WO2012096157A1 - Image encoding method, image decoding method, image encoding device, and image decoding device - Google Patents

Image encoding method, image decoding method, image encoding device, and image decoding device Download PDF

Info

Publication number
WO2012096157A1
WO2012096157A1 PCT/JP2012/000096 JP2012000096W WO2012096157A1 WO 2012096157 A1 WO2012096157 A1 WO 2012096157A1 JP 2012000096 W JP2012000096 W JP 2012000096W WO 2012096157 A1 WO2012096157 A1 WO 2012096157A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
target block
decoding
encoding
unit
Prior art date
Application number
PCT/JP2012/000096
Other languages
French (fr)
Japanese (ja)
Inventor
敏康 杉尾
西 孝啓
陽司 柴原
寿郎 笹井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012096157A1 publication Critical patent/WO2012096157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/16Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter for a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to an image encoding method for encoding an image for each block and an image decoding method for decoding an image for each block.
  • An image encoding apparatus generally compresses the amount of information using redundancy in the spatial direction and temporal direction of an image (including a still image and a moving image).
  • redundancy in the spatial direction conversion to the frequency domain is used.
  • Inter prediction is used as a method of using temporal redundancy. Inter prediction is also called inter-picture prediction.
  • an image encoding apparatus using inter prediction encodes a certain picture
  • a picture that has been encoded forward or backward in display order with respect to the encoding target picture is used as a reference picture.
  • the image encoding device derives a motion vector by detecting the motion of the encoding target picture with respect to the reference picture.
  • the image encoding device obtains predicted image data by performing motion compensation based on the motion vector.
  • the image encoding device acquires a difference between the predicted image data and the image data of the encoding target picture.
  • the image encoding device encodes the acquired difference. Thereby, the image coding apparatus removes redundancy in the time direction.
  • the image coding apparatus calculates a difference value between a block to be coded in a coded picture and a block in a reference picture, and uses a block in the reference picture having the smallest difference value as a reference block. Determine as. Then, the image encoding device detects a motion vector using the encoding target block and the reference block.
  • H.264 An image encoding apparatus according to a standardized image encoding method called H.264 (see Non-Patent Document 1) uses three types of pictures, ie, an I picture, a P picture, and a B picture, in order to compress the amount of information.
  • This image encoding apparatus does not perform inter prediction on an I picture. That is, the image coding apparatus performs intra prediction on the I picture. Intra prediction is also called intra-picture prediction.
  • the image coding apparatus performs inter prediction on the P picture with reference to one already coded picture in front of or behind the picture to be coded in display order. Also, the image encoding apparatus performs inter prediction on the B picture with reference to two already encoded pictures in front of or behind the encoding target picture in display order.
  • An image coding apparatus can select a coding mode called temporal direct when deriving a motion vector in coding a B picture.
  • a method of inter prediction in temporal direct will be described with reference to FIG.
  • FIG. 31 is an explanatory diagram showing motion vectors in time direct.
  • FIG. 31 illustrates a case where the image encoding apparatus encodes block a of picture B2 in time direct.
  • the image coding apparatus uses the motion vector vb used when coding the block b at the same position as the block a in the picture P3 which is the reference picture behind the picture B2.
  • the motion vector vb is a motion vector used when the block b is encoded, and refers to the picture P1.
  • the image encoding device When encoding the block a, the image encoding device acquires a reference block from a picture P1 that is a forward reference picture and a picture P3 that is a backward reference picture by using a motion vector parallel to the motion vector vb. To do. Then, the image encoding apparatus performs bidirectional prediction and encodes block a. That is, the image coding apparatus codes the block a using the motion vector va1 for the picture P1 and the motion vector va2 for the picture P3.
  • the field structure is a structure used when two fields in a block are encoded in order for each field.
  • the frame structure is a structure used when a block is encoded without being separated into two fields. Coding with a field structure is called field coding, and coding with a frame structure is called frame coding.
  • the motion vector vb is a field structure or a frame structure. If the structure of the motion vector vb is not properly determined, the position indicated by the motion vector vb is not properly specified.
  • the present invention provides an image encoding method and image decoding for processing an image using the motion vector without determining whether the structure of the motion vector held in the memory is a frame structure or a field structure. It aims to provide a method.
  • an image encoding method is an image encoding method for encoding an image for each block, and the structure of the first encoding target block is a field structure or a frame structure.
  • the motion vector of the first encoding target block is written into a memory, and the structure of the first encoding target block is the predetermined structure.
  • the writing step for writing the motion vector adjusted in the first adjustment step to the memory is written into a memory.
  • the motion vector read in the reading step is the second A second adjustment step for adjusting the motion vector read in the reading step so as to conform to the structure of the encoding target block, and the structure of the second encoding target block is the same as the predetermined structure.
  • An encoding step for encoding the second encoding target block using the motion vector adjusted in the second adjustment step It flops and may be an image coding method comprising.
  • the motion vector is stored in the memory with a predetermined structure. Therefore, there is no need to hold motion vector structure information. Therefore, the memory capacity required to hold the motion vector structure information is reduced. Further, it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure. Therefore, the processing amount is reduced.
  • the motion vector of the first encoding target block is set in the vertical direction.
  • the motion vector is adjusted by halving, and in the second adjustment step, if the structure of the second encoding target block is different from the predetermined structure, the motion vector is read in the reading step.
  • the motion vector read in the reading step may be adjusted by doubling the motion vector structure in the vertical direction.
  • the motion vector of the first encoding target block is set in the vertical direction.
  • the motion vector is adjusted by doubling, and if the structure of the second encoding target block is different from the predetermined structure in the second adjustment step, the motion vector is read in the reading step.
  • the motion vector read in the reading step may be adjusted by halving the structure of the motion vector in the vertical direction.
  • the motion vector of the first encoding target block that matches the position of the second encoding target block may be read.
  • the motion vector of the co-located block is read from the memory. That is, a motion vector that can be used as a temporal direct vector is appropriately read from the memory.
  • a motion vector of the second encoding target block is calculated from the motion vector read in the read step or the motion vector adjusted in the second adjustment step.
  • the second encoding target block may be encoded using the calculated motion vector.
  • the motion vector read from the memory is used to calculate the motion vector of another encoding target block. That is, a motion vector used for encoding another encoding target block is efficiently derived.
  • the motion vector read in the read step or the motion vector adjusted in the second adjustment step is used to predict the motion vector of the second encoding target block.
  • the second prediction target block may be encoded using the calculated prediction vector.
  • the motion vector read from the memory is used for calculating the prediction vector. Then, by using the calculated prediction vector for the coding of the motion vector, the block to be coded is efficiently coded.
  • the image decoding method is an image decoding method for decoding an image on a block-by-block basis, wherein the structure of the first decoding target block is one of a field structure and a frame structure.
  • the first decoding step of adjusting the motion vector so that the motion vector of the first decoding target block matches the predetermined structure, and the structure of the first decoding target block If the structure is the same as the predetermined structure, the motion vector of the first decoding target block is written into a memory, and if the structure of the first decoding target block is different from the predetermined structure, the first adjustment step A writing step for writing the motion vector adjusted in step (a) to the memory; and
  • the motion vector read in the reading step is adapted to the structure of the second decoding target block.
  • the second decoding step is read in the reading step.
  • the motion vector adjusted in the second adjustment step is And an image decoding method including a decoding step of decoding the second decoding target block.
  • the motion vector is stored in the memory with a predetermined structure. Therefore, there is no need to hold motion vector structure information. Therefore, the memory capacity required to hold the motion vector structure information is reduced. Further, it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure. Therefore, the processing amount is reduced.
  • the motion vector of the first decoding target block is The motion vector is adjusted to 2 to adjust the motion vector read in the read step when the second adjustment step has a structure of the second decoding target block different from the predetermined structure.
  • the motion vector read in the reading step may be adjusted by doubling the vector structure in the vertical direction.
  • the motion vector of the first decoding target block is doubled in the vertical direction.
  • the motion vector read in the read step is read when the structure of the second decoding target block is different from the predetermined structure.
  • the motion vector read in the reading step may be adjusted by halving the structure of 1 ⁇ 2 in the vertical direction.
  • the motion vector of the first decoding target block that matches the block position may be read.
  • the motion vector of the co-located block is read from the memory. That is, a motion vector that can be used as a temporal direct vector is appropriately read from the memory.
  • the motion vector of the second decoding target block is calculated from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step.
  • the second decoding target block may be decoded using the motion vector.
  • the motion vector read from the memory is used to calculate the motion vector of another decoding target block. That is, a motion vector used for decoding another decoding target block is efficiently derived.
  • a vector may be calculated, and the second decoding target block may be decoded using the calculated prediction vector.
  • the motion vector read from the memory is used for calculating the prediction vector. Then, the decoding target block is appropriately decoded by using the calculated prediction vector for decoding the motion vector.
  • An image encoding apparatus is an image encoding apparatus that encodes an image for each block, and the structure of the first encoding target block is one of a field structure and a frame structure in advance.
  • a first adjusting unit that adjusts the motion vector so that a motion vector of the first encoding target block matches the predetermined structure when the structure is different from the predetermined structure; and the first encoding target
  • the motion vector of the first encoding target block is written in a memory, and the structure of the first encoding target block is the predetermined structure.
  • a writing unit that writes the motion vector adjusted by the first adjusting unit to the memory, and the motion vector written to the memory
  • the motion vector read by the reading unit matches the structure of the second encoding target block
  • the reading unit reads If the second encoding target block is encoded using the motion vector that is output, and the structure of the second encoding target block is different from the predetermined structure, the second adjustment unit adjusts the second encoding target block.
  • An image encoding device including an encoding unit that encodes the second encoding target block using the motion vector may be used.
  • the image encoding method is realized as an image encoding apparatus.
  • the image decoding apparatus is an image decoding apparatus that decodes an image block by block, and the structure of the first decoding target block is one of a field structure and a frame structure.
  • the first decoding unit for adjusting the motion vector so that the motion vector of the first decoding target block matches the predetermined structure, and the structure of the first decoding target block
  • the motion vector of the first decoding target block is written into a memory, and when the structure of the first decoding target block is different from the predetermined structure, the first adjustment unit A writing unit for writing the motion vector adjusted in step S1 to the memory, and a reading unit for reading the motion vector written in the memory from the memory.
  • the motion vector read by the reading unit matches the structure of the second decoding target block.
  • the second adjustment unit that adjusts the motion vector read by the reading unit and the structure of the second decoding target block are the same as the predetermined structure, the motion read by the reading unit
  • the motion vector adjusted by the second adjustment unit is used to An image decoding apparatus including a decoding unit that decodes the second decoding target block may be used.
  • the image decoding method is realized as an image decoding apparatus.
  • An image encoding / decoding apparatus is an image encoding / decoding apparatus including an image encoding apparatus that encodes a first image for each block, and an image decoding apparatus that decodes a second image for each block.
  • the image encoding device is configured to use the first encoding target block.
  • a first adjustment unit that adjusts the first motion vector so that the first motion vector matches the predetermined first structure, and a structure of the first encoding target block is the predetermined first structure.
  • the first motion vector of the first encoding target block is written to a first memory, and the structure of the first encoding target block is the predetermined first structure.
  • the first writing unit that writes the first motion vector adjusted by the first adjusting unit to the first memory, and the first motion vector that is written to the first memory are read from the first memory.
  • the first motion vector read by the first reading unit is the second encoding target.
  • a second adjusting unit that adjusts the first motion vector read by the first reading unit and a structure of the second encoding target block so as to conform to a block structure, and a predetermined first structure.
  • the second encoding target block is encoded using the first motion vector read by the first reading unit, and the structure of the second encoding target block is And an encoding unit that encodes the second block to be encoded using the first motion vector adjusted by the second adjustment unit, when the image decoding apparatus is different from the first structure to be obtained,
  • the second motion vector of the first decoding target block is determined in advance.
  • the third adjustment unit that adjusts the second motion vector so as to conform to the second structure and the structure of the first decoding target block are the same as the predetermined second structure
  • the second adjusted by the third adjustment unit The structure of a second writing unit that writes a motion vector to the second memory, a second reading unit that reads the second motion vector written to the second memory from the second memory, and a second decoding target block If the second structure is different from the predetermined second structure, the second reading unit reads the second motion vector read by the second reading unit so that the second motion vector matches the structure of the second decoding target block.
  • a fourth adjusting unit that adjusts the second motion vector, and a second decoding target block having the same structure as the second structure, the second read unit reads the second motion vector;
  • the second adjustment target block is adjusted by the fourth adjustment unit. It may be an image coding and decoding apparatus and a decoding section for decoding the second decoding target block using the second motion vector.
  • the image encoding device and the image decoding device are realized as an image encoding / decoding device.
  • the memory capacity required to hold the motion vector structure information is reduced. Further, since it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure, the amount of processing is reduced.
  • FIG. 1 is a configuration diagram illustrating an image encoding device according to Embodiment 1.
  • FIG. 2 is a conceptual diagram showing a read / write process to the memory according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing a motion vector having a frame structure.
  • FIG. 4 is a conceptual diagram showing the motion vector of the field structure.
  • FIG. 5 is a flowchart showing a write process to the memory according to the first embodiment.
  • FIG. 6 is a flowchart showing a read process from the memory according to the first embodiment.
  • FIG. 7 is a configuration diagram illustrating details of the inter prediction control unit of the image coding apparatus according to Embodiment 1.
  • FIG. 8 is a flowchart showing a read / write process to the memory of the image coding apparatus according to the first embodiment.
  • FIG. 9 is a configuration diagram illustrating the image decoding apparatus according to Embodiment 1.
  • FIG. 10 is a configuration diagram illustrating details of the inter prediction control unit of the image decoding apparatus according to Embodiment 1.
  • FIG. 11 is a flowchart showing a read / write process to the memory of the image decoding apparatus according to the first embodiment.
  • FIG. 12 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 13 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 14 is a block diagram illustrating a configuration example of a television.
  • FIG. 15 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 16 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 17A is a diagram illustrating an example of a mobile phone.
  • FIG. 17B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 18 is a diagram showing a structure of multiplexed data.
  • FIG. 19 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 20 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 21 is a diagram showing the structure of TS packets and source packets in multiplexed data.
  • FIG. 22 is a diagram illustrating a data structure of the PMT.
  • FIG. 23 is a diagram showing an internal configuration of multiplexed data information.
  • FIG. 24 shows the internal structure of stream attribute information.
  • FIG. 25 is a diagram showing steps for identifying video data.
  • FIG. 26 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 27 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 28 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 29 is a diagram illustrating an example of a lookup table in which video data standards are associated with drive frequencies.
  • FIG. 30A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 30B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • FIG. 31 is a diagram for explaining a temporal direct vector according to the prior art.
  • FIG. 1 is a configuration diagram illustrating an image encoding device according to Embodiment 1.
  • the image encoding device shown in FIG. 1 includes an encoding unit 101, an inter prediction control unit 121, a picture type determination unit 124, and a colPic memory 125.
  • the encoding unit 101 includes a subtraction unit 102, an orthogonal transformation unit 103, a quantization unit 104, a variable length coding unit 105, an inverse quantization unit 106, an inverse orthogonal transformation unit 107, an addition unit 108, a block memory 109, an intra A prediction unit 110, a frame memory 111, an inter prediction unit 112, and a switch 113 are provided.
  • the subtraction unit 102 subtracts the predicted image data from the input image data and outputs prediction error data.
  • the orthogonal transform unit 103 transforms the prediction error data from the image region (spatial region) to the frequency region.
  • the quantization unit 104 performs a quantization process on the prediction error data converted into the frequency domain.
  • the inverse quantization unit 106 performs inverse quantization processing on the prediction error data quantized by the quantization unit 104.
  • the inverse orthogonal transform unit 107 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
  • the adder 108 adds the prediction error data and the prediction image data, and outputs reconstructed image data.
  • the block memory 109 is a memory for storing the reconstructed image data in units of blocks.
  • the frame memory 111 is a memory for storing the reconstructed image data in units of frames.
  • the intra prediction unit 110 uses the reconstructed image data in units of blocks stored in the block memory 109 to encode the encoding target block by intra prediction, and generates predicted image data.
  • the inter prediction unit 112 encodes the block to be encoded by inter prediction using the reconstructed image data in units of frames stored in the frame memory 111 and the motion vector derived by motion detection, and converts the predicted image data into Generate.
