WO2012077430A1 - 複合材製造方法 - Google Patents

複合材製造方法 Download PDF

Info

Publication number
WO2012077430A1
WO2012077430A1 PCT/JP2011/075245 JP2011075245W WO2012077430A1 WO 2012077430 A1 WO2012077430 A1 WO 2012077430A1 JP 2011075245 W JP2011075245 W JP 2011075245W WO 2012077430 A1 WO2012077430 A1 WO 2012077430A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforcing fiber
fiber base
mold
matrix resin
Prior art date
Application number
PCT/JP2011/075245
Other languages
English (en)
French (fr)
Inventor
藤田 健
新藤 健太郎
川節 望
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11846796.8A priority Critical patent/EP2650096A1/en
Publication of WO2012077430A1 publication Critical patent/WO2012077430A1/ja
Priority to US13/908,654 priority patent/US9221201B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3647Membranes, diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs

Definitions

  • the present invention relates to a method for manufacturing a composite material used as a member of, for example, a windmill blade, an aircraft, an automobile, a ship, and a railway vehicle.
  • composite material in which a matrix resin is reinforced with fibers has a great advantage in weight reduction. Therefore, it is suitable for components such as windmill blades, aircrafts, automobiles, ships, and railway vehicles. Application is progressing rapidly.
  • Patent Document 1 describes an autoclave molding method for preventing generation of wrinkles and undulation of a composite material by performing molding while applying tension to a unidirectional fiber prepreg.
  • a plurality of unidirectional fiber prepregs are stacked on a lower mold for molding, an upper mold plate is stacked on the prepreg, and the end of the unidirectional fiber prepreg is fixed to the lower mold for molding.
  • a tension plate and a restraint plate that is placed on the tension plate and presses the prepreg. Then, the prepreg is heated and cured in a pressurized state.
  • vacuum assisted resin transfer molding (VaRTM: Vacuum Assisted Resin Transfer Molding), which does not require large-scale equipment, is in the spotlight.
  • VaRTM Vacuum Assisted Resin Transfer Molding
  • a fiber reinforced substrate placed on a mold is covered with a bag film, the inside of the bag film is vacuumed, and a liquid resin is injected into the bag film to be cured.
  • Patent Document 2 discloses a vacuum impregnation method using a transparent silicone sheet that can be reused as a bag film. In this construction method, since a thin transparent silicone sheet is used as the bag film, the weight of the bag film is reduced, and the state of the liquid resin flowing inside is visualized by the transparency. Therefore, handling of the bag film is facilitated and the impregnation state of the resin can be visually confirmed, so that workability at the time of manufacturing the composite material can be improved.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a composite material manufacturing method capable of obtaining a high-strength composite material.
  • the composite material production method is a composite material production method for producing a composite material in which a matrix resin is reinforced with fibers by a vacuum impregnation method, and a reinforcing fiber base material is placed on a mold having a recess, A fixing step of fixing the reinforcing fiber base to the mold by at least a pair of fixing members arranged with the recess interposed therebetween, and a covering step of covering the reinforcing fiber base fixed to the molding die with a bag film; A depressurizing step of depressurizing the molding space formed between the mold and the bag film, a flow step of flowing a matrix resin in the depressurized molding space, the reinforcing fiber base and the matrix A solidifying step for solidifying the matrix resin so that a composite material in which the resin is integrally molded is obtained, and in the fixing step, the reinforcing fiber base and the component are formed.
  • a gap is provided between the bottom surface of the mold recess, characterized in that the
  • a reinforcing fiber substrate is formed into a mold by at least a pair of fixing members disposed with the recess interposed between the fiber reinforced substrate and the recess bottom surface of the mold. After fixing, the pressure in the molding space is reduced. For this reason, at the time of pressure reduction in the molding space, the reinforcing fiber base is pressed against the concave portion of the molding die by the pressure difference between the atmospheric pressure and the pressure in the molding space. At this time, since the reinforcing fiber base is fixed by the fixing member, tension is applied to the reinforcing fiber base between the fixing members. Accordingly, the straightness of the fibers constituting the reinforcing fiber base is increased, and the compressive strength of the composite material is improved.
  • tensile_strength is provided to a reinforced fiber base material, the wrinkle of the fiber which comprises a reinforced fiber base material is reduced, and the strength reduction of the composite material resulting from the wrinkle of a fiber can be suppressed.
  • the tension applied to the reinforcing fiber base material at the time of molding is generated by using a decompression process performed at the time of molding in the vacuum impregnation method, it is not necessary to provide a mechanism for applying tension to the reinforcing fiber base material. . Therefore, an increase in equipment cost can be suppressed.
  • the “reinforced fiber substrate” may be a substrate made of dry fibers not impregnated with resin, or may be a prepreg in which fibers are impregnated with resin. .
  • the concave portion of the mold is provided over the entire product area of the composite material.
  • the concave portion of the mold may be provided only outside the product area of the composite material.
  • a pressing jig may be interposed between the bag film and the reinforcing fiber substrate above the concave portion provided in the mold.
  • the pressurization treatment is performed by the differential pressure between the atmospheric pressure during molding and the pressure in the molding space. Since the tool tends to move downward, the reinforcing fiber base is pressed more strongly against the concave portion of the mold. Therefore, the straightness of the fibers constituting the reinforcing fiber base material is dramatically increased, the compressive strength of the composite material is greatly improved, and the wrinkles of the fibers constituting the reinforcing fiber base material are reliably reduced, It is possible to further suppress a decrease in strength of the composite material due to fiber wrinkles.
  • the fixing member includes a fixing bolt inserted into a through hole provided in the reinforcing fiber base, and the through hole is provided outside a product area of the composite material. .
  • the reinforcing fiber base is firmly fixed, and the fibers constituting the reinforcing fiber base are reliably tensioned. Can be granted.
  • the through hole outside the product area of the composite material, the through hole provided in the reinforcing fiber base does not affect the quality of the composite material.
  • the reinforcing fiber substrate is a substrate in which fiber bundles are arranged in one direction
  • the fixing member is a concave portion of the mold in the arrangement direction of the fiber bundles of the reinforcing fiber substrate. It may be arranged on both sides.
  • the fixing member is provided on both sides of the concave portion of the forming die in the arrangement direction of the fiber bundle, and the reinforcing fiber base is fixed to the forming die by the fixing member. It is possible to effectively improve the strength of the composite material by applying a tension along the length direction of the fiber bundle to the fibers constituting the.
  • the reinforcing fiber base material may be made of carbon fiber.
  • CFRP carbon fiber reinforced plastic
  • the straightness of the carbon fiber has a great influence on the compressive strength.
  • the reinforcing fiber base material carbon fiber
  • the reinforcing fiber base material is pressed by the concave portion of the molding die at the time of molding, and tension is applied to the carbon fiber.
  • the compressive strength of the fiber reinforced plastic can be greatly improved.
  • the reinforcing fiber base is fixed to the molding die by at least a pair of fixing members arranged with the gap interposed between the fiber reinforced base and the concave bottom surface of the molding die.
  • tensile_strength is provided to a reinforced fiber base material, the wrinkle of the fiber which comprises a reinforced fiber base material can be reduced, and the strength reduction of the composite material resulting from the wrinkle of a fiber can be suppressed.
  • the tension applied to the reinforcing fiber base material at the time of molding is generated by using a decompression process performed at the time of molding in the vacuum impregnation method, it is not necessary to provide a mechanism for applying tension to the reinforcing fiber base material. . Therefore, an increase in equipment cost can be suppressed.
  • FIG. 1 is a diagram illustrating a procedure of the composite material manufacturing method according to the first embodiment.
  • FIG. 2 is a top view showing the relationship between the recesses of the mold used in the first embodiment and the product area of the composite material.
  • a reinforcing fiber base 2 which is a base made of dry fibers not impregnated with resin, is placed on a mold 1 and reinforced by a plurality of fixing members 4.
  • the fiber base 2 is fixed to the mold 1.
  • the number of the fixing members 4 is not particularly limited as long as there is at least one pair, and can be appropriately set according to the size of the reinforcing fiber base 2, the area of the recess 10 of the mold 1, and the like.
  • the release sheet 6 is for facilitating removal of the molded composite material 28 (see FIG. 1C).
  • the resin diffusion network sheet 8 is for accelerating the penetration of the matrix resin described later into the reinforcing fiber base 2.
  • Mold 1 has a recess 10 between a pair of fixing members 4.
  • the reinforcing fiber base 2 is fixed to the mold 1 by the fixing member 4 in a state where a gap is provided between the reinforcing fiber base 2 and the bottom surface 12 of the recess 10 of the mold 1. At this time, it is preferable to fix the reinforcing fiber base 2 to the mold 1 while pulling both ends of the reinforcing fiber base 2 so as not to loosen the reinforcing fiber base 2.
  • the recessed part 10 is provided so that it may extend over the whole surface of the product area A of a composite material, as shown in FIG. Thereby, the area which the pressure (differential pressure of atmospheric pressure and pressure in molding space) which presses the reinforcement fiber base material 2 against the recessed part 10 of the shaping
  • molding die 1 is provided over the whole surface of the product area A of a composite material, if the shape of the recessed part 10 of the shaping
  • the depth of the concave portion 10 of the mold 1 is determined so that the lower surface of the reinforcing fiber base 2 comes into contact with the bottom surface 12 of the concave portion 10 at the time of decompression in a molding space described later, and the bottom surface 12 of the concave portion 10 is finally formed.
  • the shape of the composite material 28 desired to be obtained may be reversed.
  • the fibers constituting the reinforcing fiber base 2 known fibers such as carbon fibers, aramid fibers, and glass fibers can be used.
  • the reinforcing fiber base 2 is made of carbon fiber, the straightness of the carbon fiber has a great influence on the compressive strength. We can enjoy big effect of improvement.
  • the fixing member 4 is not particularly limited as long as the reinforcing fiber base 2 can be fixed, but a fixing bolt inserted into a through hole provided in the reinforcing fiber base 2 may be used.
  • the fixing bolt inserted into the through hole of the reinforcing fiber base 2 as the fixing member 4 the fixing member 4 is disposed outside the product area A of the composite material as shown in FIG. For this reason, the through hole of the reinforcing fiber base 2 through which the fixing member 4 is inserted is also provided outside the product area A. Therefore, the through hole provided in the reinforcing fiber base 2 does not affect the quality of the composite material 28 (see FIG. 1C).
  • the fixing member 4 may be constituted by a stud bolt 4A, a nut 4B, and a presser plate 4C as shown in FIG.
  • One end of the stud bolt 4A is screwed to the mold 1 and the central portion is inserted through a through hole provided in the reinforcing fiber base 2, the release sheet 6 and the resin diffusion netting sheet 8, and the other end is a nut.
  • 4B is screwed.
  • a presser plate 4C is provided between the nut 4B and the resin diffusion netting sheet 8, and the fastening force by the nut 4B is transmitted to the reinforcing fiber base 2 through the presser plate 4C, so that the reinforcing fiber base 2 is firmly fixed. It can be done. Therefore, tension can be reliably applied to the fibers constituting the reinforcing fiber material 2.
  • the stud bolt 4A is passed through the through holes provided in advance in each fiber sheet constituting the reinforcing fiber base 2.
  • Each fiber sheet is laminated to form the reinforcing fiber base 2, and the stud bolt 4A is passed through the through hole provided in the release sheet 6 and the resin diffusion netting sheet 8 and tightened with the nut 4B through the through plate 4C.
  • the reinforcing fiber base 2 is fixed to the mold 1.
  • the fixing members 4 are preferably arranged on both sides of the recesses 10 in the arrangement direction of the fiber bundle of the reinforcing fiber base 2.
  • the fixing member 4 is provided on both sides of the concave portion 10 of the mold 1 in the arrangement direction of the fiber bundles, and the reinforcing fiber base 2 is fixed to the molding die 1 by the fixing member 4, whereby the reinforcing fiber base
  • tensile_strength along the length direction of a fiber bundle can be provided to the fiber which comprises 2, and the intensity
  • the reinforcing fiber base 2 After fixing the reinforcing fiber base 2 to the mold 1 with the fixing member 4, as shown in FIG. 1 (b), the reinforcing fiber base 2 is covered with the bag film 20, the inside of the bag film 20 is decompressed, and the bag film A liquid matrix resin is injected into 20.
  • the bag film 20 provided with the suction port 22 and the injection port 24 is covered with the reinforcing fiber base 2, and a space (molding space) surrounded by the bag film 20 and the mold 1 is covered by the seal member 26. Seal.
  • a vacuum pump is connected to the suction port 22, and the inside of the molding space is decompressed by this vacuum pump. Further, a liquid matrix resin is injected into the molding space under reduced pressure through the injection port 24.
  • symbol 27 in FIG.1 (b) has shown the osmosis
  • the reinforcing fiber substrate 2 When the pressure in the molding space is reduced, the reinforcing fiber substrate 2 is pressed against the concave portion 10 of the mold 1 by the pressure difference P between the atmospheric pressure and the pressure in the molding space. At this time, since the reinforcing fiber base 2 is fixed by the fixing member 4, tension in the arrow direction in FIG. 1B is applied to the reinforcing fiber base 2 between the fixing members 4. Therefore, at the time of injection of the matrix resin, the fibers constituting the reinforcing fiber base 2 are in a state where the straightness is high and wrinkles are reduced.
  • the matrix resin may be a thermosetting resin such as unsaturated polyester, epoxy resin, polyamide resin, or phenol resin, or may be a thermoplastic resin typified by polybutylene terephthalate.
  • a thermoplastic resin is used as the matrix resin, the matrix resin is melted, injected into the molding space, and permeated into the reinforcing fiber base 2.
  • the matrix resin is solidified so that a composite material 28 in which the reinforcing fiber base 2 and the matrix resin are integrally formed is obtained.
  • the matrix resin is a thermosetting resin
  • the matrix resin is cured by reaction under heating conditions or room temperature conditions.
  • the matrix resin is a thermoplastic resin
  • the molten matrix resin is cooled and solidified. Thereafter, the composite material 28 is removed from the mold 1 and cut into the size of the product area A.
  • the composite material manufacturing method includes the reinforcing fiber base 2 placed on the mold 1 having the recess 10, and at least a pair of fixing members 4 disposed with the recess 10 interposed therebetween.
  • a fixing process for fixing the reinforcing fiber base 2 to the mold 1 a covering process for covering the reinforcing fiber base 2 fixed to the mold 1 with the bag film 20.
  • the decompression step of decompressing the molded molding space, the flow step of flowing the matrix resin in the decompressed molding space, and the composite material 28 in which the reinforcing fiber base 2 and the matrix resin are integrally molded are obtained.
  • the solidifying step of solidifying the matrix resin, and in the fixing step, the reinforcing fiber base material in a state where a gap is provided between the reinforcing fiber base material 2 and the bottom surface 12 of the concave portion 10 of the mold 1. 2 is the fixed part 4 by characterized in that it is fixed to the mold 1.
  • the reinforcement is performed by at least a pair of fixing members 4 arranged with the concave portion 10 interposed therebetween. Since the pressure in the molding space is reduced after fixing the fiber base material 2 to the mold 1, the reinforcing fiber base material 2 becomes the concave portion 10 of the mold 1 by the pressure difference P between the atmospheric pressure and the pressure in the molding space. The tension is applied to the reinforcing fiber base 2 between the fixing members 4. Therefore, the straightness of the fibers constituting the reinforcing fiber base 2 is increased, and the compressive strength of the composite material 28 is improved.
  • tensile_strength is provided to the reinforced fiber base material 2
  • the wrinkle of the fiber which comprises the reinforced fiber base material 2 is reduced, and the strength reduction of the composite material 28 resulting from the wrinkle of a fiber can be suppressed.
  • molding is generated using the pressure reduction process performed at the time of shaping
  • FIG. 3 is a diagram illustrating a procedure of the composite material manufacturing method according to the second embodiment.
  • FIG. 4 is a top view showing an example of the relationship between the concave portion of the mold used in the second embodiment and the product area of the composite material.
  • FIG. 5 is a top view showing another example of the relationship between the concave portion of the mold and the product area of the composite material.
  • the composite material manufacturing method according to the present embodiment is the same as that of the first embodiment except that the concave portion 10 of the mold 1 is provided outside the product area of the composite material and the point where the pressing jig is provided. It is the same. Therefore, here, the same reference numerals are given to the members common to the first embodiment, the description common to the first embodiment is omitted, and the points different from the first embodiment will be mainly described.
  • the reinforcing fiber base 2 is placed on the mold 1, and the reinforcing fiber base 2 is fixed to the mold 1 by a plurality of fixing members 4. At this time, a gap is provided between the reinforcing fiber base 2 and the bottom surface 12 of the recess 10 of the mold 1.
  • the mold 1 used in the present embodiment is the same as the first embodiment in that it has a recess 10 between a pair of fixing members 4, but as shown in FIG. It differs from 1st Embodiment by the point by which the recessed part 10 is provided outside.
  • the concave portions 10 may be provided on both sides of the product area A of the composite material.
  • a pressing jig 30 is placed on the resin diffusion netting sheet 8 above the recess 10 provided in the mold 1.
  • the pressurizing jig 30 can be made of any material such as aluminum, iron, steel, wood, and resin.
  • the pressurizing jig 30 basically presses the reinforcing fiber base 2 against the concave portion 10 of the molding die 1 by moving downward by the differential pressure between the atmospheric pressure and the molding space pressure during molding.
  • the heating jig 30 may be composed of a heavy object, and the reinforcing fiber substrate 2 may be pressed against the recess 10 by the weight of the heating jig 30 in addition to the differential pressure.
  • the heating jig 30 is composed of a heavy object, it is preferable to adjust the weight of the heating jig 30 so as not to prevent the matrix resin from penetrating into the reinforcing fiber substrate 2 around the heating jig 30. .
  • the reinforcing fiber base 2 is covered with the bag film 20, the inside of the bag film 20 is decompressed, and a liquid matrix resin is injected into the bag film 20.
  • a pressurizing jig 30 is interposed between the bag film 20 and the reinforcing fiber substrate 2 above the recess 10 provided in the mold 1.
  • the pressing jig 30 between the bag film 20 and the reinforcing fiber base 2 above the recess 10 of the mold 1, the atmospheric pressure during molding and the pressure in the molding space can be reduced. Since the pressurizing jig 30 tends to move downward due to the differential pressure, the reinforcing fiber base 2 is pressed more strongly against the recess 10 of the mold 1. Therefore, even when the area of the concave portion 10 of the mold 1 is small, a large tension in the arrow direction in FIG. Therefore, the straightness of the fibers constituting the reinforcing fiber base 2 is dramatically increased, the compressive strength of the composite material 28 (see FIG. 3C) is greatly improved, and the reinforcing fiber base 2 is configured.
  • the wrinkles of the fibers to be reduced can be reliably reduced, and the strength reduction of the composite material 28 caused by the wrinkles of the fibers can be further suppressed.
  • the concave portion 10 of the mold 1 is provided outside the product area A of the composite material, a large tension is applied to the reinforcing fiber base 2 with the concave portion 10 having a small area by using the pressing jig 30. By doing so, not only the material cost can be reduced, but also the molding apparatus (molding die 1 etc.) can be miniaturized.
  • the matrix resin is solidified so that a composite material 28 in which the reinforcing fiber base 2 and the matrix resin are integrally formed is obtained. Remove from the mold 1 and cut into the size of the product area A.
  • the pressurizing jig 30 is preferably provided apart from the injection port 24 into which the matrix resin is injected. This is because if the distance between the pressurizing jig 30 and the injection port 24 is too small, the pressure in the molding space around the pressurization jig 30 increases due to the injection of the matrix resin from the injection port 24, and the atmospheric pressure and the molding are performed. This is because the differential pressure with respect to the pressure in the space becomes small, and sufficient tension may not be applied to the reinforcing fiber base 2.
  • the composite material manufacturing method according to this embodiment is the same as that of the first embodiment, except that a prepreg in which fibers are impregnated with a resin is used as the reinforcing fiber base 2. Therefore, the description common to the first embodiment is omitted here, and the description will focus on the points different from the first embodiment.
  • FIG. 6 is a diagram showing a state in which a composite material is manufactured using a reinforcing fiber base 2 made of prepreg.
  • the reinforcing fiber substrate (prepreg) 2 is heated to fluidize the resin while reducing the pressure in the molding space by a vacuum pump (not shown) connected to the suction port 22 of the bag film 20.
  • the matrix resin is not injected.
  • the bag film 20 is not provided with an injection port for resin injection.
  • a breather (breathing fiber) 32 is provided in place of the resin diffusion netting sheet 8 for promoting the penetration of the matrix resin into the reinforcing fiber base 2.
  • the reinforcing fiber substrate 2 When the pressure in the molding space is reduced, the reinforcing fiber substrate 2 is pressed against the concave portion 10 of the mold 1 by the pressure difference P between the atmospheric pressure and the pressure in the molding space. At this time, since the reinforcing fiber base 2 is fixed by the fixing member 4, the tension in the arrow direction in FIG. 5 is applied to the reinforcing fiber base 2 between the fixing members 4. Therefore, when the reinforcing fiber base material (prepreg) 2 is heated, the fibers constituting the reinforcing fiber base material 2 are in a state where the straightness is increased and wrinkles are reduced. Therefore, without using an autoclave, the compressive strength of the composite material can be improved, and a decrease in strength of the composite material 28 due to fiber wrinkles can be suppressed.
  • the composite material 28 may have an arbitrary shape including a curved shape.
  • the above-described embodiments may be combined as appropriate.
  • the molding is performed from the viewpoint of applying a large tension to the reinforcing fiber base 2.
  • a pressing jig 30 may be interposed between the bag film 20 and the reinforcing fiber base 2 above the concave portion 10 of the mold 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

凹部10を有する成形型1に強化繊維基材2を載置し、凹部10を挟んで配置される少なくとも一対の固定部材4によって強化繊維基材2を成形型1に固定する。このとき、強化繊維基材2と成形型1の凹部10の底面12との間に間隙が設けられた状態で、強化繊維基材2を固定部材4によって成形型1に固定する。この後、成形型1に固定された強化繊維基材2をバッグフィルム20で覆い、成形型1とバッグフィルム20との間に形成された成形空間内を減圧して、減圧された成形空間内でマトリックス樹脂を流動させる。そして、強化繊維基材2とマトリックス樹脂とが一体的に成形された複合材28が得られるように、マトリックス樹脂を固化する。

Description

複合材製造方法
 本発明は、例えば風車ブレード、航空機、自動車、船舶、鉄道車両等の部材として用いられる複合材の製造方法に関する。
 近年、マトリックス樹脂を繊維によって強化した樹脂系複合材(以下、単に「複合材」という。)は、軽量化メリットが大きいことから、風車ブレード、航空機、自動車、船舶、鉄道車両等の部材への適用が急速に進みつつある。
 複合材の製造方法として、積層された複数枚のプリプレグ材にバッグフィルムを被せて真空吸引により加圧成形し、オートクレーブでさらに加圧するとともに加熱硬化するオートクレーブ成形法が知られている。
 例えば、特許文献1には、一方向繊維プリプレグに張力を付与しながら成形を行うことで、複合材のシワ及びうねりの発生を防止するオートクレーブ成形法が記載されている。この成形法は、複数枚の一方向繊維プリプレグを成形用下型の上に積層し、プリプレグの上に成形用上型板を重ね、一方向繊維プリプレグの端部を成形用下型に固定された張力板とこの張力板の上に載置されてプリプレグを押圧する拘止板によって拘止し、成形用上型板の上に通気用織物及びバッグフィルムを重ね、バッグフィルムの内側を真空引きしてプリプレグを加圧した状態で、加熱して硬化させるというものである。
 ところが、オートクレーブ成形法は、オートクレーブにより加圧しながら焼き固めるため強靭な複合材が得られるものの、オートクレーブという大掛かりな設備が必要であり、コスト高となり量産には向かない。特に、風車ブレードや航空機の翼のような大型構造部材に用いられる複合材は、引張強度及び疲労強度などの材料物性や長期耐久性はもちろんのこと、高品質な製品を高い生産性で製造することが大きな課題となる。
 そこで、大掛かりな設備を必要としない真空含浸工法(VaRTM:Vacuum assisted Resin Transfer Molding)が脚光を浴びている。真空含浸工法は、成形型上に載置した繊維強化基材をバッグフィルムで覆い、バッグフィルムの内側を真空吸引し、バッグフィルムの内部に液状樹脂を注入して硬化させるというものである。
 例えば、特許文献2には、バッグフィルムとして再利用可能かつ透明なシリコーンシートを用いた真空含浸工法が開示されている。この工法では、バッグフィルムとして薄肉化した透明なシリコーンシートが用いられているため、バッグフィルムの重量が軽量化され、かつ、透明化により内部を流れる液状樹脂の状態が可視化される。よって、バッグフィルムのハンドリングが容易になるとともに、樹脂の含浸状況を目視で確認することが可能となり、複合材製造時の作業性を向上させることができる。
特開平10-296864号公報 特開2010-115837号公報
 しかしながら、風車、航空機、自動車、船舶、鉄道車両等の最終製品の進化に伴って、これら最終製品の部材として用いられる複合材はより一層の強度の向上が期待されており、特許文献2のような従来の真空含浸工法では、複合材の強度が十分とはいえなくなりつつある。
 例えば、風車ブレードのような構造部材では、静的強度設計に圧縮強度が用いられるため、複合材の圧縮強度の向上が望まれる。この点、特許文献2のような従来の真空含浸工法では、成形時の繊維には張力が加わっていないため、繊維の伸直度が小さく、高圧縮強度の複合材を得ることは難しい。
 また、特許文献2のような従来の真空含浸工法では、成形時における繊維には繊維長さ方向に力が加わっていないため、繊維にシワが生じやすく、複合材の強度低下を招く要因となる場合がある。
 本発明は、上述の事情に鑑みてなされたものであり、高強度の複合材が得られる複合材製造方法を提供することを目的とする。
 本発明に係る複合材製造方法は、マトリックス樹脂が繊維で強化された複合材を真空含浸工法により製造する複合材製造方法であって、凹部を有する成形型に強化繊維基材を載置し、前記凹部を挟んで配置される少なくとも一対の固定部材によって前記強化繊維基材を前記成形型に固定する固定工程と、前記成形型に固定された前記強化繊維基材をバッグフィルムで覆う被覆工程と、前記成形型と前記バッグフィルムとの間に形成された成形空間内を減圧する減圧工程と、減圧された前記成形空間内でマトリックス樹脂を流動させる流動工程と、前記強化繊維基材と前記マトリックス樹脂とが一体的に成形された複合材が得られるように、前記マトリックス樹脂を固化する固化工程とを備え、前記固定工程では、前記強化繊維基材と前記成形型の凹部の底面との間に間隙が設けられた状態で、前記強化繊維基材が前記固定部材によって前記成形型に固定されることを特徴とする。
 この複合材製造方法では、繊維強化基材と成形型の凹部底面との間に間隙が設けられた状態で、凹部を挟んで配置される少なくとも一対の固定部材によって強化繊維基材を成形型に固定した後、成形空間内を減圧する。このため、成形空間内の減圧時に、大気圧と成形空間内の圧力との差圧によって強化繊維基材が成形型の凹部に押圧される。この際、強化繊維基材は固定部材によって固定されているから、固定部材間の強化繊維基材に張力が付与される。したがって、強化繊維基材を構成する繊維の伸直度が高くなり、複合材の圧縮強度が向上する。また、強化繊維基材に張力が付与されることから、強化繊維基材を構成する繊維のシワが低減され、繊維のシワに起因する複合材の強度低下を抑制できる。
 また、成形時に強化繊維基材に付与される張力は、真空含浸工法において成形時に行う減圧工程を利用して発生させるから、強化繊維基材への張力付与のための機構を別途設ける必要がない。よって、設備コストの増加を抑えることができる。
 なお、上記複合材製造方法において、「強化繊維基材」は、樹脂が含浸されていないドライな繊維からなる基材であってもよいし、樹脂が繊維に含浸されたプリプレグであってもよい。
 上記複合材製造方法において、前記成形型の凹部は、複合材の製品エリア全面に亘って設けられていることが好ましい。
 これにより、強化繊維基材を成形型の凹部に押し付けようとする圧力(大気圧と成形空間内圧力との差圧)が作用する面積が大きくなり、成形時に強化繊維基材に大きな張力が付与される。よって、強化繊維基材を構成する繊維の伸直度を飛躍的に高めて、複合材の圧縮強度を大幅に向上させるとともに、強化繊維基材を構成する繊維のシワを確実に低減して、繊維のシワに起因する複合材の強度低下をより一層抑制できる。
 あるいは、上記複合材製造方法において、前記成形型の凹部は、複合材の製品エリア外にのみ設けられていてもよい。
 上記複合材製造方法において、前記被覆工程では、前記成形型に設けられた凹部の上方において、前記バッグフィルムと前記強化繊維基材との間に加圧用治具を介在させてもよい。
 このように、成形型の凹部の上方において、加圧用治具をバッグフィルムと強化繊維基材との間に設けることで、成形時における大気圧と成形空間内圧力との差圧によって加圧用治具が下方に移動しようとするので、成形型の凹部に強化繊維基材がより強く押し付けられる。よって、強化繊維基材を構成する繊維の伸直度を飛躍的に高めて、複合材の圧縮強度を大幅に向上させるとともに、強化繊維基材を構成する繊維のシワを確実に低減して、繊維のシワに起因する複合材の強度低下をより一層抑制できる。
 上記複合材製造方法において、前記固定部材は、前記強化繊維基材に設けられた貫通穴に挿通された固定用ボルトを含み、前記貫通穴は、複合材の製品エリア外に設けられることが好ましい。
 このように、貫通穴に挿通された固定用ボルトで強化繊維基材を成形型に固定することで、強化繊維基材を堅固に固定して、強化繊維基材を構成する繊維に張力を確実に付与することができる。なお、貫通穴が複合材の製品エリア外に設けることで、強化繊維基材に設けた貫通穴が複合材の品質に影響を及ぼすことはない。
 上記複合材製造方法において、前記強化繊維基材は、繊維束が一方向に配列した基材であり、前記固定部材は、前記強化繊維基材の繊維束の配列方向における前記成形型の凹部の両側に配置されてもよい。
 繊維束が一方向に配列した強化繊維基材を用いる場合、繊維束の配列方向に張力を付与することが複合材の強度向上に有効である。そこで、上述のように、固定部材を繊維束の配列方向における成形型の凹部の両側に固定部材を設けて、該固定部材によって強化繊維基材を成形型に固定することで、強化繊維基材を構成する繊維に繊維束の長さ方向に沿った張力を付与して、複合材の強度を効果的に向上させることができる。
 上記複合材製造方法において、前記強化繊維基材が炭素繊維からなっていてもよい。
 複合材が炭素繊維強化プラスチック(CFRP)である場合、炭素繊維の伸直度が圧縮強度に与える影響が大きい。この点、上記複合材製造方法では、成形時に強化繊維基材(炭素繊維)が成形型の凹部に押圧されて炭素繊維に張力が付与されるから、炭素繊維の伸直度が高くなり、炭素繊維強化プラスチックの圧縮強度を大幅に向上させることができる。
 本発明によれば、繊維強化基材と成形型の凹部底面との間に間隙が設けられた状態で、凹部を挟んで配置される少なくとも一対の固定部材によって強化繊維基材を成形型に固定した後、成形空間内の減圧を行うようにしたので、大気圧と成形空間内圧力との差圧によって強化繊維基材が成形型の凹部に押し付けられて、固定部材間の強化繊維基材に張力が付与される。したがって、強化繊維基材を構成する繊維の伸直度が高くなり、複合材の圧縮強度が向上する。また、強化繊維基材に張力が付与されることから、強化繊維基材を構成する繊維のシワを低減し、繊維のシワに起因する複合材の強度低下を抑制できる。
 また、成形時に強化繊維基材に付与される張力は、真空含浸工法において成形時に行う減圧工程を利用して発生させるから、強化繊維基材への張力付与のための機構を別途設ける必要がない。よって、設備コストの増加を抑えることができる。
第1実施形態の複合材製造方法の手順を示す図である。 第1実施形態で用いる成形型の凹部と複合材の製品エリアとの関係を示す上面図である。 第2実施形態の複合材製造方法の手順を示す図である。 第2実施形態で用いる成形型の凹部と複合材の製品エリアとの関係の一例を示す上面図である。 第2実施形態で用いる成形型の凹部と複合材の製品エリアとの関係の他の例を示す上面図である。 プリプレグからなる強化繊維基材を用いて複合材を製造する様子を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 第1実施形態に係る複合材製造方法について説明する。図1は、第1実施形態の複合材製造方法の手順を示す図である。図2は、第1実施形態で用いる成形型の凹部と複合材の製品エリアとの関係を示す上面図である。
 最初に、図1(a)に示すように、樹脂が含浸されていないドライな繊維からなる基材である強化繊維基材2を成形型1上に載置し、複数の固定部材4によって強化繊維基材2を成形型1に固定する。ここで、固定部材4の個数は、少なくとも一対ある限り特に限定されず、強化繊維基材2のサイズや成形型1の凹部10の面積等に応じて適宜設定することができる。
 なお、このとき、強化繊維基材2の上に、剥離シート(ピールプライ)6及び樹脂拡散用網状シート(フローメディア)8をこの順で配置しておくことが好ましい。剥離シート6は、成形後の複合材28(図1(c)参照)の取外しを容易にするためのものである。また、樹脂拡散用網状シート8は、後述のマトリックス樹脂の強化繊維基材2への浸透を促進するためのものである。
 成形型1は、一対の固定部材4の間に凹部10を有する。そして、強化繊維基材2は、強化繊維基材2と成形型1の凹部10の底面12との間に間隙が設けられた状態で、固定部材4によって成形型1に固定される。このとき、強化繊維基材2を弛ませないように、強化繊維基材2の両端を引っ張りながら成形型1に固定することが好ましい。
 凹部10は、図2に示すように、複合材の製品エリアAの全面に亘って延在するように設けられている。これにより、強化繊維基材2を成形型1の凹部10に押し付けようとする圧力(大気圧と成形空間内圧力との差圧)が作用する面積が大きくなり、成形時に強化繊維基材2に大きな張力を付与できる。
 なお、成形型1の凹部10が複合材の製品エリアAの全面に亘って設ける場合、成形型1の凹部10の形状を適宜調整すれば、複合材28(図1(c)参照)の所望の形状を得ることができる。例えば、後述の成形空間内の減圧時に強化繊維基材2の下面が凹部10の底面12に接触するように成形型1の凹部10の深さを決定するとともに、凹部10の底面12を最終的に得たい複合材28の形状の反転形状としてもよい。
 強化繊維基材2を構成する繊維には、例えば、炭素繊維、アラミド繊維、ガラス繊維等の公知の繊維を用いることができる。なお、強化繊維基材2が炭素繊維からなる場合、炭素繊維の伸直度が圧縮強度に与える影響が大きいから、本実施形態の複合材製造方法の採用により、複合材(CFRP)の圧縮強度改善の大きな効果を享受できる。
 固定部材4は、強化繊維基材2を固定しうる限り特に限定されないが、強化繊維基材2に設けられた貫通穴に挿通される固定用ボルトを用いてもよい。
 なお、強化繊維基材2の貫通穴に挿通される固定用ボルトを固定部材4として用いる場合、図2に示すように、固定部材4は複合材の製品エリアA外に配置する。このため、固定部材4が挿通される強化繊維基材2の貫通穴も製品エリアA外に設けられる。よって、強化繊維基材2に設けた貫通穴が複合材28(図1(c)参照)の品質に影響を及ぼすことはない。
 例えば、固定部材4は、図1(a)に示すように、スタッドボルト4A、ナット4B及び押え板4Cにより構成してもよい。スタッドボルト4Aは、一端部が成形型1に螺着され、中央部が強化繊維基材2、剥離シート6及び樹脂拡散用網状シート8に設けられた貫通穴に挿通され、他端部にナット4Bが螺着される。ナット4Bと樹脂拡散用網状シート8との間には押え板4Cが設けられ、ナット4Bによる締結力が押え板4Cを介して強化繊維基材2に伝わり、強化繊維基材2を堅固に固定できるようになっている。よって、強化繊維材2を構成する繊維に張力を確実に付与できる。
 なお、図1(a)に示す例では、スタッドボルト4Aを成形型1に取り付けた後、強化繊維基材2を構成する各繊維シートに予め設けられた貫通穴にスタッドボルト4Aを通しながら、各繊維シートを積層して強化繊維基材2を形成し、さらに剥離シート6及び樹脂拡散用網状シート8に設けられた貫通穴にスタッドボルト4Aを通して、通し板4Cを介してナット4Bで締付けることで、強化繊維基材2が成形型1に固定される。
 また、強化繊維基材2の繊維束が一方向に配列している場合、固定部材4は、強化繊維基材2の繊維束の配列方向における凹部10の両側に配置することが好ましい。固定部材4を繊維束の配列方向における成形型1の凹部10の両側に固定部材4を設けて、該固定部材4によって強化繊維基材2を成形型1に固定することで、強化繊維基材2を構成する繊維に繊維束の長さ方向に沿った張力を付与して、複合材の強度を効果的に向上させることができる。
 強化繊維基材2を固定部材4で成形型1に固定した後、図1(b)に示すように、強化繊維基材2をバッグフィルム20で覆い、バッグフィルム20内を減圧し、バッグフィルム20内に液状のマトリックス樹脂を注入する。
 具体的には、吸引口22及び注入口24が設けられたバッグフィルム20を強化繊維基材2に被せ、シール部材26によって、バッグフィルム20と成形型1とで囲まれる空間(成形空間)を密封する。そして、吸引口22に真空ポンプが接続され、この真空ポンプにより成形空間内が減圧される。さらに、注入口24を介して減圧下の成形空間内に液状のマトリックス樹脂が注入される。なお、図1(b)における符号27は、強化繊維基材2へのマトリックス樹脂の浸透領域を示している。
 成形空間内が減圧されると、大気圧と成形空間内圧力との差圧Pによって強化繊維基材2が成形型1の凹部10に押圧される。この際、強化繊維基材2は固定部材4によって固定されているから、図1(b)における矢印方向の張力が固定部材4間の強化繊維基材2に付与される。したがって、マトリックス樹脂の注入時に、強化繊維基材2を構成する繊維は、伸直度が高くなり、シワが低減された状態になっている。
 なお、マトリックス樹脂は、不飽和ポリエステル、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂等の熱硬化性樹脂であってもよいし、ポリブチレンテレフタレートに代表される熱可塑性樹脂であってもよい。なお、マトリックス樹脂として熱可塑性樹脂を用いる場合、マトリックス樹脂を溶融させて、成形空間内に注入して強化繊維基材2に浸透させる。
 続いて、図1(c)に示すように、強化繊維基材2とマトリックス樹脂とが一体的に成形された複合材28が得られるように、マトリックス樹脂を固化する。具体的には、マトリックス樹脂が熱硬化性樹脂であれば、加熱条件下または室温条件下で反応によりマトリックス樹脂を硬化させる。一方、マトリックス樹脂が熱可塑性樹脂であれば、溶融したマトリックス樹脂を冷却固化する。
 この後、複合材28は、成形型1から取り外され、製品エリアAの大きさに裁断される。
 以上説明したように、本実施形態に係る複合材製造方法は、凹部10を有する成形型1に強化繊維基材2を載置し、凹部10を挟んで配置される少なくとも一対の固定部材4によって強化繊維基材2を成形型1に固定する固定工程と、成形型1に固定された強化繊維基材2をバッグフィルム20で覆う被覆工程と、成形型1とバッグフィルム20との間に形成された成形空間内を減圧する減圧工程と、減圧された成形空間内でマトリックス樹脂を流動させる流動工程と、強化繊維基材2とマトリックス樹脂とが一体的に成形された複合材28が得られるように、マトリックス樹脂を固化する固化工程とを備え、前記固定工程では、強化繊維基材2と成形型1の凹部10の底面12との間に間隙が設けられた状態で、強化繊維基材2が固定部材4によって成形型1に固定されることを特徴とする。
 本実施形態によれば、繊維強化基材2と成形型1の凹部10の底面12との間に間隙が設けられた状態で、凹部10を挟んで配置される少なくとも一対の固定部材4によって強化繊維基材2を成形型1に固定した後、成形空間内の減圧を行うようにしたので、大気圧と成形空間内圧力との差圧Pによって強化繊維基材2が成形型1の凹部10に押し付けられて、固定部材4間の強化繊維基材2に張力が付与される。したがって、強化繊維基材2を構成する繊維の伸直度が高くなり、複合材28の圧縮強度が向上する。また、強化繊維基材2に張力が付与されることから、強化繊維基材2を構成する繊維のシワが低減され、繊維のシワに起因する複合材28の強度低下を抑制できる。
 また、成形時に強化繊維基材2に付与される張力は、真空含浸工法において成形時に行う減圧工程を利用して発生させるから、強化繊維基材2への張力付与のための機構を別途設ける必要がない。よって、設備コストの増加を抑えることができる。
[第2実施形態]
 次に、第2実施形態に係る複合材製造方法について説明する。図3は、第2実施形態の複合材製造方法の手順を示す図である。図4は、第2実施形態で用いる成形型の凹部と複合材の製品エリアとの関係の一例を示す上面図である。図5は、成形型の凹部と複合材の製品エリアとの関係の他の例を示す上面図である。
 なお、本実施形態に係る複合材製造方法は、成形型1の凹部10を複合材の製品エリア外に設けた点と、加圧用治具を設けた点とを除けば、第1実施形態と同様である。したがって、ここでは第1実施形態と共通する部材に同一の符号を付して、第1実施形態と共通する内容については説明を省略し、第1実施形態と異なる点を中心に説明する。
 最初に、図3(a)に示すように、成形型1上に強化繊維基材2を載置し、複数の固定部材4によって強化繊維基材2を成形型1に固定する。このとき、強化繊維基材2と成形型1の凹部10の底面12との間に間隙を設けておく。
 ここで、本実施形態で用いる成形型1は、一対の固定部材4の間に凹部10を有する点は第1実施形態と同様であるが、図4に示すように、複合材の製品エリアA外に凹部10が設けられる点で第1実施形態と異なる。なお、強化繊維基材2により大きな張力を付与する観点から、図5に示すように、複合材の製品エリアAの両側に凹部10を設けてもよい。
 また、成形型1に設けられた凹部10の上方において、樹脂拡散用網状シート8の上に加圧用治具30が載置される。
 加圧用治具30は、例えば、アルミニウム、鉄、鋼、木材、樹脂等の任意の材質のものを用いることができる。加圧用治具30は、基本的には、成形時における大気圧と成形空間内圧力との差圧によって下方に移動することで、成形型1の凹部10に強化繊維基材2を押し付けるものであるが、加熱用治具30を重量物で構成し、上記差圧に加えて加熱用治具30の自重によって強化繊維基材2を凹部10に押し付けてもよい。加熱用治具30を重量物で構成する場合、加熱用治具30の周辺の強化繊維基材2へのマトリックス樹脂の浸透を妨げないように加熱用治具30の重量を調節することが好ましい。
 続いて、図3(b)に示すように、強化繊維基材2をバッグフィルム20で覆い、バッグフィルム20内を減圧し、バッグフィルム20内に液状のマトリックス樹脂を注入する。このとき、成形型1に設けられた凹部10の上方において、バッグフィルム20と強化繊維基材2との間に加圧用治具30が介在させる。
 このように、成形型1の凹部10の上方において、加圧用治具30をバッグフィルム20と強化繊維基材2との間に介在させることで、成形時における大気圧と成形空間内圧力との差圧によって加圧用治具30が下方に移動しようとするので、成形型1の凹部10に強化繊維基材2がより強く押し付けられる。
 したがって、成形型1の凹部10の面積が小さい場合であっても、図3(b)における矢印方向の大きな張力を強化繊維基材2に付与できる。よって、強化繊維基材2を構成する繊維の伸直度を飛躍的に高めて、複合材28(図3(c)参照)の圧縮強度を大幅に向上させるとともに、強化繊維基材2を構成する繊維のシワを確実に低減して、繊維のシワに起因する複合材28の強度低下をより一層抑制できる。
 特に、本実施形態では成形型1の凹部10を複合材の製品エリアA外に設けるから、加圧用治具30を用いて、小さな面積の凹部10で大きな張力を強化繊維基材2に付与するようにすれば、材料費を削減できるだけでなく、成形装置(成形型1など)を小型化できる。
 この後、図3(c)に示すように、強化繊維基材2とマトリックス樹脂とが一体的に成形された複合材28が得られるようにマトリックス樹脂を固化し、得られた複合材28を成形型1から取り外して製品エリアAの大きさに裁断する。
 なお、加圧用治具30は、マトリックス樹脂が注入される注入口24から離して設けることが好ましい。これは、加圧用治具30と注入口24との距離が小さすぎると、注入口24からのマトリックス樹脂の注入により加圧用治具30周辺の成形空間内の圧力が上昇し、大気圧と成形空間内圧力との差圧が小さくなり、強化繊維基材2に十分な張力を付与できない場合があるためである。
[第3実施形態]
 次に、第3実施形態に係る複合材製造方法について説明する。本実施形態に係る複合材製造方法は、樹脂が繊維に含浸されたプリプレグを強化繊維基材2として用いる点を除けば、第1実施形態と同様である。したがって、ここでは第1実施形態と共通する内容については説明を省略し、第1実施形態と異なる点を中心に説明する。
 図6は、プリプレグからなる強化繊維基材2を用いて複合材を製造する様子を示す図である。同図に示すように、バッグフィルム20の吸引口22に接続した真空ポンプ(不図示)により成形空間内を減圧しながら、強化繊維基材(プリプレグ)2を加熱して樹脂を流動化させる。
 なお、本実施形態では、プリプレグからなる強化繊維基材2を用いるためマトリックス樹脂の注入は行わない。このため、バッグフィルム20には樹脂注入用の注入口は設けられていない。また、マトリックス樹脂の強化繊維基材2への浸透を促進するための樹脂拡散用網状シート8に替えて、ブリーザー(通気用繊維)32(図6参照)が設けられる。
 成形空間内が減圧されると、大気圧と成形空間内圧力との差圧Pによって強化繊維基材2が成形型1の凹部10に押圧される。この際、強化繊維基材2は固定部材4によって固定されているから、図5における矢印方向の張力が固定部材4間の強化繊維基材2に付与される。したがって、強化繊維基材(プリプレグ)2の加熱時に、強化繊維基材2を構成する繊維は、伸直度が高くなり、シワが低減された状態になっている。よって、オートクレーブを用いることなく、複合材の圧縮強度を向上させるとともに、繊維のシワに起因する複合材28の強度低下を抑制できる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、上述の実施形態では、複合材28が平板状である例について説明したが、複合材28は湾曲形状を含む任意の形状であってもよい。
 また上述の実施形態は、適宜組み合わせてもよい。例えば、第1実施形態及び第3実施形態のように、凹部10を複合材28の製品エリアAの全面に亘って設ける場合にも、強化繊維基材2により大きな張力を付与する観点から、成形型1の凹部10の上方において、加圧用治具30をバッグフィルム20と強化繊維基材2との間に介在させてもよい。
 

Claims (7)

  1.  マトリックス樹脂が繊維で強化された複合材を真空含浸工法により製造する複合材製造方法であって、
     凹部を有する成形型に強化繊維基材を載置し、前記凹部を挟んで配置される少なくとも一対の固定部材によって前記強化繊維基材を前記成形型に固定する固定工程と、
     前記成形型に固定された前記強化繊維基材をバッグフィルムで覆う被覆工程と、
     前記成形型と前記バッグフィルムとの間に形成された成形空間内を減圧する減圧工程と、
     減圧された前記成形空間内でマトリックス樹脂を流動させる流動工程と、
     前記強化繊維基材と前記マトリックス樹脂とが一体的に成形された複合材が得られるように、前記マトリックス樹脂を固化する固化工程とを備え、
     前記固定工程では、前記強化繊維基材と前記成形型の凹部の底面との間に間隙が設けられた状態で、前記強化繊維基材が前記固定部材によって前記成形型に固定されることを特徴とする複合材製造方法。
  2.  前記成形型の凹部は、複合材の製品エリア全面に亘って設けられていることを特徴とする請求項1に記載の複合材製造方法。
  3.  前記成形型の凹部は、複合材の製品エリア外にのみ設けられていることを特徴とする請求項1に記載の複合材製造方法。
  4.  前記被覆工程では、前記成形型に設けられた凹部の上方において、前記バッグフィルムと前記強化繊維基材との間に加圧用治具を介在させることを特徴とする請求項1乃至3のいずれか一項に記載の複合材製造方法。
  5.  前記固定部材は、前記強化繊維基材に設けられた貫通穴に挿通された固定用ボルトを含み、
     前記貫通穴は、複合材の製品エリア外に設けられることを特徴とする請求項1乃至4のいずれか一項に記載の複合材製造方法。
  6.  前記強化繊維基材は、繊維束が一方向に配列した基材であり、
     前記固定部材は、前記強化繊維基材の繊維束の配列方向における前記成形型の凹部の両側に配置されること特徴とする請求項1乃至5のいずれか一項に記載の複合材製造方法。
  7.  前記強化繊維基材が炭素繊維からなることを特徴とする請求項1乃至6のいずれか一項に記載の複合材製造方法。
PCT/JP2011/075245 2010-12-08 2011-11-02 複合材製造方法 WO2012077430A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11846796.8A EP2650096A1 (en) 2010-12-08 2011-11-02 Method for manufacturing composite material
US13/908,654 US9221201B2 (en) 2010-12-08 2013-06-03 Method for manufacturing composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-273641 2010-12-08
JP2010273641A JP5550537B2 (ja) 2010-12-08 2010-12-08 複合材製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/908,654 Continuation US9221201B2 (en) 2010-12-08 2013-06-03 Method for manufacturing composite material

Publications (1)

Publication Number Publication Date
WO2012077430A1 true WO2012077430A1 (ja) 2012-06-14

Family

ID=46206932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075245 WO2012077430A1 (ja) 2010-12-08 2011-11-02 複合材製造方法

Country Status (4)

Country Link
US (1) US9221201B2 (ja)
EP (1) EP2650096A1 (ja)
JP (1) JP5550537B2 (ja)
WO (1) WO2012077430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276435A (zh) * 2021-05-31 2021-08-20 济南大学 一种结构梯度可调控碳纤维复合材料热压烧结设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211096B2 (ja) * 2013-11-28 2017-10-11 中島ゴム工業株式会社 未加硫ゴムを接着対象物にゴム層として定着させる方法
JP6550573B2 (ja) * 2015-02-23 2019-07-31 公立大学法人首都大学東京 オートクレーブを用いない繊維強化複合材の製造方法及びこの方法で製造された繊維強化複合材
JP6820737B2 (ja) * 2016-04-26 2021-01-27 三菱電機株式会社 Frp締結構造の製造方法及びfrp締結構造
AU2016203289B2 (en) * 2016-05-20 2022-04-07 The Boeing Company A method and system for resin infusing a composite preform
JP6796280B2 (ja) * 2016-09-26 2020-12-09 東レ株式会社 繊維強化熱可塑性樹脂成形体の製造方法
JP7153548B2 (ja) * 2018-12-10 2022-10-14 三菱重工業株式会社 積層体の成形方法及び成形治具
JP2020192714A (ja) * 2019-05-28 2020-12-03 株式会社ジーエイチクラフト 成形物の製造方法及び一体成形物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296864A (ja) 1997-04-25 1998-11-10 Fuji Heavy Ind Ltd 複合材の成形装置および成形方法
JP2009220577A (ja) * 2003-03-13 2009-10-01 Toho Tenax Co Ltd 樹脂トランスファー成形法
JP2010115837A (ja) 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd 複合材製品製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042574A (en) * 1957-09-25 1962-07-03 Du Pont Method of making laminated structures
US3321019A (en) * 1965-10-22 1967-05-23 United Aircraft Corp Fiberglass blade
JP2685553B2 (ja) * 1988-12-16 1997-12-03 富士重工業株式会社 複合材の成形方法
JPH03166922A (ja) * 1989-11-27 1991-07-18 Hitachi Chem Co Ltd Frpの成形方法
JP4609745B2 (ja) * 2000-12-06 2011-01-12 東レ株式会社 Frpの真空成形方法
US7931852B2 (en) * 2005-02-04 2011-04-26 Terry Kieffer Process and apparatus for reinforced polymer composites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296864A (ja) 1997-04-25 1998-11-10 Fuji Heavy Ind Ltd 複合材の成形装置および成形方法
JP2009220577A (ja) * 2003-03-13 2009-10-01 Toho Tenax Co Ltd 樹脂トランスファー成形法
JP2010115837A (ja) 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd 複合材製品製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276435A (zh) * 2021-05-31 2021-08-20 济南大学 一种结构梯度可调控碳纤维复合材料热压烧结设备

Also Published As

Publication number Publication date
JP2012121227A (ja) 2012-06-28
US9221201B2 (en) 2015-12-29
US20140027960A1 (en) 2014-01-30
JP5550537B2 (ja) 2014-07-16
EP2650096A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5550537B2 (ja) 複合材製造方法
KR102197337B1 (ko) 안정화 부재를 구비한 복합 구조물
JP5597134B2 (ja) 被成形材の成形方法
US8303882B2 (en) Apparatus and method of making composite material articles
JP5161432B2 (ja) 複合材料製構造部材の成形方法
JP2009542483A (ja) 複合部品の製造方法
CN101678865B (zh) 运输车辆用复合材料整体式车身及其制备方法
CA2635363C (en) Method for producing structures from composite materials, including embedded precured tools
US20120175824A1 (en) Method of and Apparatus for Making a Composite Material
JP4967405B2 (ja) 繊維強化プラスチックの製造方法
US9427899B2 (en) Device for compressing a composite radius
JP2011518720A (ja) 航空機および宇宙機のための繊維複合構成材を製造するための方法および成形装置
US20220410503A1 (en) Method and device for producing a component from a fiber composite material
US10532522B2 (en) Method and device for molding fiber-reinforced plastic member
US8591681B2 (en) Method for producing composite material mold for composite material long member
KR101184329B1 (ko) 볼트 체결력을 이용한 복합소재 대차프레임의 치수공차 최소화 장치
CN110104202B (zh) 使用铰接式芯轴的复合飞机制造工具
JP2010000655A (ja) ハニカムサンドイッチパネルおよびその製造方法
JP5786352B2 (ja) 繊維強化樹脂板材の製造方法
CN104369387A (zh) Pmi泡沫夹芯碳纤维复合材料工程车臂架及其制造方法
JP5064981B2 (ja) 繊維強化複合材料
JP2009083441A (ja) 繊維強化樹脂製構造体の製造方法
JP2002248694A (ja) 繊維強化複合材料の成形方法
JP4464208B2 (ja) ハニカムサンドイッチパネルの製造方法
JP2009045927A (ja) 繊維強化プラスチックの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011846796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE