WO2012077347A1 - Decoding method - Google Patents

Decoding method Download PDF

Info

Publication number
WO2012077347A1
WO2012077347A1 PCT/JP2011/006874 JP2011006874W WO2012077347A1 WO 2012077347 A1 WO2012077347 A1 WO 2012077347A1 JP 2011006874 W JP2011006874 W JP 2011006874W WO 2012077347 A1 WO2012077347 A1 WO 2012077347A1
Authority
WO
WIPO (PCT)
Prior art keywords
transform
conversion
transformation
inverse
inverse orthogonal
Prior art date
Application number
PCT/JP2011/006874
Other languages
French (fr)
Japanese (ja)
Inventor
陽司 柴原
西 孝啓
寿郎 笹井
敏康 杉尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012077347A1 publication Critical patent/WO2012077347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type

Definitions

  • the present invention relates to audio encoding and decoding, still image encoding and decoding, and moving image encoding and decoding, and in particular, a method related to a process of converting a space-time domain signal vector to a frequency domain, and
  • the present invention relates to a program for causing a computer to execute the method.
  • H.264 ITU-T As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • MPEG-x As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • the latest video coding standard is H.264. H.264 / MPEG-4AVC.
  • FIG. 36A is a diagram showing a configuration for encoding these audio data and moving image data at a low bit rate.
  • the conversion unit 912 converts an input signal, which is various data, or a converted input signal obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output signal with reduced correlation.
  • it may be called forward conversion.
  • the quantization unit 913 quantizes the conversion output signal output from the conversion unit 912, and outputs a quantization coefficient with a small total data amount.
  • the entropy encoding unit 919 encodes the quantization coefficient output from the quantization unit 913 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
  • an N-point vector (N-dimensional signal) input to the conversion unit 912 is a conversion input vector x n
  • an output of a certain conversion T is a conversion output vector y n .
  • the transformation T When the transformation T is a linear transformation, the transformation T can be expressed by a matrix product of a transformation coefficient A of an N ⁇ N matrix and a transformation input vector x n as shown in Equation 2.
  • the conversion unit 912 sequentially performs horizontal conversion in units of rows and vertical conversion in units of columns. The order of horizontal conversion and vertical conversion may be reversed.
  • the conversion unit 912 operates by switching a plurality of types of conversion.
  • the transform unit 912 uses a typical discrete cosine transform (DCT) and a transform (second type transform) different from the DCT.
  • DCT discrete cosine transform
  • second type transform transform
  • the H.264 prediction is performed by extrapolating (stretching) the decoded adjacent pixels in a specific direction indicated by the prediction mode.
  • the conversion unit 912 uses the above-described second type conversion for horizontal conversion or vertical conversion for an angle parallel to the prediction direction, and uses the above-described typical for horizontal conversion or vertical conversion for an angle perpendicular to the prediction direction.
  • a discrete cosine transform (DCT) is used.
  • DCT discrete cosine transform
  • the conversion control unit 930 instructs the type of conversion (DCT or second type conversion) used in the conversion unit 912. Outputs conversion control information.
  • the conversion unit 912 performs horizontal conversion and vertical conversion according to the conversion control information.
  • FIG. 36B is a block diagram showing a decoding device.
  • the entropy decoding unit 924 entropy-decodes the encoded signal to generate a quantization coefficient and a prediction mode.
  • the inverse quantization unit 914 inversely quantizes the quantization coefficient and outputs a decoded conversion output signal (the decoded conversion output signal may be referred to as an inverse conversion input signal).
  • conversion control unit 930 Based on the prediction mode signal, outputs conversion control information for instructing the type of conversion in horizontal conversion and vertical conversion (inverse conversion in the decoding apparatus).
  • the inverse conversion unit 915 inversely converts the decoded conversion output signal using the conversion type indicated by the conversion control information, and outputs a decoded conversion input signal (sometimes referred to as an inverse conversion output signal).
  • the inverse transformation matrix has a transposed matrix relationship with the forward transformation matrix.
  • FIG. 37B shows an example of a transformation matrix for inverse transformation.
  • multiplication is necessary for conversion to the frequency domain optimized based on statistical properties in the conventional image encoding device and the conventional image decoding device. And the amount of calculation for the multiplication is large. More specifically, the amount of calculation is large in the second type of conversion different from typical DCT.
  • a decoding method for decoding an encoded signal, and performs entropy decoding on the encoded signal to generate a quantized coefficient and a prediction mode.
  • Information for controlling each of horizontal transformation and vertical transformation in the separation-type inverse orthogonal transformation based on the entropy decoding step and the prediction mode, and transformation that is information indicating the first mode or the second mode A transform control step for outputting control information; an inverse quantization step for inversely quantizing the quantization coefficient to generate a decoded transform output signal; and the demultiplexed inverse orthogonal transform for the decoded transform output signal.
  • An inverse orthogonal transform step for sequentially performing horizontal transform and vertical transform wherein the inverse orthogonal transform step includes that of the horizontal transform and the vertical transform.
  • the transform control information indicates the first mode
  • the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) by N-point discrete cosine inverse transform
  • the transform control information indicates the second mode
  • the inverse orthogonal transform is performed on the N-point decoded transform output signal by 2N-point discrete sine transform.
  • the inverse orthogonal transform used in the second mode includes a butterfly computation step for performing a butterfly computation on an input signal, and N / 2 points of the addition result among the outputs of the butterfly computation.
  • a post-conversion step that performs rearrangement and sign change on the output of the addition result conversion step and the output of the subtraction result conversion step, and outputs an N-point inverse conversion output signal. But you can.
  • the decoding method is a decoding method for decoding an encoded signal, wherein entropy decoding is performed on the encoded signal to generate a quantized coefficient and a prediction mode, and the prediction mode Is a conversion control step for outputting conversion control information that is information for controlling each of horizontal conversion and vertical conversion in separation-type inverse orthogonal conversion, and is information indicating the first mode or the second mode.
  • an inverse quantization step for inversely quantizing the quantization coefficient to generate a decoded transform output signal, and a horizontal transform and a vertical transform in the separation-type inverse orthogonal transform are sequentially performed on the decoded transform output signal.
  • the transform control is performed in each of the horizontal transform and the vertical transform.
  • the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) points by N-point discrete cosine inverse transform, and the transform control information is
  • N is a natural number
  • the transform control information is
  • a decoding method may be used in which the inverse orthogonal transform is performed by N-point discrete sine transform on the N-point decoded transform output signal.
  • the discrete sine transform used in the inverse orthogonal transform may be DST-Type2.
  • the discrete sine transform used in the inverse orthogonal transform may be DST-Type4.
  • the number of multiplications of the second type conversion and inverse conversion can be reduced by the encoding method or decoding method according to the present invention.
  • FIG. 1A is a block diagram of an encoding apparatus according to Embodiment 1.
  • FIG. 1B is a block diagram of the decoding apparatus according to Embodiment 1.
  • FIG. 1A is a block diagram of an encoding apparatus according to Embodiment 1.
  • FIG. 1B is a block diagram of the decoding apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing a list of types I to IV of discrete sine transform and discrete cosine transform.
  • FIG. 7 is a block diagram illustrating a conversion unit according to the second embodiment.
  • FIG. 8 is a block diagram illustrating an inverse conversion unit according to the second embodiment.
  • FIG. 12 is a flowchart of the inverse conversion process according to the third embodiment.
  • FIG. 14 is a signal flow schematic diagram when a typical DCT and a second type of conversion are shared in the inverse conversion unit according to the third embodiment.
  • FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 18 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 19 is a block diagram illustrating a configuration example of a television.
  • FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 22A illustrates an example of a mobile phone.
  • FIG. 22B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 27 is a diagram illustrating a data structure of the PMT.
  • FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information.
  • FIG. 29 shows the internal structure of stream attribute information.
  • FIG. 30 shows steps for identifying video data.
  • FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 32 is a diagram showing a configuration for switching the drive frequency.
  • FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies.
  • FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 35A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 35B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • FIG. 36A is a block diagram showing an encoding apparatus according to the prior art.
  • FIG. 36B is a block diagram showing a decoding device according to the prior art.
  • FIG. 1A is a configuration diagram of an encoding apparatus according to the present embodiment.
  • the conversion unit 120 converts an input signal, which is various data, or a converted input signal obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output signal with reduced correlation.
  • transformation orthogonal transformation
  • inverse transformation inverse orthogonal transformation
  • the quantization unit 130 quantizes the conversion output signal output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount.
  • the entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
  • the conversion control unit 300 instructs a conversion type (DCT or second type conversion) used in the conversion unit 120. Outputs conversion control information.
  • the conversion unit 120 performs horizontal conversion and vertical conversion according to the conversion control information.
  • FIG. 2B is a configuration diagram of the decoding apparatus according to the present embodiment.
  • the entropy decoding unit 240 entropy decodes the encoded signal to generate a quantized coefficient and a prediction mode.
  • the inverse quantization unit 140 inversely quantizes the quantized coefficient and outputs a decoded transform output signal (the decoded transform output signal may be referred to as an inverse transform input signal).
  • conversion control unit 300 Based on the prediction mode signal, outputs conversion control information for instructing the type of conversion in horizontal conversion and vertical conversion (inverse conversion in the decoding apparatus).
  • the inverse conversion unit 150 performs inverse conversion on the decoded conversion output signal using the conversion type indicated by the conversion control information, and outputs a decoded conversion input signal (sometimes referred to as an inverse conversion output signal).
  • Signals such as audio, still images or moving images are input to the encoding device.
  • This encoding target signal (Original Signal) or a prediction error signal that is a difference between this signal and a prediction signal created based on the previously input encoding target signal is used as a conversion input signal.
  • a prediction error signal is often input as a conversion target.
  • the input signal is input as a conversion target without prediction.
  • Expression 6 is an expression indicating a conversion matrix of the second type of conversion in the encoding device.
  • Expression 7 is an expression showing a conversion matrix of the second conversion (inverse conversion) in the decoding device.
  • D i in Equation 6 and Equation 7 is a coefficient and is represented by Equation 8.
  • all conversion coefficients include a square root of 2 / N.
  • the conversion unit 120 and the inverse conversion unit 150 may perform conversion or inverse conversion on the remainder after separation.
  • FIGS. 2C and 2D show a forward transformation matrix S i, j and an inverse transformation matrix S ′ i, j excluding the 2 / N square root.
  • the square root of 2 / N separated from the transformation matrix of the forward transformation is superimposed on the quantization step size or norm correction table in the quantization process performed by the quantization unit 130. Thereby, the amount of calculation does not increase by separation.
  • the 2 / N square root separated from the inverse transformation matrix is superimposed on the quantization step size or norm correction table in the inverse quantization process performed by the inverse quantization unit 140. As a result, the calculation amount does not increase.
  • Equation 9 shows a transformation matrix S i, j for forward transformation excluding the square root of 2 / N.
  • Equation 10 shows a transformation matrix S ′ i, j of inverse transformation excluding the square root of 2 / N.
  • FIG. 3A shows a transformation matrix K i, j for forward transformation.
  • FIG. 3B shows a transformation matrix K ′ i, j for inverse transformation.
  • 3C and 3D show a forward transformation matrix S i, j and an inverse transformation matrix S ′ i, j excluding the square root of 2 / N.
  • FIG. 5 shows an inverse transformation matrix S ′ i, j excluding the square root of 2 / N.
  • x is a column vector of the converted input signal
  • X is a column vector of the converted output signal
  • Y is a column vector of the inversely converted output signal obtained by inversely converting X.
  • the transformation matrix according to the present embodiment includes many such equivalent coefficients. Therefore, the number of multiplications can be easily reduced.
  • FIG. 6 shows four types of discrete cosine transform and discrete sine transform, respectively.
  • the forward transformation is DCT type 3 and the inverse transformation is DCT type 2.
  • DCT type 1, DCT type 4, and DST are rarely used for image compression.
  • the inverse transformation according to the present embodiment by inputting a signal sequence of 2N points generated by adding N zero elements behind the input signal N points to DST II of 2N points DST II Is equivalent to taking out an odd-numbered element from the output signal from.
  • N zero elements are added after the N-point input signal (inverse transformation input signal).
  • the input signal is input to the 2N point DST type 2.
  • DST type 2 output signals only odd-numbered elements are used.
  • Type 2 and Type 3 have an advantage that they are easy to handle because their calculation characteristics are well known. Since the encoding apparatus and decoding apparatus according to the present embodiment are based on DST type 2 and type 3 as described above, they can enjoy the merit of ease of handling.
  • This embodiment is an example of a relatively small configuration, and in the conversion and inverse conversion, the processing of the portion where the zero value is input / output in the 2N-point DST is omitted.
  • an example is shown in which the transformation matrix C i, j and the inverse transformation matrix C ′ i, j excluding the 2 / N square root are realized.
  • K i, j and K ′ i, j when not removed can be realized by superimposing the multiplications so that the multiplication of the square root of 2 / N occurs only once.
  • FIG. 9A the conversion inputs are shown in no particular order.
  • the signal flow diagram of FIG. 9A will be described along FIG. 9B.
  • the first element x (0) is input to a (0)
  • the third element x (2) is virtually input to a (1).
  • the No arithmetic processing such as multiplication and addition is performed at the time of these two inputs.
  • input is performed.
  • the fourth element x (3) is multiplied by S (2/8), which is one of Ci , j , and input to a (2).
  • S (n / m) means sin (n ⁇ / m).
  • FIG. 10B is pseudo code. This will be described using these two.
  • a butterfly operation is performed on X which is an inverse conversion input signal.
  • the butterfly operation is an operation that creates a pair of an addition result and a subtraction result with predetermined elements.
  • a (0) X (0) + X (3)
  • a (1) X (1) + X (2)
  • a (2) X (1) ⁇ X (2)
  • the inverse conversion unit 150 uses a (0) and a (1) which are the results on the addition side among the butterfly calculation results to convert Y (0) which is the first element of the inverse conversion output to s (1 / 8) Derived by * a (0) + s (3/8) * a (1). Further, the inverse transform unit 150 derives Y (2), which is the third element of the inverse transform output signal, from s (3/8) * a (0) ⁇ s (3/8) * a (1). .
  • the inverse transform unit 150 further adds and subtracts a (2) and a (3), which are the results on the subtraction side, among the butterfly calculation results, and multiplies the coefficients. Specifically, the inverse transformation unit 150 derives Y (3), which is the fourth element of the inverse transformation output signal, from s (4/8) * (a (3) ⁇ a (2)). Further, the inverse transform unit 150 derives Y (1), which is the second element of the inverse transform output signal, from s (2/8) * (a (3) + a (2)).
  • s (4/8) is equal to s (1/2), and s (2/8) is equal to s (1/4).
  • the multiplication to obtain Y (3) is only required once for the multiplication of s (4/8). Further, the multiplication for obtaining Y (1) may be performed only once for s (2/8). In the case of the original matrix operation, the number of multiplications is greatly reduced as compared with the case where each is required four times.
  • FIG. 11 shows a plurality of operations (operation 504, operation 604, and operation 704).
  • the operation 504 corresponds to conversion of the subtraction result (subtraction result conversion).
  • the calculation 604 corresponds to conversion of the addition result (addition result conversion).
  • the operation 704 corresponds to the change of the sign (post conversion). Rearrangement may be performed in operation 704. This processing step will be described with reference to the flowchart of FIG.
  • an N-point butterfly operation is performed on the inverse transformation input signal (S101).
  • the N / 2 point on the result side of the butterfly calculation coincides with the DCT type 4 of N / 2 point. Therefore, a known high-speed algorithm for DCT type 4 (see Non-Patent Document 2) is applied. Thereby, the calculation is performed with a low processing amount (S102 and calculation 604). Further, the sign is adjusted (S103 and operation 704).
  • step S104 The order of step S102 (calculation 604) and step S103 (calculation 704) may be reversed. These can also be operated in parallel. Note that c (n / m) in FIG. 11 means cos (n ⁇ / m).
  • B M is a matrix that vertically separates odd and even rows of the matrix.
  • ⁇ M is a matrix in which the lower half of the unit matrix has a negative sign.
  • R M is a matrix corresponding to DCT type 4.
  • I M is a unit matrix.
  • J M is a matrix obtained by horizontally inverting the unit matrix. Equation 15 which is a part of the right side of Equation 14 means a typical butterfly operation.
  • Equation 14 R M / 2 J M / 2 means that step S102 is performed on the addition result of the butterfly calculation.
  • ⁇ M / 2 corresponds to step S103.
  • E M / 2 corresponds to the recursive step S104.
  • FIG. 14 is a configuration diagram showing sharing of processing.
  • the configuration of the second type of conversion according to the present embodiment is as described above, and is indicated by C ′ i, j in the figure.
  • DCT type III data is input from the right side in FIG. A process corresponding to ⁇ for code adjustment is not required. DCT type 4 processing is performed in reverse order. Then, the result is input to the subtraction side of the butterfly calculation unit. Operations are performed on the other data in a typical DCT recursive configuration. Then, the output is input to the addition side of the butterfly calculation unit. The butterfly operation unit performs the process in the reverse order and outputs the result. The output result is equal to the output of a typical DCT.
  • the amount of calculation is reduced to the same level as a typical DCT. Further, the conversion according to the present embodiment is DST III , and the inverse conversion is DST II . There are fast algorithms for these. Therefore, the calculation amount is further reduced.
  • This embodiment is a derivation from the above-described first to third embodiments.
  • the transformation matrix of the second type of transformation in the encoding apparatus according to the present embodiment is Equation 17.
  • the transformation matrix of the second transformation (inverse transformation) in the decoding device is Equation 18.
  • the inverse transformation K ′ i, j matches the forward transformation K i, j .
  • D i in Equation 16 and Equation 17 represents a coefficient used for multiplication.
  • This conversion is DST IV (DST Type-IV in FIG. 6).
  • DST IV also has a high-speed algorithm. For this reason, the amount of calculation is reduced by using this conversion.
  • FIG. 15B shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
  • FIG. 15D shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
  • FIG. 16A to 16D show examples of transform coefficients with 7 bits.
  • FIG. 16B shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
  • FIG. 16D shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
  • the high-speed DST IV algorithm is obtained by shifting the input position by N / 2 points with respect to the N-point input signal sequence based on the high-speed DCT IV algorithm.
  • the fast algorithm of DCT IV is as described in the first to third embodiments. By using the conversion and inverse conversion described in the present embodiment, the amount of calculation of the second type conversion is reduced.
  • another processing unit may execute a process executed by a specific processing unit.
  • the order in which the processes are executed may be changed, or a plurality of processes may be executed in parallel.
  • the present invention can be realized not only as an encoding device and a decoding device, but also as a method in which processing means constituting the encoding device and the decoding device are used as steps. For example, these steps are performed by a computer.
  • the present invention can be realized as a program for causing a computer to execute the steps included in these methods.
  • the present invention can be realized as a computer-readable recording medium such as a CD-ROM in which the program is recorded.
  • the encoding device, decoding device, encoding method, and decoding method according to the present invention can also be applied to, for example, an image encoding device, an image decoding device, an image encoding method, and an image decoding method.
  • the plurality of components included in the encoding device and the decoding device may be realized as an LSI (Large Scale Integration) that is an integrated circuit. These components may be individually made into one chip, or may be made into one chip so as to include a part or all of them. For example, the components other than the memory may be integrated into one chip.
  • LSI Large Scale Integration
  • it may be referred to as an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the components included in the encoding device and decoding device can be integrated into an integrated circuit. You may go.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device Function as a device) and transmit to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the video encoding device (video encoding device) or video decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration shown in FIG.
  • FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 25 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of video presentation units in a video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 27 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 30 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 31 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 32 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in the sixth embodiment can be used for identifying the video data.
  • the identification information is not limited to that described in the sixth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 33 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 35A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse transformation, and other entropy coding, inverse quantization, deblocking filter, motion, etc. It is conceivable to share the decoding processing unit for any or all of the compensation.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 35B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the decoding method according to the present invention can be used in, for example, a television, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A decoding method comprises: an entropy decoding step of performing entropy decoding for an encoded signal and generating quantized coefficients and a prediction mode; a transform control step of outputting transform control information on the basis of the prediction mode; an inverse quantization step of inverse-quantizing the quantized coefficients and generating a decoded transform output signal; and an inverse orthogonal transform step of sequentially performing the horizontal transform and vertical transform in a separable inverse orthogonal transform for the decoded transform output signal. In the inverse orthogonal transform step, in each of the horizontal transform and vertical transform, an inverse orthogonal transform is performed for the N-point (N is a natural number) decoded transform output signal by an N-point inverse discrete cosine transform when the transform control information indicates a first mode, and the inverse orthogonal transform is performed for the N-point decoded transform output signal by a 2N-point inverse discrete sine transform when the transform control information indicates a second mode.