  • the switch 113 switches the encoding mode to intra prediction or inter prediction.
  • the picture type determination unit 124 determines which of the I picture, B picture, and P picture is used to encode the input image sequence, and generates picture type information.
  • the colPic memory 125 is a memory for storing a motion vector for each block as colPic information.
  • the inter prediction control unit 121 determines a prediction vector (also called a prediction motion vector). Moreover, the inter prediction control part 121 stores the motion vector used for the inter prediction as colPic information. The processing executed by the inter prediction control unit 121 will be described in detail later.
  • the variable length coding unit 105 performs prediction error data subjected to quantization processing, a prediction vector index of a prediction vector (also referred to as a prediction motion vector index), prediction error information between a motion vector and a prediction vector (both a difference vector or a difference motion vector) Variable length coding processing is performed on the picture type information and the like. As a result, the variable length encoding unit 105 generates a bit stream.
  • FIG. 2 is a conceptual diagram showing a read / write process to the colPic memory 125 shown in FIG.
  • the motion vector mvCol of the co-located block in the co-located picture colPic is stored in the colPic memory 125.
  • the co-located picture colPic is a picture that is later in the display order than the encoding target picture and is closest to the encoding target picture in the display order.
  • the co-located block is a block in which the position in the co-located picture colPic matches the position of the encoding target block in the encoding target picture.
  • the co-located picture colPic is not necessarily a picture that is later in display order than the picture to be encoded. That is, the co-located picture colPic may be a picture preceding the display target picture in display order. For example, whether the co-located picture colPic is behind or ahead of the encoding target picture may be switched by a flag stored in the picture header.
  • the position of the co-located block may be determined by a combination of whether the encoding target picture and the co-located picture are encoded by field encoding or frame encoding.
  • the motion vector stored in the colPic memory 125 is read, and the temporal direct vector TemporalMV is calculated.
  • the calculated temporal direct vector TemporalMV is used for encoding the block to be encoded.
  • motion vectors are always held in a field structure. Thereby, it is not necessary to determine whether the block read from the colPic memory 125 has a field structure or a frame structure when encoding the block to be encoded.
  • the inter prediction control unit 121 halves the vertical component of the motion vector mvCol and stores it in the colPic memory 125.
  • the inter prediction control unit 121 stores the motion vector mvCol in the colPic memory 125 as it is. Thereby, in the colPic memory 125, the motion vector is always held in the field structure.
  • the inter prediction control unit 121 calculates the temporal direct vector TemporalMV by doubling the vertical direction component of the motion vector read from the colPic memory 125.
  • the inter prediction control unit 121 calculates a temporal direct vector TemporalMV using the motion vector read from the colPic memory 125 as it is. Therefore, the inter prediction control unit 121 does not need to determine the structure of the read motion vector.
  • FIG. 3 is a conceptual diagram showing the motion vector of the frame structure.
  • FIG. 3 shows a frame-structured picture (also simply referred to as a frame), a frame-structured block, and a frame-structured motion vector.
  • a frame-structured picture includes both odd fields (also called top fields) and even fields (also called bottom fields).
  • FIG. 4 is a conceptual diagram showing the motion vector of the field structure.
  • FIG. 4 shows a field structure picture (also simply referred to as a field), a field structure block, and a field structure motion vector.
  • a frame-structured picture is either an odd field (also called a top field) or an even field (also called a bottom field).
  • the size of the field structure picture is 1 ⁇ 2 in the vertical direction as compared with the size of the frame structure picture.
  • the field structure block and the field structure motion vector are also halved in the vertical direction.
  • the inter prediction control unit 121 adjusts the vertical component of the motion vector when storing the motion vector in the colPic memory 125.
  • FIG. 5 is a flowchart showing a writing process to the colPic memory 125 shown in FIG.
  • the inter prediction control unit 121 calculates a motion vector of an encoding target block (S101).
  • the encoding target block here is the co-located block shown in FIG.
  • the inter prediction control unit 121 calculates a motion vector by motion detection such as block matching. Note that this motion detection may be performed by a motion detection unit (not shown).
  • the inter prediction control unit 121 determines whether the encoding target block has a frame structure or a field structure (S102). When the encoding target block has a frame structure (Yes in S102), the inter prediction control unit 121 adjusts the vertical direction component of the motion vector mvCol to 1 ⁇ 2 (S103). On the other hand, when the encoding target block has a field structure (No in S102), the inter prediction control unit 121 does not perform such adjustment.
  • the inter prediction control unit 121 transfers the motion vector mvCol to the colPic memory 125 (S104). Thereby, the motion vector mvCol is always stored in the colPic memory 125 in a field structure.
  • FIG. 6 is a flowchart showing a reading process from the colPic memory 125 shown in FIG.
  • the inter prediction control unit 121 reads a motion vector mvCol from the colPic memory 125 (S201).
  • the inter prediction control unit 121 determines whether the encoding target block has a frame structure or a field structure (S202).
  • the encoding target block here is the encoding target block shown in FIG.
  • the inter prediction control unit 121 adjusts the vertical direction component of the read motion vector mvCol by a factor of 2 (S203). On the other hand, when the encoding target block has a field structure (No in S202), the inter prediction control unit 121 does not perform such adjustment.
  • the inter prediction control unit 121 calculates a temporal direct vector TemporalMV from the motion vector mvCol (S204). Thereby, the motion vector mvCol is adjusted according to the structure of the encoding target block.
  • the image coding apparatus stores the motion vector in the colPic memory 125 in the field structure, and codes the block in the field structure or the frame structure using the motion vector stored in the colPic memory 125 in the field structure.
  • the image encoding device does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 125.
  • the capacity required for the colPic memory 125 is reduced. Further, since the motion vector having the field structure is always used, the processing amount of the determination process is reduced.
  • the image encoding device can execute processing based only on the structure of the encoding target block. Thereby, the processing amount of the determination process is reduced.
  • the image encoding apparatus always stores motion vectors in the colPic memory 125 with a field structure, but may store motion vectors in the colPic memory 125 with a frame structure. Also in this case, the image encoding device may not store the motion vector structure information in the colPic memory 125. Therefore, the capacity required for the colPic memory 125 is reduced, and the amount of determination processing is reduced.
  • the image encoding apparatus can enhance the effect of reducing the capacity required for the colPic memory 125 when the motion vector is always held in the field structure than when the motion vector is always held in the frame structure. This is because the size of the motion vector of the field structure is relatively smaller than the size of the motion vector of the frame structure as shown in FIG. More specifically, the field structure motion vector is half as large as the frame structure motion vector in the vertical direction. Therefore, 1-bit information can be reduced for each motion vector.
  • FIG. 7 is a configuration diagram showing details of the inter prediction control unit 121 of the image encoding device shown in FIG.
  • the inter prediction control unit 121 illustrated in FIG. 7 includes a first adjustment unit 131, a writing unit 132, a reading unit 133, and a second adjustment unit 134. These processing units execute read / write processing on the colPic memory 125 when an image is encoded by the encoding unit 101.
  • FIG. 8 is a flowchart showing a read / write process to the colPic memory 125 shown in FIG.
  • the process of storing the motion vector of the first encoding target block in the colPic memory 125 and encoding the second encoding target block using the motion vector stored in the colPic memory 125 is performed. It is shown.
  • the first adjustment unit 131 adjusts the first encoding target block so that the motion vector of the first encoding target block matches the predetermined structure.
  • the motion vector of one encoding target block is adjusted (S301).
  • the predetermined structure is either a frame structure or a field structure.
  • the first adjustment unit 131 sets the motion vector of the first encoding target block to 2 in the vertical direction. By doubling, the motion vector of the first encoding target block is adjusted.
  • the writing unit 132 writes the motion vector of the first encoding target block in the colPic memory 125 as it is. If the structure of the first encoding target block is different from the predetermined structure, the writing unit 132 writes the adjusted motion vector in the colPic memory 125 (S302). Thereby, the motion vector of the first encoding target block is written in the colPic memory 125 with a predetermined structure.
  • the reading unit 133 reads the motion vector from the colPic memory 125 (S303).
  • the second adjustment unit 134 adjusts the read motion vector to match the structure of the second encoding target block.
  • the read motion vector is adjusted (S304). For example, when the predetermined structure is a frame structure and the second encoding target block is a field structure, the read motion vector is halved in the vertical direction to Adjust the motion vector.
  • the encoding unit 101 encodes the second encoding target block using the read motion vector as it is. If the structure of the second encoding target block is different from the predetermined structure, the encoding unit 101 encodes the second encoding target block using the adjusted motion vector (S305).
  • the encoding unit 101 may encode the second encoding target block using the read motion vector or the adjusted motion vector as the motion vector of the second encoding target block. Further, the encoding unit 101 may encode the second encoding target block using the read motion vector or the adjusted motion vector as a prediction vector of the second encoding target block. In this case, the encoding unit 101 subtracts the prediction vector from the motion vector specified by motion detection or the like, and encodes the difference vector obtained by the subtraction.
  • the image coding apparatus stores the motion vector in the colPic memory 125 with a predetermined structure, and uses the motion vector stored in the colPic memory 125 with the predetermined structure.
  • a block having a frame structure is encoded. That is, motion vectors are always stored in the colPic memory 125 in a predetermined structure. Therefore, the image encoding device does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 125.
  • FIG. 9 is a configuration diagram illustrating the image decoding apparatus according to the first embodiment.
  • the image decoding apparatus illustrated in FIG. 9 includes a decoding unit 201, an inter prediction control unit 221, and a colPic memory 225.
  • the decoding unit 201 includes a variable length decoding unit 205, an inverse quantization unit 206, an inverse orthogonal transform unit 207, an addition unit 208, a block memory 209, an intra prediction unit 210, a frame memory 211, an inter prediction unit 212, and a switch 213.
  • the variable length decoding unit 205 performs variable length decoding processing on the input bitstream, and decodes picture type information, prediction vector index, prediction error data, and the like.
  • the inverse quantization unit 206 performs an inverse quantization process on the prediction error data.
  • the inverse orthogonal transform unit 207 transforms the prediction error data subjected to the inverse quantization process from the frequency domain to the image domain.
  • the adding unit 208 generates decoded image data by adding the predicted image data and the prediction error data.
  • the block memory 209 is a memory for storing the decoded image data in units of blocks.
  • the frame memory 211 is a memory for storing the decoded image data in units of frames.
  • the intra prediction unit 210 generates predicted image data of the decoding target block by executing intra prediction using the decoded image data in units of blocks stored in the block memory 209.
  • the inter prediction unit 212 generates the predicted image data of the decoding target block by performing inter prediction using the decoded image data in units of frames stored in the frame memory 211.
  • the switch 213 switches the encoding mode (decoding mode) to intra prediction or inter prediction.
  • the colPic memory 225 is a memory for storing a motion vector for each block as colPic information.
  • the inter prediction control unit 221 determines a prediction vector. Also, the inter prediction control unit 221 stores the motion vector used for inter prediction as colPic information.
  • the processing executed by the inter prediction control unit 221 is the same as the processing executed by the inter prediction control unit 121 on the encoding side.
  • the colPic memory 225 is a component similar to the colPic memory 125 on the encoding side. That is, in the above encoding process, the inter prediction control unit 221 is realized by changing the encoding part to decoding.
  • FIG. 10 is a configuration diagram showing details of the inter prediction control unit 221 of the image decoding apparatus shown in FIG.
  • the inter prediction control unit 221 illustrated in FIG. 10 includes a first adjustment unit 231, a writing unit 232, a reading unit 233, and a second adjustment unit 234. These processing units execute read / write processing on the colPic memory 225 when an image is decoded by the decoding unit 201.
  • FIG. 11 is a flowchart showing a read / write process to the colPic memory 225 shown in FIG.
  • the flowchart shown in FIG. 11 shows a process of storing the motion vector of the first decoding target block in the colPic memory 225 and decoding the second decoding target block using the motion vector stored in the colPic memory 225. Yes.
  • the first adjustment unit 231 performs the first decoding so that the motion vector of the first decoding target block matches the predetermined structure.
  • the motion vector of the target block is adjusted (S401).
  • the predetermined structure is either a frame structure or a field structure.
  • the first adjustment unit 231 doubles the motion vector of the first decoding target block in the vertical direction. As a result, the motion vector of the first decoding target block is adjusted.
  • the writing unit 232 writes the motion vector of the first decoding target block as it is in the colPic memory 225. If the structure of the first decoding target block is different from the predetermined structure, the writing unit 232 writes the adjusted motion vector in the colPic memory 225 (S402). Thereby, the motion vector of the first decoding target block is written in the colPic memory 225 with a predetermined structure.
  • the reading unit 233 reads the motion vector from the colPic memory 225 (S403).
  • the second adjustment unit 234 reads the motion vector so that the read motion vector matches the structure of the second decoding target block.
  • the motion vector thus adjusted is adjusted (S404). For example, when the predetermined structure is a frame structure and the second decoding target block has a field structure, the read motion vector is halved with respect to the vertical direction to read out the motion vector. Adjust the motion vector.
  • the decoding unit 201 decodes the second decoding target block using the read motion vector as it is. If the structure of the second decoding target block is different from the predetermined structure, the decoding unit 201 decodes the second decoding target block using the adjusted motion vector (S405).
  • the decoding unit 201 may decode the second decoding target block using the read motion vector or the adjusted motion vector as the motion vector of the second decoding target block. Further, the decoding unit 201 may decode the second decoding target block using the read motion vector or the adjusted motion vector as the prediction vector of the second decoding target block. In this case, the decoding unit 201 acquires a motion vector by decoding the difference vector and adding the decoded difference vector and the prediction vector.
  • the image decoding apparatus stores the motion vector in the colPic memory 225 with a predetermined structure, and uses the motion vector stored in the colPic memory 225 with the predetermined structure. Decode a block of structure. In other words, motion vectors are always stored in the colPic memory 225 in a predetermined structure. Therefore, the image decoding apparatus does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 225.
  • the image encoding device and the image decoding device according to the present invention have been described based on the embodiments, but the present invention is not limited to the embodiments. Embodiments obtained by subjecting the embodiments to modifications conceivable by those skilled in the art and other embodiments realized by arbitrarily combining the components in the embodiments are also included in the present invention.
  • another processing unit may execute a process executed by a specific processing unit.
  • the order in which the processes are executed may be changed, or a plurality of processes may be executed in parallel.
  • the image encoding device and the image decoding device according to the present invention may be realized as an image encoding / decoding device realized by combining arbitrary constituent elements included in them.
  • the present invention can be realized not only as an image encoding device and an image decoding device, but also as a method using processing means constituting the image encoding device and the image decoding device as steps.
  • the present invention can be realized as a program for causing a computer to execute the steps included in these methods.
  • the present invention can be realized as a computer-readable recording medium such as a CD-ROM in which the program is recorded.
  • a plurality of components included in the image encoding device and the image decoding device may be realized as an LSI (Large Scale Integration) that is an integrated circuit. These components may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to here as an LSI, it may be referred to as an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • IC Integrated Circuit
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 12 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device Function as a device) and transmit to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 14 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture encoding method described in the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 15 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 16 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiver is added in the configuration illustrated in FIG.
  • FIG. 17A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 18 is a diagram showing a structure of multiplexed data.
  • the multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 19 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 20 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first level in FIG. 20 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in a video stream are divided into pictures, stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 21 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • source packets are arranged as shown in the lower part of FIG. 21, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 22 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 25 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 26 shows the configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 27 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the third embodiment.
  • the identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 28 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 30A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inter prediction, and other entropy coding, deblocking filter, orthogonal transform, quantization, and the like. For any or all of these processes, it is conceivable to share the decoding processing unit.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 30B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the image encoding method and the image decoding method according to the present invention can be used for, for example, a television, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Provided is an image encoding method wherein an image is encoded using a motion vector held in a memory, without assessing whether the structure of the motion vector is a frame structure or a field structure. In this image encoding method: when the structure of a first block to be encoded is different from a predetermined structure which is either the field structure or the frame structure, a motion vector of the first block to be encoded is adjusted so that the motion vector matches the predetermined structure (S301); the motion vector is written in a memory (S302); the motion vector is read from the memory (S303); when the structure of a second block to be encoded is different from a predetermined structure, the read motion vector is adjusted so that the read motion vector matches the structure of the second block to be encoded (S304); and the second block to be encoded is encoded using the motion vector (S305).

Description

画像符号化方法、画像復号方法、画像符号化装置および画像復号装置Image encoding method, image decoding method, image encoding device, and image decoding device
 本発明は、画像をブロック毎に符号化する画像符号化方法、および、画像をブロック毎に復号する画像復号方法に関する。 The present invention relates to an image encoding method for encoding an image for each block and an image decoding method for decoding an image for each block.
 画像符号化装置は、一般に、画像(静止画像および動画像を含む)が有する空間方向および時間方向の冗長性を利用して情報量を圧縮する。空間方向の冗長性を利用する方法として、周波数領域への変換が用いられる。時間方向の冗長性を利用する方法として、インター予測が用いられる。インター予測は、ピクチャ間予測とも呼ばれる。 An image encoding apparatus generally compresses the amount of information using redundancy in the spatial direction and temporal direction of an image (including a still image and a moving image). As a method using the redundancy in the spatial direction, conversion to the frequency domain is used. Inter prediction is used as a method of using temporal redundancy. Inter prediction is also called inter-picture prediction.
 インター予測を用いる画像符号化装置は、あるピクチャを符号化する際に、符号化対象ピクチャに対して表示順で前方または後方の符号化済みのピクチャを、参照ピクチャとして用いる。そして、画像符号化装置は、その参照ピクチャに対する符号化対象ピクチャの動き検出により、動きベクトルを導出する。 When an image encoding apparatus using inter prediction encodes a certain picture, a picture that has been encoded forward or backward in display order with respect to the encoding target picture is used as a reference picture. Then, the image encoding device derives a motion vector by detecting the motion of the encoding target picture with respect to the reference picture.
 次に、画像符号化装置は、動きベクトルに基づいて動き補償を行って予測画像データを取得する。次に、画像符号化装置は、予測画像データと、符号化対象ピクチャの画像データとの差分を取得する。次に、画像符号化装置は、取得された差分を符号化する。これにより、画像符号化装置は、時間方向の冗長性を取り除く。 Next, the image encoding device obtains predicted image data by performing motion compensation based on the motion vector. Next, the image encoding device acquires a difference between the predicted image data and the image data of the encoding target picture. Next, the image encoding device encodes the acquired difference. Thereby, the image coding apparatus removes redundancy in the time direction.
 ここで、動き検出において、画像符号化装置は、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックを参照ブロックとして決定する。そして、画像符号化装置は、符号化対象ブロックと、参照ブロックとを用いて、動きベクトルを検出する。 Here, in motion detection, the image coding apparatus calculates a difference value between a block to be coded in a coded picture and a block in a reference picture, and uses a block in the reference picture having the smallest difference value as a reference block. Determine as. Then, the image encoding device detects a motion vector using the encoding target block and the reference block.
 H.264と呼ばれる標準化された画像符号化方式(非特許文献1参照)に係る画像符号化装置は、情報量の圧縮のため、Iピクチャ、Pピクチャ、Bピクチャという3種類のピクチャタイプを用いる。この画像符号化装置は、Iピクチャに対して、インター予測を行わない。すなわち、画像符号化装置は、Iピクチャに対して、イントラ予測を行う。イントラ予測は、ピクチャ内予測とも呼ばれる。 H. An image encoding apparatus according to a standardized image encoding method called H.264 (see Non-Patent Document 1) uses three types of pictures, ie, an I picture, a P picture, and a B picture, in order to compress the amount of information. This image encoding apparatus does not perform inter prediction on an I picture. That is, the image coding apparatus performs intra prediction on the I picture. Intra prediction is also called intra-picture prediction.
 また、画像符号化装置は、Pピクチャに対して、表示順で、符号化対象ピクチャの前方または後方の既に符号化済みの1つのピクチャを参照してインター予測を行う。また、画像符号化装置は、Bピクチャに対して、表示順で、符号化対象ピクチャの前方または後方の既に符号化済みの2つのピクチャを参照してインター予測を行う。 Also, the image coding apparatus performs inter prediction on the P picture with reference to one already coded picture in front of or behind the picture to be coded in display order. Also, the image encoding apparatus performs inter prediction on the B picture with reference to two already encoded pictures in front of or behind the encoding target picture in display order.
 また、H.264と呼ばれる画像符号化方式に係る画像符号化装置は、Bピクチャの符号化において、動きベクトルを導出する際に、時間ダイレクトと呼ぶ符号化モードを選択することができる。時間ダイレクトにおけるインター予測の方法を、図31を用いて説明する。 H. An image coding apparatus according to an image coding method called H.264 can select a coding mode called temporal direct when deriving a motion vector in coding a B picture. A method of inter prediction in temporal direct will be described with reference to FIG.
 図31は、時間ダイレクトにおける動きベクトルを示す説明図である。図31は、画像符号化装置がピクチャB2のブロックaを時間ダイレクトで符号化する場合を示している。この場合、画像符号化装置は、ピクチャB2の後方の参照ピクチャであるピクチャP3中の、ブロックaと同じ位置にあるブロックbを符号化した際に用いた動きベクトルvbを利用する。動きベクトルvbは、ブロックbが符号化された際に用いられた動きベクトルであり、ピクチャP1を参照している。 FIG. 31 is an explanatory diagram showing motion vectors in time direct. FIG. 31 illustrates a case where the image encoding apparatus encodes block a of picture B2 in time direct. In this case, the image coding apparatus uses the motion vector vb used when coding the block b at the same position as the block a in the picture P3 which is the reference picture behind the picture B2. The motion vector vb is a motion vector used when the block b is encoded, and refers to the picture P1.
 画像符号化装置は、ブロックaを符号化する際、動きベクトルvbと平行な動きベクトルを用いて、前方向参照ピクチャであるピクチャP1と、後方参照ピクチャであるピクチャP3とから、参照ブロックを取得する。そして、画像符号化装置は、2方向予測を行って、ブロックaを符号化する。すなわち、画像符号化装置は、ピクチャP1に対して動きベクトルva1を用い、ピクチャP3に対して動きベクトルva2を用いて、ブロックaを符号化する。 When encoding the block a, the image encoding device acquires a reference block from a picture P1 that is a forward reference picture and a picture P3 that is a backward reference picture by using a motion vector parallel to the motion vector vb. To do. Then, the image encoding apparatus performs bidirectional prediction and encodes block a. That is, the image coding apparatus codes the block a using the motion vector va1 for the picture P1 and the motion vector va2 for the picture P3.
 しかしながら、フィールド構造とフレーム構造とが混在する環境では、動きベクトルがフィールド構造とフレーム構造とのいずれであるかが判断される必要がある。フィールド構造とは、ブロック内の2つのフィールドがフィールド毎に順に符号化される時に用いられる構造である。フレーム構造とは、ブロックが2つのフィールドに分離されることなく符号化される時に用いられる構造である。フィールド構造での符号化は、フィールド符号化と呼ばれ、フレーム構造での符号化は、フレーム符号化と呼ばれる。 However, in an environment where the field structure and the frame structure are mixed, it is necessary to determine whether the motion vector is the field structure or the frame structure. The field structure is a structure used when two fields in a block are encoded in order for each field. The frame structure is a structure used when a block is encoded without being separated into two fields. Coding with a field structure is called field coding, and coding with a frame structure is called frame coding.
 例えば、図31において、ブロックaの符号化時に、動きベクトルvbがフィールド構造とフレーム構造とのいずれであるかが適切に判断されなければならない。動きベクトルvbの構造が適切に判断されなければ、動きベクトルvbによって指し示される位置が適切に特定されない。 For example, in FIG. 31, when the block a is encoded, it is necessary to appropriately determine whether the motion vector vb is a field structure or a frame structure. If the structure of the motion vector vb is not properly determined, the position indicated by the motion vector vb is not properly specified.
 そのため、動きベクトルの構造についての情報が、動きベクトルと共にメモリに格納される。しかし、このような構造情報を保持するためには、大容量のメモリが必要になる。 Therefore, information about the structure of the motion vector is stored in the memory together with the motion vector. However, in order to hold such structure information, a large capacity memory is required.
 そこで、本発明は、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断することなく、その動きベクトルを用いて画像を処理する画像符号化方法および画像復号方法を提供することを目的とする。 Therefore, the present invention provides an image encoding method and image decoding for processing an image using the motion vector without determining whether the structure of the motion vector held in the memory is a frame structure or a field structure. It aims to provide a method.
 上記課題を解決するため、本発明に係る画像符号化方法は、画像をブロック毎に符号化する画像符号化方法であって、第1符号化対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1符号化対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整ステップと、前記第1符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1符号化対象ブロックの前記動きベクトルをメモリに書き込み、前記第1符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整ステップで調整された前記動きベクトルを前記メモリに書き込む書き込みステップと、前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出しステップと、第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルが前記第2符号化対象ブロックの構造に適合するように、前記読み出しステップで読み出された前記動きベクトルを調整する第2調整ステップと、前記第2符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出しステップで読み出された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化し、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整ステップで調整された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化する符号化ステップとを含む画像符号化方法でもよい。 In order to solve the above problems, an image encoding method according to the present invention is an image encoding method for encoding an image for each block, and the structure of the first encoding target block is a field structure or a frame structure. A first adjustment step of adjusting the motion vector so that the motion vector of the first coding target block is adapted to the predetermined structure when different from the predetermined structure which is one of When the structure of the first encoding target block is the same as the predetermined structure, the motion vector of the first encoding target block is written into a memory, and the structure of the first encoding target block is the predetermined structure. And writing to the memory, the writing step for writing the motion vector adjusted in the first adjustment step to the memory. When the reading step of reading the inserted motion vector from the memory and the structure of the second encoding target block are different from the predetermined structure, the motion vector read in the reading step is the second A second adjustment step for adjusting the motion vector read in the reading step so as to conform to the structure of the encoding target block, and the structure of the second encoding target block is the same as the predetermined structure. If the second encoding target block is encoded using the motion vector read in the reading step, and the structure of the second encoding target block is different from the predetermined structure, An encoding step for encoding the second encoding target block using the motion vector adjusted in the second adjustment step. It flops and may be an image coding method comprising.
 これにより、動きベクトルは、予め定められた構造でメモリに格納される。したがって、動きベクトルの構造情報を保持する必要がない。よって、動きベクトルの構造情報の保持に必要なメモリ容量が削減される。また、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断する必要がない。したがって、処理量が削減される。 Thus, the motion vector is stored in the memory with a predetermined structure. Therefore, there is no need to hold motion vector structure information. Therefore, the memory capacity required to hold the motion vector structure information is reduced. Further, it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure. Therefore, the processing amount is reduced.
 また、前記第1調整ステップでは、前記第1符号化対象ブロックの構造が、フィールド構造である前記予め定められた構造とは異なる場合、前記第1符号化対象ブロックの前記動きベクトルを垂直方向に1/2にすることにより、前記動きベクトルを調整し、前記第2調整ステップでは、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に2倍にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整してもよい。 In the first adjustment step, when the structure of the first encoding target block is different from the predetermined structure which is a field structure, the motion vector of the first encoding target block is set in the vertical direction. The motion vector is adjusted by halving, and in the second adjustment step, if the structure of the second encoding target block is different from the predetermined structure, the motion vector is read in the reading step. The motion vector read in the reading step may be adjusted by doubling the motion vector structure in the vertical direction.
 これにより、動きベクトルは、常にフィールド構造でメモリに格納される。したがって、動きベクトルの情報が圧縮される。よって、動きベクトルの構造情報の保持に必要なメモリ容量がさらに削減される。 This ensures that motion vectors are always stored in memory with a field structure. Therefore, motion vector information is compressed. Therefore, the memory capacity required for holding the motion vector structure information is further reduced.
 また、前記第1調整ステップでは、前記第1符号化対象ブロックの構造が、フレーム構造である前記予め定められた構造とは異なる場合、前記第1符号化対象ブロックの前記動きベクトルを垂直方向に2倍にすることにより、前記動きベクトルを調整し、前記第2調整ステップでは、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に1/2にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整してもよい。 In the first adjustment step, when the structure of the first encoding target block is different from the predetermined structure which is a frame structure, the motion vector of the first encoding target block is set in the vertical direction. The motion vector is adjusted by doubling, and if the structure of the second encoding target block is different from the predetermined structure in the second adjustment step, the motion vector is read in the reading step. The motion vector read in the reading step may be adjusted by halving the structure of the motion vector in the vertical direction.
 これにより、動きベクトルは、常にフレーム構造でメモリに格納される。したがって、動きベクトルの精度が維持される。 This ensures that motion vectors are always stored in memory with a frame structure. Therefore, the accuracy of the motion vector is maintained.
 また、前記読み出しステップでは、第1符号化対象ピクチャ内における前記第1符号化対象ブロックの位置と、前記第1符号化対象ピクチャよりも表示順で前方である第2符号化対象ピクチャ内における前記第2符号化対象ブロックの位置とが一致するような前記第1符号化対象ブロックの前記動きベクトルを読み出してもよい。 Further, in the reading step, the position of the first encoding target block in the first encoding target picture and the second encoding target picture that is ahead in display order from the first encoding target picture. The motion vector of the first encoding target block that matches the position of the second encoding target block may be read.
 これにより、co-locatedブロックの動きベクトルが、メモリから読み出される。すなわち、時間ダイレクトベクトルとして利用可能な動きベクトルが、メモリから適切に読み出される。 Thereby, the motion vector of the co-located block is read from the memory. That is, a motion vector that can be used as a temporal direct vector is appropriately read from the memory.
 また、前記符号化ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2符号化対象ブロックの動きベクトルを算出し、算出された前記動きベクトルを用いて、前記第2符号化対象ブロックを符号化してもよい。 In the encoding step, a motion vector of the second encoding target block is calculated from the motion vector read in the read step or the motion vector adjusted in the second adjustment step. The second encoding target block may be encoded using the calculated motion vector.
 これにより、メモリから読み出された動きベクトルが、別の符号化対象ブロックの動きベクトルの算出に用いられる。すなわち、別の符号化対象ブロックの符号化に用いられる動きベクトルが効率的に導出される。 Thereby, the motion vector read from the memory is used to calculate the motion vector of another encoding target block. That is, a motion vector used for encoding another encoding target block is efficiently derived.
 また、前記符号化ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2符号化対象ブロックの動きベクトルの予測に用いられる予測ベクトルを算出し、算出された前記予測ベクトルを用いて、前記第2符号化対象ブロックを符号化してもよい。 In the encoding step, the motion vector read in the read step or the motion vector adjusted in the second adjustment step is used to predict the motion vector of the second encoding target block. The second prediction target block may be encoded using the calculated prediction vector.
 これにより、メモリから読み出された動きベクトルが、予測ベクトルの算出に利用される。そして、算出された予測ベクトルを動きベクトルの符号化に用いることで、符号化対象ブロックが効率的に符号化される。 Thus, the motion vector read from the memory is used for calculating the prediction vector. Then, by using the calculated prediction vector for the coding of the motion vector, the block to be coded is efficiently coded.
 また、本発明に係る画像復号方法は、画像をブロック毎に復号する画像復号方法であって、第1復号対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1復号対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整ステップと、前記第1復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1復号対象ブロックの前記動きベクトルをメモリに書き込み、前記第1復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整ステップで調整された前記動きベクトルを前記メモリに書き込む書き込みステップと、前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出しステップと、第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルが前記第2復号対象ブロックの構造に適合するように、前記読み出しステップで読み出された前記動きベクトルを調整する第2調整ステップと、前記第2復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出しステップで読み出された前記動きベクトルを用いて前記第2復号対象ブロックを復号し、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整ステップで調整された前記動きベクトルを用いて前記第2復号対象ブロックを復号する復号ステップとを含む画像復号方法でもよい。 The image decoding method according to the present invention is an image decoding method for decoding an image on a block-by-block basis, wherein the structure of the first decoding target block is one of a field structure and a frame structure. The first decoding step of adjusting the motion vector so that the motion vector of the first decoding target block matches the predetermined structure, and the structure of the first decoding target block If the structure is the same as the predetermined structure, the motion vector of the first decoding target block is written into a memory, and if the structure of the first decoding target block is different from the predetermined structure, the first adjustment step A writing step for writing the motion vector adjusted in step (a) to the memory; and When the reading step read from the memory and the structure of the second decoding target block are different from the predetermined structure, the motion vector read in the reading step is adapted to the structure of the second decoding target block. In addition, when the second adjustment step for adjusting the motion vector read in the reading step and the structure of the second decoding target block are the same as the predetermined structure, the second decoding step is read in the reading step. When the second decoding target block is decoded using the motion vector, and the structure of the second decoding target block is different from the predetermined structure, the motion vector adjusted in the second adjustment step is And an image decoding method including a decoding step of decoding the second decoding target block.
 これにより、動きベクトルは、予め定められた構造でメモリに格納される。したがって、動きベクトルの構造情報を保持する必要がない。よって、動きベクトルの構造情報の保持に必要なメモリ容量が削減される。また、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断する必要がない。したがって、処理量が削減される。 Thus, the motion vector is stored in the memory with a predetermined structure. Therefore, there is no need to hold motion vector structure information. Therefore, the memory capacity required to hold the motion vector structure information is reduced. Further, it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure. Therefore, the processing amount is reduced.
 また、前記第1調整ステップでは、前記第1復号対象ブロックの構造が、フィールド構造である前記予め定められた構造とは異なる場合、前記第1復号対象ブロックの前記動きベクトルを垂直方向に1/2にすることにより、前記動きベクトルを調整し、前記第2調整ステップでは、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に2倍にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整してもよい。 In the first adjustment step, when the structure of the first decoding target block is different from the predetermined structure which is a field structure, the motion vector of the first decoding target block is The motion vector is adjusted to 2 to adjust the motion vector read in the read step when the second adjustment step has a structure of the second decoding target block different from the predetermined structure. The motion vector read in the reading step may be adjusted by doubling the vector structure in the vertical direction.
 これにより、動きベクトルは、常にフィールド構造でメモリに格納される。したがって、動きベクトルの情報が圧縮される。よって、動きベクトルの構造情報の保持に必要なメモリ容量がさらに削減される。 This ensures that motion vectors are always stored in memory with a field structure. Therefore, motion vector information is compressed. Therefore, the memory capacity required for holding the motion vector structure information is further reduced.
 また、前記第1調整ステップでは、前記第1復号対象ブロックの構造が、フレーム構造である前記予め定められた構造とは異なる場合、前記第1復号対象ブロックの前記動きベクトルを垂直方向に2倍にすることにより、前記動きベクトルを調整し、前記第2調整ステップでは、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に1/2にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整してもよい。 In the first adjustment step, when the structure of the first decoding target block is different from the predetermined structure which is a frame structure, the motion vector of the first decoding target block is doubled in the vertical direction. By adjusting the motion vector, and in the second adjustment step, the motion vector read in the read step is read when the structure of the second decoding target block is different from the predetermined structure. The motion vector read in the reading step may be adjusted by halving the structure of ½ in the vertical direction.
 これにより、動きベクトルは、常にフレーム構造でメモリに格納される。したがって、動きベクトルの精度が維持される。 This ensures that motion vectors are always stored in memory with a frame structure. Therefore, the accuracy of the motion vector is maintained.
 また、前記読み出しステップでは、第1復号対象ピクチャ内における前記第1復号対象ブロックの位置と、前記第1復号対象ピクチャよりも表示順で前方である第2復号対象ピクチャ内における前記第2復号対象ブロックの位置とが一致するような前記第1復号対象ブロックの前記動きベクトルを読み出してもよい。 Further, in the reading step, the position of the first decoding target block in the first decoding target picture and the second decoding target in the second decoding target picture that is ahead in display order from the first decoding target picture. The motion vector of the first decoding target block that matches the block position may be read.
 これにより、co-locatedブロックの動きベクトルが、メモリから読み出される。すなわち、時間ダイレクトベクトルとして利用可能な動きベクトルが、メモリから適切に読み出される。 Thereby, the motion vector of the co-located block is read from the memory. That is, a motion vector that can be used as a temporal direct vector is appropriately read from the memory.
 また、前記復号ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2復号対象ブロックの動きベクトルを算出し、算出された前記動きベクトルを用いて、前記第2復号対象ブロックを復号してもよい。 In the decoding step, the motion vector of the second decoding target block is calculated from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step. The second decoding target block may be decoded using the motion vector.
 これにより、メモリから読み出された動きベクトルが、別の復号対象ブロックの動きベクトルの算出に用いられる。すなわち、別の復号対象ブロックの復号に用いられる動きベクトルが効率的に導出される。 Thereby, the motion vector read from the memory is used to calculate the motion vector of another decoding target block. That is, a motion vector used for decoding another decoding target block is efficiently derived.
 また、前記復号ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2復号対象ブロックの動きベクトルの予測に用いられる予測ベクトルを算出し、算出された前記予測ベクトルを用いて、前記第2復号対象ブロックを復号してもよい。 In the decoding step, a prediction used for predicting a motion vector of the second decoding target block from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step. A vector may be calculated, and the second decoding target block may be decoded using the calculated prediction vector.
 これにより、メモリから読み出された動きベクトルが、予測ベクトルの算出に利用される。そして、算出された予測ベクトルを動きベクトルの復号に用いることで、復号対象ブロックが適切に復号される。 Thus, the motion vector read from the memory is used for calculating the prediction vector. Then, the decoding target block is appropriately decoded by using the calculated prediction vector for decoding the motion vector.
 また、本発明に係る画像符号化装置は、画像をブロック毎に符号化する画像符号化装置であって、第1符号化対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1符号化対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整部と、前記第1符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1符号化対象ブロックの前記動きベクトルをメモリに書き込み、前記第1符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整部で調整された前記動きベクトルを前記メモリに書き込む書き込み部と、前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出し部と、第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出し部で読み出された前記動きベクトルが前記第2符号化対象ブロックの構造に適合するように、前記読み出し部で読み出された前記動きベクトルを調整する第2調整部と、前記第2符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出し部で読み出された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化し、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整部で調整された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化する符号化部とを備える画像符号化装置でもよい。 An image encoding apparatus according to the present invention is an image encoding apparatus that encodes an image for each block, and the structure of the first encoding target block is one of a field structure and a frame structure in advance. A first adjusting unit that adjusts the motion vector so that a motion vector of the first encoding target block matches the predetermined structure when the structure is different from the predetermined structure; and the first encoding target When the structure of the block is the same as the predetermined structure, the motion vector of the first encoding target block is written in a memory, and the structure of the first encoding target block is the predetermined structure. If they are different, a writing unit that writes the motion vector adjusted by the first adjusting unit to the memory, and the motion vector written to the memory When the structure of the second encoding target block and the reading unit to be read from are different from the predetermined structure, the motion vector read by the reading unit matches the structure of the second encoding target block As described above, when the second adjustment unit that adjusts the motion vector read by the reading unit and the structure of the second encoding target block are the same as the predetermined structure, the reading unit reads If the second encoding target block is encoded using the motion vector that is output, and the structure of the second encoding target block is different from the predetermined structure, the second adjustment unit adjusts the second encoding target block. An image encoding device including an encoding unit that encodes the second encoding target block using the motion vector may be used.
 これにより、前記画像符号化方法が画像符号化装置として実現される。 Thereby, the image encoding method is realized as an image encoding apparatus.
 また、本発明に係る画像復号装置は、画像をブロック毎に復号する画像復号装置であって、第1復号対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1復号対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整部と、前記第1復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1復号対象ブロックの前記動きベクトルをメモリに書き込み、前記第1復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整部で調整された前記動きベクトルを前記メモリに書き込む書き込み部と、前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出し部と、第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出し部で読み出された前記動きベクトルが前記第2復号対象ブロックの構造に適合するように、前記読み出し部で読み出された前記動きベクトルを調整する第2調整部と、前記第2復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出し部で読み出された前記動きベクトルを用いて前記第2復号対象ブロックを復号し、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整部で調整された前記動きベクトルを用いて前記第2復号対象ブロックを復号する復号部とを備える画像復号装置でもよい。 The image decoding apparatus according to the present invention is an image decoding apparatus that decodes an image block by block, and the structure of the first decoding target block is one of a field structure and a frame structure. The first decoding unit for adjusting the motion vector so that the motion vector of the first decoding target block matches the predetermined structure, and the structure of the first decoding target block When the structure is the same as the predetermined structure, the motion vector of the first decoding target block is written into a memory, and when the structure of the first decoding target block is different from the predetermined structure, the first adjustment unit A writing unit for writing the motion vector adjusted in step S1 to the memory, and a reading unit for reading the motion vector written in the memory from the memory. When the structure of the output unit and the second decoding target block is different from the predetermined structure, the motion vector read by the reading unit matches the structure of the second decoding target block. When the second adjustment unit that adjusts the motion vector read by the reading unit and the structure of the second decoding target block are the same as the predetermined structure, the motion read by the reading unit When the second decoding target block is decoded using a vector and the structure of the second decoding target block is different from the predetermined structure, the motion vector adjusted by the second adjustment unit is used to An image decoding apparatus including a decoding unit that decodes the second decoding target block may be used.
 これにより、前記画像復号方法が画像復号装置として実現される。 Thereby, the image decoding method is realized as an image decoding apparatus.
 また、本発明に係る画像符号化復号装置は、第1画像をブロック毎に符号化する画像符号化装置、および、第2画像をブロック毎に復号する画像復号装置を備える画像符号化復号装置であって、前記画像符号化装置は、第1符号化対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた第1構造とは異なる場合、前記第1符号化対象ブロックの第1動きベクトルが前記予め定められた第1構造に適合するように、前記第1動きベクトルを調整する第1調整部と、前記第1符号化対象ブロックの構造が前記予め定められた第1構造と同じである場合、前記第1符号化対象ブロックの前記第1動きベクトルを第1メモリに書き込み、前記第1符号化対象ブロックの構造が前記予め定められた第1構造とは異なる場合、前記第1調整部で調整された前記第1動きベクトルを前記第1メモリに書き込む第1書き込み部と、前記第1メモリに書き込まれた前記第1動きベクトルを前記第1メモリから読み出す第1読み出し部と、第2符号化対象ブロックの構造が前記予め定められた第1構造とは異なる場合、前記第1読み出し部で読み出された前記第1動きベクトルが前記第2符号化対象ブロックの構造に適合するように、前記第1読み出し部で読み出された前記第1動きベクトルを調整する第2調整部と、前記第2符号化対象ブロックの構造が前記予め定められた第1構造と同じである場合、前記第1読み出し部で読み出された前記第1動きベクトルを用いて前記第2符号化対象ブロックを符号化し、前記第2符号化対象ブロックの構造が前記予め定められた第1構造とは異なる場合、前記第2調整部で調整された前記第1動きベクトルを用いて前記第2符号化対象ブロックを符号化する符号化部とを備え、前記画像復号装置は、第1復号対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた第2構造とは異なる場合、前記第1復号対象ブロックの第2動きベクトルが前記予め定められた第2構造に適合するように、前記第2動きベクトルを調整する第3調整部と、前記第1復号対象ブロックの構造が前記予め定められた第2構造と同じである場合、前記第1復号対象ブロックの前記第2動きベクトルを第2メモリに書き込み、前記第1復号対象ブロックの構造が前記予め定められた第2構造とは異なる場合、前記第3調整部で調整された前記第2動きベクトルを前記第2メモリに書き込む第2書き込み部と、前記第2メモリに書き込まれた前記第2動きベクトルを前記第2メモリから読み出す第2読み出し部と、第2復号対象ブロックの構造が前記予め定められた第2構造とは異なる場合、前記第2読み出し部で読み出された前記第2動きベクトルが前記第2復号対象ブロックの構造に適合するように、前記第2読み出し部で読み出された前記第2動きベクトルを調整する第4調整部と、前記第2復号対象ブロックの構造が前記予め定められた第2構造と同じである場合、前記第2読み出し部で読み出された前記第2動きベクトルを用いて前記第2復号対象ブロックを復号し、前記第2復号対象ブロックの構造が前記予め定められた第2構造とは異なる場合、前記第4調整部で調整された前記第2動きベクトルを用いて前記第2復号対象ブロックを復号する復号部とを備える画像符号化復号装置でもよい。 An image encoding / decoding apparatus according to the present invention is an image encoding / decoding apparatus including an image encoding apparatus that encodes a first image for each block, and an image decoding apparatus that decodes a second image for each block. When the structure of the first encoding target block is different from a predetermined first structure that is one of a field structure and a frame structure, the image encoding device is configured to use the first encoding target block. A first adjustment unit that adjusts the first motion vector so that the first motion vector matches the predetermined first structure, and a structure of the first encoding target block is the predetermined first structure. If the structure is the same as one structure, the first motion vector of the first encoding target block is written to a first memory, and the structure of the first encoding target block is the predetermined first structure. In this case, the first writing unit that writes the first motion vector adjusted by the first adjusting unit to the first memory, and the first motion vector that is written to the first memory are read from the first memory. When the structure of the first reading unit and the second encoding target block is different from the predetermined first structure, the first motion vector read by the first reading unit is the second encoding target. A second adjusting unit that adjusts the first motion vector read by the first reading unit and a structure of the second encoding target block so as to conform to a block structure, and a predetermined first structure. If the structure is the same as the structure, the second encoding target block is encoded using the first motion vector read by the first reading unit, and the structure of the second encoding target block is And an encoding unit that encodes the second block to be encoded using the first motion vector adjusted by the second adjustment unit, when the image decoding apparatus is different from the first structure to be obtained, When the structure of the first decoding target block is different from the predetermined second structure that is one of the field structure and the frame structure, the second motion vector of the first decoding target block is determined in advance. When the third adjustment unit that adjusts the second motion vector so as to conform to the second structure and the structure of the first decoding target block are the same as the predetermined second structure, When the second motion vector of the block to be decoded is written to the second memory and the structure of the first block to be decoded is different from the predetermined second structure, the second adjusted by the third adjustment unit The structure of a second writing unit that writes a motion vector to the second memory, a second reading unit that reads the second motion vector written to the second memory from the second memory, and a second decoding target block If the second structure is different from the predetermined second structure, the second reading unit reads the second motion vector read by the second reading unit so that the second motion vector matches the structure of the second decoding target block. A fourth adjusting unit that adjusts the second motion vector, and a second decoding target block having the same structure as the second structure, the second read unit reads the second motion vector; When the second decoding target block is decoded using a second motion vector, and the structure of the second decoding target block is different from the predetermined second structure, the second adjustment target block is adjusted by the fourth adjustment unit. It may be an image coding and decoding apparatus and a decoding section for decoding the second decoding target block using the second motion vector.
 これにより、前記画像符号化装置および前記画像復号装置が画像符号化復号装置として実現される。 Thereby, the image encoding device and the image decoding device are realized as an image encoding / decoding device.
 本発明により、動きベクトルの構造情報の保持に必要なメモリ容量が削減される。また、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断する必要がないため、処理量が削減される。 According to the present invention, the memory capacity required to hold the motion vector structure information is reduced. Further, since it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure, the amount of processing is reduced.
図1は、実施の形態1に係る画像符号化装置を示す構成図である。FIG. 1 is a configuration diagram illustrating an image encoding device according to Embodiment 1. 図2は、実施の形態1に係るメモリへの読み書き処理を示す概念図である。FIG. 2 is a conceptual diagram showing a read / write process to the memory according to the first embodiment. 図3は、フレーム構造の動きベクトルを示す概念図である。FIG. 3 is a conceptual diagram showing a motion vector having a frame structure. 図4は、フィールド構造の動きベクトルを示す概念図である。FIG. 4 is a conceptual diagram showing the motion vector of the field structure. 図5は、実施の形態1に係るメモリへの書き込み処理を示すフローチャートである。FIG. 5 is a flowchart showing a write process to the memory according to the first embodiment. 図6は、実施の形態1に係るメモリからの読み出し処理を示すフローチャートである。FIG. 6 is a flowchart showing a read process from the memory according to the first embodiment. 図7は、実施の形態1に係る画像符号化装置のインター予測制御部の詳細を示す構成図である。FIG. 7 is a configuration diagram illustrating details of the inter prediction control unit of the image coding apparatus according to Embodiment 1. 図8は、実施の形態1に係る画像符号化装置のメモリへの読み書き処理を示すフローチャートである。FIG. 8 is a flowchart showing a read / write process to the memory of the image coding apparatus according to the first embodiment. 図9は、実施の形態1に係る画像復号装置を示す構成図である。FIG. 9 is a configuration diagram illustrating the image decoding apparatus according to Embodiment 1. 図10は、実施の形態1に係る画像復号装置のインター予測制御部の詳細を示す構成図である。FIG. 10 is a configuration diagram illustrating details of the inter prediction control unit of the image decoding apparatus according to Embodiment 1. 図11は、実施の形態1に係る画像復号装置のメモリへの読み書き処理を示すフローチャートである。FIG. 11 is a flowchart showing a read / write process to the memory of the image decoding apparatus according to the first embodiment. 図12は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 12 is an overall configuration diagram of a content supply system that realizes a content distribution service. 図13は、デジタル放送用システムの全体構成図である。FIG. 13 is an overall configuration diagram of a digital broadcasting system. 図14は、テレビの構成例を示すブロック図である。FIG. 14 is a block diagram illustrating a configuration example of a television. 図15は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 15 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図16は、光ディスクである記録メディアの構造例を示す図である。FIG. 16 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図17Aは、携帯電話の一例を示す図である。FIG. 17A is a diagram illustrating an example of a mobile phone. 図17Bは、携帯電話の構成例を示すブロック図である。FIG. 17B is a block diagram illustrating a configuration example of a mobile phone. 図18は、多重化データの構成を示す図である。FIG. 18 is a diagram showing a structure of multiplexed data. 図19は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 19 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図20は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 20 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図21は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 21 is a diagram showing the structure of TS packets and source packets in multiplexed data. 図22は、PMTのデータ構成を示す図である。FIG. 22 is a diagram illustrating a data structure of the PMT. 図23は、多重化データ情報の内部構成を示す図である。FIG. 23 is a diagram showing an internal configuration of multiplexed data information. 図24は、ストリーム属性情報の内部構成を示す図である。FIG. 24 shows the internal structure of stream attribute information. 図25は、映像データを識別するステップを示す図である。FIG. 25 is a diagram showing steps for identifying video data. 図26は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 26 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図27は、駆動周波数を切り替える構成を示す図である。FIG. 27 is a diagram illustrating a configuration for switching the driving frequency. 図28は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 28 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図29は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 29 is a diagram illustrating an example of a lookup table in which video data standards are associated with drive frequencies. 図30Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 30A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図30Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 30B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit. 図31は、従来技術に係る時間ダイレクトベクトルを説明するための図である。FIG. 31 is a diagram for explaining a temporal direct vector according to the prior art.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 (実施の形態1)
 図1は、実施の形態1に係る画像符号化装置を示す構成図である。図1に示された画像符号化装置は、符号化部101、インター予測制御部121、ピクチャタイプ決定部124およびcolPicメモリ125を備える。また、符号化部101は、減算部102、直交変換部103、量子化部104、可変長符号化部105、逆量子化部106、逆直交変換部107、加算部108、ブロックメモリ109、イントラ予測部110、フレームメモリ111、インター予測部112およびスイッチ113を備える。
(Embodiment 1)
FIG. 1 is a configuration diagram illustrating an image encoding device according to Embodiment 1. The image encoding device shown in FIG. 1 includes an encoding unit 101, an inter prediction control unit 121, a picture type determination unit 124, and a colPic memory 125. The encoding unit 101 includes a subtraction unit 102, an orthogonal transformation unit 103, a quantization unit 104, a variable length coding unit 105, an inverse quantization unit 106, an inverse orthogonal transformation unit 107, an addition unit 108, a block memory 109, an intra A prediction unit 110, a frame memory 111, an inter prediction unit 112, and a switch 113 are provided.
 減算部102は、入力画像データから予測画像データを減算して、予測誤差データを出力する。直交変換部103は、予測誤差データに対し、画像領域(空間領域)から、周波数領域への変換を行う。量子化部104は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。 The subtraction unit 102 subtracts the predicted image data from the input image data and outputs prediction error data. The orthogonal transform unit 103 transforms the prediction error data from the image region (spatial region) to the frequency region. The quantization unit 104 performs a quantization process on the prediction error data converted into the frequency domain.
 逆量子化部106は、量子化部104により、量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部107は、逆量子化処理された予測誤差データに対し、周波数領域から、画像領域への変換を行う。加算部108は、予測誤差データと予測画像データを加算して、再構築画像データを出力する。ブロックメモリ109は、再構築画像データをブロック単位で保存するためのメモリである。フレームメモリ111は、再構築画像データをフレーム単位で保存するためのメモリである。 The inverse quantization unit 106 performs inverse quantization processing on the prediction error data quantized by the quantization unit 104. The inverse orthogonal transform unit 107 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process. The adder 108 adds the prediction error data and the prediction image data, and outputs reconstructed image data. The block memory 109 is a memory for storing the reconstructed image data in units of blocks. The frame memory 111 is a memory for storing the reconstructed image data in units of frames.
 イントラ予測部110は、ブロックメモリ109に保存されているブロック単位の再構築画像データを用いて、符号化対象ブロックをイントラ予測により符号化し、予測画像データを生成する。インター予測部112は、フレームメモリ111に保存されているフレーム単位の再構築画像データと、動き検出により導出した動きベクトルとを用いて、符号化対象ブロックをインター予測により符号化し、予測画像データを生成する。スイッチ113は、イントラ予測またはインター予測に符号化モードを切替える。 The intra prediction unit 110 uses the reconstructed image data in units of blocks stored in the block memory 109 to encode the encoding target block by intra prediction, and generates predicted image data. The inter prediction unit 112 encodes the block to be encoded by inter prediction using the reconstructed image data in units of frames stored in the frame memory 111 and the motion vector derived by motion detection, and converts the predicted image data into Generate. The switch 113 switches the encoding mode to intra prediction or inter prediction.
 ピクチャタイプ決定部124は、Iピクチャ、Bピクチャ、Pピクチャのいずれのピクチャタイプで入力画像列を符号化するかを決定し、ピクチャタイプ情報を生成する。 The picture type determination unit 124 determines which of the I picture, B picture, and P picture is used to encode the input image sequence, and generates picture type information.
 colPicメモリ125は、ブロック毎の動きベクトルをcolPic情報として記憶するためのメモリである。インター予測制御部121は、予測ベクトル(予測動きベクトルとも呼ばれる)を決定する。また、インター予測制御部121は、インター予測に用いられた動きベクトルをcolPic情報として格納する。インター予測制御部121で実行される処理については、後で詳細に述べる。 The colPic memory 125 is a memory for storing a motion vector for each block as colPic information. The inter prediction control unit 121 determines a prediction vector (also called a prediction motion vector). Moreover, the inter prediction control part 121 stores the motion vector used for the inter prediction as colPic information. The processing executed by the inter prediction control unit 121 will be described in detail later.
 可変長符号化部105は、量子化処理された予測誤差データ、予測ベクトルの予測ベクトルインデックス(予測動きベクトルインデックスとも呼ばれる)、動きベクトルと予測ベクトルとの予測誤差情報(差分ベクトルまたは差分動きベクトルとも呼ばれる)、および、ピクチャタイプ情報等に対して、可変長符号化処理を行う。これにより、可変長符号化部105は、ビットストリームを生成する。 The variable length coding unit 105 performs prediction error data subjected to quantization processing, a prediction vector index of a prediction vector (also referred to as a prediction motion vector index), prediction error information between a motion vector and a prediction vector (both a difference vector or a difference motion vector) Variable length coding processing is performed on the picture type information and the like. As a result, the variable length encoding unit 105 generates a bit stream.
 図2は、図1に示されたcolPicメモリ125への読み書き処理を示す概念図である。図2において、co-locatedピクチャcolPic内のco-locatedブロックの動きベクトルmvColは、colPicメモリ125に格納される。 FIG. 2 is a conceptual diagram showing a read / write process to the colPic memory 125 shown in FIG. In FIG. 2, the motion vector mvCol of the co-located block in the co-located picture colPic is stored in the colPic memory 125.
 典型的には、co-locatedピクチャcolPicは、符号化対象ピクチャよりも表示順で後であって、符号化対象ピクチャに表示順で最も近いピクチャである。そして、co-locatedブロックは、co-locatedピクチャcolPic内での位置が符号化対象ピクチャ内での符号化対象ブロックの位置に一致するブロックである。 Typically, the co-located picture colPic is a picture that is later in the display order than the encoding target picture and is closest to the encoding target picture in the display order. The co-located block is a block in which the position in the co-located picture colPic matches the position of the encoding target block in the encoding target picture.
 なお、co-locatedピクチャcolPicは、必ずしも符号化対象ピクチャよりも表示順で後のピクチャであるとは限らない。すなわち、co-locatedピクチャcolPicは、符号化対象ピクチャよりも表示順で前のピクチャであってもよい。例えば、co-locatedピクチャcolPicが符号化対象ピクチャよりも後方であるか前方であるかは、ピクチャヘッダ内に格納されるフラグによって切り替えられてもよい。 Note that the co-located picture colPic is not necessarily a picture that is later in display order than the picture to be encoded. That is, the co-located picture colPic may be a picture preceding the display target picture in display order. For example, whether the co-located picture colPic is behind or ahead of the encoding target picture may be switched by a flag stored in the picture header.
 また、co-locatedブロックの位置は、符号化対象ピクチャとco-locatedピクチャとが、フィールド符号化およびフレーム符号化のいずれで符号化されるかの組み合わせによって決定されてもよい。 Also, the position of the co-located block may be determined by a combination of whether the encoding target picture and the co-located picture are encoded by field encoding or frame encoding.
 その後、符号化対象フィールド内の符号化対象ブロックが符号化される時に、colPicメモリ125に格納された動きベクトルが読み出され、時間ダイレクトベクトルTemporalMVが算出される。算出された時間ダイレクトベクトルTemporalMVは、符号化対象ブロックの符号化に用いられる。 After that, when the encoding target block in the encoding target field is encoded, the motion vector stored in the colPic memory 125 is read, and the temporal direct vector TemporalMV is calculated. The calculated temporal direct vector TemporalMV is used for encoding the block to be encoded.
 colPicメモリ125では、動きベクトルが常にフィールド構造で保持される。これにより、符号化対象ブロックの符号化時に、colPicメモリ125から読み出されたブロックがフィールド構造であるかフレーム構造であるかが判断される必要がない。 In the colPic memory 125, motion vectors are always held in a field structure. Thereby, it is not necessary to determine whether the block read from the colPic memory 125 has a field structure or a frame structure when encoding the block to be encoded.
 例えば、動きベクトルmvColがフレーム構造である場合、インター予測制御部121は、動きベクトルmvColの垂直方向成分を1/2にして、colPicメモリ125に格納する。動きベクトルmvColがフィールド構造である場合、インター予測制御部121は、動きベクトルmvColをそのままcolPicメモリ125に格納する。これにより、colPicメモリ125では、動きベクトルが常にフィールド構造で保持される。 For example, when the motion vector mvCol has a frame structure, the inter prediction control unit 121 halves the vertical component of the motion vector mvCol and stores it in the colPic memory 125. When the motion vector mvCol has a field structure, the inter prediction control unit 121 stores the motion vector mvCol in the colPic memory 125 as it is. Thereby, in the colPic memory 125, the motion vector is always held in the field structure.
 一方、符号化対象ブロックがフレーム構造である場合、インター予測制御部121は、colPicメモリ125から読み出した動きベクトルの垂直方向成分を2倍にして、時間ダイレクトベクトルTemporalMVを算出する。符号化対象ブロックがフィールド構造である場合、インター予測制御部121は、colPicメモリ125から読み出した動きベクトルをそのまま用いて、時間ダイレクトベクトルTemporalMVを算出する。したがって、インター予測制御部121は、読み出した動きベクトルの構造を判断する必要がない。 On the other hand, when the encoding target block has a frame structure, the inter prediction control unit 121 calculates the temporal direct vector TemporalMV by doubling the vertical direction component of the motion vector read from the colPic memory 125. When the encoding target block has a field structure, the inter prediction control unit 121 calculates a temporal direct vector TemporalMV using the motion vector read from the colPic memory 125 as it is. Therefore, the inter prediction control unit 121 does not need to determine the structure of the read motion vector.
 図3は、フレーム構造の動きベクトルを示す概念図である。図3には、フレーム構造のピクチャ(単に、フレームとも呼ばれる)、フレーム構造のブロック、および、フレーム構造の動きベクトルが示されている。フレーム構造のピクチャには、奇数フィールド(トップフィールドとも呼ばれる)および偶数フィールド(ボトムフィールドとも呼ばれる)の両方が含まれる。 FIG. 3 is a conceptual diagram showing the motion vector of the frame structure. FIG. 3 shows a frame-structured picture (also simply referred to as a frame), a frame-structured block, and a frame-structured motion vector. A frame-structured picture includes both odd fields (also called top fields) and even fields (also called bottom fields).
 図4は、フィールド構造の動きベクトルを示す概念図である。図4には、フィールド構造のピクチャ(単に、フィールドとも呼ばれる)、フィールド構造のブロック、および、フィールド構造の動きベクトルが示されている。フレーム構造のピクチャは、奇数フィールド(トップフィールドとも呼ばれる)および偶数フィールド(ボトムフィールドとも呼ばれる)のいずれかである。 FIG. 4 is a conceptual diagram showing the motion vector of the field structure. FIG. 4 shows a field structure picture (also simply referred to as a field), a field structure block, and a field structure motion vector. A frame-structured picture is either an odd field (also called a top field) or an even field (also called a bottom field).
 図4に示されたフィールド構造のピクチャは、図3に示されたフレーム構造のピクチャと比較して、奇数フィールドまたは偶数フィールドのいずれかが間引かれている。したがって、フィールド構造のピクチャの大きさは、フレーム構造のピクチャの大きさと比較して、垂直方向に1/2の大きさである。フィールド構造のブロックおよびフィールド構造の動きベクトルも、同様に垂直方向に1/2になっている。 In the field structure picture shown in FIG. 4, either the odd field or the even field is thinned out as compared with the frame structure picture shown in FIG. Accordingly, the size of the field structure picture is ½ in the vertical direction as compared with the size of the frame structure picture. Similarly, the field structure block and the field structure motion vector are also halved in the vertical direction.
 すなわち、実質的に同じ空間位置を指し示す動きベクトルであっても、フレーム構造の動きベクトルと、フィールド構造の動きベクトルとでは、垂直方向成分に違いがある。インター予測制御部121は、この違いを吸収するため、colPicメモリ125へ動きベクトルを格納する時に、動きベクトルの垂直方向成分を調整する。 That is, even in the case of motion vectors indicating substantially the same spatial position, there is a difference in the vertical direction component between the motion vector of the frame structure and the motion vector of the field structure. In order to absorb this difference, the inter prediction control unit 121 adjusts the vertical component of the motion vector when storing the motion vector in the colPic memory 125.
 図5は、図1に示されたcolPicメモリ125への書き込み処理を示すフローチャートである。まず、インター予測制御部121は、符号化対象ブロックの動きベクトルを算出する(S101)。ここでの符号化対象ブロックは、図2に示されたco-locatedブロックである。例えば、インター予測制御部121は、ブロックマッチング等の動き検出により、動きベクトルを算出する。なお、この動き検出は、図示されていない動き検出部によって実行されてもよい。 FIG. 5 is a flowchart showing a writing process to the colPic memory 125 shown in FIG. First, the inter prediction control unit 121 calculates a motion vector of an encoding target block (S101). The encoding target block here is the co-located block shown in FIG. For example, the inter prediction control unit 121 calculates a motion vector by motion detection such as block matching. Note that this motion detection may be performed by a motion detection unit (not shown).
 次に、インター予測制御部121は、符号化対象ブロックがフレーム構造であるかフィールド構造であるかを判定する(S102)。そして、符号化対象ブロックがフレーム構造である場合(S102でYes)、インター予測制御部121は、動きベクトルmvColの垂直方向成分を1/2に調整する(S103)。一方、符号化対象ブロックがフィールド構造である場合(S102でNo)、インター予測制御部121は、このような調整を実施しない。 Next, the inter prediction control unit 121 determines whether the encoding target block has a frame structure or a field structure (S102). When the encoding target block has a frame structure (Yes in S102), the inter prediction control unit 121 adjusts the vertical direction component of the motion vector mvCol to ½ (S103). On the other hand, when the encoding target block has a field structure (No in S102), the inter prediction control unit 121 does not perform such adjustment.
 その後、インター予測制御部121は、動きベクトルmvColをcolPicメモリ125へ転送する(S104)。これにより、動きベクトルmvColは、常にフィールド構造でcolPicメモリ125に格納される。 Thereafter, the inter prediction control unit 121 transfers the motion vector mvCol to the colPic memory 125 (S104). Thereby, the motion vector mvCol is always stored in the colPic memory 125 in a field structure.
 図6は、図1に示されたcolPicメモリ125からの読み出し処理を示すフローチャートである。まず、インター予測制御部121は、colPicメモリ125から動きベクトルmvColを読み出す(S201)。次に、インター予測制御部121は、符号化対象ブロックがフレーム構造であるかフィールド構造であるかを判定する(S202)。ここでの符号化対象ブロックは、図2に示された符号化対象ブロックである。 FIG. 6 is a flowchart showing a reading process from the colPic memory 125 shown in FIG. First, the inter prediction control unit 121 reads a motion vector mvCol from the colPic memory 125 (S201). Next, the inter prediction control unit 121 determines whether the encoding target block has a frame structure or a field structure (S202). The encoding target block here is the encoding target block shown in FIG.
 そして、符号化対象ブロックがフレーム構造である場合(S202でYes)、インター予測制御部121は、読み出された動きベクトルmvColの垂直方向成分を2倍に調整する(S203)。一方、符号化対象ブロックがフィールド構造である場合(S202でNo)、インター予測制御部121は、このような調整を実施しない。 When the encoding target block has a frame structure (Yes in S202), the inter prediction control unit 121 adjusts the vertical direction component of the read motion vector mvCol by a factor of 2 (S203). On the other hand, when the encoding target block has a field structure (No in S202), the inter prediction control unit 121 does not perform such adjustment.
 その後、インター予測制御部121は、動きベクトルmvColから時間ダイレクトベクトルTemporalMVを算出する(S204)。これにより、符号化対象ブロックの構造に応じて、動きベクトルmvColが調整される。 Thereafter, the inter prediction control unit 121 calculates a temporal direct vector TemporalMV from the motion vector mvCol (S204). Thereby, the motion vector mvCol is adjusted according to the structure of the encoding target block.
 以上のようにして、画像符号化装置は、動きベクトルをフィールド構造でcolPicメモリ125に格納し、フィールド構造でcolPicメモリ125に格納された動きベクトルを用いて、フィールド構造またはフレーム構造のブロックを符号化する。colPicメモリ125には、常に、動きベクトルがフィールド構造で格納される。よって、画像符号化装置は、動きベクトルがフィールド構造またはフレーム構造であるかを示す構造情報をcolPicメモリ125に保持しなくてよい。 As described above, the image coding apparatus stores the motion vector in the colPic memory 125 in the field structure, and codes the block in the field structure or the frame structure using the motion vector stored in the colPic memory 125 in the field structure. Turn into. In the colPic memory 125, motion vectors are always stored in a field structure. Therefore, the image encoding device does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 125.
 したがって、colPicメモリ125に必要な容量が削減される。また、常に、フィールド構造の動きベクトルを用いるため、判定処理の処理量が削減される。 Therefore, the capacity required for the colPic memory 125 is reduced. Further, since the motion vector having the field structure is always used, the processing amount of the determination process is reduced.
 つまり、co-locatedブロックの構造は、フィールド構造である場合とフレーム構造である場合との2通りがある。また、符号化対象ブロックの構造も、フィールド構造である場合とフレーム構造である場合との2通りがある。これらの組み合わせは4通り存在する。従来、符号化対象ブロックの符号化時に、4通りの組み合わせに基づいて、処理を変更する必要があった。 In other words, there are two types of co-located block structures: a field structure and a frame structure. Also, there are two types of structure of the encoding target block: a case of a field structure and a case of a frame structure. There are four combinations of these. Conventionally, when encoding an encoding target block, it has been necessary to change the processing based on four combinations.
 しかし、常に、動きベクトルがフィールド構造で保持されるため、このような組み合わせのパターンが簡素化される。そして、画像符号化装置は、符号化対象ブロックの構造のみに基づいて、処理を実行することができる。これにより、判定処理の処理量が削減される。 However, since the motion vector is always held in the field structure, such a combination pattern is simplified. Then, the image encoding device can execute processing based only on the structure of the encoding target block. Thereby, the processing amount of the determination process is reduced.
 なお、画像符号化装置は、動きベクトルを常にフィールド構造でcolPicメモリ125に格納したが、動きベクトルを常にフレーム構造でcolPicメモリ125に格納してもよい。この場合も、画像符号化装置は、colPicメモリ125に動きベクトルの構造情報を格納しなくてもよい。したがって、colPicメモリ125に必要な容量が削減され、判定処理の処理量が削減される。 Note that the image encoding apparatus always stores motion vectors in the colPic memory 125 with a field structure, but may store motion vectors in the colPic memory 125 with a frame structure. Also in this case, the image encoding device may not store the motion vector structure information in the colPic memory 125. Therefore, the capacity required for the colPic memory 125 is reduced, and the amount of determination processing is reduced.
 画像符号化装置は、動きベクトルを常にフィールド構造で保持する場合、動きベクトルを常にフレーム構造で保持する場合よりも、colPicメモリ125に必要な容量の削減効果を高めることができる。これは、フィールド構造の動きベクトルの大きさが、図4に示した通り、フレーム構造の動きベクトルの大きさよりも、相対的に小さいためである。より具体的には、フィールド構造の動きベクトルは、フレーム構造の動きベクトルと比較して、垂直方向に半分の大きさになる。したがって、動きベクトル毎に1ビットの情報削減が可能である。 The image encoding apparatus can enhance the effect of reducing the capacity required for the colPic memory 125 when the motion vector is always held in the field structure than when the motion vector is always held in the frame structure. This is because the size of the motion vector of the field structure is relatively smaller than the size of the motion vector of the frame structure as shown in FIG. More specifically, the field structure motion vector is half as large as the frame structure motion vector in the vertical direction. Therefore, 1-bit information can be reduced for each motion vector.
 一方、動きベクトルが常にフレーム構造で保持された場合、動きベクトルが1/2になったときに発生する誤差が生じない。したがって、符号化効率の劣化が抑制される。 On the other hand, when the motion vector is always held in the frame structure, an error that occurs when the motion vector is halved does not occur. Therefore, deterioration of encoding efficiency is suppressed.
 図7は、図1に示された画像符号化装置のインター予測制御部121の詳細を示す構成図である。図7に示されたインター予測制御部121は、第1調整部131、書き込み部132、読み出し部133および第2調整部134を備える。これらの処理部は、符号化部101で画像が符号化される際、colPicメモリ125への読み書き処理を実行する。 FIG. 7 is a configuration diagram showing details of the inter prediction control unit 121 of the image encoding device shown in FIG. The inter prediction control unit 121 illustrated in FIG. 7 includes a first adjustment unit 131, a writing unit 132, a reading unit 133, and a second adjustment unit 134. These processing units execute read / write processing on the colPic memory 125 when an image is encoded by the encoding unit 101.
 図8は、図7に示されたcolPicメモリ125への読み書き処理を示すフローチャートである。図8に示したフローチャートでは、第1符号化対象ブロックの動きベクトルをcolPicメモリ125に格納し、colPicメモリ125に格納された動きベクトルを用いて、第2符号化対象ブロックを符号化する処理が示されている。 FIG. 8 is a flowchart showing a read / write process to the colPic memory 125 shown in FIG. In the flowchart illustrated in FIG. 8, the process of storing the motion vector of the first encoding target block in the colPic memory 125 and encoding the second encoding target block using the motion vector stored in the colPic memory 125 is performed. It is shown.
 まず、第1調整部131は、第1符号化対象ブロックの構造が予め定められた構造とは異なる場合、第1符号化対象ブロックの動きベクトルが予め定められた構造に適合するように、第1符号化対象ブロックの動きベクトルを調整する(S301)。ここで、予め定められた構造は、フレーム構造およびフィールド構造のいずれかである。 First, when the structure of the first encoding target block is different from the predetermined structure, the first adjustment unit 131 adjusts the first encoding target block so that the motion vector of the first encoding target block matches the predetermined structure. The motion vector of one encoding target block is adjusted (S301). Here, the predetermined structure is either a frame structure or a field structure.
 例えば、予め定められた構造がフレーム構造であって、かつ、第1符号化対象ブロックがフィールド構造である場合、第1調整部131は、第1符号化対象ブロックの動きベクトルを垂直方向に2倍にすることにより、第1符号化対象ブロックの動きベクトルを調整する。 For example, when the predetermined structure is a frame structure and the first encoding target block has a field structure, the first adjustment unit 131 sets the motion vector of the first encoding target block to 2 in the vertical direction. By doubling, the motion vector of the first encoding target block is adjusted.
 次に、第1符号化対象ブロックの構造が予め定められた構造と同じである場合、書き込み部132は、第1符号化対象ブロックの動きベクトルをそのままcolPicメモリ125に書き込む。そして、第1符号化対象ブロックの構造が予め定められた構造とは異なる場合、書き込み部132は、調整された動きベクトルをcolPicメモリ125に書き込む(S302)。これにより、第1符号化対象ブロックの動きベクトルが、colPicメモリ125に予め定められた構造で書き込まれる。 Next, when the structure of the first encoding target block is the same as the predetermined structure, the writing unit 132 writes the motion vector of the first encoding target block in the colPic memory 125 as it is. If the structure of the first encoding target block is different from the predetermined structure, the writing unit 132 writes the adjusted motion vector in the colPic memory 125 (S302). Thereby, the motion vector of the first encoding target block is written in the colPic memory 125 with a predetermined structure.
 次に、第2符号化対象ブロックの符号化の際、読み出し部133は、動きベクトルをcolPicメモリ125から読み出す(S303)。 Next, when encoding the second encoding target block, the reading unit 133 reads the motion vector from the colPic memory 125 (S303).
 次に、第2符号化対象ブロックの構造が予め定められた構造とは異なる場合、第2調整部134は、読み出された動きベクトルが第2符号化対象ブロックの構造に適合するように、読み出された動きベクトルを調整する(S304)。例えば、予め定められた構造がフレーム構造であって、かつ、第2符号化対象ブロックがフィールド構造である場合、読み出された動きベクトルを垂直方向に対して1/2にすることにより、読み出された動きベクトルを調整する。 Next, when the structure of the second encoding target block is different from the predetermined structure, the second adjustment unit 134 adjusts the read motion vector to match the structure of the second encoding target block. The read motion vector is adjusted (S304). For example, when the predetermined structure is a frame structure and the second encoding target block is a field structure, the read motion vector is halved in the vertical direction to Adjust the motion vector.
 次に、第2符号化対象ブロックの構造が予め定められた構造と同じである場合、符号化部101は、読み出された動きベクトルをそのまま用いて第2符号化対象ブロックを符号化する。そして、第2符号化対象ブロックの構造が予め定められた構造とは異なる場合、符号化部101は、調整された動きベクトルを用いて第2符号化対象ブロックを符号化する(S305)。 Next, when the structure of the second encoding target block is the same as the predetermined structure, the encoding unit 101 encodes the second encoding target block using the read motion vector as it is. If the structure of the second encoding target block is different from the predetermined structure, the encoding unit 101 encodes the second encoding target block using the adjusted motion vector (S305).
 符号化部101は、読み出された動きベクトル、または、調整された動きベクトルを第2符号化対象ブロックの動きベクトルとして用いて、第2符号化対象ブロックを符号化してもよい。また、符号化部101は、読み出された動きベクトル、または、調整された動きベクトルを第2符号化対象ブロックの予測ベクトルとして用いて、第2符号化対象ブロックを符号化してもよい。この場合、符号化部101は、動き検出等によって特定された動きベクトルから予測ベクトルを減算し、減算により得られた差分ベクトルを符号化する。 The encoding unit 101 may encode the second encoding target block using the read motion vector or the adjusted motion vector as the motion vector of the second encoding target block. Further, the encoding unit 101 may encode the second encoding target block using the read motion vector or the adjusted motion vector as a prediction vector of the second encoding target block. In this case, the encoding unit 101 subtracts the prediction vector from the motion vector specified by motion detection or the like, and encodes the difference vector obtained by the subtraction.
 以上のようにして、画像符号化装置は、動きベクトルを予め定められた構造でcolPicメモリ125に格納し、予め定められた構造でcolPicメモリ125に格納された動きベクトルを用いて、フィールド構造またはフレーム構造のブロックを符号化する。すなわち、colPicメモリ125には、常に、動きベクトルが予め定められた構造で格納される。したがって、画像符号化装置は、動きベクトルがフィールド構造またはフレーム構造であるかを示す構造情報をcolPicメモリ125に保持しなくてよい。 As described above, the image coding apparatus stores the motion vector in the colPic memory 125 with a predetermined structure, and uses the motion vector stored in the colPic memory 125 with the predetermined structure. A block having a frame structure is encoded. That is, motion vectors are always stored in the colPic memory 125 in a predetermined structure. Therefore, the image encoding device does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 125.
 これにより、動きベクトルの構造情報の保持に必要なメモリ容量が削減される。また、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断する必要がないため、処理量が削減される。上記では、符号化側の例が示されたが、復号側でも、同様の構成および同様の処理により、同様の効果が実現される。 This reduces the memory capacity required to hold the motion vector structure information. Further, since it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure, the amount of processing is reduced. In the above, the example on the encoding side is shown, but the same effect is realized on the decoding side by the same configuration and the same processing.
 図9は、実施の形態1に係る画像復号装置を示す構成図である。図9に示された画像復号装置は、復号部201、インター予測制御部221、colPicメモリ225を備える。復号部201は、可変長復号部205、逆量子化部206、逆直交変換部207、加算部208、ブロックメモリ209、イントラ予測部210、フレームメモリ211、インター予測部212およびスイッチ213を備える。 FIG. 9 is a configuration diagram illustrating the image decoding apparatus according to the first embodiment. The image decoding apparatus illustrated in FIG. 9 includes a decoding unit 201, an inter prediction control unit 221, and a colPic memory 225. The decoding unit 201 includes a variable length decoding unit 205, an inverse quantization unit 206, an inverse orthogonal transform unit 207, an addition unit 208, a block memory 209, an intra prediction unit 210, a frame memory 211, an inter prediction unit 212, and a switch 213.
 可変長復号部205は、入力されたビットストリームに対し、可変長復号処理を行い、ピクチャタイプ情報、予測ベクトルインデックス、予測誤差データ等を復号する。逆量子化部206は、予測誤差データに対し、逆量子化処理を行う。逆直交変換部207は、逆量子化処理を行った予測誤差データを、周波数領域から、画像領域へ変換する。加算部208は、予測画像データと、予測誤差データとを加算することにより、復号画像データを生成する。 The variable length decoding unit 205 performs variable length decoding processing on the input bitstream, and decodes picture type information, prediction vector index, prediction error data, and the like. The inverse quantization unit 206 performs an inverse quantization process on the prediction error data. The inverse orthogonal transform unit 207 transforms the prediction error data subjected to the inverse quantization process from the frequency domain to the image domain. The adding unit 208 generates decoded image data by adding the predicted image data and the prediction error data.
 ブロックメモリ209は、復号画像データを、ブロック単位で保存するためのメモリである。フレームメモリ211は、復号画像データをフレーム単位で保存するためのメモリである。 The block memory 209 is a memory for storing the decoded image data in units of blocks. The frame memory 211 is a memory for storing the decoded image data in units of frames.
 イントラ予測部210は、ブロックメモリ209に保存されているブロック単位の復号画像データを用いて、イントラ予測を実行することにより、復号対象ブロックの予測画像データを生成する。インター予測部212は、フレームメモリ211に保存されているフレーム単位の復号画像データを用いて、インター予測を実行することにより、復号対象ブロックの予測画像データを生成する。スイッチ213は、イントラ予測またはインター予測に符号化モード(復号モード)を切替える。 The intra prediction unit 210 generates predicted image data of the decoding target block by executing intra prediction using the decoded image data in units of blocks stored in the block memory 209. The inter prediction unit 212 generates the predicted image data of the decoding target block by performing inter prediction using the decoded image data in units of frames stored in the frame memory 211. The switch 213 switches the encoding mode (decoding mode) to intra prediction or inter prediction.
 colPicメモリ225は、ブロック毎の動きベクトルをcolPic情報として記憶するためのメモリである。インター予測制御部221は、予測ベクトルを決定する。また、インター予測制御部221は、インター予測に用いられた動きベクトルをcolPic情報として格納する。 The colPic memory 225 is a memory for storing a motion vector for each block as colPic information. The inter prediction control unit 221 determines a prediction vector. Also, the inter prediction control unit 221 stores the motion vector used for inter prediction as colPic information.
 インター予測制御部221で実行される処理は、符号化側のインター予測制御部121で実行される処理と同様である。colPicメモリ225は、符号化側のcolPicメモリ125と同様の構成要素である。つまり、上述の符号化処理において、符号化の部分を復号に変更することにより、インター予測制御部221は実現される。 The processing executed by the inter prediction control unit 221 is the same as the processing executed by the inter prediction control unit 121 on the encoding side. The colPic memory 225 is a component similar to the colPic memory 125 on the encoding side. That is, in the above encoding process, the inter prediction control unit 221 is realized by changing the encoding part to decoding.
 図10は、図9に示された画像復号装置のインター予測制御部221の詳細を示す構成図である。図10に示されたインター予測制御部221は、第1調整部231、書き込み部232、読み出し部233および第2調整部234を備える。これらの処理部は、復号部201で画像が復号される際、colPicメモリ225への読み書き処理を実行する。 FIG. 10 is a configuration diagram showing details of the inter prediction control unit 221 of the image decoding apparatus shown in FIG. The inter prediction control unit 221 illustrated in FIG. 10 includes a first adjustment unit 231, a writing unit 232, a reading unit 233, and a second adjustment unit 234. These processing units execute read / write processing on the colPic memory 225 when an image is decoded by the decoding unit 201.
 図11は、図10に示されたcolPicメモリ225への読み書き処理を示すフローチャートである。図11に示したフローチャートでは、第1復号対象ブロックの動きベクトルをcolPicメモリ225に格納し、colPicメモリ225に格納された動きベクトルを用いて、第2復号対象ブロックを復号する処理が示されている。 FIG. 11 is a flowchart showing a read / write process to the colPic memory 225 shown in FIG. The flowchart shown in FIG. 11 shows a process of storing the motion vector of the first decoding target block in the colPic memory 225 and decoding the second decoding target block using the motion vector stored in the colPic memory 225. Yes.
 まず、第1調整部231は、第1復号対象ブロックの構造が予め定められた構造とは異なる場合、第1復号対象ブロックの動きベクトルが予め定められた構造に適合するように、第1復号対象ブロックの動きベクトルを調整する(S401)。ここで、予め定められた構造は、フレーム構造およびフィールド構造のいずれかである。 First, when the structure of the first decoding target block is different from the predetermined structure, the first adjustment unit 231 performs the first decoding so that the motion vector of the first decoding target block matches the predetermined structure. The motion vector of the target block is adjusted (S401). Here, the predetermined structure is either a frame structure or a field structure.
 例えば、予め定められた構造がフレーム構造であって、かつ、第1復号対象ブロックがフィールド構造である場合、第1調整部231は、第1復号対象ブロックの動きベクトルを垂直方向に2倍にすることにより、第1復号対象ブロックの動きベクトルを調整する。 For example, when the predetermined structure is a frame structure and the first decoding target block has a field structure, the first adjustment unit 231 doubles the motion vector of the first decoding target block in the vertical direction. As a result, the motion vector of the first decoding target block is adjusted.
 次に、第1復号対象ブロックの構造が予め定められた構造と同じである場合、書き込み部232は、第1復号対象ブロックの動きベクトルをそのままcolPicメモリ225に書き込む。そして、第1復号対象ブロックの構造が予め定められた構造とは異なる場合、書き込み部232は、調整された動きベクトルをcolPicメモリ225に書き込む(S402)。これにより、第1復号対象ブロックの動きベクトルが、colPicメモリ225に予め定められた構造で書き込まれる。 Next, when the structure of the first decoding target block is the same as the predetermined structure, the writing unit 232 writes the motion vector of the first decoding target block as it is in the colPic memory 225. If the structure of the first decoding target block is different from the predetermined structure, the writing unit 232 writes the adjusted motion vector in the colPic memory 225 (S402). Thereby, the motion vector of the first decoding target block is written in the colPic memory 225 with a predetermined structure.
 次に、第2復号対象ブロックの復号の際、読み出し部233は、動きベクトルをcolPicメモリ225から読み出す(S403)。 Next, when decoding the second decoding target block, the reading unit 233 reads the motion vector from the colPic memory 225 (S403).
 次に、第2復号対象ブロックの構造が予め定められた構造とは異なる場合、第2調整部234は、読み出された動きベクトルが第2復号対象ブロックの構造に適合するように、読み出された動きベクトルを調整する(S404)。例えば、予め定められた構造がフレーム構造であって、かつ、第2復号対象ブロックがフィールド構造である場合、読み出された動きベクトルを垂直方向に対して1/2にすることにより、読み出された動きベクトルを調整する。 Next, when the structure of the second decoding target block is different from the predetermined structure, the second adjustment unit 234 reads the motion vector so that the read motion vector matches the structure of the second decoding target block. The motion vector thus adjusted is adjusted (S404). For example, when the predetermined structure is a frame structure and the second decoding target block has a field structure, the read motion vector is halved with respect to the vertical direction to read out the motion vector. Adjust the motion vector.
 次に、第2復号対象ブロックの構造が予め定められた構造と同じである場合、復号部201は、読み出された動きベクトルをそのまま用いて第2復号対象ブロックを復号する。そして、第2復号対象ブロックの構造が予め定められた構造とは異なる場合、復号部201は、調整された動きベクトルを用いて第2復号対象ブロックを復号する(S405)。 Next, when the structure of the second decoding target block is the same as the predetermined structure, the decoding unit 201 decodes the second decoding target block using the read motion vector as it is. If the structure of the second decoding target block is different from the predetermined structure, the decoding unit 201 decodes the second decoding target block using the adjusted motion vector (S405).
 復号部201は、読み出された動きベクトル、または、調整された動きベクトルを第2復号対象ブロックの動きベクトルとして用いて、第2復号対象ブロックを復号してもよい。また、復号部201は、読み出された動きベクトル、または、調整された動きベクトルを第2復号対象ブロックの予測ベクトルとして用いて、第2復号対象ブロックを復号してもよい。この場合、復号部201は、差分ベクトルを復号し、復号された差分ベクトルと予測ベクトルとを加算することにより、動きベクトルを取得する。 The decoding unit 201 may decode the second decoding target block using the read motion vector or the adjusted motion vector as the motion vector of the second decoding target block. Further, the decoding unit 201 may decode the second decoding target block using the read motion vector or the adjusted motion vector as the prediction vector of the second decoding target block. In this case, the decoding unit 201 acquires a motion vector by decoding the difference vector and adding the decoded difference vector and the prediction vector.
 以上のようにして、画像復号装置は、動きベクトルを予め定められた構造でcolPicメモリ225に格納し、予め定められた構造でcolPicメモリ225に格納された動きベクトルを用いて、フィールド構造またはフレーム構造のブロックを復号する。すなわち、colPicメモリ225には、常に、動きベクトルが予め定められた構造で格納される。したがって、画像復号装置は、動きベクトルがフィールド構造またはフレーム構造であるかを示す構造情報をcolPicメモリ225に保持しなくてよい。 As described above, the image decoding apparatus stores the motion vector in the colPic memory 225 with a predetermined structure, and uses the motion vector stored in the colPic memory 225 with the predetermined structure. Decode a block of structure. In other words, motion vectors are always stored in the colPic memory 225 in a predetermined structure. Therefore, the image decoding apparatus does not have to hold the structure information indicating whether the motion vector has the field structure or the frame structure in the colPic memory 225.
 これにより、動きベクトルの構造情報の保持に必要なメモリ容量が削減される。また、メモリに保持されている動きベクトルの構造がフレーム構造であるかフィールド構造であるかを判断する必要がないため、処理量が削減される。 This reduces the memory capacity required to hold the motion vector structure information. Further, since it is not necessary to determine whether the structure of the motion vector held in the memory is a frame structure or a field structure, the amount of processing is reduced.
 以上、本発明に係る画像符号化装置および画像復号装置について、実施の形態に基づいて説明したが、本発明は実施の形態に限定されるものではない。実施の形態に対して当業者が思いつく変形を施して得られる形態、および、実施の形態における構成要素を任意に組み合わせて実現される別の形態も本発明に含まれる。 As described above, the image encoding device and the image decoding device according to the present invention have been described based on the embodiments, but the present invention is not limited to the embodiments. Embodiments obtained by subjecting the embodiments to modifications conceivable by those skilled in the art and other embodiments realized by arbitrarily combining the components in the embodiments are also included in the present invention.
 例えば、特定の処理部が実行する処理を別の処理部が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。 For example, another processing unit may execute a process executed by a specific processing unit. In addition, the order in which the processes are executed may be changed, or a plurality of processes may be executed in parallel.
 また、本発明に係る画像符号化装置および画像復号装置は、それらに含まれる任意の構成要素を組み合わせて実現される画像符号化復号装置として実現されてもよい。 Further, the image encoding device and the image decoding device according to the present invention may be realized as an image encoding / decoding device realized by combining arbitrary constituent elements included in them.
 また、本発明は、画像符号化装置および画像復号装置として実現できるだけでなく、画像符号化装置および画像復号装置を構成する処理手段をステップとする方法として実現できる。そして、本発明は、それらの方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本発明は、そのプログラムを記録したCD-ROM等のコンピュータ読み取り可能な記録媒体として実現できる。 In addition, the present invention can be realized not only as an image encoding device and an image decoding device, but also as a method using processing means constituting the image encoding device and the image decoding device as steps. The present invention can be realized as a program for causing a computer to execute the steps included in these methods. Furthermore, the present invention can be realized as a computer-readable recording medium such as a CD-ROM in which the program is recorded.
 また、画像符号化装置および画像復号装置に含まれる複数の構成要素は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらの構成要素は、個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSIまたはウルトラLSIと呼称されることもある。 Also, a plurality of components included in the image encoding device and the image decoding device may be realized as an LSI (Large Scale Integration) that is an integrated circuit. These components may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to here as an LSI, it may be referred to as an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。プログラムすることが可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、画像符号化装置および画像復号装置に含まれる構成要素の集積回路化を行ってもよい。 Furthermore, if integrated circuit technology that replaces LSI appears as a result of advances in semiconductor technology or other derived technology, naturally, using this technology, integrated circuits of components included in image encoding devices and image decoding devices May also be performed.
 (実施の形態2)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 2)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図12は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 12 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図12のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 12, and may be connected by combining any of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention). Function as a device) and transmit to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図13に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 13, the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図14は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 14 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture encoding method described in the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図15に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 15 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図16に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 16 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図14に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. Note that the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiver is added in the configuration illustrated in FIG.
 図17Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 17A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図17Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Further, a configuration example of the mobile phone ex114 will be described with reference to FIG. 17B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 3)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図18は、多重化データの構成を示す図である。図18に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 18 is a diagram showing a structure of multiplexed data. As shown in FIG. 18, the multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図19は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 19 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図20は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図20における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図20の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 20 shows in more detail how the video stream is stored in the PES packet sequence. The first level in FIG. 20 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As indicated by arrows yy1, yy2, yy3, and yy4 in FIG. 20, a plurality of Video Presentation Units in a video stream are divided into pictures, stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図21は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図21下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 21 shows the format of the TS packet that is finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. In the multiplexed data, source packets are arranged as shown in the lower part of FIG. 21, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図22はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 22 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図23に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 23, the multiplexed data information file is management information of multiplexed data, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図23に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 As shown in FIG. 23, the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図24に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 24, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図25に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 25 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図26に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 4)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 26 shows the configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 5)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図27は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 27 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図26のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図26の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態3で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態3で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図29のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, it is conceivable to use the identification information described in the third embodiment. The identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図28は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 28 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態6)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 6)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図30Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、インター予測に特徴を有していることから、例えば、インター予測については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、直交変換、量子化のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 30A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inter prediction, for example, a dedicated decoding processing unit ex901 is used for inter prediction, and other entropy coding, deblocking filter, orthogonal transform, quantization, and the like. For any or all of these processes, it is conceivable to share the decoding processing unit. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図30Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 30B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明に係る画像符号化方法および画像復号方法は、例えば、テレビ、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、または、デジタルビデオカメラ等に利用可能である。 The image encoding method and the image decoding method according to the present invention can be used for, for example, a television, a digital video recorder, a car navigation, a mobile phone, a digital camera, or a digital video camera.
  101 符号化部
  102 減算部
  103 直交変換部
  104 量子化部
  105 可変長符号化部
  106、206 逆量子化部
  107、207 逆直交変換部
  108、208 加算部
  109、209 ブロックメモリ
  110、210 イントラ予測部
  111、211 フレームメモリ
  112、212 インター予測部
  113、213 スイッチ
  121、221 インター予測制御部
  124 ピクチャタイプ決定部
  125、225 colPicメモリ
  131、231 第1調整部
  132、232 書き込み部
  133、233 読み出し部
  134、234 第2調整部
  201 復号部
  205 可変長復号部
 
101 Coding section 102 Subtraction section 103 Orthogonal transformation section 104 Quantization section 105 Variable length coding section 106, 206 Inverse quantization section 107, 207 Inverse orthogonal transformation section 108, 208 Addition section 109, 209 Block memory 110, 210 Intra prediction Unit 111, 211 Frame memory 112, 212 Inter prediction unit 113, 213 Switch 121, 221 Inter prediction control unit 124 Picture type determination unit 125, 225 colPic memory 131, 231 First adjustment unit 132, 232 Writing unit 133, 233 Reading unit 134, 234 Second adjustment unit 201 Decoding unit 205 Variable length decoding unit

Claims (14)

  1.  画像をブロック毎に符号化する画像符号化方法であって、
     第1符号化対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1符号化対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整ステップと、
     前記第1符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1符号化対象ブロックの前記動きベクトルをメモリに書き込み、前記第1符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整ステップで調整された前記動きベクトルを前記メモリに書き込む書き込みステップと、
     前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出しステップと、
     第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルが前記第2符号化対象ブロックの構造に適合するように、前記読み出しステップで読み出された前記動きベクトルを調整する第2調整ステップと、
     前記第2符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出しステップで読み出された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化し、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整ステップで調整された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化する符号化ステップとを含む
     画像符号化方法。
    An image encoding method for encoding an image for each block,
    When the structure of the first encoding target block is different from a predetermined structure that is one of the field structure and the frame structure, the motion vector of the first encoding target block conforms to the predetermined structure. A first adjustment step of adjusting the motion vector,
    When the structure of the first encoding target block is the same as the predetermined structure, the motion vector of the first encoding target block is written into a memory, and the structure of the first encoding target block is A writing step of writing the motion vector adjusted in the first adjustment step into the memory, if different from the defined structure;
    A step of reading out the motion vector written in the memory from the memory;
    When the structure of the second encoding target block is different from the predetermined structure, the reading step so that the motion vector read in the reading step matches the structure of the second encoding target block. A second adjustment step of adjusting the motion vector read in
    If the structure of the second encoding target block is the same as the predetermined structure, the second encoding target block is encoded using the motion vector read in the reading step, and the second encoding target block is encoded. An encoding step of encoding the second encoding target block using the motion vector adjusted in the second adjustment step when the structure of the encoding target block is different from the predetermined structure. Image coding method.
  2.  前記第1調整ステップでは、前記第1符号化対象ブロックの構造が、フィールド構造である前記予め定められた構造とは異なる場合、前記第1符号化対象ブロックの前記動きベクトルを垂直方向に1/2にすることにより、前記動きベクトルを調整し、
     前記第2調整ステップでは、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に2倍にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整する
     請求項1に記載の画像符号化方法。
    In the first adjustment step, when the structure of the first encoding target block is different from the predetermined structure which is a field structure, the motion vector of the first encoding target block is 2 to adjust the motion vector,
    In the second adjustment step, when the structure of the second encoding target block is different from the predetermined structure, the structure of the motion vector read in the reading step is doubled in the vertical direction. The image encoding method according to claim 1, wherein the motion vector read in the reading step is adjusted.
  3.  前記第1調整ステップでは、前記第1符号化対象ブロックの構造が、フレーム構造である前記予め定められた構造とは異なる場合、前記第1符号化対象ブロックの前記動きベクトルを垂直方向に2倍にすることにより、前記動きベクトルを調整し、
     前記第2調整ステップでは、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に1/2にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整する
     請求項1に記載の画像符号化方法。
    In the first adjustment step, when the structure of the first encoding target block is different from the predetermined structure which is a frame structure, the motion vector of the first encoding target block is doubled in the vertical direction. By adjusting the motion vector,
    In the second adjustment step, if the structure of the second encoding target block is different from the predetermined structure, the structure of the motion vector read in the reading step is halved in the vertical direction. The image encoding method according to claim 1, wherein the motion vector read in the reading step is adjusted.
  4.  前記読み出しステップでは、第1符号化対象ピクチャ内における前記第1符号化対象ブロックの位置と、前記第1符号化対象ピクチャよりも表示順で前方である第2符号化対象ピクチャ内における前記第2符号化対象ブロックの位置とが一致するような前記第1符号化対象ブロックの前記動きベクトルを読み出す
     請求項1~3のいずれか1項に記載の画像符号化方法。
    In the reading step, the position of the first encoding target block in the first encoding target picture and the second encoding target picture that is ahead in the display order from the first encoding target picture. The image encoding method according to any one of claims 1 to 3, wherein the motion vector of the first encoding target block that matches the position of the encoding target block is read out.
  5.  前記符号化ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2符号化対象ブロックの動きベクトルを算出し、算出された前記動きベクトルを用いて、前記第2符号化対象ブロックを符号化する
     請求項1~4のいずれか1項に記載の画像符号化方法。
    In the encoding step, a motion vector of the second encoding target block is calculated from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step. 5. The image encoding method according to claim 1, wherein the second encoding target block is encoded using the motion vector.
  6.  前記符号化ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2符号化対象ブロックの動きベクトルの予測に用いられる予測ベクトルを算出し、算出された前記予測ベクトルを用いて、前記第2符号化対象ブロックを符号化する
     請求項1~4のいずれか1項に記載の画像符号化方法。
    In the encoding step, a prediction used for predicting a motion vector of the second encoding target block from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step. 5. The image encoding method according to claim 1, wherein a vector is calculated, and the second encoding target block is encoded using the calculated prediction vector.
  7.  画像をブロック毎に復号する画像復号方法であって、
     第1復号対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1復号対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整ステップと、
     前記第1復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1復号対象ブロックの前記動きベクトルをメモリに書き込み、前記第1復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整ステップで調整された前記動きベクトルを前記メモリに書き込む書き込みステップと、
     前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出しステップと、
     第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルが前記第2復号対象ブロックの構造に適合するように、前記読み出しステップで読み出された前記動きベクトルを調整する第2調整ステップと、
     前記第2復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出しステップで読み出された前記動きベクトルを用いて前記第2復号対象ブロックを復号し、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整ステップで調整された前記動きベクトルを用いて前記第2復号対象ブロックを復号する復号ステップとを含む
     画像復号方法。
    An image decoding method for decoding an image block by block,
    When the structure of the first decoding target block is different from a predetermined structure that is one of the field structure and the frame structure, the motion vector of the first decoding target block is adapted to the predetermined structure. A first adjustment step of adjusting the motion vector;
    When the structure of the first decoding target block is the same as the predetermined structure, the motion vector of the first decoding target block is written into a memory, and the structure of the first decoding target block is the predetermined structure. A write step for writing the motion vector adjusted in the first adjustment step into the memory, if different from the structure;
    A step of reading out the motion vector written in the memory from the memory;
    When the structure of the second decoding target block is different from the predetermined structure, the reading is performed in the reading step so that the motion vector read in the reading step matches the structure of the second decoding target block. A second adjustment step of adjusting the issued motion vector;
    When the structure of the second decoding target block is the same as the predetermined structure, the second decoding target block is decoded using the motion vector read in the reading step, and the second decoding target And a decoding step of decoding the second decoding target block using the motion vector adjusted in the second adjustment step when a block structure is different from the predetermined structure.
  8.  前記第1調整ステップでは、前記第1復号対象ブロックの構造が、フィールド構造である前記予め定められた構造とは異なる場合、前記第1復号対象ブロックの前記動きベクトルを垂直方向に1/2にすることにより、前記動きベクトルを調整し、
     前記第2調整ステップでは、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に2倍にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整する
     請求項7に記載の画像復号方法。
    In the first adjustment step, when the structure of the first decoding target block is different from the predetermined structure which is a field structure, the motion vector of the first decoding target block is halved in the vertical direction. To adjust the motion vector,
    In the second adjustment step, when the structure of the second decoding target block is different from the predetermined structure, the structure of the motion vector read in the reading step is doubled in the vertical direction. The image decoding method according to claim 7, wherein the motion vector read in the reading step is adjusted.
  9.  前記第1調整ステップでは、前記第1復号対象ブロックの構造が、フレーム構造である前記予め定められた構造とは異なる場合、前記第1復号対象ブロックの前記動きベクトルを垂直方向に2倍にすることにより、前記動きベクトルを調整し、
     前記第2調整ステップでは、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出しステップで読み出された前記動きベクトルの構造を垂直方向に1/2にすることにより、前記読み出しステップで読み出された前記動きベクトルを調整する
     請求項7に記載の画像復号方法。
    In the first adjustment step, when the structure of the first decoding target block is different from the predetermined structure which is a frame structure, the motion vector of the first decoding target block is doubled in the vertical direction. By adjusting the motion vector,
    In the second adjustment step, if the structure of the second decoding target block is different from the predetermined structure, the structure of the motion vector read in the reading step is halved in the vertical direction. The image decoding method according to claim 7, wherein the motion vector read in the reading step is adjusted.
  10.  前記読み出しステップでは、第1復号対象ピクチャ内における前記第1復号対象ブロックの位置と、前記第1復号対象ピクチャよりも表示順で前方である第2復号対象ピクチャ内における前記第2復号対象ブロックの位置とが一致するような前記第1復号対象ブロックの前記動きベクトルを読み出す
     請求項7~9のいずれか1項に記載の画像復号方法。
    In the reading step, the position of the first decoding target block in the first decoding target picture and the second decoding target block in the second decoding target picture that is ahead in display order from the first decoding target picture. The image decoding method according to any one of claims 7 to 9, wherein the motion vector of the first decoding target block having a matching position is read.
  11.  前記復号ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2復号対象ブロックの動きベクトルを算出し、算出された前記動きベクトルを用いて、前記第2復号対象ブロックを復号する
     請求項7~10のいずれか1項に記載の画像復号方法。
    In the decoding step, the motion vector of the second decoding target block is calculated from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step, and the calculated The image decoding method according to any one of claims 7 to 10, wherein the second decoding target block is decoded using a motion vector.
  12.  前記復号ステップでは、前記読み出しステップで読み出された前記動きベクトル、または、前記第2調整ステップで調整された前記動きベクトルから、前記第2復号対象ブロックの動きベクトルの予測に用いられる予測ベクトルを算出し、算出された前記予測ベクトルを用いて、前記第2復号対象ブロックを復号する
     請求項7~10のいずれか1項に記載の画像復号方法。
    In the decoding step, a prediction vector used for prediction of a motion vector of the second decoding target block is calculated from the motion vector read in the reading step or the motion vector adjusted in the second adjustment step. 11. The image decoding method according to claim 7, wherein the second decoding target block is decoded using the calculated prediction vector.
  13.  画像をブロック毎に符号化する画像符号化装置であって、
     第1符号化対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1符号化対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整部と、
     前記第1符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1符号化対象ブロックの前記動きベクトルをメモリに書き込み、前記第1符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整部で調整された前記動きベクトルを前記メモリに書き込む書き込み部と、
     前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出し部と、
     第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出し部で読み出された前記動きベクトルが前記第2符号化対象ブロックの構造に適合するように、前記読み出し部で読み出された前記動きベクトルを調整する第2調整部と、
     前記第2符号化対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出し部で読み出された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化し、前記第2符号化対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整部で調整された前記動きベクトルを用いて前記第2符号化対象ブロックを符号化する符号化部とを備える
     画像符号化装置。
    An image encoding device for encoding an image for each block,
    When the structure of the first encoding target block is different from a predetermined structure that is one of the field structure and the frame structure, the motion vector of the first encoding target block conforms to the predetermined structure. A first adjusting unit for adjusting the motion vector,
    When the structure of the first encoding target block is the same as the predetermined structure, the motion vector of the first encoding target block is written into a memory, and the structure of the first encoding target block is A writing unit that writes the motion vector adjusted by the first adjustment unit to the memory, if different from the determined structure;
    A reading unit for reading out the motion vector written in the memory from the memory;
    When the structure of the second encoding target block is different from the predetermined structure, the reading unit is adapted so that the motion vector read by the reading unit matches the structure of the second encoding target block. A second adjustment unit for adjusting the motion vector read in
    When the structure of the second encoding target block is the same as the predetermined structure, the second encoding target block is encoded using the motion vector read by the reading unit, and the second encoding target block is encoded. An encoding unit that encodes the second encoding target block using the motion vector adjusted by the second adjustment unit when a structure of the encoding target block is different from the predetermined structure; Image encoding device.
  14.  画像をブロック毎に復号する画像復号装置であって、
     第1復号対象ブロックの構造が、フィールド構造およびフレーム構造のうちの一方である予め定められた構造とは異なる場合、前記第1復号対象ブロックの動きベクトルが前記予め定められた構造に適合するように、前記動きベクトルを調整する第1調整部と、
     前記第1復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記第1復号対象ブロックの前記動きベクトルをメモリに書き込み、前記第1復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第1調整部で調整された前記動きベクトルを前記メモリに書き込む書き込み部と、
     前記メモリに書き込まれた前記動きベクトルを前記メモリから読み出す読み出し部と、
     第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記読み出し部で読み出された前記動きベクトルが前記第2復号対象ブロックの構造に適合するように、前記読み出し部で読み出された前記動きベクトルを調整する第2調整部と、
     前記第2復号対象ブロックの構造が前記予め定められた構造と同じである場合、前記読み出し部で読み出された前記動きベクトルを用いて前記第2復号対象ブロックを復号し、前記第2復号対象ブロックの構造が前記予め定められた構造とは異なる場合、前記第2調整部で調整された前記動きベクトルを用いて前記第2復号対象ブロックを復号する復号部とを備える
     画像復号装置。
     
    An image decoding device for decoding an image for each block,
    When the structure of the first decoding target block is different from a predetermined structure that is one of the field structure and the frame structure, the motion vector of the first decoding target block is adapted to the predetermined structure. A first adjusting unit for adjusting the motion vector;
    When the structure of the first decoding target block is the same as the predetermined structure, the motion vector of the first decoding target block is written into a memory, and the structure of the first decoding target block is the predetermined structure. When different from the structure, a writing unit that writes the motion vector adjusted by the first adjusting unit to the memory;
    A reading unit for reading out the motion vector written in the memory from the memory;
    If the structure of the second decoding target block is different from the predetermined structure, the reading unit reads the motion vector so that the motion vector read by the reading unit matches the structure of the second decoding target block. A second adjustment unit for adjusting the issued motion vector;
    When the structure of the second decoding target block is the same as the predetermined structure, the second decoding target block is decoded using the motion vector read by the reading unit, and the second decoding target An image decoding apparatus comprising: a decoding unit configured to decode the second decoding target block using the motion vector adjusted by the second adjustment unit when a block structure is different from the predetermined structure.
PCT/JP2012/000096 2011-01-12 2012-01-10 Image encoding method, image decoding method, image encoding device, and image decoding device WO2012096157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161431920P 2011-01-12 2011-01-12
US61/431,920 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096157A1 true WO2012096157A1 (en) 2012-07-19

Family

ID=46507066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000096 WO2012096157A1 (en) 2011-01-12 2012-01-10 Image encoding method, image decoding method, image encoding device, and image decoding device

Country Status (1)

Country Link
WO (1) WO2012096157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051081A1 (en) * 2012-09-28 2014-04-03 三菱電機株式会社 Video encoding device, video decoding device, video encoding method, and video decoding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194274A (en) * 2002-07-26 2004-07-08 Matsushita Electric Ind Co Ltd Motion picture encoding method, motion picture decoding method and recording medium
JP2008048199A (en) * 2006-08-17 2008-02-28 Fujitsu Ltd Motion prediction processing apparatus, image encoder and image decoder
JP2009522977A (en) * 2006-01-09 2009-06-11 エルジー エレクトロニクス インコーポレイティド Video signal encoding / decoding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194274A (en) * 2002-07-26 2004-07-08 Matsushita Electric Ind Co Ltd Motion picture encoding method, motion picture decoding method and recording medium
JP2009522977A (en) * 2006-01-09 2009-06-11 エルジー エレクトロニクス インコーポレイティド Video signal encoding / decoding method
JP2008048199A (en) * 2006-08-17 2008-02-28 Fujitsu Ltd Motion prediction processing apparatus, image encoder and image decoder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051081A1 (en) * 2012-09-28 2014-04-03 三菱電機株式会社 Video encoding device, video decoding device, video encoding method, and video decoding method
US20150271502A1 (en) * 2012-09-28 2015-09-24 Mitsubishi Electric Corporation Video encoding device, video decoding device, video encoding method, and video decoding method
JPWO2014051081A1 (en) * 2012-09-28 2016-08-25 三菱電機株式会社 Moving picture encoding apparatus, moving picture decoding apparatus, moving picture encoding method, and moving picture decoding method

Similar Documents

Publication Publication Date Title
JP6112320B2 (en) Video decoding method and video encoding method
JP6168365B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
JP6210248B2 (en) Moving picture coding method and moving picture coding apparatus
JP6394966B2 (en) Encoding method, decoding method, encoding device, and decoding device using temporal motion vector prediction
JP6422011B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
WO2012117728A1 (en) Video image encoding method, video image decoding method, video image encoding device, video image decoding device, and video image encoding/decoding device
JP6112418B2 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding / decoding device
JP6414712B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding method using a large number of reference pictures
JP6156648B2 (en) Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
WO2012023281A1 (en) Video image decoding method, video image encoding method, video image decoding apparatus, and video image encoding apparatus
WO2013001749A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding/decoding device
JP2014512705A (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP6376470B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012120840A1 (en) Image decoding method, image coding method, image decoding device and image coding device
JP6304571B2 (en) Moving picture decoding method and moving picture decoding apparatus
WO2013001813A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP6365924B2 (en) Image decoding method and image decoding apparatus
JP6187887B2 (en) Encoding method and encoding apparatus
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2015001700A1 (en) Image encoding method and image encoding device
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method
WO2012086166A1 (en) Image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP