.5 L and protein 0.0005% (w / v) XYN) suspended at 50 ° C.
  • an enzyme reaction solution 100 mM citrate buffer (pH 5.0)
  • EGI equivalent to 0.00113% (w / v) protein, 0.00338% (w / v) protein.
  • reaction time 6 hours, 24 hours, 48 hours and 72 hours enzyme Reaction was performed. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC.
  • Example 35 The pulp D obtained in Production Example 4 is subjected to a saccharification reaction with an enzyme preparation comprising a combination of endoglucanase I (EGI), cellobiohydrolase I (CBHI), and xylanase M1 (XYN, manufactured by Megazymes). It was. Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.0036% (w / v) protein, 0.0009% (w / v) protein.
  • an enzyme reaction solution 100 mM citrate buffer (pH 5.0)
  • EGI equivalent to 0.0036% (w / v) protein
  • XYN xylanase M1
  • Example 36 The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation consisting of a combination of endoglucanase I (EGI) and xylanase M1 (XYN, manufactured by Megazymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.0045% (w / v) protein and 0.0005% (w / v) protein. ) Suspended in a corresponding amount of XYN), and subjected to an enzyme reaction for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 6.
  • Comparative Examples 21-23 For the pulp D obtained in Production Example 4, saccharification with an enzyme preparation consisting of Cellclast 1.5 L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and xylanase M1 (XYN, produced by Megazymes), respectively. Reaction was performed. Specifically, 0.05 g of pulp D was suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 6 hours, 24 hours, 48 hours, and 72 hours with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 6.
  • Comparative Example 24 A saccharification reaction was performed on pulp H before pulverization using an enzyme preparation composed of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.15 g of pulp H was suspended in 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L equivalent to 0.1% (w / v) protein), and 50 The enzyme reaction was performed for 94 hours with stirring at °C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 7.
  • Comparative Examples 25-27 An enzyme reaction was carried out in the same manner as in Examples 37 to 39 except that the unpulverized pulp H was used in place of the pulp I, and the amount of glucose was quantified after the reaction was completed. The results are shown in Table 7.
  • Comparative Example 28 An enzyme reaction was carried out in the same manner as in Comparative Example 26 except that the pulp I obtained in Production Example 7 was used instead of the pulp H, and the amount of glucose was quantified after the reaction was completed. The results are shown in Table 7.
  • Example 40 The pulp I obtained in Production Example 7 was subjected to a saccharification reaction using an enzyme preparation consisting of a combination of endoglucanase II (EGII) and cellobiohydrolase I (CBHI). Specifically, 0.15 g of pulp I was added to 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGII equivalent to 0.0125% (w / v) protein and 0.0125% (w / v) protein. ) Suspended in a corresponding amount of CBHI), and subjected to an enzyme reaction for 6 hours, 24 hours, 48 hours and 72 hours while shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 8.
  • Comparative Example 29 The pulp I obtained in Production Example 7 was subjected to a saccharification reaction using an enzyme preparation consisting of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.15 g of pulp I was suspended in 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L equivalent to 0.025% (w / v) protein), and 50 The enzyme reaction was performed for 6 hours, 24 hours, 48 hours, and 72 hours with shaking and stirring at 0 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 8.
  • Examples 41-44 Combination of Celcrust 1.5L (manufactured by Novozymes), endoglucanase I (EGI), cellobiohydrolase I (CBHI) and xylanase M1 (XYN, manufactured by Megazymes) with respect to pulp D obtained in Production Example 4
  • a saccharification reaction was carried out using an enzyme preparation comprising: Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L corresponding to protein 0.00338 to 0.00375% (w / v), protein EGI equivalent to 0.00113-0.0036% (w / v), CBHI equivalent to 0.0009% (w / v) protein and XYN equivalent to 0.0005% (w / v) protein) The enzyme reaction was performed for 168 hours while stirring at °C.
  • Comparative Example 30 The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation composed of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.05 g of pulverized pulp is suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), 1.5 C of cell crust equivalent to 0.005% (w / v) protein), The enzyme reaction was performed for 168 hours while stirring at 50 ° C. with shaking.
  • an enzyme reaction solution 100 mM citrate buffer (pH 5.0), 1.5 C of cell crust equivalent to 0.005% (w / v) protein
  • Example 45 Comparative Examples 31 and 32 Bagasse a obtained in Production Example 8 was subjected to saccharification treatment with an enzyme preparation consisting of endoglucanase I (EGI), Cellcrust 1.5L (manufactured by Novozymes), and cellobiohydrolase (CBHI). .
  • an enzyme preparation consisting of endoglucanase I (EGI), Cellcrust 1.5L (manufactured by Novozymes), and cellobiohydrolase (CBHI).
  • EGI endoglucanase I
  • CBHI cellobiohydrolase
  • the sugar production method of the example can produce sugar more efficiently than the method of the comparative example.
  • the amount of glucose produced is significantly increased.
  • the sugar production method of the present invention is excellent in productivity and can efficiently obtain sugar (particularly glucose).
  • the obtained sugar is useful for production of fermentation such as ethanol and lactic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a method for producing a sugar by saccharifying a cellulose having a cellulose I type crystallinity, as represented by equation (1), of 50% or lower and/or a specific surface area of 180 m2/g or higher, by means of an enzyme formulation, and relates to a method for increasing the quantity of glucose produced, wherein the enzyme formulation contains 20% or more of endoglucanase relative to the total quantity of proteins in the enzyme component, and the cellulose is obtained by pulverizing a cellulose-containing raw material in a pulverizer. Cellulose I type crystallinity (%) = [(I22.6 - I18.5) / I22.6] × 100 (1) (I22.6 denotes the diffraction intensity of the lattice plane (002 plane) (diffraction angle (2θ) = 22.6°) and I18.5 denotes the diffraction intensity of the amorphous portion (diffraction angle (2θ) = 18.5°) in X-ray diffraction)

Description

糖の製造方法Method for producing sugar
 本発明は、糖の製造方法、及びグルコースの生成量を増加させる方法に関する。 The present invention relates to a method for producing sugar and a method for increasing the amount of glucose produced.
 セルロース含有原料は、セルロースエーテルの原料、化粧品、食品、バイオマス材料等の工業原料に用いられる。特に近年、環境問題への取り組み等からバイオマス材料から糖を製造し、それを発酵法等でエタノールや乳酸等へ変換する試みがなされている(特許文献1参照)。
 セルロース含有原料を糖化する方法としては、硫酸等の酸を用いる酸糖化法とセルラーゼ等の酵素を用いる酵素糖化法が知られており、より環境にやさしい酵素糖化法が望まれている。セルラーゼは機能の異なるエンドグルカナーゼ(EG)、セロビオハイドロラーゼ(CBH)及びβ-グルコシダーゼ(BG)の3種の酵素に大別され、バイオマスからグルコースを生成するためにはこれら3種のセルラーゼが必要とされている。市販セルラーゼ製剤では、Trichoderma reesei由来のセルラーゼの糖化効率が良いとされているが、そのタンパク質構成比はCBH約80%、EGが約20%であるとされ、BGの比率の低さが指摘されている。そこで糖化効率の向上を目的として、T. reesei由来のセルラーゼ製剤(セルクラスト1.5L)に対し、BG活性の比率を高めることにより、全酵素量を約半分にできる等、BG活性の重要性も指摘されている(非特許文献1参照)。
 さらに酵素糖化法としては、特定のセルラーゼを用いる方法(特許文献2参照)、過酸化水素を用いて熱水処理をしたセルロース又はヘミセルロースを酵素処理する方法(特許文献3及び4参照)等の糖化の効率化検討が行われている。
 しかし、これらの方法は、糖化効率、生産性において未だ満足できるものではない。
Cellulose-containing raw materials are used as industrial raw materials such as cellulose ether raw materials, cosmetics, foods, and biomass materials. In particular, in recent years, attempts have been made to produce sugar from biomass materials and to convert it into ethanol, lactic acid, etc. by fermentation or the like from efforts to address environmental problems (see Patent Document 1).
As a method for saccharifying a cellulose-containing raw material, an acid saccharification method using an acid such as sulfuric acid and an enzyme saccharification method using an enzyme such as cellulase are known, and a more environmentally friendly enzyme saccharification method is desired. Cellulases are roughly divided into three types of enzymes, endoglucanase (EG), cellobiohydrolase (CBH), and β-glucosidase (BG), which have different functions. In order to produce glucose from biomass, these three types of cellulases are used. is needed. In the commercially available cellulase preparation, cellulase derived from Trichoderma reesei is said to have good saccharification efficiency, but its protein composition ratio is about 80% CBH and about 20% EG, and the ratio of BG is low. ing. Therefore, for the purpose of improving saccharification efficiency, the importance of BG activity is such that the total enzyme amount can be reduced to about half by increasing the ratio of BG activity to cellulase preparation (Cell Crust 1.5L) derived from T. reesei. Has also been pointed out (see Non-Patent Document 1).
Furthermore, as an enzymatic saccharification method, saccharification such as a method using a specific cellulase (see Patent Document 2), a method of hydrolyzing cellulose or hemicellulose treated with hydrogen peroxide (see Patent Documents 3 and 4), etc. Efficiency improvement studies are being conducted.
However, these methods are not yet satisfactory in terms of saccharification efficiency and productivity.
特開2006-223152号公報JP 2006-223152 A 特開2003-135052号公報JP 2003-135052 A 特開2007-74992号公報JP 2007-74992 A 特開2007-74993号公報JP 2007-74993 A
 本発明は、糖を効率的に得ることができる、生産性に優れた糖の製造方法、及びグルコースの生成量を増加させる方法を提供する。 The present invention provides a method for producing a saccharide with excellent productivity and a method for increasing the amount of glucose produced, which can efficiently obtain a saccharide.
 本発明者らは、特定の結晶化度及び/又は比表面積を有するセルロースを、特定の酵素配合剤を用いて糖化処理することで、前記課題を解決できることを見出した。
 すなわち、本発明は、下記[1]及び[2]である。
[1]下記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを酵素配合剤により糖化処理する糖の製造方法であって、該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、糖の製造方法。
 セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100  (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
[2]下記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを酵素配合剤により糖化処理する、グルコースの生成量を増加させる方法であって、該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、グルコースの生成量を増加させる方法。
 セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100  (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
The present inventors have found that the above problem can be solved by saccharifying cellulose having a specific crystallinity and / or specific surface area using a specific enzyme compounding agent.
That is, the present invention includes the following [1] and [2].
[1] A method for producing a saccharide by saccharifying a cellulose having a cellulose I type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the following formula (1) with an enzyme compounding agent. The enzyme compounding agent contains 20% or more of endoglucanase in the total protein content of the enzyme compounding agent, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer.
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
[2] Cellulose I-type crystallinity represented by the following calculation formula (1) is 50% or less and / or cellulose having a specific surface area of 180 m 2 / g or more is saccharified with an enzyme compounding agent. In this method, the enzyme compound contains endoglucanase in an amount of 20% or more of the total protein content of the enzyme compound, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer. A method for increasing the amount of glucose produced.
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
 本発明の糖の製造方法によれば、糖を効率良く生産することができるため、生産性を向上させることができる。また、本発明のグルコースの生成量を増加させる方法によれば、グルコースが効率良く生成することができるため、グルコースの生成量を顕著に増加させ、生産性を向上させることができる。 According to the sugar production method of the present invention, sugar can be efficiently produced, and therefore productivity can be improved. Moreover, according to the method for increasing the production amount of glucose of the present invention, glucose can be produced efficiently, so that the production amount of glucose can be remarkably increased and productivity can be improved.
 本発明は、上記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを酵素配合剤により糖化処理する糖の製造方法であって、該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、糖の製造方法である。
 また、本発明は、上記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを、酵素配合剤により糖化処理するグルコースの生成量を増加させる方法であって、該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、グルコースの生成量を増加させる方法である。
 以下、本発明を詳細に説明するが、本明細書において、セルロースI型結晶化度を単に「結晶化度」ということがある。
The present invention is a method for producing a saccharide in which cellulose having a cellulose I type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the above formula (1) is saccharified with an enzyme compounding agent. The enzyme compounding agent contains endoglucanase in an amount of 20% or more in the total protein content of the enzyme compounding agent, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer. It is.
In addition, the present invention provides a glucose saccharification treatment of cellulose having a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the above formula (1) with an enzyme compounding agent. In the method for increasing the amount of production, the enzyme compound contains endoglucanase in an amount of 20% or more of the total protein content of the enzyme compound, and the cellulose is obtained by pulverizing a cellulose-containing raw material with a pulverizer. This is a method for increasing the amount of glucose produced.
Hereinafter, the present invention will be described in detail. In the present specification, cellulose I type crystallinity may be simply referred to as “crystallinity”.
〔セルロース〕
 本発明で用いるセルロースは、セルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上のものである。
 ここで、セルロースI型結晶化度とは、セルロースの結晶領域量の全量に対する割合のことである。また、セルロースI型とは、天然セルロースの結晶形のことである。結晶化度は、セルロースの物理的、化学的性質とも関係し、その値が大きいほど、セルロースの結晶性が高く、非結晶部分が少ないため、硬度、密度等は増すが、伸び、柔軟性、水や溶媒に対する溶解性、化学反応性は低下する。
〔cellulose〕
The cellulose used in the present invention has a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more.
Here, the cellulose I type crystallinity is the ratio of the amount of crystal region of cellulose to the total amount. Cellulose type I is a crystalline form of natural cellulose. The degree of crystallinity is also related to the physical and chemical properties of cellulose, and the larger the value, the higher the crystallinity of cellulose and the less non-crystalline parts, so the hardness, density, etc. increase, but elongation, flexibility, Solubility and chemical reactivity in water and solvent decrease.
 本発明におけるセルロースI型結晶化度は、X線回折法による回折強度値からSegal法により算出したもので、下記計算式(1)により定義される。
 セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100  (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
The cellulose I type crystallinity in the present invention is calculated by the Segal method from the diffraction intensity value by the X-ray diffraction method, and is defined by the following calculation formula (1).
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
 本発明で用いるセルロースのセルロースI型結晶化度としては、50%以下である。結晶化度が50%以下であれば、セルロースの化学反応性が向上し、エンドグルカナーゼを含む酵素配合剤による酵素処理により、グルコースもしくは、セロビオース、セロトリオースといったオリゴ糖等の混合物を効率良く得ることができる。また、セルロースエーテルの製造において、アルカリを加えた際にアルカリセルロース化が容易に進行してセルロースエーテル化反応の反応転化率を向上させることができる。
 そのため、上記観点から、結晶化度としては、好ましくは40%以下、より好ましくは30%以下、より好ましくは15%以下、更に好ましくは10%以下、更に好ましくは分析でI型結晶が検出されない0%である。なお、計算式(1)で定義されたセルロースI型結晶化度では計算上マイナスの値になる場合があるが、マイナスの値の場合のセルロースI型結晶化度は0%とする。
The cellulose type I crystallinity of the cellulose used in the present invention is 50% or less. If the degree of crystallinity is 50% or less, the chemical reactivity of cellulose is improved, and a mixture of glucose or oligosaccharides such as cellobiose and cellotriose can be efficiently obtained by enzyme treatment with an enzyme compounding agent containing endoglucanase. it can. In addition, in the production of cellulose ether, when an alkali is added, alkali celluloseation easily proceeds and the reaction conversion rate of the cellulose etherification reaction can be improved.
Therefore, from the above viewpoint, the degree of crystallinity is preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, and still more preferably no type I crystal is detected by analysis. 0%. The cellulose I type crystallinity defined by the calculation formula (1) may be a negative value in calculation, but the cellulose I type crystallinity in the case of a negative value is 0%.
 また、本発明で用いるセルロースの比表面積は、比表面積が180m2/g以上である。比表面積が180m2/g以上であれば、セルロースの化学反応性が向上し、エンドグルカナーゼを含む酵素配合剤により効率良く糖化処理を行なうことができる。
 そのため、上記観点から、比表面積としては、好ましくは200m2/g以上、より好ましくは250m2/g以上、より好ましくは270m2/g以上、更に好ましくは290m2/g以上である。また、当該セルロースの比表面積の上限値としては、特に制限はないが、生産性の観点から、好ましくは500m2/g以下である。なお、ここでいう比表面積は、実施例に記載の方法で測定された値である。
The specific surface area of the cellulose used in the present invention is 180 m 2 / g or more. When the specific surface area is 180 m 2 / g or more, the chemical reactivity of cellulose is improved, and the saccharification treatment can be efficiently performed with an enzyme compounding agent containing endoglucanase.
Therefore, from the above viewpoint, the specific surface area is preferably 200 m 2 / g or more, more preferably 250 m 2 / g or more, more preferably 270 m 2 / g or more, and further preferably 290 m 2 / g or more. Moreover, there is no restriction | limiting in particular as an upper limit of the specific surface area of the said cellulose, However, From a viewpoint of productivity, Preferably it is 500 m < 2 > / g or less. In addition, the specific surface area here is the value measured by the method as described in an Example.
 また、本発明で用いるセルロースの分子量は、13万以下であることが好ましい。分子量が13万以下であれば、セルロースの化学反応性が向上し、エンドグルカナーゼを含む酵素配合剤により効率良く糖化処理を行なうことができる。
 そのため、上記観点から、分子量としては、より好ましくは11万以下、より好ましくは9万以下、更に好ましくは7万以下、更に好ましくは5万以下である。また、当該セルロースの分子量の下限値としては、特に制限はないが、生産性の観点から、好ましくは1000以上である。なお、ここでいう分子量は、実施例に記載の方法で測定された値である。
Moreover, it is preferable that the molecular weight of the cellulose used by this invention is 130,000 or less. If the molecular weight is 130,000 or less, the chemical reactivity of cellulose is improved, and the saccharification treatment can be efficiently performed with an enzyme compounding agent containing endoglucanase.
Therefore, from the above viewpoint, the molecular weight is more preferably 110,000 or less, more preferably 90,000 or less, still more preferably 70,000 or less, and still more preferably 50,000 or less. Moreover, there is no restriction | limiting in particular as a lower limit of the molecular weight of the said cellulose, However, From a viewpoint of productivity, Preferably it is 1000 or more. In addition, the molecular weight here is a value measured by the method described in Examples.
 なお、本発明で用いるセルロースは、上述の結晶化度又は比表面積のいずれかの範囲に属するものであればよいが、セルロースの化学反応性を向上させ、エンドグルカナーゼを含む酵素配合剤により効率良く糖化処理を行なう観点から、上述の結晶化度及び比表面積のいずれの好適範囲にも属するセルロースが好ましく、更に上述の分子量の好適範囲にも属するセルロースがより好ましい。 The cellulose used in the present invention is not limited as long as it belongs to any one of the above-mentioned crystallinity and specific surface area, but improves the chemical reactivity of cellulose and is more efficient with an enzyme compounding agent containing endoglucanase. From the viewpoint of performing a saccharification treatment, cellulose belonging to any suitable range of the above-described crystallinity and specific surface area is preferable, and cellulose belonging to the above-described preferable range of molecular weight is more preferable.
〔セルロース含有原料〕
 上述の特定の結晶化度及び/又は比表面積を有するセルロースは、セルロース含有原料を粉砕機による粉砕処理して得る。
 セルロース含有原料は、該原料から水を除いた残余の成分中のセルロース含有量が好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは60質量%以上のものである。また、セルロース含有原料における、当該セルロース含有量の上限値としては、セルロース含有原料から水を除いた残余の成分中、通常99質量%以下である。なお、本発明において、セルロース含有量とは、セルロース量及びヘミセルロース量の合計量を意味する。
[Cellulose-containing raw material]
The cellulose having the above specific crystallinity and / or specific surface area is obtained by pulverizing a cellulose-containing raw material with a pulverizer.
The cellulose-containing raw material preferably has a cellulose content of 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more in the remaining components obtained by removing water from the raw material. The upper limit of the cellulose content in the cellulose-containing raw material is usually 99% by mass or less in the remaining components obtained by removing water from the cellulose-containing raw material. In the present invention, the cellulose content means the total amount of cellulose and hemicellulose.
 セルロース含有原料としては、特に制限は無く、例えば、各種木材チップ、剪定枝材、間伐材、枝木材等の木材類;木材から製造されるウッドパルプ、綿の種子の周囲の繊維から得られるコットンリンターパルプ等のパルプ類;新聞紙、ダンボール、雑誌、上質紙等の紙類;バガス(サトウキビの搾りかす)、パーム空果房(EFB)、稲ワラ、とうもろこし茎等の植物茎・葉・果房類;籾殻、パーム殻、ココナッツ殻等の植物殻類等が挙げられる。これらの中でも、パルプ類、紙類、植物茎・葉・果房類、植物殻類、及び木材類が好ましく、パルプ類、紙類、及び植物茎・葉・果房類がより好ましく、パルプ類、及びバガスが更に好ましい。
 なお、これらのセルロース含有原料は、粉末状のものであっても、シート状のものであってもよい。
 市販のパルプの場合、水を除いた残余の成分中のセルロース含有量は、一般には75~99質量%であり、他の成分としてはリグニン等を含む。また、市販のシート状パルプのセルロースI型結晶化度は、通常60%以上である。
 セルロース含有原料中の水分含量(粉砕処理直前のセルロース含有原料中の水分含量)は、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。セルロース含有原料中の水分含量が20質量%以下であれば、容易に粉砕できるとともに、後述する粉砕処理により結晶化度を容易に低下させることができ、その後の糖の生産を効率良く行うことができる。
There is no restriction | limiting in particular as a cellulose containing raw material, For example, various wood chips, pruned branch materials, thinning materials, branch wood, etc .; wood pulp manufactured from wood, cotton obtained from the fiber around cotton seeds Pulp such as linter pulp; Paper such as newspapers, cardboard, magazines, fine paper; plant stems, leaves, fruit bunches such as bagasse (sugar cane squeezed), palm empty fruit bunches (EFB), rice straw, corn stalks, etc. And the like: plant shells such as rice husk, palm husk, coconut husk etc. Among these, pulps, papers, plant stems / leaves / fruits, plant shells, and woods are preferred, pulps, papers, and plant stems / leaves / fruits are more preferred, and pulps And bagasse are more preferred.
These cellulose-containing raw materials may be powdery or sheet-like.
In the case of commercially available pulp, the cellulose content in the remaining components excluding water is generally 75 to 99% by mass, and other components include lignin and the like. Moreover, the cellulose I type crystallinity degree of a commercially available sheet-like pulp is 60% or more normally.
The water content in the cellulose-containing raw material (water content in the cellulose-containing raw material immediately before the pulverization treatment) is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less. If the water content in the cellulose-containing raw material is 20% by mass or less, it can be easily pulverized, and the crystallinity can be easily reduced by the pulverization process described later, and the subsequent sugar production can be efficiently performed. it can.
〔粉砕処理〕
 本発明では、上述のセルロース含有原料を粉砕機による粉砕処理することで、上述の結晶化度及び/又は比表面積を有するセルロースを得る。粉砕機による粉砕処理を行うことで、効率的に特定の結晶化度及び/又は比表面積を有するセルロースを得ることができる。
 粉砕処理で用いる粉砕機としては、糖化効率を高める観点、及びグルコースの生成量を高める観点から、媒体式粉砕機が好ましい。媒体式粉砕機には、容器駆動式粉砕機と媒体撹拌式粉砕機とがある。
[Crushing treatment]
In this invention, the cellulose which has the above-mentioned crystallinity degree and / or specific surface area is obtained by grind | pulverizing the above-mentioned cellulose containing raw material with a grinder. By carrying out a pulverization treatment with a pulverizer, cellulose having a specific crystallinity and / or specific surface area can be obtained efficiently.
As the pulverizer used in the pulverization treatment, a medium pulverizer is preferable from the viewpoint of increasing the saccharification efficiency and increasing the production amount of glucose. The medium pulverizer includes a container driven pulverizer and a medium stirring pulverizer.
 容器駆動式粉砕機としては転動ミル、振動ミル、遊星ミル、遠心流動ミル等が挙げられる。これらの中でも、粉砕効率が高く、生産性の向上が図れるとの観点から、振動ミルが好ましく、ロッドを充填した振動ミルがより好ましい。
 振動ミルとしては、中央化工機社製の振動ミル、吉田製作所社製の小型振動ロッドミル1045型、ドイツのフリッチュ社製の振動カップミルP-9型、日陶科学社製の小型振動ミルNB-O型等が挙げられる。
Examples of the container-driven crusher include a rolling mill, a vibration mill, a planetary mill, and a centrifugal fluid mill. Among these, a vibration mill is preferable and a vibration mill filled with a rod is more preferable from the viewpoint of high grinding efficiency and improvement of productivity.
As vibration mills, vibration mills manufactured by Chuo Kako Co., Ltd., small vibration rod mill model 1045 manufactured by Yoshida Seisakusho, vibration cup mill P-9 model manufactured by Fritsch, Germany, and small vibration mill NB-O manufactured by Nikko Chemical Co., Ltd. Examples include molds.
 媒体撹拌式粉砕機としてはタワーミル等の塔型粉砕機;アトライター、アクアマイザー、サンドグラインダー等の撹拌槽型粉砕機;ビスコミル、パールミル等の流通槽型粉砕機;流通管型粉砕機;コボールミル等のアニュラー型粉砕機;連続式のダイナミック型粉砕機等が挙げられる。これらの中でも、粉砕効率が高く、生産性の向上が図れるとの観点から、撹拌槽型粉砕機の媒体攪拌式ミルが好ましい。媒体撹拌式粉砕機を用いる場合の攪拌翼の先端の周速は、好ましくは0.5~20m/s、より好ましくは1~15m/sである。
 なお、粉砕機の種類は「化学工学の進歩 第30集 微粒子制御」(社団法人 化学工学会東海支部編、1996年10月10日発行、槇書店)を参照することができる。
 処理方法としては、バッチ式、連続式のどちらでもよい。
As a medium agitation type pulverizer, a tower type pulverizer such as a tower mill; an agitating tank type pulverizer such as an attritor, an aquamizer, a sand grinder; a distribution tank type pulverizer such as a visco mill and a pearl mill; For example, a continuous dynamic type pulverizer. Among these, a medium agitation mill of an agitation tank type pulverizer is preferable from the viewpoint that the crushing efficiency is high and productivity can be improved. In the case of using a medium stirring pulverizer, the peripheral speed at the tip of the stirring blade is preferably 0.5 to 20 m / s, more preferably 1 to 15 m / s.
In addition, the kind of grinder can refer to "Progress of chemical engineering 30th particle control" (Chemical Engineering Society, Tokai branch edition, published on October 10, 1996, Kashiwa Shoten).
The processing method may be either a batch type or a continuous type.
 媒体としては、ボール、ロッド、チューブ等が挙げられる。この中で、粉砕効率が高く、生産性の向上が図れるとの観点から、ボール、ロッドが好ましく、処理時間短縮の観点からロッドがより好ましい。媒体の材質としては、特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア、炭化珪素、チッ化珪素、ガラス等が挙げられる。 Examples of media include balls, rods, and tubes. Of these, balls and rods are preferable from the viewpoint of high crushing efficiency and productivity can be improved, and rods are more preferable from the viewpoint of shortening the processing time. There is no restriction | limiting in particular as a material of a medium, For example, iron, stainless steel, an alumina, a zirconia, silicon carbide, silicon nitride, glass etc. are mentioned.
 媒体として用いるロッドは、棒状の媒体であり、断面が四角形、六角形等の多角形、円形、楕円形等のものを用いることができる。
 ロッドの外径は、好ましくは0.5~200mm、より好ましくは1~100mm、更に好ましくは5~50mmの範囲である。ロッドの長さは、粉砕機の容器の長さよりも短いものであれば特に限定されない。ロッドの大きさが上記の範囲であれば、所望の粉砕力が得られるとともに、ロッドのかけら等が混入してセルロース含有原料が汚染されることなく本発明で用いるセルロースを得ることができる。
The rod used as the medium is a rod-shaped medium, and a cross section having a square shape, a polygonal shape such as a hexagon, a circular shape, an elliptical shape, or the like can be used.
The outer diameter of the rod is preferably in the range of 0.5 to 200 mm, more preferably 1 to 100 mm, and still more preferably 5 to 50 mm. The length of the rod is not particularly limited as long as it is shorter than the length of the pulverizer container. If the size of the rod is in the above range, the desired pulverizing force can be obtained, and the cellulose used in the present invention can be obtained without contamination of the cellulose-containing raw material by mixing fragments of the rod and the like.
 媒体として用いるボールの外径は、好ましくは1~100mm、より好ましくは3~50mm、更に好ましくは6~30mmである。ボールの外径が上記の範囲であれば、所望の粉砕力が得られる。 The outer diameter of the ball used as the medium is preferably 1 to 100 mm, more preferably 3 to 50 mm, and still more preferably 6 to 30 mm. If the outer diameter of the ball is in the above range, a desired crushing force can be obtained.
 媒体の充填率は、粉砕機の機種により好適な範囲が異なるが、好ましくは10~97%、より好ましくは15~95%の範囲である。充填率がこの範囲内であれば、セルロースと媒体との接触頻度が向上するとともに、媒体の動きを妨げずに、粉砕効率を向上させることができる。ここで充填率とは、粉砕機の容積に対する媒体の見かけの体積をいう。
 粉砕機の処理時間としては、粉砕機の種類、媒体の種類、大きさ及び充填率等により一概に決定できないが、結晶化度を低下させる観点から、好ましくは0.01~50hr、より好ましくは0.05~20hr、更に好ましくは0.1~10hrである。処理温度は、特に制限はないが、熱による劣化を防ぐ観点から、好ましくは5~250℃、より好ましくは10~200℃である。
The medium filling rate varies depending on the type of the pulverizer, but is preferably 10 to 97%, more preferably 15 to 95%. When the filling rate is within this range, the contact frequency between the cellulose and the medium is improved, and the grinding efficiency can be improved without hindering the movement of the medium. Here, the filling rate refers to the apparent volume of the medium relative to the volume of the pulverizer.
The processing time of the pulverizer cannot be determined unconditionally depending on the type of pulverizer, the type of medium, the size, the filling rate, etc., but from the viewpoint of reducing the crystallinity, it is preferably 0.01 to 50 hr, more preferably 0.05 to 20 hr, more preferably 0.1 to 10 hr. The treatment temperature is not particularly limited, but is preferably 5 to 250 ° C., more preferably 10 to 200 ° C. from the viewpoint of preventing deterioration due to heat.
 上記の粉砕処理を経ることで、前記セルロース含有原料から、セルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上のセルロースを効率良く得ることができる。
 得られるセルロースの平均粒径は、このセルロースを工業原料として用いる際の化学反応性及び取扱い性の観点から、好ましくは25~150μm、より好ましくは30~100μmである。平均粒径が25μm以上であれば、セルロースを水等の液体と接触させたときに「ママコ(ダマ)」になることを抑えることができる。
Through the above pulverization treatment, cellulose having a cellulose I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more can be efficiently obtained from the cellulose-containing raw material.
The average particle size of the obtained cellulose is preferably 25 to 150 μm, more preferably 30 to 100 μm, from the viewpoint of chemical reactivity and handleability when the cellulose is used as an industrial raw material. When the average particle size is 25 μm or more, it is possible to suppress “mamako (dama)” when cellulose is brought into contact with a liquid such as water.
 なお、粉砕機に供給するセルロース含有原料として粉末状の原料を用いる場合、粉砕機中に粉砕原料を効率的に分散させる観点から、該原料の平均粒径が1mm以下の範囲にあるものが好ましい。この平均粒径が1mm以下であれば、粉砕機中に供給する際に、粉砕機中に粉砕原料を効率的に分散させることができ、長時間を要することなく所定の粒径に到達することができる。一方、この平均粒径の下限としては、生産性の観点から、0.03mm以上が好ましい。これらの観点から、この平均粒径としては、0.03~0.7mmがより好ましく、0.05~0.5mmが更に好ましい。なお、平均粒径は、レーザー回析/散乱式粒度分布測定装置を用いて、粒径測定前に超音波で1分間処理し、測定時の分散溶媒として水を用い、温度25℃にて測定した値である。 In addition, when using a powdery raw material as the cellulose-containing raw material supplied to the pulverizer, from the viewpoint of efficiently dispersing the pulverized raw material in the pulverizer, those having an average particle diameter of the raw material in the range of 1 mm or less are preferable. . If this average particle size is 1 mm or less, when supplying into the pulverizer, the pulverized raw material can be efficiently dispersed in the pulverizer, and the predetermined particle size can be reached without taking a long time. Can do. On the other hand, the lower limit of the average particle diameter is preferably 0.03 mm or more from the viewpoint of productivity. From these viewpoints, the average particle diameter is more preferably 0.03 to 0.7 mm, and further preferably 0.05 to 0.5 mm. The average particle size is measured at a temperature of 25 ° C. using a laser diffraction / scattering particle size distribution measuring device, treated with ultrasonic waves for 1 minute before measuring the particle size, and using water as a dispersion solvent during the measurement. It is the value.
 また、粉砕機に供給するセルロース含有原料としてシート状の原料を用いる場合、粉砕機へセルロース含有原料を投入する際には、予めチップ状に粗粉砕しておくことが好ましい。チップ状にしたセルロース含有原料の大きさとしては、好ましくは1~50mm角、より好ましくは1~30mm角である。当該範囲角のチップ状に粗粉砕することにより、粉砕処理を効率良く容易に行うことができる。
 セルロース含有原料をチップ状に粗粉砕する方法としては、シュレッダー又はロータリーカッターを使用する方法が挙げられる。
 ロータリーカッターを使用する場合、得られるチップ状セルロース含有原料の大きさは、スクリーンの目開きを変えることにより、制御することができる。スクリーンの目開きは、好ましくは1~50mm、より好ましくは1~30mmである。スクリーンの目開きが1mm以上であれば、セルロース含有原料が綿状化することがなく取扱い性が向上する。スクリーンの目開きが50mm以下であれば、後の粉砕機処理に用いるセルロース含有原料として適度な大きさを有するために負荷を低減することができる。
を有するために負荷を低減することができる。
Moreover, when using a sheet-like raw material as a cellulose containing raw material supplied to a grinder, when putting a cellulose containing raw material into a grinder, it is preferable to coarsely grind into a chip shape beforehand. The size of the cellulose-containing raw material in the form of chips is preferably 1 to 50 mm square, more preferably 1 to 30 mm square. By roughly pulverizing the chips in the range angle, the pulverization can be efficiently and easily performed.
Examples of the method for coarsely pulverizing the cellulose-containing raw material into chips include a method using a shredder or a rotary cutter.
When using a rotary cutter, the magnitude | size of the chip-shaped cellulose containing raw material obtained can be controlled by changing the opening of a screen. The opening of the screen is preferably 1 to 50 mm, more preferably 1 to 30 mm. If the opening of the screen is 1 mm or more, the cellulose-containing raw material does not become cottony and the handleability is improved. If the opening of the screen is 50 mm or less, the load can be reduced because it has an appropriate size as a cellulose-containing raw material used in the subsequent pulverizer treatment.
Therefore, the load can be reduced.
〔アルカリ処理〕
 また、本発明の製造方法においては、前記セルロース含有原料を、糖化効率を高める観点、及びグルコースの生成量を高める観点から、後述する糖化処理前にアルカリ処理することが好ましく、前記粉砕処理前にアルカリ処理することがより好ましい。
 また、このアルカリ処理は、糖化効率を高める観点、及びグルコースの生成量を高める観点から、アルカリ溶液を用いた浸漬処理であることが好ましい。
[Alkali treatment]
In the production method of the present invention, the cellulose-containing raw material is preferably alkali-treated before the saccharification treatment described later, from the viewpoint of increasing saccharification efficiency and increasing the amount of glucose produced, and before the pulverization treatment. More preferably, an alkali treatment is performed.
The alkali treatment is preferably an immersion treatment using an alkaline solution from the viewpoint of increasing the saccharification efficiency and increasing the amount of glucose produced.
 浸漬処理におけるアルカリ溶液中のアルカリ化合物の濃度は、糖化効率を高める観点、グルコースの生成量を高める観点から、好ましくは0.1~60質量%、より好ましくは0.1~50質量%、更に好ましくは0.1~40質量%である。
 浸漬処理におけるアルカリ溶液の使用量は、原料セルロースの乾燥重量に対して、好ましくは50~99質量%、より好ましくは60~99質量%、更に好ましくは80~99質量%である。
 アルカリ処理の処理時間としては、好ましくは0.5~50時間、より好ましくは1~24時間、更に好ましくは1.5~10時間である。
The concentration of the alkali compound in the alkaline solution in the immersion treatment is preferably 0.1 to 60% by mass, more preferably 0.1 to 50% by mass, more preferably 0.1 to 50% by mass from the viewpoint of increasing saccharification efficiency and increasing the amount of glucose produced. Preferably, the content is 0.1 to 40% by mass.
The amount of the alkaline solution used in the immersion treatment is preferably 50 to 99% by mass, more preferably 60 to 99% by mass, and still more preferably 80 to 99% by mass with respect to the dry weight of the raw material cellulose.
The treatment time for the alkali treatment is preferably 0.5 to 50 hours, more preferably 1 to 24 hours, still more preferably 1.5 to 10 hours.
 アルカリ処理に用いられるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物;酸化ナトリウム、酸化カリウム等のアルカリ金属酸化物;酸化マグネシウム、酸化カルシウム等のアルカリ土類金属酸化物;硫化ナトリウム、硫化カリウム等のアルカリ金属硫化物;硫化マグネシウム、硫化カルシウム等のアルカリ土類金属硫化物等が挙げられる。
 これらの中でも、アルカリ金属水酸化物又はアルカリ土類金属水酸化物が好ましく、アルカリ金属水酸化物がより好ましく、水酸化ナトリウム又は水酸化カリウムが更に好ましい。なお、これらのアルカリ化合物は、単独で又は2種以上を組み合わせて用いることができる。
Examples of the alkali compound used for the alkali treatment include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; sodium oxide Alkali metal oxides such as potassium oxide; alkaline earth metal oxides such as magnesium oxide and calcium oxide; alkali metal sulfides such as sodium sulfide and potassium sulfide; alkaline earth metal sulfides such as magnesium sulfide and calcium sulfide Is mentioned.
Among these, an alkali metal hydroxide or an alkaline earth metal hydroxide is preferable, an alkali metal hydroxide is more preferable, and sodium hydroxide or potassium hydroxide is still more preferable. In addition, these alkali compounds can be used individually or in combination of 2 or more types.
 浸漬処理した後、セルロース含有原料を、アルカリ化合物の除去、糖化効率の向上及びグルコースの生成量向上の観点から、後述の糖化処理前に、酢酸等で中和又は水洗し、凍結乾燥することが好ましい。 After the immersion treatment, the cellulose-containing raw material may be neutralized or washed with acetic acid or the like and lyophilized before the saccharification treatment described below from the viewpoint of removing alkali compounds, improving saccharification efficiency, and improving the amount of glucose produced. preferable.
〔糖化処理〕
 本発明では、上述の粉砕処理をしたセルロースに対し、特定の酵素配合剤を作用させて糖化処理をし、糖を得る。ここで、糖化処理後にエタノール発酵や乳酸発酵に使用する場合等を考慮すると単糖まで分解することが好ましい。
 本発明で用いる酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質中20%以上含むものである。このような酵素配合剤を用いることで、従来の酵素配合剤に比べて、糖化処理の効率性を向上させることができ、β-グルコシダーゼ活性を増強する必要がないため、配合の自由度が向上できる。
 エンドグルカナーゼの含有量としては、酵素配合剤の総タンパク質中20%以上であるが、好ましくは25~100%、より好ましくは33~90%、更に好ましくは50~90%である。エンドグルカナーゼの含有量が、酵素配合剤の総タンパク質中20%未満の場合、エンドグルカナーゼによる働きが十分に発揮されず、糖化効率が劣るため好ましくない。
[Saccharification treatment]
In the present invention, a specific enzyme compounding agent is allowed to act on the cellulose that has been subjected to the above-mentioned pulverization treatment to obtain a sugar. Here, it is preferable to decompose to monosaccharides in consideration of the case where it is used for ethanol fermentation or lactic acid fermentation after saccharification treatment.
The enzyme compounding agent used in the present invention contains endoglucanase in an amount of 20% or more in the total protein of the enzyme compounding agent. By using such an enzyme compounding agent, the efficiency of saccharification treatment can be improved compared to conventional enzyme compounding agents, and there is no need to enhance β-glucosidase activity, so the degree of freedom in compounding is improved. it can.
The content of endoglucanase is 20% or more in the total protein of the enzyme compounding agent, preferably 25 to 100%, more preferably 33 to 90%, still more preferably 50 to 90%. When the content of endoglucanase is less than 20% of the total protein of the enzyme compounding agent, the function of endoglucanase is not sufficiently exhibited and saccharification efficiency is inferior.
〔エンドグルカナーゼ〕
 エンドグルカナーゼは、セルロースのβ-1,4-グルカンのグリコシド結合を加水分解する酵素であるセルラーゼの一種である。本発明で用いるエンドグルカナーゼとしては、特に制限はないが、セルロースの糖化効率の観点から、Trichoderma属由来のエンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)が好ましく、これらの酵素は異種宿主により発現させて用いてもよい。異種宿主により発現させる調製法は、特に制限はないが、例えば実施例記載の方法が挙げられる。
[Endoglucanase]
Endoglucanase is a type of cellulase that is an enzyme that hydrolyzes the glycosidic bond of β-1,4-glucan in cellulose. The endoglucanase used in the present invention is not particularly limited, but from the viewpoint of cellulose saccharification efficiency, endoglucanase I (EGI) and endoglucanase II (EGII) derived from the genus Trichoderma are preferable. It may be expressed and used. There are no particular restrictions on the preparation method for expression in a heterologous host, but examples include the methods described in the Examples.
 本発明で用いられるエンドグルカナーゼは、市販のセルラーゼ製剤や、動物、植物、微生物由来のセルラーゼを精製したものを用いてもよい。精製方法については、特に制限はないが、例えば、実施例記載の方法が挙げられる。
 このような精製対象となるセルラーゼとしては、例えば、セルクラスト1.5L(ノボザイムズ社)等のトリコデルマ リーゼ(Trichoderma reesei)由来のセルラーゼ製剤やバチルス エスピー(Bacillus sp.)KSM-N145(FERM P-19727)株由来のセルラーゼ、又はバチルス エスピー(Bacillus sp.)KSM-N252(FERM P-17474)、バチルス エスピー(Bacillus sp.)KSM-N115(FERM P-19726)、バチルス エスピー(Bacillus sp.)KSM-N440(FERM P-19728)、バチルス エスピー(Bacillus sp.)KSM-N659(FERM P-19730)等の各株由来のセルラーゼ、更にはトリコデルマ ビリデ(Trichoderma viride)、アスペルギルス アクレアタス(Aspergillus acleatus)、クロストリジウム サーモセラム(Clostridium thermocellum)、クロストリジウム ステルコラリウム(Clostridium stercorarium)、クロストリジウム ジョスイ(Clostridium josui)セルロモナス フィミ(Cellulomonas fimi)、アクレモニウム セルロリティクス(Acremonium cellulolyticus)、イルペックス ラクテウス(Irpex lacteus)、アスペルギルス ニガー(Aspergillus niger)、フミコーラ インソレンス(Humicola insolens)由来のセルラーゼ混合物やパイロコッカス ホリコシ(Pyrococcus horikoshii)由来の耐熱性セルラーゼ等が挙げられる。これらの中で、好ましくはトリコデルマ リーゼ(Trichoderma reesei)、トリコデルマ ビリデ(Trichoderma viride)、あるいはフミコーラ インソレンス(Humicola insolens)由来のセルラーゼ、例えばセルクラスト1.5L(ノボザイムズ社)、TP-60(明治製菓株式会社)、あるいはウルトラフロL(ノボザイムズ社)が挙げられる。
The endoglucanase used in the present invention may be a commercially available cellulase preparation or a product obtained by purifying a cellulase derived from animals, plants, or microorganisms. Although there is no restriction | limiting in particular about the purification method, For example, the method of an Example description is mentioned.
Examples of cellulases to be purified include cellulase preparations derived from Trichoderma reesei such as Cellcrust 1.5L (Novozymes) and Bacillus sp. KSM-N145 (FERM P-19727). ) line-derived cellulase, or Bacillus sp. (Bacillus sp.) KSM-N252 (FERM P-17474), Bacillus sp. (Bacillus sp.) KSM-N115 (FERM P-19726), Bacillus sp. (Bacillus sp.) KSM- N440 (FERM P-19728), Bacillus sp (Bacillus sp.) KSM-N659 (FERM P-19730) cellulase from each strain, such as, more Trichoderma viride (Trichoderma viride), Aspergillus Akureatasu (Aspergillus acleatus), Clostridium thermocellum (Clostridium thermocellum), Clostridium stercorarium (Clostridium stercorarium), Clostridium josui Clostridium josui) Cellulomonas Fimi (Cellulomonas fimi), Acremonium cell Lori caustics (Acremonium cellulolyticus), Irupekkusu Rakuteusu (Irpex lacteus), Aspergillus niger (Aspergillus niger), Humicola insolens (Humicola insolens) derived cellulase mixtures and Pyrococcus horikoshii (Pyrococcus horikoshii ) derived thermostable cellulase. Among these, preferably a cellulase derived from Trichoderma reesei , Trichoderma viride , or Humicola insolens , such as Cell Crust 1.5L (Novozymes), TP-60 (Meiji Seika Co., Ltd.) Company) or Ultraflo L (Novozymes).
〔その他の酵素〕
 本発明で用いられる酵素配合剤は、エンドグルカナーゼ以外の酵素を含んでもよい。ただ、糖化処理の効率性を向上させる観点から、更に、セロビオハイドロラーゼ、ヘミセルラーゼ、β-グルコシダーゼからなる群から選ばれる1種以上の酵素を含むものが好ましい。
 また、グルコースを効率的に製造するためには、セロビオハイドロラーゼの作用で生成するセロビオースを分解するβ-グルコシダーゼを添加又は増強する必要があることが知られているが、本発明で用いられる酵素配合剤であれば、β-グルコシダーゼを含まなくても、グルコースを効率的に製造することができる。
 セロビオハイドロラーゼは、セルラーゼの一種であり、セルロースを分解し二糖のセロビオースを主に生成する酵素であり、セロビオハイドロラーゼI(CBHI)とセロビオハイドロラーゼII(CBHII)の2種が知られている。
 セロビオハイドロラーゼは、エンドグルカナーゼと同じく市販のセルラーゼ製剤や、動物、植物、微生物由来のセルラーゼを精製したものを用いられ、精製方法についても、特に制限はなく、例えば、実施例記載の方法が挙げられる。
[Other enzymes]
The enzyme compounding agent used in the present invention may contain an enzyme other than endoglucanase. However, from the viewpoint of improving the efficiency of the saccharification treatment, those containing one or more enzymes selected from the group consisting of cellobiohydrolase, hemicellulase, and β-glucosidase are preferred.
Further, in order to efficiently produce glucose, it is known that β-glucosidase that degrades cellobiose produced by the action of cellobiohydrolase needs to be added or enhanced, but it is used in the present invention. If it is an enzyme compounding agent, glucose can be efficiently produced even without β-glucosidase.
Cellobiohydrolase is a type of cellulase, an enzyme that mainly breaks down cellulose to produce the disaccharide cellobiose. Cellobiohydrolase I (CBHI) and cellobiohydrolase II (CBHII) are two types. Are known.
Cellobiohydrolase is a commercially available cellulase preparation similar to endoglucanase, or purified cellulase derived from animals, plants, or microorganisms, and the purification method is not particularly limited. For example, the method described in the Examples Can be mentioned.
 ヘミセルラーゼは、ヘミセルロースを分解する酵素であり、キシラナーゼ、マンナナーゼ等が含まれる。
 用いるヘミセルラーゼとしては、特に制限はなく、市販の製剤や、動物、植物、微生物由来のものが用いられ、例えば、バチルス エスピー(Bacillus sp.)KSM-N546(FERM P-19729)由来のキシナラーゼのほか、アスペルギルス ニガー(Aspergillus niger)、トリコデルマ ビリデ(Trichoderma viride)、フミコーラ インソレンス(Humicola insolens)、バチルス アルカロフィルス(Bacillus alcalophilus)由来のキシラナーゼ、更にはサーモマイセス(Thermomyces)、オウレオバシジウム(Aureobasidium)、ストレプトマイセス(Streptomyces)、クロストリジウム(Clostridium)、サーモトガ(Thermotoga)、サーモアスクス(Thermoascus)、カルドセラム(Caldocellum)、サーモモノスポラ(Thermomonospora)属由来のキシラナーゼ等が挙げられる。また上記のセルラーゼ混合物中に含まれるヘミセルラーゼ活性を持つ酵素を利用することもできる。
Hemicellulase is an enzyme that degrades hemicellulose and includes xylanase, mannanase and the like.
The hemicellulase to be used is not particularly limited, and commercially available preparations and those derived from animals, plants and microorganisms are used. For example, a xylanase derived from Bacillus sp. KSM-N546 (FERM P-19729) is used. in addition, Aspergillus niger (Aspergillus niger), Trichoderma viride (Trichoderma viride), Humicola insolens (Humicola insolens), Bacillus alcalophilus (Bacillus alcalophilus) derived from a xylanase, further Thermomyces (Thermomyces), Ou Leo bus Shijiumu (Aureobasidium), Streptomyces (Streptomyces), Clostridium (Clostridium), Thermotoga (Thermotoga), Thermoascus (Thermoascus), Karudoseramu (Caldocellum), thermo mono Supora (Thermomonospora) genus xylanase like from like. An enzyme having hemicellulase activity contained in the cellulase mixture can also be used.
 β-グルコシダーゼは、セルラーゼの一種であり、セロビオースを分解し最終的にグルコースを生成する酵素である。
 用いるβ-グルコシダーゼとしては、特に制限はなく、市販の製剤や、動物、植物、微生物由来のものが用いられ、例えば、アスペルギルス ニガー(Aspergillus niger)由来の酵素(例えば、メガザイム社製β-グルコシダーゼ)やアグロバクテリウム(Agrobacterium)、サーモトガ マリチマ(Thermotoga maritima)、トリコデルマ リーゼ(Trichoderma reesei)、ペニシリウム エメルソニイ(Penicillium emersonii)由来の酵素等が挙げられる。
β-Glucosidase is a kind of cellulase and is an enzyme that decomposes cellobiose and finally produces glucose.
The β-glucosidase to be used is not particularly limited, and commercially available preparations, those derived from animals, plants and microorganisms are used. For example, an enzyme derived from Aspergillus niger (for example, β-glucosidase manufactured by Megazyme) and Agrobacterium (Agrobacterium), Thermotoga maritima (Thermotoga maritima), Trichoderma reesei (Trichoderma reesei), Penicillium Emerusonii (Penicillium emersonii) include enzymes such as the origin.
 セルロースを上述の特定の酵素配合剤で糖化処理する際の反応条件は、セルロースの結晶化度、比表面積、分子量、用いる酵素配合剤中の成分により、適宜選択することができる。
 糖化処理の際のpHとしては、用いる酵素の種類により適当なpHを選ぶことが好ましく、好ましくはpH2~10、より好ましくはpH3~7、更に好ましくはpH4~6、より更に好ましくはpH5付近(pH4.7~5.3)である。
 糖化処理の処理温度としては、用いる酵素の種類により適当な温度を選ぶことが好ましく、好ましくは10~90℃、より好ましくは20~70℃、更に好ましくは35~60℃、より更に好ましくは45~55℃である。
 糖化処理の処理時間としては、好ましくは5~168時間、より好ましくは24~120時間、更に好ましくは48~96時間である。
The reaction conditions for saccharifying cellulose with the above-mentioned specific enzyme compounding agent can be appropriately selected depending on the crystallinity of cellulose, the specific surface area, the molecular weight, and the components in the enzyme compounding agent to be used.
The pH for the saccharification treatment is preferably selected according to the type of enzyme used, preferably pH 2 to 10, more preferably pH 3 to 7, still more preferably pH 4 to 6, and still more preferably around pH 5 ( pH 4.7-5.3).
The treatment temperature for the saccharification treatment is preferably selected according to the type of enzyme used, preferably 10 to 90 ° C., more preferably 20 to 70 ° C., still more preferably 35 to 60 ° C., and still more preferably 45. ~ 55 ° C.
The treatment time for the saccharification treatment is preferably 5 to 168 hours, more preferably 24 to 120 hours, and still more preferably 48 to 96 hours.
 エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含む酵素配合剤を使用し、パルプ由来の結晶化度50%以下及び/又は比表面積が180m2/g以上のセルロースを基質とする場合は、0.5~20%(w/v)の基質懸濁液に対して、酵素配合剤をタンパク質0.00017~2.5%(w/v)となる様に添加し、pH2~10(用いる酵素の種類により適当なpHを選ぶことが好ましく、セルクラスト1.5Lを用いる場合、より好ましくはpH3~7、更に好ましくはpH4~6、より更に好ましくはpH5付近(pH4.7~5.3))の緩衝液中、反応温度10~90℃(用いる酵素の種類により適当な温度を選ぶことが好ましく、セルクラスト1.5Lを用いる場合、より好ましくは20~70℃、更に好ましくは35~60℃、より更に好ましくは45~55℃)の条件下で糖化処理することが、糖を効率良く得る観点から好ましい。 When using an enzyme compounding agent containing 20% or more of endoglucanase in the total protein content of the enzyme compounding agent and using cellulose having a crystallinity of 50% or less derived from pulp and / or a specific surface area of 180 m 2 / g or more as a substrate Add 0.5% to 20% (w / v) of the substrate suspension with the enzyme compounding agent so that the protein is 0.00017-2.5% (w / v), and the pH is 2-10. (It is preferable to select an appropriate pH depending on the type of enzyme used. When 1.5 liters of cell crust is used, it is more preferably pH 3-7, still more preferably pH 4-6, and even more preferably around pH 5 (pH 4.7-5). .3)), a reaction temperature of 10 to 90 ° C. (preferably an appropriate temperature is selected depending on the type of enzyme used. Properly it is 35 ~ 60 ° C., even more preferably be saccharification treatment under the condition of 45 ~ 55 ℃), from the viewpoint of efficiently obtaining a sugar.
 上述した実施形態に関し、本発明は、下記[1]の糖の製造方法を開示する。
[1]下記計算式(1)で示されるセルロースI型結晶化度が50%以下、好ましくは40%以下、より好ましくは30%以下、より好ましくは15%以下、更に好ましくは10%以下、更に好ましくは分析でI型結晶が検出されない0%、及び/又は比表面積が180m2/g以上、好ましくは180m2/g以上500m2/g以下、より好ましくは200m2/g以上500m2/g以下、より好ましくは250m2/g以上500m2/g以下、より好ましくは270m2/g以上500m2/g以下、更に好ましくは290m2/g以上500m2/g以下であるセルロースを酵素配合剤により糖化処理する糖の製造方法であって、
 該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上、好ましくは25~100%、より好ましくは33~90%、更に好ましくは50~90%含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、糖の製造方法。
 セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100    (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
In relation to the above-described embodiment, the present invention discloses the following sugar production method [1].
[1] Cellulose type I crystallinity represented by the following formula (1) is 50% or less, preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, more preferably 0% type I crystal is not detected by the analysis, and / or a specific surface area of 180 m 2 / g or more, preferably 180 m 2 / g or more 500 meters 2 / g or less, more preferably 200 meters 2 / g or more 500 meters 2 / g or less, more preferably 250 meters 2 / g or more 500 meters 2 / g or less, more preferably 270 meters 2 / g or more 500 meters 2 / g or less, more preferably cellulose enzyme formulation is less than 290 m 2 / g or more 500 meters 2 / g A method for producing a sugar that is saccharified with an agent,
The enzyme compounding agent contains endoglucanase in an amount of 20% or more, preferably 25 to 100%, more preferably 33 to 90%, still more preferably 50 to 90% of the total protein content of the enzyme compounding agent. Cellulose is a method for producing sugar, obtained by pulverizing a cellulose-containing raw material with a pulverizer.
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
 本発明は、さらに下記〔2〕~〔12〕の糖の製造方法であることが好ましい。
[2]前記セルロースの分子量が13万以下、より好ましくは1000以上13万以下、より好ましくは1000以上11万以下、より好ましくは1000以上9万以下、更に好ましくは1000以上7万以下、更に好ましくは1000以上5万以下である、上記[1]に記載の糖の製造方法。
[3]前記粉砕機が、媒体式粉砕機である、上記[1]又は[2]に記載の糖の製造方法。
[4]セルロース含有原料を、前記糖化処理前にアルカリ処理する、より好ましくは前記粉砕処理前にアルカリ処理をする、上記[1]~[3]のいずれかに記載の糖の製造方法。
[5]前記アルカリ処理が、アルカリ溶液を用いた浸漬処理である、上記[4]に記載の糖の製造方法。
[6]前記エンドグルカナーゼが、Trichoderma属由来のエンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)から選ばれる少なくとも1種である、上記[1]~[5]のいずれかに記載の糖の製造方法。
[7]前記酵素配合剤が、更に、セロビオハイドロラーゼ、ヘミセルラーゼ、β-グルコシダーゼからなる群から選ばれる1種以上を含む、上記[1]~[6]のいずれかに記載の糖の製造方法。
[8]前記酵素配合剤が、更に、酵素としてセロビオハイドロラーゼ及び/又はヘミセルラーゼを含み、β-グルコシダーゼを含まない、上記[1]~[7]のいずれかに記載の糖の製造方法。
[9]前記糖化処理の処理温度が、10~90℃、より好ましくは20~70℃、更に好ましくは35~60℃、より更に好ましくは45~55℃である、上記[1]~[8]のいずれかに記載の糖の製造方法。
[10]前記糖化処理の処理時間が、5~168時間、より好ましくは24~120時間、更に好ましくは48~96時間である、上記[1]~[9]のいずれかに記載の糖の製造方法。
[11]前記セルロース含有原料が、パルプ類、紙類、植物茎・葉・果房類、植物殻類、及び木材類からなる群から選ばれる少なくとも1種である、上記[1]~[10]のいずれかに記載の糖の製造方法。
[12]前記セルロース含有原料における、該原料から水を除いた残余の成分中のセルロース含有量が、20質量%以上、より好ましくは20質量%以上99質量%以下、更に好ましくは40質量%以上99質量%以下、より更に好ましくは60質量%以上99質量%以下である、上記[1]~[11]のいずれかに記載の糖の製造方法。
The present invention preferably further includes the following sugar production methods [2] to [12].
[2] The molecular weight of the cellulose is 130,000 or less, more preferably 1000 or more and 130,000 or less, more preferably 1000 or more and 110,000 or less, more preferably 1000 or more and 90,000 or less, still more preferably 1000 or more and 70,000 or less, and still more preferably. The method for producing a saccharide according to the above [1], wherein is from 1,000 to 50,000.
[3] The method for producing sugar according to [1] or [2] above, wherein the pulverizer is a medium pulverizer.
[4] The method for producing sugar according to any one of [1] to [3] above, wherein the cellulose-containing raw material is subjected to an alkali treatment before the saccharification treatment, more preferably an alkali treatment before the pulverization treatment.
[5] The method for producing sugar according to [4], wherein the alkali treatment is an immersion treatment using an alkaline solution.
[6] The sugar according to any one of [1] to [5], wherein the endoglucanase is at least one selected from Trichoderma-derived endoglucanase I (EGI) and endoglucanase II (EGII). Production method.
[7] The sugar composition according to any one of [1] to [6], wherein the enzyme compounding agent further contains one or more selected from the group consisting of cellobiohydrolase, hemicellulase, and β-glucosidase. Production method.
[8] The method for producing a saccharide according to any one of [1] to [7], wherein the enzyme compounding agent further contains cellobiohydrolase and / or hemicellulase as an enzyme and does not contain β-glucosidase. .
[9] The above saccharification treatment temperature is 10 to 90 ° C., more preferably 20 to 70 ° C., still more preferably 35 to 60 ° C., and still more preferably 45 to 55 ° C. ] The manufacturing method of the saccharide | sugar in any one of.
[10] The saccharification treatment according to any one of [1] to [9] above, wherein a treatment time of the saccharification treatment is 5 to 168 hours, more preferably 24 to 120 hours, and still more preferably 48 to 96 hours. Production method.
[11] The above [1] to [10], wherein the cellulose-containing raw material is at least one selected from the group consisting of pulps, papers, plant stems / leaves / fruit bunches, plant shells, and woods. ] The manufacturing method of the saccharide | sugar in any one of.
[12] In the cellulose-containing raw material, the cellulose content in the remaining components excluding water from the raw material is 20% by mass or more, more preferably 20% by mass or more and 99% by mass or less, and further preferably 40% by mass or more. The method for producing a saccharide according to any one of the above [1] to [11], which is 99% by mass or less, more preferably 60% by mass or more and 99% by mass or less.
 本発明は、さらに下記[13]のグルコースの生成量を増加させる方法を開示する。
[13]下記計算式(1)で示されるセルロースI型結晶化度が50%以下、好ましくは40%以下、より好ましくは30%以下、より好ましくは15%以下、更に好ましくは10%以下、更に好ましくは分析でI型結晶が検出されない0%、及び/又は比表面積が180m2/g以上、好ましくは180m2/g以上500m2/g以下、より好ましくは200m2/g以上500m2/g以下、より好ましくは250m2/g以上500m2/g以下、より好ましくは270m2/g以上500m2/g以下、更に好ましくは290m2/g以上500m2/g以下であるセルロースを酵素配合剤により糖化処理するグルコースの生成量を増加させる方法であって、
 該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上、好ましくは25~100%、より好ましくは33~90%、更に好ましくは50~90%含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、グルコースの生成量を増加させる方法。
 セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100  (1)
〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
The present invention further discloses a method for increasing the production amount of glucose described in [13] below.
[13] The cellulose I type crystallinity represented by the following calculation formula (1) is 50% or less, preferably 40% or less, more preferably 30% or less, more preferably 15% or less, still more preferably 10% or less, more preferably 0% type I crystal is not detected by the analysis, and / or a specific surface area of 180 m 2 / g or more, preferably 180 m 2 / g or more 500 meters 2 / g or less, more preferably 200 meters 2 / g or more 500 meters 2 / g or less, more preferably 250 meters 2 / g or more 500 meters 2 / g or less, more preferably 270 meters 2 / g or more 500 meters 2 / g or less, more preferably cellulose enzyme formulation is less than 290 m 2 / g or more 500 meters 2 / g A method for increasing the amount of glucose produced by saccharification with an agent,
The enzyme compounding agent contains endoglucanase in an amount of 20% or more, preferably 25 to 100%, more preferably 33 to 90%, still more preferably 50 to 90% of the total protein content of the enzyme compounding agent. Cellulose is a method of increasing the amount of glucose produced by pulverizing a cellulose-containing raw material with a pulverizer.
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
[I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
 機械的に処理したセルロース含有原料のX線回折強度、水分含量、比表面積、平均分子量、及びセルロース含有量の測定は、下記に記載の方法により行った。また、粉砕パルプ又は粉末パルプ等の各種セルロースの糖化反応は、下記に記載の条件により行った。
(1)X線回折強度の測定
 X線回折強度は、リガク社製の「Rigaku RINT 2500VC X-RAY diffractometer」を用いて以下の条件で測定し、上記計算式(1)に基づいてセルロースI型結晶化度を算出した。
 測定条件は、X線源:Cu/Kα-radiation,管電圧:40kv,管電流:120mA,測定範囲:2θ=5~45°で測定した。測定用サンプルは面積320mm2×厚さ1mmのペレットを圧縮し作製した。X線のスキャンスピードは10°/minで測定した。
(2)水分含量の測定
 水分含量は、赤外線水分計(ケット科学研究所社製、「FD-610」)を使用し、150℃にて測定を行った。
(3)比表面積の測定
 セルロースの比表面積を、水蒸気吸着法により測定した。原料を80℃で8時間、真空脱気を行い、吸着温度:298.15K、飽和蒸気圧:3.169kpa、吸着質:純粋、吸着質断面積:0.125nm2の条件で、水蒸気による吸着等温線を測定した。比表面積は、BET法により算出した。
(4)平均分子量の測定
 セルロースの重合度を、ISO-4312法に記載の銅アンモニア法により測定した。そして、このセルロースの重合度にグルコースの分子量162を乗じたものを、セルロースの平均分子量とした。
(5)セルロース含有量の測定
 原料をエタノール・ベンゼン混合溶剤(1:1)で6時間ソックスレー抽出を行い、更にエタノールで4時間ソックスレー抽出行って、抽出後のサンプルを60℃で真空乾燥した。得られた試料2.5gに水150mL、亜塩素酸ナトリウム1.0g及び酢酸0.2mLを加え、70~80℃で1時間加温した。引き続き亜塩素酸ナトリウム及び酢酸を加えて加温する操作を繰り返し行い、試料が白く脱色するまで3~4回処理を繰り返した。白色の残渣をグラスフィルター(1G-3)でろ過し、冷水及びアセトンで洗浄した後、105℃で恒量になるまで乾燥し、残渣重量を求め、下記式によりセルロース含有量(セルロース含有原料から水を除いた残余の成分中のセルロース含有量)を算出した。
 セルロース含有量(質量%)=[残渣重量(g)/2.5gの脱脂試料に相当する原料の乾燥重量(g)]×100
The X-ray diffraction intensity, water content, specific surface area, average molecular weight, and cellulose content of the mechanically treated cellulose-containing raw material were measured by the methods described below. Moreover, the saccharification reaction of various celluloses such as pulverized pulp or powdered pulp was performed under the conditions described below.
(1) Measurement of X-ray diffraction intensity X-ray diffraction intensity was measured using the “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation under the following conditions, and based on the above formula (1), cellulose type I Crystallinity was calculated.
The measurement conditions were X-ray source: Cu / Kα-radiation, tube voltage: 40 kv, tube current: 120 mA, measurement range: 2θ = 5 to 45 °. The measurement sample was prepared by compressing a pellet having an area of 320 mm 2 × thickness 1 mm. The X-ray scan speed was measured at 10 ° / min.
(2) Measurement of water content The water content was measured at 150 ° C. using an infrared moisture meter (“FD-610” manufactured by Kett Science Laboratory Co., Ltd.).
(3) Measurement of specific surface area The specific surface area of cellulose was measured by a water vapor adsorption method. The raw material was vacuum degassed at 80 ° C. for 8 hours, adsorption temperature: 298.15 K, saturated vapor pressure: 3.169 kpa, adsorbate: pure, adsorbate cross section: 0.125 nm 2 The isotherm was measured. The specific surface area was calculated by the BET method.
(4) Measurement of average molecular weight The degree of polymerization of cellulose was measured by the copper ammonia method described in ISO-4312 method. And what multiplied the molecular weight 162 of glucose to the polymerization degree of this cellulose was made into the average molecular weight of a cellulose.
(5) Measurement of cellulose content The raw material was subjected to Soxhlet extraction with ethanol / benzene mixed solvent (1: 1) for 6 hours, and further subjected to Soxhlet extraction with ethanol for 4 hours, and the sample after extraction was vacuum-dried at 60 ° C. To 2.5 g of the obtained sample, 150 mL of water, 1.0 g of sodium chlorite and 0.2 mL of acetic acid were added and heated at 70-80 ° C. for 1 hour. Subsequently, the operation of adding sodium chlorite and acetic acid and heating was repeated, and the treatment was repeated 3 to 4 times until the sample turned white. The white residue is filtered through a glass filter (1G-3), washed with cold water and acetone, and then dried at 105 ° C. until a constant weight is obtained. The residue weight is obtained, and the cellulose content (from the cellulose-containing raw material to The cellulose content in the remaining components excluding) was calculated.
Cellulose content (mass%) = [residue weight (g) / dry weight of raw material corresponding to 2.5 g of degreased sample (g)] × 100
(6)糖化反応
 0.05gの粉末パルプ又は粉砕パルプ等の各種セルロース基質を1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、蓋つきスクリュー管(No.5、φ27×55mm、マルエム社)に懸濁し、適量の酵素を加えて50℃で振とう攪拌(150rpm、タイテック社製恒温振とう機「BR-15CF」)しながら、所定の時間で反応させた。反応終了後、遠心分離(17,000×g、5分間)によって沈殿物と上清液を分離し、上清液に遊離した還元糖量を、以下に示すHPLC法によって定量した。
(7)HPLC法による糖の定量
 Dionex社のDX500クロマトグラフィーシステム;カラム:CarboPac PA1(Dionex社 4×250mm)、検出器:ED40パルスドアンペロメトリー検出器、溶離液:A液;100mM水酸化ナトリウム溶液、B液;1M酢酸ナトリウムを含む100mM水酸化ナトリウム溶液、C液;超純水を用いた。注入から初期濃度A液10%:C液90%、0~15分A液95%:B液5%のリニアグラジエントにより糖を分析した。標準として0.01%(w/v)のグルコース(和光純薬工業社製)、キシロース(和光純薬工業社製)、キシロビオース(和光純薬工業社製)、セロビオース(生化学工業社製)を用いた。
(8)タンパク質の定量
 DCプロテインアッセイキット(Bio Rad社製)を使用し、ウシ血清アルブミンを標準タンパク質とした検量線よりタンパク質量を計算した。
(9)SDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)
 SDS-PAGEは、Laemmli(U.K.Laemmli,Nature,227,680-685,1970)らの方法に従い、レディーゲルJ-12.5%(バイオラッド社製)を用いて、20mA/ゲルで約90分間電気泳動を行った。マーカーはSDS-PAGEスタンダードLow(バイオラッド社製)を、泳動後の染色はBio-Safe Coomassie(バイオラッド社製)を用いた。
(10)精製又は調製酵素の確認
 セルクラスト1.5Lより精製したセロビオハイドロラーゼI(CBHI)、エンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)、セロビオハイドロラーゼII(CBHII)及び異種発現EGIは、UniProtKB/Swiss-Prot(http://au.expasy.org/sprot/)に記載のそれぞれの酵素(Endoglucanase EG-1(P07981)、EG2:Endoglucanase EG-II(P07982)、CBH1:Exoglucanase 1(P62694)、CBH2:Exoglucanase 2(P07987))の分子量及び部分アミノ酸配列と比較することにより確認した。
(6) Saccharification reaction Various cellulose substrates such as 0.05 g of powdered pulp or pulverized pulp were mixed with 1 mL of enzyme reaction solution (100 mM citrate buffer (pH 5.0), screw tube with lid (No. 5, φ27 × 55 mm, And a suitable amount of enzyme was added and reacted at 50 ° C. with shaking and stirring (150 rpm, constant temperature shaker “BR-15CF” manufactured by Taitec Co., Ltd.) for a predetermined time. The precipitate and the supernatant were separated by centrifugation (17,000 × g, 5 minutes), and the amount of reducing sugar released into the supernatant was quantified by the HPLC method shown below.
(7) Determination of sugar by HPLC method Dionex DX500 chromatography system; column: CarboPac PA1 (Dionex 4 × 250 mm), detector: ED40 pulsed amperometric detector, eluent: A solution; 100 mM sodium hydroxide Solution, solution B: 100 mM sodium hydroxide solution containing 1 M sodium acetate, solution C; ultrapure water was used. From the injection, sugars were analyzed with a linear gradient of 10% initial concentration A solution: 90% C solution, 0 to 15 minutes, A solution 95%: B solution 5%. 0.01% (w / v) glucose (made by Wako Pure Chemical Industries), xylose (made by Wako Pure Chemical Industries), xylobiose (made by Wako Pure Chemical Industries), cellobiose (made by Seikagaku Corporation) as standard Was used.
(8) Protein quantification Using a DC protein assay kit (manufactured by Bio Rad), the protein amount was calculated from a calibration curve using bovine serum albumin as a standard protein.
(9) SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
SDS-PAGE is performed at 20 mA / gel using Ready Gel J-12.5% (BioRad) according to the method of Laemmli (UK Laemmli, Nature, 227, 680-685, 1970). Electrophoresis was performed for about 90 minutes. The marker was SDS-PAGE Standard Low (manufactured by Bio-Rad), and the staining after electrophoresis was Bio-Safe Coomasie (manufactured by Bio-Rad).
(10) Confirmation of purified or prepared enzyme Cellobiohydrolase I (CBHI), endoglucanase I (EGI), endoglucanase II (EGII), cellobiohydrolase II (CBHII) and heterogeneous purified from 1.5 L of cell crust Expressed EGI is the respective enzymes (Endoglucanase EG-1 (P07981), EG2: Endoglucanase EG-II (P07982), CBH1: UniProtKB / Swiss-Prot (http://au.expasy.org/sprot/). It confirmed by comparing with the molecular weight and partial amino acid sequence of Exoglucanase 1 (P62694), CBH2: Exoglucanase 2 (P07987)).
 実施例及び比較例で用いた各種タンパク質は、以下のように精製及び調製して得た。なお、以下の記載において、特に断りがない限り、和光純薬工業社製のものを用いた。
(1)セロビオハイドロラーゼI(CBHI)の精製
 以下の操作は10℃以下で行った。セルクラスト1.5L(ノボザイムズ社製)を脱イオン水で2倍に希釈した後、脱塩カラムEcono-Pac 10DGカラム(バイオラッド社製)を用いて、10mM酢酸緩衝液(pH5.0)に置換を行った。得られた酵素溶液100mLを、予め10mM酢酸緩衝液(pH5.0)で平衡化した陰イオン交換体(a)SuperQトヨパール650M(φ2.5cm×25cm、東ソー社製)に供し、250mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム2000mLによる直線濃度勾配溶出を行った。
 陰イオン交換体(a)に吸着した吸着画分を、UF膜(PBCC 分画分子量:5000、ミリポア社製)により、19mLに濃縮した。濃縮した吸着画分3mLを、「セファクリルS200HR(φ2.5cm×100cm、GEサイエンス社製)」を用いてゲルろ過を行った。溶出画分について、SDS-PAGEでほぼ単一であることを確認できたパス画分を、UF膜を用いて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、セロビオハイドロラーゼI(CBHI)を得た。
Various proteins used in Examples and Comparative Examples were obtained by purification and preparation as follows. In the following description, those manufactured by Wako Pure Chemical Industries, Ltd. were used unless otherwise specified.
(1) Purification of cellobiohydrolase I (CBHI) The following operation was performed at 10 ° C. or lower. Cell crust 1.5L (manufactured by Novozymes) was diluted 2-fold with deionized water, and then diluted to 10 mM acetate buffer (pH 5.0) using a desalting column Econo-Pac 10DG column (manufactured by Bio-Rad). Replacement was performed. 100 mL of the obtained enzyme solution was applied to an anion exchanger (a) SuperQ Toyopearl 650M (φ2.5 cm × 25 cm, manufactured by Tosoh Corporation) previously equilibrated with 10 mM acetate buffer (pH 5.0), and 250 mL of the same buffer was used. After washing the column with the solution, linear concentration gradient elution with 2000 mL of 0 to 0.3 M sodium chloride was performed.
The adsorbed fraction adsorbed on the anion exchanger (a) was concentrated to 19 mL with a UF membrane (PBCC molecular weight cut off: 5000, manufactured by Millipore). 3 mL of the concentrated adsorption fraction was subjected to gel filtration using “Sephaacryl S200HR (φ2.5 cm × 100 cm, manufactured by GE Science)”. Concerning the eluted fraction, the pass fraction that was confirmed to be almost single by SDS-PAGE was concentrated using a UF membrane, and replaced with 10 mM citrate buffer (pH 5.0) on a desalting column. Cellobiohydrolase I (CBHI) was obtained.
(2)エンドグルカナーゼI(EGI)の精製
 上記陰イオン交換体(a)を素通りしたパス画分を、UF膜を用いて50mLに濃縮し、続いて10mM酢酸緩衝液(pH5.0)にて平衡化した陽イオン交換体(b)SPトヨパール650M(φ2.5cm×26cm、東ソー社製)に供した。300mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム1500mLによる直線濃度勾配溶出を行った。
 陽イオン交換体(b)を素通りしたパス画分を、UF膜を用いて濃縮した後、脱塩カラムを用いて、20mMトリス塩酸塩緩衝液(pH7.8)に置換した。このパス画分40mLを同緩衝液で平衡化した陰イオン交換体(c)SuperQトヨパール650M(φ2.5cm×25cm)に供し、250mLの同緩衝液でカラム内を洗浄後、0~0.3Mの塩化ナトリウム2000mLによる直線濃度勾配溶出を行った。
 陰イオン交換体(c)に吸着した吸着画分をプールし、UF膜にて12mLに濃縮を行った。濃縮した吸着画分12mLを、「セファクリルS200HR(φ2.5cm×100cm、GEサイエンス社製)」を用いて、ゲルろ過を行った。溶出画分について、SDS-PAGEでほぼ単一であることを確認できた画分を、UF膜を用いて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、エンドグルカナーゼI(EGI)を得た。
(2) Purification of endoglucanase I (EGI) The pass fraction that passed through the anion exchanger (a) was concentrated to 50 mL using a UF membrane, and subsequently with 10 mM acetate buffer (pH 5.0). Equilibrated cation exchanger (b) SP Toyopearl 650M (φ2.5 cm × 26 cm, manufactured by Tosoh Corporation) was used. After washing the inside of the column with 300 mL of the same buffer, linear concentration gradient elution was performed with 1500 mL of 0 to 0.3 M sodium chloride.
The pass fraction passed through the cation exchanger (b) was concentrated using a UF membrane, and then replaced with 20 mM Tris hydrochloride buffer (pH 7.8) using a desalting column. 40 mL of this pass fraction was applied to an anion exchanger (c) SuperQ Toyopearl 650M (φ2.5 cm × 25 cm) equilibrated with the same buffer, and the inside of the column was washed with 250 mL of the same buffer. A linear concentration gradient elution was performed with 2000 mL of sodium chloride.
The adsorbed fraction adsorbed on the anion exchanger (c) was pooled and concentrated to 12 mL with a UF membrane. 12 mL of the concentrated adsorption fraction was subjected to gel filtration using “Sephacryl S200HR (φ2.5 cm × 100 cm, manufactured by GE Science)”. About the eluted fraction, the fraction that was confirmed to be almost single by SDS-PAGE was concentrated using a UF membrane, and replaced with 10 mM citrate buffer (pH 5.0) on a desalting column. Endoglucanase I (EGI) was obtained.
(3)エンドグルカナーゼII(EGII)の精製
 上記陰イオン交換カラム(c)を素通りしたパス画分を、UF膜にて濃縮後、脱塩カラムにて10mM酢酸緩衝液(pH4.5)に置換した。このパス画分16mLを、同緩衝液にて平衡化した陽イオン交換体(d)SPトヨパール650M(φ2.5cm×26cm)に供し、300mLの同緩衝液でカラム内を洗浄後、0~0.1Mの塩化ナトリウム1000mLによる直線濃度勾配溶出を行った。溶出画分について、SDS-PAGEにてほぼ単一であることを確認できたパス画分を、UF膜にて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、エンドグルカナーゼII(EGII)を得た。
(3) Purification of endoglucanase II (EGII) The pass fraction passed through the anion exchange column (c) was concentrated with a UF membrane, and replaced with 10 mM acetate buffer (pH 4.5) with a desalting column. did. 16 mL of this pass fraction was applied to a cation exchanger (d) SP Toyopearl 650M (φ2.5 cm × 26 cm) equilibrated with the same buffer, and the inside of the column was washed with 300 mL of the same buffer. A linear gradient elution with 1000 mL of 1M sodium chloride was performed. Concerning the eluted fraction, the pass fraction that was confirmed to be almost single by SDS-PAGE was concentrated on a UF membrane and replaced with 10 mM citrate buffer (pH 5.0) on a desalting column. Endoglucanase II (EGII) was obtained.
(4)セロビオハイドロラーゼII(CBHII)の精製
 上記陽イオン交換カラム(d)に吸着した吸着画分を、UF膜にて濃縮し、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、セロビオハイドロラーゼII(CBHII)を得た。
(4) Purification of cellobiohydrolase II (CBHII) The adsorbed fraction adsorbed on the cation exchange column (d) is concentrated on a UF membrane and 10 mM citrate buffer (pH 5.0) on a desalting column. ) To obtain cellobiohydrolase II (CBHII).
 上記のセルクラスト1.5Lの総タンパク質量中、CBHIは70%、CBHIIは11%、EGIは4%、EGIIは5%であった。 In the total protein amount of the above-mentioned Celcrust 1.5 L, CBHI was 70%, CBHII was 11%, EGI was 4%, and EGII was 5%.
(5)異種発現エンドグルカナーゼI(異種発現EGI)の調製
 以下の手順により、異種発現EGIを調製した。
〔Trichoderma reesei cDNAの合成〕
 Trichoderma reesei QM9414(NBRC31329)をPDA寒天培地で28℃、7日間培養して胞子を十分形成させた。その胞子の1白金耳を、液体培地[0.50%(w/v)KCフロック(日本製紙ケミカル社製)、0.14%(w/v)硫酸アンモニウム、0.03%(w/v)尿素、0.25(w/v)ポリペプトンS(日本製薬社製)、0.20(w/v)リン酸一カリウム、0.03%(w/v)塩化カルシウム・二水和物、0.03%(w/v)硫酸マグネシウム・七水和物、5.0ppm硫化鉄・七水和物、1.6ppm硫酸マンガン・五水和物、1.6ppm硫酸亜鉛・七水和物、2.0ppm塩化コバルト・六水和物)]50mLを含む500mL容ひだ付き三角フラスコに接種して、28℃、160rpmで6日間振とう培養した。
 培養終了後、遠心分離(3,000rpm、4℃、15分間)によって得られた菌体から、TRIzol(登録商標) Reagent(invitrogen社製)を用いて、プロトコールに従いtotal RNAを分離した。得られたtotal RNAから、cDNA Synthesis Kit (M-MLV Version) (TaKaRa社製)を用いて、プロトコールに従いTrichoderma reesei cDNAを合成した。
(5) Preparation of heterologous expression endoglucanase I (heterologous expression EGI) The heterologous expression EGI was prepared by the following procedure.
(Synthesis of Trichoderma reesei cDNA)
Trichoderma reesei QM9414 (NBRC31329) was cultured on a PDA agar medium at 28 ° C. for 7 days to sufficiently form spores. One platinum loop of the spore was placed in a liquid medium [0.50% (w / v) KC floc (manufactured by Nippon Paper Chemical Co., Ltd.), 0.14% (w / v) ammonium sulfate, 0.03% (w / v) Urea, 0.25 (w / v) polypeptone S (Nippon Pharmaceutical Co., Ltd.), 0.20 (w / v) monopotassium phosphate, 0.03% (w / v) calcium chloride dihydrate, 0 0.03% (w / v) magnesium sulfate heptahydrate, 5.0 ppm iron sulfide heptahydrate, 1.6 ppm manganese sulfate pentapentahydrate, 1.6 ppm zinc sulfate heptahydrate, 2 0.0 ppm cobalt chloride hexahydrate)] was inoculated into an Erlenmeyer flask with a capacity of 50 mL containing 50 mL, and cultured with shaking at 28 ° C. and 160 rpm for 6 days.
After completion of the culture, total RNA was isolated from the cells obtained by centrifugation (3,000 rpm, 4 ° C., 15 minutes) using TRIzol (registered trademark) Reagent (manufactured by Invitrogen) according to the protocol. Trichoderma reesei cDNA was synthesized from the obtained total RNA using a cDNA Synthesis Kit (M-MLV Version) (TaKaRa) according to the protocol.
〔EGI遺伝子断片の取得〕
 得られたcDNAを鋳型として、swissprotデータベースに公開されているT. reesei (Taxonomy ID:51453)のエンドグルカナーゼI遺伝子配列を元に設計したプライマー[フォワードプライマー(atggcgccctcagttacactgccg)、リバースプライマー(ttaaaggcattgcgagtagtagtcgtt)]を用いてPCRを行った。
 具体的には、鋳型cDNA0.5μL、50μMフォワードプライマー0.5μL、50μMリバースプライマー0.5μL、PrimeSTAR(登録商標) Max DNA Polymerase(TaKaRa社製)25μL、滅菌脱イオン水23.5μLを混合した後、DNA Engine PTC-200(MJ Japan製)によりPCRを行った。PCRの条件は、98℃で10秒間、55℃で5秒間、72℃で8秒間を1サイクルとして30サイクル反応させ、増幅した遺伝子断片をHigh Pure PCR Product Purification kit(Roche社製)にて精製した。
[Acquisition of EGI gene fragment]
Primers designed based on the endoglucanase I gene sequence of T. reesei (Taxonomy ID: 51453) published in the swissprot database using the obtained cDNA as a template [forward primer (atggcgccctcagttacactgccg), reverse primer (ttaaaggcattgcgagtagtagtcgtt)] PCR was performed.
Specifically, after mixing 0.5 μL of template cDNA, 0.5 μL of 50 μM forward primer, 0.5 μL of 50 μM reverse primer, 25 μL of PrimeSTAR (registered trademark) Max DNA Polymerase (TaKaRa), and 23.5 μL of sterile deionized water. PCR was performed using DNA Engine PTC-200 (manufactured by MJ Japan). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, 72 ° C for 8 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
〔EGI遺伝子とamyBプロモーター及びターミネーターの連結化〕
 得られたEGI遺伝子とA. oryzae由来α-アミラーゼ遺伝子(amyB)由来のプロモーター及びターミネーター領域の各PCR断片を鋳型DNAとして、amyBプロモーター領域を元に設計したフォワードプライマー(配列番号1:gtgaattcgagctcggtaccattacgcactacccgaatcg)及びamyBターミネーター領域を元に設計したリバースプライマー(配列番号2:tgattacgccaagcttgagttgtacctagaggagac)を用いてPCRを行った。
 具体的には、各PCR断片3.0μL、50μMフォワードプライマー0.4μL、50μMリバースプライマー0.4μL、PrimeSTAR(登録商標) Max DNA Polymerase(TaKaRa社製)25μL、滅菌脱イオン水15.2μLを混合した後、GeneAmp PCR System 9700(PE Applied Biosystems社製)でPCRを行った。PCRの条件は、98℃で10秒間、55℃で5秒間、72℃で20秒間を1サイクルとして30サイクル反応させ、増幅した遺伝子断片をHigh Pure PCR Product Purification kit(Roche社製)にて精製した。
[Linkage of EGI gene with amyB promoter and terminator]
Forward primers (SEQ ID NO: 1: gtgaattcgagctcggtaccattacgcactacccgaatcg) designed based on the amyB promoter region using the obtained EGI gene and the PCR fragments derived from the A. oryzae-derived α-amylase gene (amyB) -derived promoter and terminator region as template DNA PCR was performed using a reverse primer (SEQ ID NO: 2: tgattacgccaagcttgagttgtacctagaggagac) designed based on the amyB terminator region.
Specifically, 3.0 μL of each PCR fragment, 0.4 μL of 50 μM forward primer, 0.4 μL of 50 μM reverse primer, 25 μL of PrimeSTAR (registered trademark) Max DNA Polymerase (TaKaRa), and 15.2 μL of sterile deionized water are mixed. After that, PCR was performed with GeneAmp PCR System 9700 (manufactured by PE Applied Biosystems). PCR conditions were 98 ° C for 10 seconds, 55 ° C for 5 seconds, and 72 ° C for 20 seconds for 30 cycles, and the amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche). did.
〔プラスミドの構築と大量調製〕
 pPTRIベクター(TaKaRa社製)を含む溶液に、Hind III及びKpn Iを添加し、37℃で一晩制限酵素反応を行った。70℃で15分間制限酵素の失活処理を行った後、High Pure PCR Product Purification kit(Roche社製)にて精製した。線状化したpPTRIベクターに対して、連結化したEGI断片を3倍量(モル比)加えて混合し、In-FusionTM  Advantage PCR Cloning Kit(Clontech社製)を用いてIn-fusion反応(37℃で15分間、50℃で15分間)を行った。反応終了液(総量10μL)にTEバッファー(pH8.0)で40μL添加した。この混合液3μLに大腸菌コンピテントセルDH5α株(TOYOBO社製)50μLを加えて形質転換を行い、X-gal及びIPTGを添加したLB寒天培地(100ppmアンピシリン含有)に塗沫した後、37℃で18時間培養を行った。生育したコロニーのうち白色コロニーを釣菌し、Quick TaqTM HS DyeMix(TOYOBO)を用いてコロニーダイレクトPCRによるプラスミドのインサートチェックを行った。アガロース電気泳動解析により、目的のインサートサイズのバンドを確認できた形質転換コロニーを、100ppmアンピシリン含有LB液体培地に植菌し、坂口フラスコを用いて一晩振とう培養(37℃、120rpm)を行った。この培養液を遠心(6000×g、4℃、15分間)して菌体を回収した後、QIAfilter Plasmid Midi Kit(QIAGEN社製)を用いてプラスミドの抽出及び精製を行った。
[Plasmid construction and mass preparation]
Hind III and Kpn I were added to a solution containing the pPTRI vector (TaKaRa), and a restriction enzyme reaction was performed overnight at 37 ° C. After inactivating the restriction enzyme at 70 ° C. for 15 minutes, purification was performed with a High Pure PCR Product Purification kit (Roche). The linearized pPTRI vector was mixed with 3 times the ligated EGI fragment (molar ratio) and mixed, and the In-fusion reaction (37 ° C) was performed using In-Fusion ™ Advantage PCR Cloning Kit (Clontech). For 15 minutes and at 50 ° C. for 15 minutes). 40 μL of TE buffer (pH 8.0) was added to the reaction end solution (total amount: 10 μL). The mixture was transformed by adding 50 μL of E. coli competent cell DH5α strain (manufactured by TOYOBO) to 3 μL of this mixed solution, and smeared on LB agar medium (containing 100 ppm ampicillin) supplemented with X-gal and IPTG. Culture was performed for 18 hours. White colonies were picked out of the grown colonies, and plasmid insert check was performed by colony direct PCR using Quick Taq ™ HS DyeMix (TOYOBO). A transformed colony in which a band of the target insert size was confirmed by agarose electrophoresis analysis was inoculated into an LB liquid medium containing 100 ppm ampicillin, and cultured overnight (37 ° C., 120 rpm) using a Sakaguchi flask. It was. The culture solution was centrifuged (6000 × g, 4 ° C., 15 minutes) to recover the bacterial cells, and then the plasmid was extracted and purified using QIAfilter Plasmid Midi Kit (manufactured by QIAGEN).
〔A. oryzaeの形質転換〕
 形質転換用宿主として、A. oryzae RIB40株(正式名称:Aspergillus oryzae (Ahlburg) Cohn var brunneus Murakami)をNITEより購入(NBRC100959)したものを用いた。本株をPDA寒天平板培地上で、25℃、7日間復元培養した後、PDAスラント培地上で、25℃、7日間継代培養したものを冷蔵保存し、形質転換用の宿主として用いた。A. oryzae RIB40株を宿主に用いて、構築したプラスミドによる形質転換を行い、0.2ppmピリチアミンを含有する再生用CD寒天培地を用いて、30℃、7日間培養した。CD寒天培地上に生育してきた形質転換コロニーを、CD寒天培地で2回、30℃、7日間継代培養した。
[Transformation of A. oryzae]
As a transformation host, an A. oryzae RIB40 strain (official name: Aspergillus oryzae (Ahlburg) Cohn var brunneus Murakami) purchased from NITE (NBRC100959) was used. This strain was cultured on a PDA agar plate medium at 25 ° C. for 7 days and then subcultured on a PDA slant medium at 25 ° C. for 7 days. The strain was refrigerated and used as a host for transformation. Using the A. oryzae RIB40 strain as a host, transformation with the constructed plasmid was carried out, and the cells were cultured at 30 ° C. for 7 days using a regeneration CD agar medium containing 0.2 ppm pyrithiamine. The transformed colonies that had grown on the CD agar medium were subcultured twice on a CD agar medium at 30 ° C. for 7 days.
〔A. oryzae形質転換株の液体培養〕
 A. oryzae形質転換株を白金耳でCD寒天培地上に接種し、30℃で5~7日間培養した後、胞子懸濁液を調製した。ヘマチトメーター(トーマ血球計算盤)を用いて胞子濃度を計測した後、約5×105個の胞子を50mLの液体培地[5%(w/v)ポリペプトンS(日本製薬社製)、2.5%(w/v)酵母エキス(Difco社製)、0.5%(w/v)リン酸一カリウム、0.05%(w/v)硫酸マグネシウム・七水和物、10%(w/v)マルトース)に接種し、500mL容バッフル付きフラスコを用いて、培養温度30℃、回転数150rpmで約5日間振とう培養を行った。このようにして、最終的に700mL分の培養液を調製した。
[Liquid culture of A. oryzae transformed strain]
A. oryzae transformed strain was inoculated on a CD agar medium with a platinum loop and cultured at 30 ° C. for 5-7 days, and then a spore suspension was prepared. After measuring the spore concentration using a hematitometer (Thoma hemocytometer), about 5 × 10 5 spores were added to 50 mL of liquid medium [5% (w / v) Polypeptone S (manufactured by Nippon Pharmaceutical), 2 0.5% (w / v) yeast extract (Difco), 0.5% (w / v) monopotassium phosphate, 0.05% (w / v) magnesium sulfate heptahydrate, 10% ( w / v) maltose) was used, and a 500 mL baffled flask was used and cultured with shaking at a culture temperature of 30 ° C. and a rotation speed of 150 rpm for about 5 days. In this manner, a culture solution for 700 mL was finally prepared.
〔培養液からの異種発現EGIの精製〕
 フィルターろ過(ポアサイズ0.45μm、NALGENE社製)した培養液700mLを平膜(Polyethersulfone、76mm、30,000cutoff、ミリポア社製)で200mLに濃縮し、さらに、遠心式フィルターAmicon Ultra(30,000cutoff、ミリポア社製)で15mLに濃縮した。この濃縮液15mLを、脱塩カラムEcono-Pac 10DGカラム(バイオラッド社製)を用いて、10mM酢酸緩衝液(pH5.0)に置換した。得られた酵素溶液のうち5mLを、予め10mM酢酸緩衝液(pH5.0)で平衡化した陰イオン交換体DEAE-650M(φ1.46cm×3cm、東ソー社製)に供し、15mLの同緩衝液でカラム内を洗浄後、0~0.5Mの塩化ナトリウム40mLによる直線濃度勾配溶出を行った。陰イオン交換体を素通りしたパス画分を、脱塩カラムにて10mMクエン酸緩衝液(pH5.0)に置換し、異種発現エンドグルカナーゼI(異種発現EGI)を得た。
[Purification of heterologous EGI from culture medium]
700 mL of the filtered solution (pore size 0.45 μm, manufactured by NALGENE) was concentrated to 200 mL with a flat membrane (Polyethersulfone, 76 mm, 30,000 cutoff, manufactured by Millipore), and further a centrifugal filter Amicon Ultra (30,000 cutoff, manufactured by Millipore) To 15 mL. 15 mL of this concentrated solution was replaced with 10 mM acetate buffer (pH 5.0) using a desalting column Econo-Pac 10DG column (manufactured by Bio-Rad). 5 mL of the obtained enzyme solution was subjected to an anion exchanger DEAE-650M (φ1.46 cm × 3 cm, manufactured by Tosoh Corporation) previously equilibrated with 10 mM acetate buffer (pH 5.0), and 15 mL of the same buffer solution. The column was washed with a linear gradient elution with 40 mL of 0-0.5 M sodium chloride. The pass fraction that passed through the anion exchanger was replaced with a 10 mM citrate buffer (pH 5.0) using a desalting column to obtain heterologous expression endoglucanase I (heterologous expression EGI).
製造例1~6
〔シュレッダー処理〕
 シート状木材パルプ(Borregard社製、「Blue Bear Ultra Ether」、800mm×600mm×1.5mm、セルロース含有量96質量%、水分含量7質量%)、をシュレッダー(明光商会社製、「MSX2000-IVP440F」)にかけ、約10mm×5mm×1.5mmのチップ状パルプにした。
Production Examples 1-6
[Shredder treatment]
Sheet wood pulp (“Boreregard,“ Blue Bear Ultra Ether ”, 800 mm × 600 mm × 1.5 mm, cellulose content 96% by mass, moisture content 7% by mass), shredder (manufactured by Meiko Shosha,“ MSX2000-IVP440F ”) )) To obtain chip-like pulp of about 10 mm × 5 mm × 1.5 mm.
〔振動ミル処理〕
 得られたチップ状パルプを振動ミル(中央化工機社製、「MB-1」、容器全容量3.5L)に100g投入し、ロッドとして、直径30mm、長さ218mm、材質ステンレス、断面形状が円形のロッド13本を振動ミルに充填(充填率57%)して、振幅8mm、円回転1200cpmの条件で、0.5~8時間処理を行い、パルプA~Fを得た。得られたパルプの結晶化度、比表面積、分子量を表1に示す。
[Vibration mill treatment]
100 g of the obtained chip-like pulp was put into a vibration mill (manufactured by Chuo Kako Co., Ltd., “MB-1”, container total capacity 3.5 L), and as a rod, diameter 30 mm, length 218 mm, material stainless steel, cross-sectional shape Thirteen circular rods were filled into a vibration mill (filling rate 57%) and treated for 0.5 to 8 hours under the conditions of an amplitude of 8 mm and a circular rotation of 1200 cpm to obtain pulps A to F. Table 1 shows the crystallinity, specific surface area, and molecular weight of the obtained pulp.
比較製造例1
 製造例1~6と同様にして得たチップ状パルプを、二軸押出機(スエヒロEPM社製、「EA-20」)に2kg/hrで投入し、せん断速度660sec-1、スクリュー回転数300rpm、外部から冷却水を流しながら、1パス処理した。なお、前記二軸押出機は、完全噛み合い型同方向回転二軸押出機であり、2列に配置されたスクリューは、スクリュー径40mmのスクリュー部と、互い違い(90°)に12ブロックを組み合わせたニーディングディスク部とを有し、2本のスクリューは、同じ構成を有するものである。得られたパルプGの結晶化度、比表面積、分子量を表1に示す。
Comparative production example 1
Chip-like pulp obtained in the same manner as in Production Examples 1 to 6 was charged into a twin-screw extruder (“EA-20” manufactured by Suehiro EPM Co., Ltd.) at 2 kg / hr, a shear rate of 660 sec −1 , and a screw rotation speed of 300 rpm. Then, a one-pass treatment was performed while flowing cooling water from the outside. The twin-screw extruder is a fully meshing type co-rotating twin-screw extruder, and the screws arranged in two rows are combined with a screw portion having a screw diameter of 40 mm and 12 blocks alternately (90 °). The two screws have the same configuration. Table 1 shows the crystallinity, specific surface area, and molecular weight of the obtained pulp G.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例7
 粉末パルプ(日本製紙ケミカル社製「W-400G」、400メッシュパス90以上、セルロース含有量99質量%、水分含量1質量%)(パルプH)を媒体撹拌式ミル(アトライタ、三井鉱山(株)製、「MA1D-X」、容器全容量:5.5L)に500g投入し、媒体として、直径10mm、材質ジルコニア、ジルコニアボール:11kgをアトライタに充填(充填率59%)して、回転数307rpmの条件で、2時間処理を行い、パルプIを得た。粉砕前のパルプH、粉砕後のパルプIの結晶化度、比表面積、分子量を表2に示す。
Production Example 7
Powdered pulp (“W-400G” manufactured by Nippon Paper Chemical Co., Ltd., 400 mesh pass 90 or more, cellulose content 99% by mass, moisture content 1% by mass) (pulp H) is a medium agitated mill (Attritor, Mitsui Mining Co., Ltd.) Made of “MA1D-X”, total volume of container: 5.5 L), filled with attritor (diameter: 10 mm, material: zirconia, zirconia balls: 11 kg, filling rate: 59%), rotation speed: 307 rpm The pulp I was obtained by performing the treatment for 2 hours under the conditions. Table 2 shows the crystallinity, specific surface area, and molecular weight of pulp H before pulverization and pulp I after pulverization.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例1~6
 製造例1~6で得られたパルプA~Fに対し、エンドグルカナーゼI(EGI)からなる酵素標品による糖化反応を行った。具体的には、パルプA~F0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当の酵素標品)に懸濁し、50℃で振とう攪拌しながら反応時間5時間、24時間、48時間及び70時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表3に示す。
Examples 1-6
The pulps A to F obtained in Production Examples 1 to 6 were subjected to a saccharification reaction using an enzyme preparation composed of endoglucanase I (EGI). Specifically, 0.05 g of pulp A to F was suspended in 1 mL of an enzyme reaction solution (enzyme preparation corresponding to 100 mM citrate buffer (pH 5.0), protein 0.005% (w / v)), and 50 The enzyme reaction was performed for 5 hours, 24 hours, 48 hours, and 70 hours with shaking and stirring at ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 3.
比較例1~3
 比較製造例1で得られたパルプGに対し、それぞれセルクラスト1.5L(ノボザイムズ社製)、セロビオハイドロラーゼI(CBHI)、及びエンドグルカナーゼI(EGI)からなる酵素標品による糖化反応を、実施例1~6と同じ方法で行い、反応終了後のグルコース量を定量した。結果を表3に示す。
Comparative Examples 1 to 3
The pulp G obtained in Comparative Production Example 1 was subjected to a saccharification reaction with an enzyme preparation consisting of Cellcrust 1.5L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and endoglucanase I (EGI). In the same manner as in Examples 1 to 6, the amount of glucose after completion of the reaction was quantified. The results are shown in Table 3.
比較例4~15
 製造例1で得られたパルプA~Fに対して、それぞれセルクラスト1.5L(ノボザイムズ社製)、及びセロビオハイドロラーゼI(CBHI))からなる酵素標品による糖化反応を、実施例1~6と同じ方法で行い、反応終了後のグルコース量を定量した。結果を表3に示す。
Comparative Examples 4-15
The pulps A to F obtained in Production Example 1 were subjected to a saccharification reaction using an enzyme preparation consisting of Celclast 1.5 L (manufactured by Novozymes) and cellobiohydrolase I (CBHI). In the same manner as in ˜6, the amount of glucose after completion of the reaction was quantified. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例7~9
 製造例3で得られたパルプCに対し、それぞれエンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)、及び異種発現エンドグルカナーゼI(異種発現EGI)からなる酵素標品による糖化反応を行った。具体的には、パルプC0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当の酵素標品)に懸濁し、50℃で振とう攪拌しながら反応時間5時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表4に示す。
Examples 7-9
The pulp C obtained in Production Example 3 was subjected to a saccharification reaction using an enzyme preparation composed of endoglucanase I (EGI), endoglucanase II (EGII), and heterologous expression endoglucanase I (heterologous expression EGI). Specifically, 0.05 g of pulp C is suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 5 hours, 24 hours, 48 hours and 72 hours with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 4.
比較例16~18
 製造例3で得られたパルプCに対して、それぞれセルクラスト1.5L(ノボザイムズ社製)、セロビオハイドロラーゼI(CBHI)、及びセロビオハイドロラーゼII(CBHII)からなる酵素標品による糖化反応を、実施例7~9と同じ方法で行い、反応終了後のグルコース量を定量した。結果を表4に示す。
Comparative Examples 16-18
The saccharification of the pulp C obtained in Production Example 3 with an enzyme preparation composed of Celclast 1.5 L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and cellobiohydrolase II (CBHII), respectively. The reaction was carried out in the same manner as in Examples 7 to 9, and the amount of glucose after completion of the reaction was quantified. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例10~15
 製造例4で得られたパルプDに対し、エンドグルカナーゼI(EGI)とセルクラスト1.5L(ノボザイムズ社製)を組み合わせた酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00125~0.00417%(w/v)相当のEGI及びタンパク質0.00083~0.00375%(w/v)相当のセルクラスト1.5L)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表5に示す。
Examples 10-15
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining endoglucanase I (EGI) and Cellcrust 1.5 L (manufactured by Novozymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00125 to 0.00417% (w / v) protein and 0.00083 to The suspension was suspended in a cell crust equivalent to 0.00375% (w / v) (1.5 L), and the enzyme reaction was carried out for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
実施例16~21
 製造例4で得られたパルプDに対し、エンドグルカナーゼI(EGI)とセロビオハイドロラーゼI(CBHI)を組み合わせた酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00125~0.00417%(w/v)相当のEGI及びタンパク質0.00083~0.00375%(w/v)相当のCBHI)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表5に示す。
Examples 16-21
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining endoglucanase I (EGI) and cellobiohydrolase I (CBHI). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00125 to 0.00417% (w / v) protein and 0.00083 to The enzyme reaction was carried out for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
実施例22~27
 製造例4で得られたパルプDに対し、異種発現エンドグルカナーゼI(異種発現EGI)とセルクラスト1.5L(ノボザイムズ製)を組み合わせた酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00125~0.0045%(w/v)相当の異種発現EGI及びタンパク質0.0005~0.00375%(w/v)相当のセルクラスト1.5L)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表5に示す。
Examples 22-27
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining heterologous expression endoglucanase I (heterologous expression EGI) and Cellcrust 1.5L (manufactured by Novozymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), 0.00125 to 0.0045% (w / v) of protein equivalent to EGI and 0. The suspension was suspended in 0005 to 0.00375% (w / v) equivalent to 1.5 L of Celcrust), and the enzyme reaction was performed for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. . After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
実施例28~33
 製造例4で得られたパルプDに対し、異種発現エンドグルカナーゼI(異種発現EGI)とセロビオハイドロラーゼI(CBHI)を組み合わせた酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00125~0.0045%(w/v)相当の異種発現EGI及びタンパク質0.0005~0.00375%(w/v)相当のCBHI)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表5に示す。
Examples 28-33
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation combining heterologous endoglucanase I (heterologous expression EGI) and cellobiohydrolase I (CBHI). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), 0.00125 to 0.0045% (w / v) of protein equivalent to EGI and 0. The suspension was suspended in CBHI (corresponding to 0005 to 0.00375% (w / v)), and the enzyme reaction was carried out at 50 ° C. with shaking and stirring for 6 hours, 24 hours, 48 hours and 72 hours. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
比較例19~20
 製造例4で得られたパルプDに対し、それぞれセルクラスト1.5L(ノボザイムズ社製)、及びセロビオハイドロラーゼI(CBHI)からなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当の酵素標品)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表5に示す。
Comparative Examples 19-20
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation composed of Cellcrust 1.5 L (manufactured by Novozymes) and cellobiohydrolase I (CBHI). Specifically, 0.05 g of pulp D was suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 6 hours, 24 hours, 48 hours, and 72 hours with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例34
 製造例4で得られたパルプDに対し、エンドグルカナーゼI(EGI)、セルクラスト1.5L(ノボザイムズ社製)、及びキシラナーゼM1(XYN、メガザイムズ社製)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00113%(w/v)相当のEGI、タンパク質0.00338%(w/v)相当のセルクラスト1.5L及びタンパク質0.0005%(w/v)相当のXYN)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。
Example 34
For the pulp D obtained in Production Example 4, a saccharification reaction with an enzyme preparation comprising a combination of endoglucanase I (EGI), Cellcrust 1.5 L (manufactured by Novozymes), and xylanase M1 (XYN, produced by Megazymes) Went. Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.00113% (w / v) protein, 0.00338% (w / v) protein. ) Corresponding cell crust 1.5 L and protein 0.0005% (w / v) XYN) suspended at 50 ° C. with shaking and stirring, reaction time 6 hours, 24 hours, 48 hours and 72 hours enzyme Reaction was performed. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC.
実施例35
 製造例4で得られたパルプDに対し、エンドグルカナーゼI(EGI)、セロビオハイドロラーゼI(CBHI)、及びキシラナーゼM1(XYN、メガザイムズ社製)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.0036%(w/v)相当のEGI、タンパク質0.0009%(w/v)相当のCBHI及びタンパク質0.0005%(w/v)相当のXYN)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表6に示す。
Example 35
The pulp D obtained in Production Example 4 is subjected to a saccharification reaction with an enzyme preparation comprising a combination of endoglucanase I (EGI), cellobiohydrolase I (CBHI), and xylanase M1 (XYN, manufactured by Megazymes). It was. Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.0036% (w / v) protein, 0.0009% (w / v) protein. ) Corresponding CBHI and XYN corresponding to 0.0005% (w / v) of protein), and the enzyme reaction was performed for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. . After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 6.
実施例36
 製造例4で得られたパルプDに対し、エンドグルカナーゼI(EGI)及びキシラナーゼM1(XYN、メガザイムズ社製)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.0045%(w/v)相当のEGI及びタンパク質0.0005%(w/v)相当のXYN)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表6に示す。
Example 36
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation consisting of a combination of endoglucanase I (EGI) and xylanase M1 (XYN, manufactured by Megazymes). Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI equivalent to 0.0045% (w / v) protein and 0.0005% (w / v) protein. ) Suspended in a corresponding amount of XYN), and subjected to an enzyme reaction for 6 hours, 24 hours, 48 hours and 72 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 6.
比較例21~23
 製造例4で得られたパルプDに対し、それぞれセルクラスト1.5L(ノボザイムズ社製)、セロビオハイドロラーゼI(CBHI)、及びキシラナーゼM1(XYN、メガザイムズ社製)からなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当の酵素標品)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表6に示す。
Comparative Examples 21-23
For the pulp D obtained in Production Example 4, saccharification with an enzyme preparation consisting of Cellclast 1.5 L (manufactured by Novozymes), cellobiohydrolase I (CBHI), and xylanase M1 (XYN, produced by Megazymes), respectively. Reaction was performed. Specifically, 0.05 g of pulp D was suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 6 hours, 24 hours, 48 hours, and 72 hours with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例37~39
 製造例7で得られたパルプIに対し、エンドグルカナーゼI(EGI)及びセロビオハイドロラーゼI(CBHI)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプI0.15gを3mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.025~0.075%(w/v)相当のEGI及びタンパク質0.025~0.075%(w/v)相当のCBHI)に懸濁し、50℃で振とう攪拌しながら反応時間94時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表7に示す。
Examples 37-39
The pulp I obtained in Production Example 7 was subjected to a saccharification reaction using an enzyme preparation consisting of a combination of endoglucanase I (EGI) and cellobiohydrolase I (CBHI). Specifically, 0.15 g of pulp I was added to 3 mL of enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGI corresponding to protein 0.025 to 0.075% (w / v) and protein 0.025 to 0.075% (w / v) equivalent CBHI), and the enzyme reaction was performed for 94 hours with shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 7.
比較例24
 粉砕前のパルプHに対し、セルクラスト1.5L(ノボザイムズ社製)からなる酵素標品による糖化反応を行った。具体的には、パルプH0.15gを3mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.1%(w/v)相当のセルクラスト1.5L)に懸濁し、50℃で振とう攪拌しながら反応時間94時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表7に示す。
Comparative Example 24
A saccharification reaction was performed on pulp H before pulverization using an enzyme preparation composed of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.15 g of pulp H was suspended in 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L equivalent to 0.1% (w / v) protein), and 50 The enzyme reaction was performed for 94 hours with stirring at ℃. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 7.
比較例25~27
 パルプIの代わりに、粉砕前のパルプHを用いた以外は、実施例37~39と同様にして、酵素反応を行い、反応終了後にグルコース量を定量した。結果を表7に示す。
Comparative Examples 25-27
An enzyme reaction was carried out in the same manner as in Examples 37 to 39 except that the unpulverized pulp H was used in place of the pulp I, and the amount of glucose was quantified after the reaction was completed. The results are shown in Table 7.
比較例28
 パルプHの代わりに、製造例7で得られたパルプIを用いた以外は、比較例26と同様にして、酵素反応を行い、反応終了後にグルコース量を定量した。結果を表7に示す。
Comparative Example 28
An enzyme reaction was carried out in the same manner as in Comparative Example 26 except that the pulp I obtained in Production Example 7 was used instead of the pulp H, and the amount of glucose was quantified after the reaction was completed. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例40
 製造例7で得られたパルプIに対し、エンドグルカナーゼII(EGII)及びセロビオハイドロラーゼI(CBHI)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプI0.15gを3mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.0125%(w/v)相当のEGII及びタンパク質0.0125%(w/v)相当のCBHI)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表8に示す。
Example 40
The pulp I obtained in Production Example 7 was subjected to a saccharification reaction using an enzyme preparation consisting of a combination of endoglucanase II (EGII) and cellobiohydrolase I (CBHI). Specifically, 0.15 g of pulp I was added to 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), EGII equivalent to 0.0125% (w / v) protein and 0.0125% (w / v) protein. ) Suspended in a corresponding amount of CBHI), and subjected to an enzyme reaction for 6 hours, 24 hours, 48 hours and 72 hours while shaking and stirring at 50 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 8.
比較例29
 製造例7で得られたパルプIに対し、セルクラスト1.5L(ノボザイムズ社製)からなる酵素標品による糖化反応を行った。具体的には、パルプI0.15gを3mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.025%(w/v)相当のセルクラスト1.5L)に懸濁し、50℃で振とう攪拌しながら反応時間6時間、24時間、48時間及び72時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表8に示す。
Comparative Example 29
The pulp I obtained in Production Example 7 was subjected to a saccharification reaction using an enzyme preparation consisting of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.15 g of pulp I was suspended in 3 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L equivalent to 0.025% (w / v) protein), and 50 The enzyme reaction was performed for 6 hours, 24 hours, 48 hours, and 72 hours with shaking and stirring at 0 ° C. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例41~44
 製造例4で得られたパルプDに対し、セルクラスト1.5L(ノボザイムズ社製)、エンドグルカナーゼI(EGI)、セロビオハイドロラーゼI(CBHI)及びキシラナーゼM1(XYN、メガザイムズ社製)の組み合わせよりなる酵素標品による糖化反応を行った。具体的には、パルプD0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.00338~0.00375%(w/v)相当のセルクラスト1.5L、タンパク質0.00113~0.0036%(w/v)相当のEGI、タンパク質0.0009%(w/v)相当のCBHI及びタンパク質0.0005%(w/v)相当のXYN)に懸濁し、50℃で振とう攪拌しながら反応時間168時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離した糖量(グルコース、セロビオース、キシロース及びキシロビオースの合計量)をHPLC法によって定量した。結果を表9に示す。
Examples 41-44
Combination of Celcrust 1.5L (manufactured by Novozymes), endoglucanase I (EGI), cellobiohydrolase I (CBHI) and xylanase M1 (XYN, manufactured by Megazymes) with respect to pulp D obtained in Production Example 4 A saccharification reaction was carried out using an enzyme preparation comprising: Specifically, 0.05 g of pulp D was added to 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), cell crust 1.5 L corresponding to protein 0.00338 to 0.00375% (w / v), protein EGI equivalent to 0.00113-0.0036% (w / v), CBHI equivalent to 0.0009% (w / v) protein and XYN equivalent to 0.0005% (w / v) protein) The enzyme reaction was performed for 168 hours while stirring at ℃. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of sugar released into the supernatant (total amount of glucose, cellobiose, xylose and xylobiose) was quantified by HPLC. The results are shown in Table 9.
比較例30
 製造例4で得られたパルプDに対し、セルクラスト1.5L(ノボザイムズ社製)からなる酵素標品による糖化反応を行った。具体的には、粉砕パルプ0.05gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当のセルクラスト1.5L)に懸濁し、50℃で振とう攪拌しながら反応時間168時間の酵素反応を行った。反応終了後、遠心分離によって沈殿物と上清液を分離し、上清液に遊離した糖量(グルコース、セロビオース、キシロース及びキシロビオースの合計量)をHPLC法によって定量した。結果を表9に示す。
Comparative Example 30
The pulp D obtained in Production Example 4 was subjected to a saccharification reaction using an enzyme preparation composed of 1.5 L of Celcrust (manufactured by Novozymes). Specifically, 0.05 g of pulverized pulp is suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), 1.5 C of cell crust equivalent to 0.005% (w / v) protein), The enzyme reaction was performed for 168 hours while stirring at 50 ° C. with shaking. After completion of the reaction, the precipitate and the supernatant were separated by centrifugation, and the amount of sugar released into the supernatant (total amount of glucose, cellobiose, xylose and xylobiose) was quantified by HPLC. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
製造例8
〔アルカリ処理〕
 1gのサトウキビバガス(セルロース含有量71.3質量%、水分含量50質量%)を100mlの5N水酸化ナトリウム中で3時間撹拌した。酢酸にて中和後、3回水洗し、凍結乾燥を行い、凍結乾燥物を得た。
〔振動ミル処理〕
 得られた凍結乾燥物を振動ミル(中央化工機社製、「MB-1」、容器全容量3.5L)に100g投入し、ロッドとして、直径30mm、長さ218mm、材質ステンレス、断面形状が円形のロッド13本を振動ミルに充填(充填率57%)して、振幅8mm、円回転1200cpmの条件で、1時間処理を行い、バガスaを得た。得られたバガスaの結晶化度は0%であった。
Production Example 8
[Alkali treatment]
1 g of sugarcane bagasse (cellulose content: 71.3% by mass, water content: 50% by mass) was stirred in 100 ml of 5N sodium hydroxide for 3 hours. After neutralization with acetic acid, the product was washed with water three times and freeze-dried to obtain a freeze-dried product.
[Vibration mill treatment]
100 g of the obtained freeze-dried product was put into a vibration mill (Chuo Kako Co., Ltd., “MB-1”, container total capacity 3.5 L), and the rod had a diameter of 30 mm, a length of 218 mm, a stainless steel material, and a cross-sectional shape. Thirteen circular rods were filled into a vibration mill (filling rate 57%) and processed for 1 hour under the conditions of an amplitude of 8 mm and a circular rotation of 1200 cpm to obtain bagasse a. The crystallinity of the resulting bagasse a was 0%.
実施例45、比較例31、32
 製造例8で得られたバガスaに対し、それぞれエンドグルカナーゼI(EGI)、セルクラスト1.5L(ノボザイムズ社製)、及びセロビオハドロラーゼ(CBHI)からなる酵素標品による糖化処理を行った。具体的には、バガスa0.5gを1mLの酵素反応液(100mMクエン酸緩衝液(pH5.0)、タンパク質0.005%(w/v)相当の酵素標品)に懸濁し、50℃で振とう撹拌しながら反応時間1時間の酵素反応を行った。反応終了後、遠心分離機によって沈殿物と上清液を分離し、上清液に遊離したグルコース量をHPLC法によって定量した。結果を表10に示す。
Example 45, Comparative Examples 31 and 32
Bagasse a obtained in Production Example 8 was subjected to saccharification treatment with an enzyme preparation consisting of endoglucanase I (EGI), Cellcrust 1.5L (manufactured by Novozymes), and cellobiohydrolase (CBHI). . Specifically, 0.5 g of bagasse a is suspended in 1 mL of an enzyme reaction solution (100 mM citrate buffer (pH 5.0), enzyme preparation equivalent to 0.005% (w / v) protein) at 50 ° C. The enzyme reaction was performed for 1 hour with shaking and stirring. After completion of the reaction, the precipitate and the supernatant were separated using a centrifuge, and the amount of glucose released into the supernatant was quantified by HPLC. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上のとおり、実施例の糖の製造方法によれば、比較例の方法に比べて、糖を効率良く生産することができることが分かる。特に、グルコースの生成量が顕著に増加していることが分かる。 As described above, it can be seen that the sugar production method of the example can produce sugar more efficiently than the method of the comparative example. In particular, it can be seen that the amount of glucose produced is significantly increased.
 本発明の糖の製造方法は、生産性に優れ、糖(特にグルコース)を効率的に得ることができる。得られた糖はエタノールや乳酸等の発酵生産等に有用である。 The sugar production method of the present invention is excellent in productivity and can efficiently obtain sugar (particularly glucose). The obtained sugar is useful for production of fermentation such as ethanol and lactic acid.

Claims (13)

  1.  下記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを酵素配合剤により糖化処理する糖の製造方法であって、
     該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、糖の製造方法。
     セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100  (1)
    〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
    A cellulose production method for saccharifying a cellulose having a cellulose I type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the following formula (1) with an enzyme compounding agent,
    The enzyme compounding agent contains endoglucanase in an amount of 20% or more of the total protein content of the enzyme compounding agent, and the cellulose is a method for producing sugar obtained by pulverizing a cellulose-containing raw material with a pulverizer.
    Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
    [I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
  2.  前記セルロースの分子量が13万以下である、請求項1に記載の糖の製造方法。 The method for producing sugar according to claim 1, wherein the molecular weight of the cellulose is 130,000 or less.
  3.  前記粉砕機が、媒体式粉砕機である、請求項1又は2に記載の糖の製造方法。 The method for producing sugar according to claim 1 or 2, wherein the pulverizer is a medium pulverizer.
  4.  前記セルロース含有原料を、前記糖化処理前にアルカリ処理する、請求項1~3のいずれかに記載の糖の製造方法。 The method for producing sugar according to any one of claims 1 to 3, wherein the cellulose-containing raw material is alkali-treated before the saccharification treatment.
  5.  前記アルカリ処理が、アルカリ溶液を用いた浸漬処理である、請求項4に記載の糖の製造方法。 The method for producing sugar according to claim 4, wherein the alkali treatment is an immersion treatment using an alkaline solution.
  6.  前記エンドグルカナーゼが、Trichoderma属由来のエンドグルカナーゼI(EGI)、エンドグルカナーゼII(EGII)から選ばれる少なくとも1種である、請求項1~5のいずれかに記載の糖の製造方法。 The method for producing a sugar according to any one of claims 1 to 5, wherein the endoglucanase is at least one selected from Trichoderma-derived endoglucanase I (EGI) and endoglucanase II (EGII).
  7.  前記酵素配合剤が、更に、セロビオハイドロラーゼ、ヘミセルラーゼ、β-グルコシダーゼからなる群から選ばれる1種以上を含む、請求項1~6のいずれかに記載の糖の製造方法。 The method for producing a sugar according to any one of claims 1 to 6, wherein the enzyme compounding agent further contains one or more selected from the group consisting of cellobiohydrolase, hemicellulase, and β-glucosidase.
  8.  前記酵素配合剤が、更に、酵素としてセロビオハイドロラーゼ及び/又はヘミセルラーゼを含み、β-グルコシダーゼを含まない、請求項1~7のいずれかに記載の糖の製造方法。 The method for producing a sugar according to any one of claims 1 to 7, wherein the enzyme compounding agent further contains cellobiohydrolase and / or hemicellulase as an enzyme and does not contain β-glucosidase.
  9.  前記糖化処理の処理温度が、10~90℃である、請求項1~8のいずれかに記載の糖の製造方法。 The method for producing sugar according to any one of claims 1 to 8, wherein a treatment temperature of the saccharification treatment is 10 to 90 ° C.
  10.  前記糖化処理の処理時間が、5~168時間である、請求項1~9のいずれかに記載の糖の製造方法。 The method for producing sugar according to any one of claims 1 to 9, wherein the saccharification treatment time is 5 to 168 hours.
  11.  前記セルロース含有原料が、パルプ類、紙類、植物茎・葉・果房類、植物殻類、及び木材類からなる群から選ばれる少なくとも1種である、請求項1~10のいずれかに記載の糖の製造方法。 The cellulose-containing raw material is at least one selected from the group consisting of pulps, papers, plant stems / leaves / fruit bunches, plant shells, and woods. Of sugar production.
  12.  前記セルロース含有原料における、該原料から水を除いた残余の成分中のセルロース含有量が、20質量%以上である、請求項1~11のいずれかに記載の糖の製造方法。 The method for producing sugar according to any one of claims 1 to 11, wherein the cellulose content in the remaining components of the cellulose-containing raw material excluding water is 20% by mass or more.
  13.  下記計算式(1)で示されるセルロースI型結晶化度が50%以下及び/又は比表面積が180m2/g以上であるセルロースを酵素配合剤により糖化処理する、グルコースの生成量を増加させる方法であって、
     該酵素配合剤は、エンドグルカナーゼを該酵素配合剤の総タンパク質量中20%以上含むものであり、該セルロースは、セルロース含有原料を粉砕機による粉砕処理して得る、グルコースの生成量を増加させる方法。
     セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100    (1)
    〔I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
    A method of increasing the amount of glucose produced by saccharifying cellulose having an I-type crystallinity of 50% or less and / or a specific surface area of 180 m 2 / g or more represented by the following formula (1) with an enzyme compounding agent. Because
    The enzyme compound contains 20% or more of endoglucanase in the total protein content of the enzyme compound, and the cellulose increases the amount of glucose produced by pulverizing the cellulose-containing raw material with a pulverizer. Method.
    Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
    [I 22.6 is the diffraction intensity of the grating plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). ]
PCT/JP2011/078204 2010-12-09 2011-12-06 Method for producing sugar WO2012077684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547877A JPWO2012077684A1 (en) 2010-12-09 2011-12-06 Method for producing sugar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-275118 2010-12-09
JP2010275118 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077684A1 true WO2012077684A1 (en) 2012-06-14

Family

ID=46207172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078204 WO2012077684A1 (en) 2010-12-09 2011-12-06 Method for producing sugar

Country Status (2)

Country Link
JP (1) JPWO2012077684A1 (en)
WO (1) WO2012077684A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171951A (en) * 2007-12-27 2009-08-06 Kao Corp Method for producing sugar
JP2009171952A (en) * 2007-12-27 2009-08-06 Kao Corp Method for producing sugar
WO2010134560A1 (en) * 2009-05-21 2010-11-25 花王株式会社 Process for producing non-crystalline cellulose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171951A (en) * 2007-12-27 2009-08-06 Kao Corp Method for producing sugar
JP2009171952A (en) * 2007-12-27 2009-08-06 Kao Corp Method for producing sugar
WO2010134560A1 (en) * 2009-05-21 2010-11-25 花王株式会社 Process for producing non-crystalline cellulose

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAO, D. ET AL.: "Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover", BIORESOUR. TECHNOL., vol. 101, no. 8, April 2010 (2010-04-01), pages 2770 - 2781, XP002591486, DOI: doi:10.1016/j.biortech.2009.10.056 *
RAMAKRISHNAN, S. ET AL.: "Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions", BIORESOUR.TECHNOL., vol. 101, no. 13, July 2010 (2010-07-01), pages 4965 - 4970, XP026986236 *
ZHOU, J. ET AL.: "Optimization of cellulase mixture for efficient hydrolysis of steam- exploded corn stover by statistically designed experiments", BIORESOUR.TECHNOL., vol. 100, no. 2, 2009, pages 819 - 825 *

Also Published As

Publication number Publication date
JPWO2012077684A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5633839B2 (en) Method for converting lignocellulosic biomass
Selig et al. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities
EP2225387B1 (en) Process for producing saccharide
JP6562735B2 (en) New xylanase
JP2013215187A (en) Method for producing saccharide
Abada et al. Optimization of cellulase production from Bacillus albus (MN755587) and its involvement in bioethanol production
CN109082451B (en) Method for producing cellooligosaccharide by adopting lignocellulose
JP5745237B2 (en) Method for producing sugar and alcohol from cellulosic biomass
WO2013176205A1 (en) Xylanase, and method for producing sugar using same
JP7208762B2 (en) A novel arabinofuranosidase
JP5385561B2 (en) Method for producing sugar
JP5385563B2 (en) Method for producing sugar
WO2012077684A1 (en) Method for producing sugar
WO2013038940A1 (en) Method for producing sugar
JP2013255430A (en) Method for producing sugar
JP2013243953A (en) Xylanase and method for producing sugar therewith
JP2013243954A (en) Xylanase and method for producing sugar therewith
JP6849749B2 (en) New xylanase
JP2014117207A (en) Manufacturing method of sugar
CN103764833A (en) Method for producing sugar
JP2023145205A (en) Enzyme composition for biomass saccharification
CN105722862B (en) The manufacturing method of the manufacturing method of composition containing xylan and the composition containing glucan
JP2023145206A (en) Enzyme composition for biomass saccharification
CN105861527A (en) Expression and application of intracellular high-temperature xylanase gene and protein thereof
Shankarappa et al. Agroresidues-Alternate Cheap Substrates for Fermentable Sugar Production by Commencial Cellulases and Xylanase Enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847324

Country of ref document: EP

Kind code of ref document: A1