Description

復号方法Decryption method
 本発明は、オーディオの符号化と復号、静止画像の符号化と復号、および、動画像の符号化と復号に関し、特に、時空間ドメインの信号ベクトルを周波数ドメインへ変換する処理に関する方法、および、その方法をコンピュータに実行させるプログラムに関する。 The present invention relates to audio encoding and decoding, still image encoding and decoding, and moving image encoding and decoding, and in particular, a method related to a process of converting a space-time domain signal vector to a frequency domain, and The present invention relates to a program for causing a computer to execute the method.
 音声データおよび動画像データを圧縮するために、複数の音声符号化規格、動画像符号化規格が開発されてきた。動画像符号化規格の例として、H.26xと称されるITU-T規格、および、MPEG-xと称されるISO/IEC規格が挙げられる。最新の動画像符号化規格は、H.264/MPEG-4AVCと称される規格である。 In order to compress audio data and moving image data, a plurality of audio encoding standards and moving image encoding standards have been developed. As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x. The latest video coding standard is H.264. H.264 / MPEG-4AVC.
 図36Aは、これらの音声データおよび動画像データを低ビットレートで符号化するための構成を示した図である。変換部912は、各種データである入力信号、もしくは、入力信号に何らかの処理を加えた変換入力信号を時空間ドメインから周波数ドメインへ変換し、相関を軽減した変換出力信号を出力する。なお、変換を逆変換と区別するために順変換と呼ぶ場合もある。 FIG. 36A is a diagram showing a configuration for encoding these audio data and moving image data at a low bit rate. The conversion unit 912 converts an input signal, which is various data, or a converted input signal obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output signal with reduced correlation. In addition, in order to distinguish conversion from reverse conversion, it may be called forward conversion.
 量子化部913は、変換部912から出力された変換出力信号を量子化し、総データ量の少ない量子化係数を出力する。エントロピー符号化部919は、量子化部913から出力された量子化係数を、エントロピー符号化アルゴリズムを用いて符号化し、残りのデータを圧縮した符号化信号を出力する。 The quantization unit 913 quantizes the conversion output signal output from the conversion unit 912, and outputs a quantization coefficient with a small total data amount. The entropy encoding unit 919 encodes the quantization coefficient output from the quantization unit 913 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
 この変換部912における変換処理について詳細に説明する。式1は、変換部912へ入力されるN点のベクトル(N次元信号)が変換入力(Transform Input)ベクトルxnであり、ある変換Tの出力が変換出力(Transform Output)ベクトルynである場合の関係式である。 The conversion process in the conversion unit 912 will be described in detail. In Expression 1, an N-point vector (N-dimensional signal) input to the conversion unit 912 is a conversion input vector x n , and an output of a certain conversion T is a conversion output vector y n . Is a relational expression.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 変換Tが線形変換である場合、式2のように、変換Tは、N×N行列の変換係数Aと変換入力ベクトルxnとの行列積で表現できる。 When the transformation T is a linear transformation, the transformation T can be expressed by a matrix product of a transformation coefficient A of an N × N matrix and a transformation input vector x n as shown in Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 変換部912は、行単位の水平変換、および、列単位の垂直変換を順次行う。水平変換および垂直変換の順序は逆であってもよい。変換部912は、複数種類の変換を切り替えて動作する。 The conversion unit 912 sequentially performs horizontal conversion in units of rows and vertical conversion in units of columns. The order of horizontal conversion and vertical conversion may be reversed. The conversion unit 912 operates by switching a plurality of types of conversion.
 H.264の面内予測の予測誤差信号が変換入力信号である場合、変換部912は、典型的な離散コサイン変換(DCT)と、上記DCTとは異なる変換(第2種の変換)を用いる。H.264の予測は、復号済みの隣接画素を、予測モードの示す特定方向に外挿(引き伸ばす)することで行われる。 H. When the prediction error signal of the H.264 in-plane prediction is a transform input signal, the transform unit 912 uses a typical discrete cosine transform (DCT) and a transform (second type transform) different from the DCT. H. The H.264 prediction is performed by extrapolating (stretching) the decoded adjacent pixels in a specific direction indicated by the prediction mode.
 変換部912は、予測方向と並行な角度についての水平変換あるいは垂直変換には、上記の第2種の変換を用い、予測方向と鉛直な角度についての水平変換あるいは垂直変換には、上記の典型的な離散コサイン変換(DCT)を用いる。これにより、DCTのみを用いるよりも圧縮性能が向上することが知られている(詳細は非特許文献1を参照)。 The conversion unit 912 uses the above-described second type conversion for horizontal conversion or vertical conversion for an angle parallel to the prediction direction, and uses the above-described typical for horizontal conversion or vertical conversion for an angle perpendicular to the prediction direction. A discrete cosine transform (DCT) is used. As a result, it is known that compression performance is improved as compared with using only DCT (refer to Non-Patent Document 1 for details).
 図36Aにおいて、面内予測の予測方向を示す情報である予測モードに基づいて、変換制御部930は、変換部912で用いられる変換の種類(DCTまたは第2種の変換)を指示するための変換制御情報を出力する。変換部912は、変換制御情報に従い、水平変換および垂直変換を行う。 In FIG. 36A, based on the prediction mode which is information indicating the prediction direction of the in-plane prediction, the conversion control unit 930 instructs the type of conversion (DCT or second type conversion) used in the conversion unit 912. Outputs conversion control information. The conversion unit 912 performs horizontal conversion and vertical conversion according to the conversion control information.
 図36Bは復号装置を示すブロック図である。エントロピー復号部924は、符号化信号をエントロピー復号して、量子化係数と予測モードを生成する。逆量子化部914は量子化係数を逆量子化し復号変換出力信号を出力する(なお、復号変換出力信号を逆変換入力信号と呼ぶ場合もある)。変換制御部930は、予測モード信号に基づき、水平変換および垂直変換における変換(復号装置では逆変換)の種別をそれぞれ指示するための変換制御情報を出力する。 FIG. 36B is a block diagram showing a decoding device. The entropy decoding unit 924 entropy-decodes the encoded signal to generate a quantization coefficient and a prediction mode. The inverse quantization unit 914 inversely quantizes the quantization coefficient and outputs a decoded conversion output signal (the decoded conversion output signal may be referred to as an inverse conversion input signal). Based on the prediction mode signal, conversion control unit 930 outputs conversion control information for instructing the type of conversion in horizontal conversion and vertical conversion (inverse conversion in the decoding apparatus).
 逆変換部915は、変換制御情報により指示された変換種別を用いて、復号変換出力信号を逆変換し、復号変換入力信号(逆変換出力信号と呼ぶ場合もある)を出力する。 The inverse conversion unit 915 inversely converts the decoded conversion output signal using the conversion type indicated by the conversion control information, and outputs a decoded conversion input signal (sometimes referred to as an inverse conversion output signal).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式4は、N点の入力信号に対する順変換の変換行列の係数Ki,j(i、j=0..N-1)を示す式である。式5は、逆変換の変換行列の係数K’i,j(i、j=0..N-1)を示す式である。 Expression 4 is an expression indicating coefficients K i, j (i, j = 0... N−1) of a forward conversion matrix for N-point input signals. Expression 5 is an expression indicating the coefficient K ′ i, j (i, j = 0... N−1) of the inverse transformation matrix.
 逆変換の変換行列は、順変換の変換行列の転置行列の関係にある。図37Aは、N=4点の時の順変換の変換行列を8ビットで表記した例を示す。図37Bは、逆変換の変換行列の例を示す。 The inverse transformation matrix has a transposed matrix relationship with the forward transformation matrix. FIG. 37A shows an example in which a transformation matrix for forward transformation when N = 4 points is expressed in 8 bits. FIG. 37B shows an example of a transformation matrix for inverse transformation.
 典型的なDCTでは、バタフライ演算等を利用した高速演算アルゴリズムが存在する。そのため、演算量(特に乗算回数)が軽減される。しかし、図37Aおよび図37Bのような第2種の変換では、効率的な高速演算アルゴリズムは存在しない。そのため、乗算回数が増加する。特に、N=16あるいはN=32などのように大きな変換サイズになるほど、その問題は顕著になる。 In typical DCT, there is a high-speed calculation algorithm using butterfly calculation or the like. For this reason, the amount of calculation (particularly the number of multiplications) is reduced. However, in the second type of conversion as shown in FIGS. 37A and 37B, there is no efficient high-speed algorithm. Therefore, the number of multiplications increases. In particular, the problem becomes more prominent as the conversion size becomes larger, such as N = 16 or N = 32.
 すなわち、従来の画像符号化装置および従来の画像復号装置における、統計的な性質に基づいて最適化された周波数ドメインへの変換には、乗算が必要である。そして、その乗算のための演算量が大きい。より具体的には、典型的なDCTとは異なる第2種の変換では、演算量が大きい。 That is, multiplication is necessary for conversion to the frequency domain optimized based on statistical properties in the conventional image encoding device and the conventional image decoding device. And the amount of calculation for the multiplication is large. More specifically, the amount of calculation is large in the second type of conversion different from typical DCT.
 上記課題を解決するために、本発明に係る復号方法は、符号化信号を復号する復号方法であって、前記符号化信号に対してエントロピー復号を実行し、量子化係数および予測モードを生成するエントロピー復号ステップと、前記予測モードに基づいて、分離型の逆直交変換における水平変換および垂直変換のそれぞれを制御するための情報であり、第1のモードまたは第の2モードを示す情報である変換制御情報を出力する変換制御ステップと、前記量子化係数を逆量子化して、復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号に対して、前記分離型の逆直交変換における水平変換および垂直変換を順に実行する逆直交変換ステップとを含み、前記逆直交変換ステップでは、前記水平変換および前記垂直変換のそれぞれにおいて、前記変換制御情報が前記第1のモードを示す場合、N(Nは自然数)点の前記復号変換出力信号に対して、N点の離散コサイン逆変換で前記逆直交変換を実行し、前記変換制御情報が前記第2のモードを示す場合、N点の前記復号変換出力信号に対して、2N点の離散サイン変換で前記逆直交変換を実行する。 In order to solve the above problems, a decoding method according to the present invention is a decoding method for decoding an encoded signal, and performs entropy decoding on the encoded signal to generate a quantized coefficient and a prediction mode. Information for controlling each of horizontal transformation and vertical transformation in the separation-type inverse orthogonal transformation based on the entropy decoding step and the prediction mode, and transformation that is information indicating the first mode or the second mode A transform control step for outputting control information; an inverse quantization step for inversely quantizing the quantization coefficient to generate a decoded transform output signal; and the demultiplexed inverse orthogonal transform for the decoded transform output signal. An inverse orthogonal transform step for sequentially performing horizontal transform and vertical transform, wherein the inverse orthogonal transform step includes that of the horizontal transform and the vertical transform. In this case, when the transform control information indicates the first mode, the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) by N-point discrete cosine inverse transform, When the transform control information indicates the second mode, the inverse orthogonal transform is performed on the N-point decoded transform output signal by 2N-point discrete sine transform.
 これにより、変換および逆変換の演算量の軽減が可能となる。 This makes it possible to reduce the amount of calculation for conversion and inverse conversion.
 また、前記第2のモードで用いられる前記逆直交変換は、入力信号に対して、バタフライ演算を実行するバタフライ演算ステップと、前記バタフライ演算の出力のうち加算結果に対して、N/2点の離散コサイン変換Type-4を実行する加算結果変換ステップと、前記バタフライ演算の出力のうち減算結果に対して、前記第2のモードで用いられる前記逆直交変換を再帰的に実行する減算結果変換ステップと、前記加算結果変換ステップの出力、および、前記減算結果変換ステップの出力に対して、並び替えと符号の変更とを実行し、N点の逆変換出力信号を出力するポスト変換ステップとを含んでもよい。 Further, the inverse orthogonal transform used in the second mode includes a butterfly computation step for performing a butterfly computation on an input signal, and N / 2 points of the addition result among the outputs of the butterfly computation. An addition result conversion step for executing discrete cosine transform Type-4, and a subtraction result conversion step for recursively executing the inverse orthogonal transform used in the second mode on the subtraction result of the output of the butterfly operation And a post-conversion step that performs rearrangement and sign change on the output of the addition result conversion step and the output of the subtraction result conversion step, and outputs an N-point inverse conversion output signal. But you can.
 本発明に係る復号方法は、符号化信号を復号する復号方法であって、前記符号化信号に対してエントロピー復号を実行し、量子化係数および予測モードを生成するエントロピー復号ステップと、前記予測モードに基づいて、分離型の逆直交変換における水平変換および垂直変換のそれぞれを制御するための情報であり、第1のモードまたは第2のモードを示す情報である変換制御情報を出力する変換制御ステップと、前記量子化係数を逆量子化して、復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号に対して、前記分離型の逆直交変換における水平変換および垂直変換を順に実行する逆直交変換ステップとを含み、前記逆直交変換ステップでは、前記水平変換および前記垂直変換のそれぞれにおいて、前記変換制御情報が前記第1のモードを示す場合、N(Nは自然数)点の前記復号変換出力信号に対して、N点の離散コサイン逆変換で前記逆直交変換を実行し、前記変換制御情報が前記第2のモードを示す場合、N点の前記復号変換出力信号に対して、N点の離散サイン変換で前記逆直交変換を実行する復号方法でもよい。 The decoding method according to the present invention is a decoding method for decoding an encoded signal, wherein entropy decoding is performed on the encoded signal to generate a quantized coefficient and a prediction mode, and the prediction mode Is a conversion control step for outputting conversion control information that is information for controlling each of horizontal conversion and vertical conversion in separation-type inverse orthogonal conversion, and is information indicating the first mode or the second mode. And an inverse quantization step for inversely quantizing the quantization coefficient to generate a decoded transform output signal, and a horizontal transform and a vertical transform in the separation-type inverse orthogonal transform are sequentially performed on the decoded transform output signal. In the inverse orthogonal transform step, the transform control is performed in each of the horizontal transform and the vertical transform. When the report indicates the first mode, the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) points by N-point discrete cosine inverse transform, and the transform control information is When the second mode is indicated, a decoding method may be used in which the inverse orthogonal transform is performed by N-point discrete sine transform on the N-point decoded transform output signal.
 前記逆直交変換で用いられる前記離散サイン変換は、DST-Type2でもよい。 The discrete sine transform used in the inverse orthogonal transform may be DST-Type2.
 前記逆直交変換で用いられる前記離散サイン変換は、DST-Type4でもよい。 The discrete sine transform used in the inverse orthogonal transform may be DST-Type4.
 本発明に係る符号化方法または復号方法により、第2種の変換および逆変換の乗算回数を削減できる。 The number of multiplications of the second type conversion and inverse conversion can be reduced by the encoding method or decoding method according to the present invention.
図1Aは、実施の形態1に係る符号化装置のブロック図である。1A is a block diagram of an encoding apparatus according to Embodiment 1. FIG. 図1Bは、実施の形態1に係る復号装置のブロック図である。FIG. 1B is a block diagram of the decoding apparatus according to Embodiment 1. 図2Aは、実施の形態1に係る順変換の変換行列の例(N=4)を示す図である。FIG. 2A is a diagram showing an example (N = 4) of a forward transformation matrix according to Embodiment 1. 図2Bは、実施の形態1に係る逆変換の変換行列の例(N=4)を示す図である。FIG. 2B is a diagram illustrating an example (N = 4) of the inverse transformation matrix according to Embodiment 1. 図2Cは、実施の形態1に係る順変換の変換行列の例(N=4、2/Nの平方根除外版)を示す図である。FIG. 2C is a diagram illustrating an example of a transformation matrix for forward transformation according to Embodiment 1 (N = 4, 2 / N square root excluded version). 図2Dは、実施の形態1に係る逆変換の変換行列の例(N=4、2/Nの平方根除外版)を示す図である。FIG. 2D is a diagram showing an example of the inverse transformation matrix (N = 4, 2 / N square root excluded version) according to Embodiment 1. 図3Aは、実施の形態1に係る順変換の変換行列の例(N=8)を示す図である。FIG. 3A is a diagram showing an example (N = 8) of a forward transformation matrix according to Embodiment 1. 図3Bは、実施の形態1に係る逆変換の変換行列の例(N=8)を示す図である。FIG. 3B is a diagram illustrating an example (N = 8) of the inverse transformation matrix according to Embodiment 1. 図3Cは、実施の形態1に係る順変換の変換行列の例(N=8、2/Nの平方根除外版)を示す図である。FIG. 3C is a diagram showing an example of a forward transformation matrix (N = 8, 2 / N square root excluded version) according to Embodiment 1. 図3Dは、実施の形態1に係る逆変換の変換行列の例(N=8、2/Nの平方根除外版)を示す図である。FIG. 3D is a diagram showing an example of an inverse transformation matrix (N = 8, 2 / N square root excluded version) according to Embodiment 1. 図4は、実施の形態1に係る逆変換の変換行列の例(N=16)を示す図である。FIG. 4 is a diagram showing an example (N = 16) of the inverse transformation matrix according to the first embodiment. 図5は、実施の形態1に係る逆変換の変換行列の例(N=16、2/Nの平方根除外版)を示す図である。FIG. 5 is a diagram illustrating an example of the inverse transformation matrix (N = 16, 2 / N square root excluded version) according to the first embodiment. 図6は、離散サイン変換および離散コサイン変換のタイプI~IVの一覧を示す図である。FIG. 6 is a diagram showing a list of types I to IV of discrete sine transform and discrete cosine transform. 図7は、実施の形態2に係る変換部を示すブロック図である。FIG. 7 is a block diagram illustrating a conversion unit according to the second embodiment. 図8は、実施の形態2に係る逆変換部を示すブロック図である。FIG. 8 is a block diagram illustrating an inverse conversion unit according to the second embodiment. 図9Aは、実施の形態3に係る変換部(N=4)のシグナルフロー図である。FIG. 9A is a signal flow diagram of the conversion unit (N = 4) according to Embodiment 3. 図9Bは、実施の形態3に係る変換部(N=4)の擬似コードを示す図である。FIG. 9B is a diagram illustrating pseudo code of the conversion unit (N = 4) according to Embodiment 3. 図10Aは、実施の形態3に係る逆変換部(N=4)のシグナルフロー図である。FIG. 10A is a signal flow diagram of the inverse transform unit (N = 4) according to Embodiment 3. 図10Bは、実施の形態3に係る逆変換部(N=4)の擬似コードを示す図である。FIG. 10B is a diagram illustrating pseudo code of the inverse transform unit (N = 4) according to Embodiment 3. 図11は、実施の形態3に係る逆変換部(N=8)のシグナルフロー図である。FIG. 11 is a signal flow diagram of the inverse transform unit (N = 8) according to Embodiment 3. 図12は、実施の形態3に係る逆変換処理のフローチャートである。FIG. 12 is a flowchart of the inverse conversion process according to the third embodiment. 図13は、実施の形態3に係る逆変換部(N=16)のシグナルフロー概要図である。FIG. 13 is a signal flow schematic diagram of the inverse transform unit (N = 16) according to Embodiment 3. 図14は、実施の形態3に係る逆変換部において典型的なDCTと第2種の変換とを共用化する際のシグナルフロー概要図である。FIG. 14 is a signal flow schematic diagram when a typical DCT and a second type of conversion are shared in the inverse conversion unit according to the third embodiment. 図15Aは、実施の形態4に係る順変換および逆変換の変換行列の例(N=4、8bit表記)を示す図である。FIG. 15A is a diagram illustrating an example (N = 4, 8-bit notation) of a forward transformation matrix and an inverse transformation matrix according to Embodiment 4. 図15Bは、実施の形態4に係る順変換および逆変換の変換行列の例(N=4、2/Nの平方根除外版、8bit表記)を示す図である。FIG. 15B is a diagram showing an example of a transformation matrix for forward transformation and inverse transformation according to Embodiment 4 (N = 4, 2 / N square root excluded version, 8-bit notation). 図15Cは、実施の形態4に係る順変換および逆変換の変換行列の例(N=8、8bit表記)を示す図である。FIG. 15C is a diagram illustrating an example (N = 8, 8-bit notation) of forward and inverse transformation matrices according to Embodiment 4. 図15Dは、実施の形態4に係る順変換および逆変換の変換行列の例(N=8、2/Nの平方根除外版、8bit表記)を示す図である。FIG. 15D is a diagram showing an example of a transformation matrix of forward transformation and inverse transformation according to Embodiment 4 (N = 8, 2 / N square root excluded version, 8-bit notation). 図16Aは、実施の形態4に係る順変換および逆変換の変換行列の例(N=4、7bit表記)を示す図である。FIG. 16A is a diagram showing an example (N = 4, 7-bit notation) of a transformation matrix for forward transformation and inverse transformation according to Embodiment 4. 図16Bは、実施の形態4に係る順変換および逆変換の変換行列の例(N=4、2/Nの平方根除外版、7bit表記)を示す図である。FIG. 16B is a diagram showing an example of a transformation matrix for forward transformation and inverse transformation according to Embodiment 4 (N = 4, 2 / N square root excluded version, 7-bit notation). 図16Cは、実施の形態4に係る順変換および逆変換の変換行列の例(N=8、7bit表記)を示す図である。FIG. 16C is a diagram illustrating an example (N = 8, 7-bit notation) of a forward transformation matrix and an inverse transformation matrix according to Embodiment 4. 図16Dは、実施の形態4に係る順変換および逆変換の変換行列の例(N=8、2/Nの平方根除外版、7bit表記)を示す図である。FIG. 16D is a diagram showing an example of a transformation matrix for forward transformation and inverse transformation according to Embodiment 4 (N = 8, 2 / N square root excluded version, 7-bit notation). 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service. 図18は、デジタル放送用システムの全体構成図である。FIG. 18 is an overall configuration diagram of a digital broadcasting system. 図19は、テレビの構成例を示すブロック図である。FIG. 19 is a block diagram illustrating a configuration example of a television. 図20は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図21は、光ディスクである記録メディアの構造例を示す図である。FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図22Aは、携帯電話の一例を示す図である。FIG. 22A illustrates an example of a mobile phone. 図22Bは、携帯電話の構成例を示すブロック図である。FIG. 22B is a block diagram illustrating a configuration example of a mobile phone. 図23は、多重化データの構成を示す図である。FIG. 23 is a diagram showing a structure of multiplexed data. 図24は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図25は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図26は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data. 図27は、PMTのデータ構成を示す図である。FIG. 27 is a diagram illustrating a data structure of the PMT. 図28は、多重化データ情報の内部構成を示す図である。FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information. 図29は、ストリーム属性情報の内部構成を示す図である。FIG. 29 shows the internal structure of stream attribute information. 図30は、映像データを識別するステップを示す図である。FIG. 30 shows steps for identifying video data. 図31は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図32は、駆動周波数を切り替える構成を示す図である。FIG. 32 is a diagram showing a configuration for switching the drive frequency. 図33は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies. 図34は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies. 図35Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 35A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図35Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 35B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit. 図36Aは、従来技術に係る符号化装置を示すブロック図である。FIG. 36A is a block diagram showing an encoding apparatus according to the prior art. 図36Bは、従来技術に係る復号装置を示すブロック図である。FIG. 36B is a block diagram showing a decoding device according to the prior art. 図37Aは、従来技術に係る順変換の変換行列の例(N=4)を示す図である。FIG. 37A is a diagram illustrating an example (N = 4) of a forward transformation matrix according to the related art. 図37Bは、従来技術に係る逆変換の変換行列の例(N=4)を示す図である。FIG. 37B is a diagram showing an example (N = 4) of the inverse transformation matrix according to the conventional technique.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 (実施の形態1)
 図1Aは、本実施の形態に係る符号化装置の構成図である。変換部120は、各種データである入力信号、もしくは、入力信号に何らかの処理を加えた変換入力信号を時空間ドメインから周波数ドメインへ変換し、相関を軽減した変換出力信号を出力する。なお、変換(直交変換)を逆変換(逆直交変換)と区別するために順変換と呼ぶ場合もある。
(Embodiment 1)
FIG. 1A is a configuration diagram of an encoding apparatus according to the present embodiment. The conversion unit 120 converts an input signal, which is various data, or a converted input signal obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output signal with reduced correlation. In addition, in order to distinguish transformation (orthogonal transformation) from inverse transformation (inverse orthogonal transformation), it may be called forward transformation.
 量子化部130は、変換部120から出力された変換出力信号を量子化し、総データ量の少ない量子化係数を出力する。エントロピー符号化部190は、量子化部130から出力された量子化係数を、エントロピー符号化アルゴリズムを用いて符号化し、残りのデータを圧縮した符号化信号を出力する。 The quantization unit 130 quantizes the conversion output signal output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount. The entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
 図1Aにおいて、面内予測の予測方向を示す情報である予測モードに基づいて、変換制御部300は、変換部120で用いられる変換の種類(DCTまたは第2種の変換)を指示するための変換制御情報を出力する。変換部120は、変換制御情報に従い、水平変換および垂直変換を行う。 In FIG. 1A, based on a prediction mode that is information indicating a prediction direction of in-plane prediction, the conversion control unit 300 instructs a conversion type (DCT or second type conversion) used in the conversion unit 120. Outputs conversion control information. The conversion unit 120 performs horizontal conversion and vertical conversion according to the conversion control information.
 図2Bは、本実施の形態に係る復号装置の構成図である。エントロピー復号部240は、符号化信号をエントロピー復号して、量子化係数と予測モードを生成する。逆量子化部140は量子化係数を逆量子化し復号変換出力信号を出力する(なお、復号変換出力信号を逆変換入力信号と呼ぶ場合もある)。変換制御部300は、予測モード信号に基づき、水平変換および垂直変換における変換(復号装置では逆変換)の種別をそれぞれ指示するための変換制御情報を出力する。 FIG. 2B is a configuration diagram of the decoding apparatus according to the present embodiment. The entropy decoding unit 240 entropy decodes the encoded signal to generate a quantized coefficient and a prediction mode. The inverse quantization unit 140 inversely quantizes the quantized coefficient and outputs a decoded transform output signal (the decoded transform output signal may be referred to as an inverse transform input signal). Based on the prediction mode signal, conversion control unit 300 outputs conversion control information for instructing the type of conversion in horizontal conversion and vertical conversion (inverse conversion in the decoding apparatus).
 逆変換部150は、変換制御情報により指示された変換種別を用いて、復号変換出力信号を逆変換し、復号変換入力信号(逆変換出力信号と呼ぶ場合もある)を出力する。 The inverse conversion unit 150 performs inverse conversion on the decoded conversion output signal using the conversion type indicated by the conversion control information, and outputs a decoded conversion input signal (sometimes referred to as an inverse conversion output signal).
 符号化装置には、音声、静止画像または動画像などの信号が入力される。この符号化対象信号(Original Signal)、または、この信号と以前に入力された符号化対象信号に基づいて作成された予測信号との差分である予測誤差信号が、変換入力信号として、変換部120に入力される。一般的には予測誤差信号が変換の対象として入力されることが多い。しかし、伝送路でのエラーの混入を避けて予測を行わない場合、または、エネルギーが小さい場合、予測なしで、入力信号が変換の対象として入力される。 Signals such as audio, still images or moving images are input to the encoding device. This encoding target signal (Original Signal) or a prediction error signal that is a difference between this signal and a prediction signal created based on the previously input encoding target signal is used as a conversion input signal. Is input. In general, a prediction error signal is often input as a conversion target. However, when prediction is not performed while avoiding the introduction of errors in the transmission path or when the energy is small, the input signal is input as a conversion target without prediction.
 式6は、符号化装置における第2種の変換の変換行列を示す式である。式7は、復号装置における第2の変換(逆変換)の変換行列を示す式である。式6および式7におけるdiは、係数であり、式8により示される。 Expression 6 is an expression indicating a conversion matrix of the second type of conversion in the encoding device. Expression 7 is an expression showing a conversion matrix of the second conversion (inverse conversion) in the decoding device. D i in Equation 6 and Equation 7 is a coefficient and is represented by Equation 8.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図2Aは、N=4において、順変換の変換行列の変換係数Ki,jを8ビットで示す。図2Bは、N=4において、逆変換の変換行列の変換係数K’i,jを示す。式8のように、全ての変換係数には、2/Nの平方根が含まれる。そのため、これを分離した残りを変換部120および逆変換部150で、変換または逆変換してもよい。図2Cと図2Dは、2/Nの平方根を除いた順変換の変換行列Si,jと逆変換の変換行列S’i,jを示す。 FIG. 2A shows the conversion coefficient K i, j of the conversion matrix of the forward conversion in 8 bits when N = 4. FIG. 2B shows the conversion coefficient K ′ i, j of the inverse transformation matrix when N = 4. As in Equation 8, all conversion coefficients include a square root of 2 / N. For this reason, the conversion unit 120 and the inverse conversion unit 150 may perform conversion or inverse conversion on the remainder after separation. FIGS. 2C and 2D show a forward transformation matrix S i, j and an inverse transformation matrix S ′ i, j excluding the 2 / N square root.
 順変換の変換行列から分離した2/Nの平方根は、量子化部130で行われる量子化処理における量子化ステップサイズまたはノルム補正テーブルに重畳される。これにより、分離によって演算量が増加することはない。同様に、逆変換の変換行列から分離した2/Nの平方根は、逆量子化部140で行われる逆量子化処理における量子化ステップサイズまたはノルム補正テーブルに重畳される。これにより、演算量が増加することはない。 The square root of 2 / N separated from the transformation matrix of the forward transformation is superimposed on the quantization step size or norm correction table in the quantization process performed by the quantization unit 130. Thereby, the amount of calculation does not increase by separation. Similarly, the 2 / N square root separated from the inverse transformation matrix is superimposed on the quantization step size or norm correction table in the inverse quantization process performed by the inverse quantization unit 140. As a result, the calculation amount does not increase.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式9は、2/Nの平方根を除いた順変換の変換行列Si,jを示す。式10は、2/Nの平方根を除いた逆変換の変換行列S’i,jを示す。 Equation 9 shows a transformation matrix S i, j for forward transformation excluding the square root of 2 / N. Equation 10 shows a transformation matrix S ′ i, j of inverse transformation excluding the square root of 2 / N.
 図3A~図3Dは、N=8における変換行列を8ビットで示す。図3Aは、順変換の変換行列Ki,jを示す。図3Bは、逆変換の変換行列K’i,jを示す。図3Cと図3Dは、2/Nの平方根を除いた順変換の変換行列Si,jと逆変換の変換行列S’i,jを示す。図4は、N=16における逆変換の変換行列K’i,jを示す。図5は、2/Nの平方根を除いた逆変換の変換行列S’i,jを示す。 3A to 3D show the transformation matrix at N = 8 by 8 bits. FIG. 3A shows a transformation matrix K i, j for forward transformation. FIG. 3B shows a transformation matrix K ′ i, j for inverse transformation. 3C and 3D show a forward transformation matrix S i, j and an inverse transformation matrix S ′ i, j excluding the square root of 2 / N. FIG. 4 shows a transformation matrix K ′ i, j of inverse transformation at N = 16. FIG. 5 shows an inverse transformation matrix S ′ i, j excluding the square root of 2 / N.
 具体的な変換行列の数値例(図2A~図5)からわかるように、同じ値の変換係数が、同一行あるいは同一列に多数含まれる。そのため、これらに必要な演算処理を効率化できる。 As can be seen from the specific numerical examples of the conversion matrix (FIGS. 2A to 5), many conversion coefficients with the same value are included in the same row or column. Therefore, the arithmetic processing required for these can be made efficient.
 以下に、図2Bの逆変換の例で説明する。ここで、xは変換入力信号の列ベクトルであり、Xは変換出力信号の列ベクトルであり、YはXを逆変換した逆変換出力信号の列ベクトルであるとする。逆変換処理はY=KXであり、このうち2行目(i=1)の演算処理は、式11によって示される。 Hereinafter, an example of inverse transformation in FIG. 2B will be described. Here, x is a column vector of the converted input signal, X is a column vector of the converted output signal, and Y is a column vector of the inversely converted output signal obtained by inversely converting X. The inverse conversion process is Y = KX, and the calculation process of the second row (i = 1) is expressed by Expression 11.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式11を展開することにより、Y1=K1,0X(0)+K1,1X(1)+K1,2X(2)+K1,3X(3)が得られる。係数K1,*の大きさは、±128で同じである。そのため、個々の乗算の前に、X*を計算することで乗算回数が削減される。つまり、逆変換処理の2行目の演算は、Y1=128*(X(0)+X(1)-X(2)-X(3))で実行される。本実施の形態に係る変換行列には、このような同値の係数が多数含まれる。そのため、乗算回数の削減を容易に行うことができる。 By developing Equation 11, Y 1 = K 1,0 X (0) + K 1,1 X (1) + K 1,2 X (2) + K 1,3 X (3) is obtained. The magnitude of the coefficient K 1, * is the same as ± 128. Therefore, the number of multiplications is reduced by calculating X * before each multiplication. That is, the calculation in the second row of the inverse conversion process is executed as Y 1 = 128 * (X (0) + X (1) −X (2) −X (3)). The transformation matrix according to the present embodiment includes many such equivalent coefficients. Therefore, the number of multiplications can be easily reduced.
 (実施の形態2)
 本実施の形態に係る変換および逆変換は、更に演算量を削減したものである。
(Embodiment 2)
The conversion and inverse conversion according to the present embodiment further reduce the amount of calculation.
 図6は、離散コサイン変換および離散サイン変換のそれぞれについて、4種類のタイプを示す。画像圧縮等に典型的なDCTが用いられる場合、順変換はDCTタイプ3であり逆変換はDCTタイプ2である。DCTタイプ1、DCTタイプ4、および、DSTが、画像圧縮に用いられることは稀である。本実施の形態に係る順変換(式6参照)は、DSTの4種類のタイプの中では、タイプ3に相当する。式6は、図6のDSTIIIの式に、N=2N、k=2jを代入することで得られる式に一致する。 FIG. 6 shows four types of discrete cosine transform and discrete sine transform, respectively. When a typical DCT is used for image compression or the like, the forward transformation is DCT type 3 and the inverse transformation is DCT type 2. DCT type 1, DCT type 4, and DST are rarely used for image compression. The forward conversion according to the present embodiment (see Expression 6) corresponds to type 3 among the four types of DST. Equation 6 matches the equation obtained by substituting N = 2N and k = 2j into the DST III equation of FIG.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上述の式12について、図7のシグナルフロー図で説明する。図7のように、N点の入力信号に対して交互にゼロ要素を付加した2N点の信号列が、2N点のDSTタイプ3に入力される。そして、2N点のDSTタイプ3の出力信号のうち、最初のN点のみが用いられる。本実施の形態に係る順変換は、図7のような変換に等しい。 The above equation 12 will be described with reference to the signal flow diagram of FIG. As shown in FIG. 7, a 2N-point signal sequence obtained by alternately adding zero elements to the N-point input signal is input to the 2N-point DST type 3. Of the 2N point DST type 3 output signals, only the first N points are used. The forward conversion according to the present embodiment is equivalent to the conversion as shown in FIG.
 同様に、本実施の形態に係る逆変換(式7参照)は、DSTのタイプ2に相当する。式7は、図6のDSTIIの式に、N=2N、k=2jを代入することで得られる式に一致する。つまり、本実施の形態に係る逆変換は、N点の入力信号の後ろにN個のゼロ要素を付加することにより生成された2N点の信号列を2N点のDSTIIへ入力してDSTIIからの出力信号のうち奇数個目の要素を取り出すことに等しい。 Similarly, the inverse transformation (refer to Expression 7) according to the present embodiment corresponds to Type 2 of DST. Equation 7 matches the equation obtained by substituting N = 2N and k = 2j into the DST II equation of FIG. In other words, the inverse transformation according to the present embodiment, by inputting a signal sequence of 2N points generated by adding N zero elements behind the input signal N points to DST II of 2N points DST II Is equivalent to taking out an odd-numbered element from the output signal from.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上述の式13について、図8のシグナルフロー図で説明する。本実施の形態に係る逆変換では、N点の入力信号(逆変換入力信号)の後ろにN個のゼロ要素が付加される。そして、入力信号は、2N点のDSTタイプ2へ入力される。そして、DSTタイプ2の出力信号のうち、奇数個目の要素のみが用いられる。 The above equation 13 will be described with reference to the signal flow diagram of FIG. In the inverse transformation according to the present embodiment, N zero elements are added after the N-point input signal (inverse transformation input signal). The input signal is input to the 2N point DST type 2. Of the DST type 2 output signals, only odd-numbered elements are used.
 離散サイン変換DSTが画像圧縮に用いられる機会は、離散コサイン変換に比べて、少ない。しかし、タイプ2とタイプ3には、その演算の特性などが良く知られているため扱いやすいというメリットがある。本実施の形態に係る符号化装置および復号装置も、上記のようにDSTタイプ2とタイプ3を基本構成としているため、扱いやすさのメリットを享受できる。 The chance that the discrete sine transform DST is used for image compression is less than that of the discrete cosine transform. However, Type 2 and Type 3 have an advantage that they are easy to handle because their calculation characteristics are well known. Since the encoding apparatus and decoding apparatus according to the present embodiment are based on DST type 2 and type 3 as described above, they can enjoy the merit of ease of handling.
 (実施の形態3)
 本実施の形態は比較的小さい構成の例であり、変換および逆変換において、前述の2N点のDSTのうちゼロ値が入出力される部分の処理が省略される。本実施の形態では、2/Nの平方根を除いた変換行列Ci,jおよび逆変換行列C’i,jを実現する例が示される。除かない場合のKi,jおよびK’i,jについては、一度だけ2/Nの平方根の乗算が発生するように、乗算を重畳することで実現できる。
(Embodiment 3)
This embodiment is an example of a relatively small configuration, and in the conversion and inverse conversion, the processing of the portion where the zero value is input / output in the 2N-point DST is omitted. In the present embodiment, an example is shown in which the transformation matrix C i, j and the inverse transformation matrix C ′ i, j excluding the 2 / N square root are realized. K i, j and K ′ i, j when not removed can be realized by superimposing the multiplications so that the multiplication of the square root of 2 / N occurs only once.
 図9Aは、N=4における順変換のシグナルフロー図である。矢印に沿ってデータは流れる。矢印の横に数値が記載されている場合、その数値が乗算される。丸印はデータの中間点を示す仮想的なノードである。一つのノードに複数の矢印が入り込むとき、それら矢印のデータは加算される。変換入出力のデータは、順不同となる場合がある。しかし、それらを並び替える演算量は小さいと想定される。したがって、説明の都合上、並び替えの処理を省略する場合がある。 FIG. 9A is a signal flow diagram of forward conversion when N = 4. Data flows along the arrows. When a numerical value is written next to the arrow, the numerical value is multiplied. A circle is a virtual node indicating an intermediate point of data. When a plurality of arrows enter one node, the data of these arrows are added. Conversion input / output data may be out of order. However, the amount of calculation for rearranging them is assumed to be small. Therefore, the rearrangement process may be omitted for convenience of explanation.
 図9Aには、変換入力が順不同で示されている。図9Aのシグナルフロー図について、図9Bに沿って説明する。4点の変換入力信号のうち、一つ目の要素であるx(0)はa(0)に入力され、3番目の要素であるx(2)はa(1)へ仮想的に入力される。この二つの入力時に乗算加算等の演算処理は行わない。単に説明の都合上、入力が実行される。4番目の要素であるx(3)は、Ci,jの一つであるS(2/8)と乗算され、a(2)へ入力される。ここでS(n/m)は、sin(nπ/m)を意味する。 In FIG. 9A, the conversion inputs are shown in no particular order. The signal flow diagram of FIG. 9A will be described along FIG. 9B. Of the four converted input signals, the first element x (0) is input to a (0), and the third element x (2) is virtually input to a (1). The No arithmetic processing such as multiplication and addition is performed at the time of these two inputs. For convenience of explanation, input is performed. The fourth element x (3) is multiplied by S (2/8), which is one of Ci , j , and input to a (2). Here, S (n / m) means sin (nπ / m).
 このように、図9Aのシグナルフロー図で示す手順に沿って演算することで、Ci,jを行列乗算した結果と同等の結果が得られる。乗算および加算の処理が、効率的にまとめられ、これら演算回数が削減される。 In this way, by performing the calculation according to the procedure shown in the signal flow diagram of FIG. 9A, a result equivalent to the result of matrix multiplication of C i, j is obtained. Multiplication and addition processes are efficiently combined, and the number of these operations is reduced.
 同様に、図10Aは、N=4における逆変換のC’i,jのシグナルフロー図である。図10Bは、擬似コードである。この二つを用いて説明する。逆変換入力信号であるXに対して、バタフライ演算が実行される。バタフライ演算は、決められた要素同士で加算結果と減算結果のペアを作る演算である。図10Aの例では、a(0)=X(0)+X(3)、a(1)=X(1)+X(2)、a(2)=X(1)-X(2)、a(3)=X(0)-X(3)のようにバタフライ演算が実行される。 Similarly, FIG. 10A is a signal flow diagram of C ′ i, j of inverse transformation at N = 4. FIG. 10B is pseudo code. This will be described using these two. A butterfly operation is performed on X which is an inverse conversion input signal. The butterfly operation is an operation that creates a pair of an addition result and a subtraction result with predetermined elements. In the example of FIG. 10A, a (0) = X (0) + X (3), a (1) = X (1) + X (2), a (2) = X (1) −X (2), a The butterfly operation is executed as (3) = X (0) −X (3).
 逆変換部150は、バタフライ演算結果のうち、加算側の結果であるa(0)、a(1)を用いて、逆変換出力の第1の要素であるY(0)をs(1/8)*a(0)+s(3/8)*a(1)により導出する。また、逆変換部150は、逆変換出力信号の第3の要素であるY(2)をs(3/8)*a(0)-s(3/8)*a(1)により導出する。 The inverse conversion unit 150 uses a (0) and a (1) which are the results on the addition side among the butterfly calculation results to convert Y (0) which is the first element of the inverse conversion output to s (1 / 8) Derived by * a (0) + s (3/8) * a (1). Further, the inverse transform unit 150 derives Y (2), which is the third element of the inverse transform output signal, from s (3/8) * a (0) −s (3/8) * a (1). .
 逆変換部150は、バタフライ演算結果のうち、減算側の結果であるa(2)、a(3)をさらに加減算し、係数を乗じる。具体的には、逆変換部150は、逆変換出力信号の第4の要素であるY(3)をs(4/8)*(a(3)-a(2))により導出する。また、逆変換部150は、逆変換出力信号の第2の要素であるY(1)をs(2/8)*(a(3)+a(2))により導出する。 The inverse transform unit 150 further adds and subtracts a (2) and a (3), which are the results on the subtraction side, among the butterfly calculation results, and multiplies the coefficients. Specifically, the inverse transformation unit 150 derives Y (3), which is the fourth element of the inverse transformation output signal, from s (4/8) * (a (3) −a (2)). Further, the inverse transform unit 150 derives Y (1), which is the second element of the inverse transform output signal, from s (2/8) * (a (3) + a (2)).
 なお、s(4/8)はs(1/2)に等しく、s(2/8)はs(1/4)等しい。Y(3)を得るための乗算は、s(4/8)の乗算の一度だけでよい。また、Y(1)を得るための乗算も、s(2/8)の一度だけでよい。本来の行列演算の場合には、それぞれ4回必要だったことと比べて大きく乗算回数が削減される。 Note that s (4/8) is equal to s (1/2), and s (2/8) is equal to s (1/4). The multiplication to obtain Y (3) is only required once for the multiplication of s (4/8). Further, the multiplication for obtaining Y (1) may be performed only once for s (2/8). In the case of the original matrix operation, the number of multiplications is greatly reduced as compared with the case where each is required four times.
 順変換と逆変換のシグナルフロー図は、矢印の向きを入れ替えることで、相互に得られることが、図9A~図10Bを比較するとわかる。よって、今後は逆変換のシグナルフロー図のみを示す。 It can be seen by comparing FIG. 9A to FIG. 10B that the signal flow diagrams of forward conversion and reverse conversion can be obtained mutually by switching the directions of the arrows. Therefore, only the signal flow diagram of the inverse transformation will be shown in the future.
 図11は、N=8における逆変換のシグナルフロー図である。図11には、複数の演算(演算504、演算604および演算704)が示されている。演算504は、減算結果の変換に対応する(減算結果変換)。演算604は、加算結果の変換に対応する(加算結果変換)。演算704は、符号の変更に対応する(ポスト変換)。演算704で並び替えが実行されてもよい。この処理ステップを図12のフロー図を用いて説明する。 FIG. 11 is a signal flow diagram of the inverse transformation when N = 8. FIG. 11 shows a plurality of operations (operation 504, operation 604, and operation 704). The operation 504 corresponds to conversion of the subtraction result (subtraction result conversion). The calculation 604 corresponds to conversion of the addition result (addition result conversion). The operation 704 corresponds to the change of the sign (post conversion). Rearrangement may be performed in operation 704. This processing step will be described with reference to the flowchart of FIG.
 まず、逆変換入力信号に対して、N点のバタフライ演算が実行される(S101)。バタフライ演算の加算結果側のN/2点は、N/2点のDCTタイプ4と一致する。そこで、DCTタイプ4向けの既知の高速アルゴリズム(非特許文献2参照)が適用される。これにより、低処理量で演算が行われる(S102および演算604)。さらに、符号が調整される(S103および演算704)。 First, an N-point butterfly operation is performed on the inverse transformation input signal (S101). The N / 2 point on the result side of the butterfly calculation coincides with the DCT type 4 of N / 2 point. Therefore, a known high-speed algorithm for DCT type 4 (see Non-Patent Document 2) is applied. Thereby, the calculation is performed with a low processing amount (S102 and calculation 604). Further, the sign is adjusted (S103 and operation 704).
 バタフライ演算の減算結果側のN/2点は、本実施の形態に係るN/2点の構成と一致する。そのため、再帰的に本実施の形態の構成および処理手順を適用することで、減算結果側のN/2点の演算が実行される(S104)。ステップS102(演算604)とステップS103(演算704)の順序は逆でもよい。これらは、並列動作も可能である。なお、図11中のc(n/m)はcos(nπ/m)を意味する。 The N / 2 point on the subtraction result side of the butterfly calculation matches the configuration of the N / 2 point according to the present embodiment. Therefore, by applying the configuration and processing procedure of this embodiment recursively, the calculation of N / 2 points on the subtraction result side is executed (S104). The order of step S102 (calculation 604) and step S103 (calculation 704) may be reversed. These can also be operated in parallel. Note that c (n / m) in FIG. 11 means cos (nπ / m).
 上記の演算および構成、すなわち、N=4におけるDCTタイプ4向けの演算、および、再帰的な構成は、2のべき乗のN点について成り立つ。証明は省略するが、点数がMであり、本実施の形態のC’i,jがEMである場合、本実施の形態に係る演算は、式14のようにM/2点の小さなサイズの行列演算へ分解可能である。 The above operations and configurations, ie, operations for DCT type 4 at N = 4, and recursive configurations hold for N power-of-two points. Although the proof is omitted, when the score is M and C ′ i, j of this embodiment is E M , the calculation according to this embodiment is a small size of M / 2 points as shown in Equation 14. It can be decomposed into a matrix operation.
 ここで、BMは、行列の奇数行および偶数行を上下に分離する行列である。ΓMは、単位行列の下半分の要素が負の符号を持つ行列である。RMは、DCTタイプ4に相当する行列である。IMは単位行列である。JMは単位行列を左右反転した行列である。式14の右辺の一部である式15は典型的なバタフライ演算を意味する。 Here, B M is a matrix that vertically separates odd and even rows of the matrix. Γ M is a matrix in which the lower half of the unit matrix has a negative sign. R M is a matrix corresponding to DCT type 4. I M is a unit matrix. J M is a matrix obtained by horizontally inverting the unit matrix. Equation 15 which is a part of the right side of Equation 14 means a typical butterfly operation.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式14のうち、RM/2M/2はバタフライ演算の加算結果に対してステップS102を行うことを意味する。また、ΓM/2はステップS103に相当する。そして、EM/2は再帰的なステップS104に相当する。 In Equation 14, R M / 2 J M / 2 means that step S102 is performed on the addition result of the butterfly calculation. Γ M / 2 corresponds to step S103. E M / 2 corresponds to the recursive step S104.
 式14は、より大きなNについても成立する。そのため、N=16またはN=32についても、低演算量の逆変換の構成(シグナルフローおよび擬似コード)が得られる。N=4の例で示したように、逆変換から順変換の構成が得られる。図13は、N=16の概念図を示す。 Equation 14 also holds for larger N. Therefore, an inverse transformation configuration (signal flow and pseudo code) with a low calculation amount can be obtained for N = 16 or N = 32. As shown in the example of N = 4, a forward conversion configuration is obtained from the reverse conversion. FIG. 13 shows a conceptual diagram of N = 16.
 上記で説明したように、DCTタイプ4に相当する部分の処理は、典型的なDCTの高速アルゴリズムと共用化可能である。図14は、処理の共用化を示す構成図である。本実施の形態に係る第2種の変換の構成は、上記で説明したとおりであり、図中にC’i,jで示されている。 As described above, the processing corresponding to the DCT type 4 can be shared with a typical DCT high-speed algorithm. FIG. 14 is a configuration diagram showing sharing of processing. The configuration of the second type of conversion according to the present embodiment is as described above, and is indicated by C ′ i, j in the figure.
 一方、典型的なDCT(つまりDCTタイプIII)では、図14において、右側からデータが入力される。符号の調整のためのΓに相当する処理は不要である。DCTタイプ4の処理が逆順で行われる。そして、その結果が、バタフライ演算部の減算側へ入力される。もう一方のデータに対して、典型的なDCT自身の再帰的な構成で、演算が行われる。そして、その出力が、バタフライ演算部の加算側へ入力される。バタフライ演算部は処理を逆順で行い、結果を出力する。その出力結果は、典型的なDCTの出力に等しい。 On the other hand, in a typical DCT (that is, DCT type III), data is input from the right side in FIG. A process corresponding to Γ for code adjustment is not required. DCT type 4 processing is performed in reverse order. Then, the result is input to the subtraction side of the butterfly calculation unit. Operations are performed on the other data in a typical DCT recursive configuration. Then, the output is input to the addition side of the butterfly calculation unit. The butterfly operation unit performs the process in the reverse order and outputs the result. The output result is equal to the output of a typical DCT.
 本実施の形態に係る変換および逆変換では、典型的なDCTと同程度まで演算量が低減される。また、本実施の形態に係る変換はDSTIIIであり、逆変換はDSTIIである。これらには高速アルゴリズムが存在する。したがって、演算量がより低減される。 In the conversion and inverse conversion according to the present embodiment, the amount of calculation is reduced to the same level as a typical DCT. Further, the conversion according to the present embodiment is DST III , and the inverse conversion is DST II . There are fast algorithms for these. Therefore, the calculation amount is further reduced.
 (実施の形態4)
 本実施の形態は、上述の実施の形態1から実施の形態3までの派生である。本実施の形態に係る符号化装置における第2種の変換の変換行列は、式17である。復号装置における第2の変換(逆変換)の変換行列は、式18である。逆変換K’i,jは順変換Ki,jに一致する。式16および式17におけるdiは、式16は、乗算に用いられる係数を示す。また、この変換は、DSTIV(図6におけるDST Type-IV)である。DSTIVにも高速アルゴリズムが存在する。そのため、本変換を用いることで演算量が低減される。
(Embodiment 4)
This embodiment is a derivation from the above-described first to third embodiments. The transformation matrix of the second type of transformation in the encoding apparatus according to the present embodiment is Equation 17. The transformation matrix of the second transformation (inverse transformation) in the decoding device is Equation 18. The inverse transformation K ′ i, j matches the forward transformation K i, j . D i in Equation 16 and Equation 17 represents a coefficient used for multiplication. This conversion is DST IV (DST Type-IV in FIG. 6). DST IV also has a high-speed algorithm. For this reason, the amount of calculation is reduced by using this conversion.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 図15Aは、N=4における順変換の変換行列の変換係数Ki,j、および、逆変換の変換行列の変換係数K’i,jを8ビットで示す。図15Bは、共通の係数である2/Nの平方根を分離した変換係数を示す。図15Cは、N=8における順変換の変換係数Ki,j、および、逆変換の変換係数K’i,jを示す。図15Dは、共通の係数である2/Nの平方根を分離した変換係数を示す。 FIG. 15A shows the transform coefficient K i, j of the transform matrix of the forward transform at N = 4 and the transform coefficient K ′ i, j of the transform matrix of the inverse transform in 8 bits. FIG. 15B shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient. FIG. 15C shows the conversion coefficient K i, j for forward conversion and the conversion coefficient K ′ i, j for inverse conversion when N = 8. FIG. 15D shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
 図16A~図16Dは、変換係数の例を7ビットで示す。図16Aは、N=4における順変換の変換係数Ki,j、および、逆変換の変換係数K’i,jを示す。図16Bは、共通の係数である2/Nの平方根を分離した変換係数を示す。図16Cは、N=8点の場合の順変換の変換係数Ki,j、および、逆変換の変換係数K’i,jを示す。図16Dは、共通の係数である2/Nの平方根を分離した変換係数を示す。 16A to 16D show examples of transform coefficients with 7 bits. FIG. 16A shows the conversion coefficient K i, j for forward conversion and the conversion coefficient K ′ i, j for inverse conversion when N = 4. FIG. 16B shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient. FIG. 16C shows the conversion coefficient K i, j for forward conversion and the conversion coefficient K ′ i, j for inverse conversion when N = 8 points. FIG. 16D shows conversion coefficients obtained by separating the square root of 2 / N, which is a common coefficient.
 DSTIVには、高速アルゴリズムが存在する。DSTIVの高速アルゴリズムは、DCTIVの高速アルゴリズムに基づいて、N点の入力信号列に対してN/2点だけ入力位置をずらすことで得られる。DCTIVの高速アルゴリズムは、実施の形態1~3で述べたとおりである。本実施の形態に記載の変換および逆変換を用いることで、第2種の変換の演算量が低減される。 There is a fast algorithm in DST IV . The high-speed DST IV algorithm is obtained by shifting the input position by N / 2 points with respect to the N-point input signal sequence based on the high-speed DCT IV algorithm. The fast algorithm of DCT IV is as described in the first to third embodiments. By using the conversion and inverse conversion described in the present embodiment, the amount of calculation of the second type conversion is reduced.
 以上、本発明に係る符号化装置および復号装置について、複数の実施の形態に基づいて説明したが、本発明はそれらの実施の形態に限定されるものではない。それらの実施の形態に対して当業者が思いつく変形を施して得られる形態、および、それらの実施の形態における構成要素を任意に組み合わせて実現される別の形態も本発明に含まれる。 As mentioned above, although the encoding apparatus and decoding apparatus which concern on this invention were demonstrated based on several embodiment, this invention is not limited to those embodiment. Forms obtained by subjecting those embodiments to modifications conceivable by those skilled in the art, and other forms realized by arbitrarily combining components in those embodiments are also included in the present invention.
 例えば、特定の処理部が実行する処理を別の処理部が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。 For example, another processing unit may execute a process executed by a specific processing unit. In addition, the order in which the processes are executed may be changed, or a plurality of processes may be executed in parallel.
 また、本発明は、符号化装置および復号装置として実現できるだけでなく、符号化装置および復号装置を構成する処理手段をステップとする方法として実現できる。例えば、それらのステップは、コンピュータによって実行される。そして、本発明は、それらの方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本発明は、そのプログラムを記録したCD-ROM等のコンピュータ読み取り可能な記録媒体として実現できる。 Further, the present invention can be realized not only as an encoding device and a decoding device, but also as a method in which processing means constituting the encoding device and the decoding device are used as steps. For example, these steps are performed by a computer. The present invention can be realized as a program for causing a computer to execute the steps included in these methods. Furthermore, the present invention can be realized as a computer-readable recording medium such as a CD-ROM in which the program is recorded.
 また、本発明に係る符号化装置、復号装置、符号化方法および復号方法は、例えば、画像符号化装置、画像復号装置、画像符号化方法および画像復号方法にも適用可能である。 The encoding device, decoding device, encoding method, and decoding method according to the present invention can also be applied to, for example, an image encoding device, an image decoding device, an image encoding method, and an image decoding method.
 また、符号化装置および復号装置に含まれる複数の構成要素は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらの構成要素は、個別に1チップ化されてもよいし、一部または全部を含むように1チップ化されてもよい。例えば、メモリ以外の構成要素が、1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSIまたはウルトラLSIと呼称されることもある。 Also, the plurality of components included in the encoding device and the decoding device may be realized as an LSI (Large Scale Integration) that is an integrated circuit. These components may be individually made into one chip, or may be made into one chip so as to include a part or all of them. For example, the components other than the memory may be integrated into one chip. Although referred to here as an LSI, it may be referred to as an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。プログラムすることが可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、符号化装置および復号装置に含まれる構成要素の集積回路化を行ってもよい。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other technologies derived from it, naturally, using that technology, the components included in the encoding device and decoding device can be integrated into an integrated circuit. You may go.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 5)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図17のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 17, and may be connected by combining any one of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention). Function as a device) and transmit to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図18に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 18, the digital broadcast system ex200 also includes at least the video encoding device (video encoding device) or video decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図19は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図20に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図21に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図19に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. The configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration shown in FIG.
 図22Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図22Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 22B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 6)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図23は、多重化データの構成を示す図である。図23に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 23 is a diagram showing a structure of multiplexed data. As shown in FIG. 23, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図24は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図25は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図25における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図25の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 25 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 25, a plurality of video presentation units in a video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図26は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図26下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図27はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 27 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図28に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 28, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図28に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図29に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 29, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図30に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 30 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態7)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図31に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 7)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 31 shows a configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態8)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 8)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図32は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 32 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図31のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図31の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態6で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態6で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図34のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for example, the identification information described in the sixth embodiment can be used for identifying the video data. The identification information is not limited to that described in the sixth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図33は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 33 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態9)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 9)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図35Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆変換に特徴を有していることから、例えば、逆変換については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 35A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inverse transformation, for example, a dedicated decoding processing unit ex901 is used for inverse transformation, and other entropy coding, inverse quantization, deblocking filter, motion, etc. It is conceivable to share the decoding processing unit for any or all of the compensation. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図35Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 35B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明に係る復号方法は、例えば、テレビ、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、または、デジタルビデオカメラ等に利用可能である。 The decoding method according to the present invention can be used in, for example, a television, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.
  120、912 変換部
  130、913 量子化部
  140、914 逆量子化部
  150、915 逆変換部
  190、919 エントロピー符号化部
  240、924 エントロピー復号部
  300、930 変換制御部
  504、604、704 演算
 
 
120, 912 Transformer 130, 913 Quantizer 140, 914 Inverse quantizer 150, 915 Inverse transformer 190, 919 Entropy encoder 240, 924 Entropy decoder 300, 930 Transform controller 504, 604, 704

Claims (5)

  1.  符号化信号を復号する復号方法であって、
     前記符号化信号に対してエントロピー復号を実行し、量子化係数および予測モードを生成するエントロピー復号ステップと、
     前記予測モードに基づいて、分離型の逆直交変換における水平変換および垂直変換のそれぞれを制御するための情報であり、第1のモードまたは第の2モードを示す情報である変換制御情報を出力する変換制御ステップと、
     前記量子化係数を逆量子化して、復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号に対して、前記分離型の逆直交変換における水平変換および垂直変換を順に実行する逆直交変換ステップとを含み、
     前記逆直交変換ステップでは、前記水平変換および前記垂直変換のそれぞれにおいて、
     前記変換制御情報が前記第1のモードを示す場合、N(Nは自然数)点の前記復号変換出力信号に対して、N点の離散コサイン逆変換で前記逆直交変換を実行し、
     前記変換制御情報が前記第2のモードを示す場合、N点の前記復号変換出力信号に対して、2N点の離散サイン変換で前記逆直交変換を実行する
     復号方法。
    A decoding method for decoding an encoded signal, comprising:
    Entropy decoding to perform entropy decoding on the encoded signal to generate quantized coefficients and prediction modes;
    Based on the prediction mode, it outputs information for controlling each of horizontal transformation and vertical transformation in the separation type inverse orthogonal transformation, and outputs transformation control information which is information indicating the first mode or the second mode. A conversion control step;
    An inverse quantization step of inversely quantizing the quantization coefficient to generate a decoded transformed output signal;
    An inverse orthogonal transformation step that sequentially performs horizontal transformation and vertical transformation in the separation type inverse orthogonal transformation on the decoded transformation output signal,
    In the inverse orthogonal transform step, in each of the horizontal transform and the vertical transform,
    When the transform control information indicates the first mode, the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) points by N-point discrete cosine inverse transform,
    When the transform control information indicates the second mode, the inverse orthogonal transform is performed by 2N-point discrete sine transform on the N-point decoded transform output signal.
  2.  前記第2のモードで用いられる前記逆直交変換は、
     入力信号に対して、バタフライ演算を実行するバタフライ演算ステップと、
     前記バタフライ演算の出力のうち加算結果に対して、N/2点の離散コサイン変換Type-4を実行する加算結果変換ステップと、
     前記バタフライ演算の出力のうち減算結果に対して、前記第2のモードで用いられる前記逆直交変換を再帰的に実行する減算結果変換ステップと、
     前記加算結果変換ステップの出力、および、前記減算結果変換ステップの出力に対して、並び替えと符号の変更とを実行し、N点の逆変換出力信号を出力するポスト変換ステップとを含む
     請求項1に記載の復号方法。
    The inverse orthogonal transform used in the second mode is
    A butterfly operation step for performing a butterfly operation on the input signal;
    An addition result conversion step of performing N / 2-point discrete cosine transformation Type-4 on the addition result of the output of the butterfly operation;
    A subtraction result conversion step for recursively executing the inverse orthogonal transform used in the second mode on the subtraction result of the output of the butterfly operation;
    And a post-conversion step of performing rearrangement and sign change on the output of the addition result conversion step and the output of the subtraction result conversion step, and outputting an N-point inverse conversion output signal. The decoding method according to 1.
  3.  符号化信号を復号する復号方法であって、
     前記符号化信号に対してエントロピー復号を実行し、量子化係数および予測モードを生成するエントロピー復号ステップと、
     前記予測モードに基づいて、分離型の逆直交変換における水平変換および垂直変換のそれぞれを制御するための情報であり、第1のモードまたは第2のモードを示す情報である変換制御情報を出力する変換制御ステップと、
     前記量子化係数を逆量子化して、復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号に対して、前記分離型の逆直交変換における水平変換および垂直変換を順に実行する逆直交変換ステップとを含み、
     前記逆直交変換ステップでは、前記水平変換および前記垂直変換のそれぞれにおいて、
     前記変換制御情報が前記第1のモードを示す場合、N(Nは自然数)点の前記復号変換出力信号に対して、N点の離散コサイン逆変換で前記逆直交変換を実行し、
     前記変換制御情報が前記第2のモードを示す場合、N点の前記復号変換出力信号に対して、N点の離散サイン変換で前記逆直交変換を実行する
     復号方法。
    A decoding method for decoding an encoded signal, comprising:
    Entropy decoding to perform entropy decoding on the encoded signal to generate quantized coefficients and prediction modes;
    Based on the prediction mode, it outputs information for controlling each of horizontal transformation and vertical transformation in the separation type inverse orthogonal transformation, and outputs transformation control information which is information indicating the first mode or the second mode. A conversion control step;
    An inverse quantization step of inversely quantizing the quantization coefficient to generate a decoded transformed output signal;
    An inverse orthogonal transformation step that sequentially performs horizontal transformation and vertical transformation in the separation type inverse orthogonal transformation on the decoded transformation output signal,
    In the inverse orthogonal transform step, in each of the horizontal transform and the vertical transform,
    When the transform control information indicates the first mode, the inverse orthogonal transform is performed on the decoded transform output signal of N (N is a natural number) points by N-point discrete cosine inverse transform,
    When the transform control information indicates the second mode, the inverse orthogonal transform is performed by N-point discrete sine transform on the N-point decoded transform output signal.
  4.  前記逆直交変換で用いられる前記離散サイン変換は、DST-Type2である
     請求項3に記載の復号方法。
    The decoding method according to claim 3, wherein the discrete sine transform used in the inverse orthogonal transform is DST-Type2.
  5.  前記逆直交変換で用いられる前記離散サイン変換は、DST-Type4である
     請求項3に記載の復号方法。
     
    The decoding method according to claim 3, wherein the discrete sine transform used in the inverse orthogonal transform is DST-Type4.
PCT/JP2011/006874 2010-12-09 2011-12-08 Decoding method WO2012077347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42131310P 2010-12-09 2010-12-09
US61/421,313 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077347A1 true WO2012077347A1 (en) 2012-06-14

Family

ID=46206857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006874 WO2012077347A1 (en) 2010-12-09 2011-12-08 Decoding method

Country Status (1)

Country Link
WO (1) WO2012077347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944177A (en) * 2018-09-21 2020-03-31 华为技术有限公司 Video decoding method, video decoder, video encoding method, and video encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188514A (en) * 2008-02-04 2009-08-20 Nippon Hoso Kyokai <Nhk> Image encoding apparatus, image decoding apparatus and image processing program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188514A (en) * 2008-02-04 2009-08-20 Nippon Hoso Kyokai <Nhk> Image encoding apparatus, image decoding apparatus and image processing program

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUOHAO YEO ET AL.: "Mode-Dependent Fast Separable KLT for Block-based Intra Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 2ND MEETING: GENEVA, CH, 21 July 2010 (2010-07-21) *
N. RAMA MURTHY ET AL.: "On a Novel Decomposition of the DCT and its Application", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 41, no. 1, January 1993 (1993-01-01), pages 480 - 485, XP000332164, DOI: doi:10.1109/TSP.1993.193182 *
ZHONGDE WANG ET AL.: "A regular recursive algorithm for the discrete sine transform", 1993 CONFERENCE RECORD OF THE TWENTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 1993, vol. 1, 1 November 1993 (1993-11-01), pages 305 - 309 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944177A (en) * 2018-09-21 2020-03-31 华为技术有限公司 Video decoding method, video decoder, video encoding method, and video encoder
CN110944177B (en) * 2018-09-21 2024-03-01 华为技术有限公司 Video decoding method, video decoder, video encoding method and video encoder

Similar Documents

Publication Publication Date Title
JP6498811B2 (en) Encoding method and encoding apparatus
JP6222589B2 (en) Decoding method and decoding apparatus
JP6168365B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
JP6210396B2 (en) Decoding method and decoding apparatus
JP6210368B2 (en) Image decoding method and image decoding apparatus
JP6489337B2 (en) Arithmetic decoding method and arithmetic coding method
JP2014512705A (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012014461A1 (en) Encoding method, and decoding method
WO2011148622A1 (en) Video encoding method, video decoding method, video encoding device and video decoding device
WO2011132400A1 (en) Image coding method and image decoding method
WO2015015681A1 (en) Image coding method, and image coding device
WO2012077347A1 (en) Decoding method
WO2012014426A1 (en) Decoding method and encoding method
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2012096156A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012014472A1 (en) Moving image coding method, moving image coding device, moving image decoding method, and moving image decoding device
WO2012053210A1 (en) Decoding method, encoding method, decoding device, and encoding device
WO2012102023A1 (en) Decoding method and encoding method
WO2013069258A1 (en) Image decoding method, image encoding method, image decoding device, image encoding device, and image encoding and decoding device
WO2012120876A1 (en) Image decoding method, image coding method, image decoder, and image encoder
WO2012095930A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012086166A1 (en) Image encoding method and image decoding method
WO2012096195A1 (en) Encoding method, decoding method, encoding device, decoding device, and encoding/decoding device
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP