WO2012014461A1 - Encoding method, and decoding method - Google Patents

Encoding method, and decoding method Download PDF

Info

Publication number
WO2012014461A1
WO2012014461A1 PCT/JP2011/004234 JP2011004234W WO2012014461A1 WO 2012014461 A1 WO2012014461 A1 WO 2012014461A1 JP 2011004234 W JP2011004234 W JP 2011004234W WO 2012014461 A1 WO2012014461 A1 WO 2012014461A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
transformation
matrix
transformation matrix
signal
Prior art date
Application number
PCT/JP2011/004234
Other languages
French (fr)
Japanese (ja)
Inventor
陽司 柴原
西 孝啓
寿郎 笹井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012014461A1 publication Critical patent/WO2012014461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/156Availability of hardware or computational resources, e.g. encoding based on power-saving criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to audio encoding / decoding, still image encoding / decoding, or moving image encoding / decoding, and more particularly, to a method related to a process of converting a space-time domain signal vector to a frequency domain, and the methods.
  • the present invention relates to a program that causes a computer to execute.
  • H.264 ITU-T As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • MPEG-x As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • the latest video coding standard is H.264. H.264 / MPEG-4AVC.
  • FIG. 2 is a diagram showing processing for encoding these audio data and moving image data at a low bit rate.
  • the conversion unit 120 converts an input signal, which is various data, or a conversion input obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output with reduced correlation.
  • the quantization unit 130 quantizes the conversion output output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount.
  • the entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
  • an N-point vector (N-dimensional signal) input to the conversion unit 120 is a conversion input vector xn, and an output of a certain conversion T is a conversion output (Transform Output) vector.
  • y be n .
  • the transformation T can be expressed by a matrix product of a transformation matrix A of an N ⁇ N matrix and a transformation input vector x n as shown in Equation 2 and Equation 3.
  • the transformation matrix A is designed to reduce the correlation of input signals and concentrate low-dimensional energy.
  • a transformation matrix derivation method or transformation method called KLT Karhunen Loeve transform
  • KLT is a method for deriving an optimum transformation matrix based on the statistical properties of an input signal, or a transformation method using the derived optimum transformation matrix (refer to Non-Patent Document 1 for details).
  • KLT is known to eliminate the correlation of input signals completely and to concentrate energy to a low frequency most efficiently.
  • KLT has a problem that the amount of calculation becomes large.
  • the conversion to the frequency domain optimized for statistical properties in the conventional image encoding device and decoding device requires multiplication for conversion, and there is a problem that the amount of calculation for multiplication is large. It was.
  • the conversion using the conversion matrix calculated based on the statistical properties of the input signal has a problem that the amount of calculation is large and the number of elements of the conversion matrix is large.
  • the present invention has been made in view of such a problem, and an object thereof is to provide an encoding method and a decoding method capable of reducing the processing load by reducing the amount of calculation.
  • an encoding method includes a conversion step of performing frequency conversion on an input signal and generating a converted output signal having coefficient values of a plurality of frequency components, A quantization step for quantizing the transformed output signal to generate a quantized coefficient; and an entropy coding step for entropy coding the quantized coefficient to generate a coded signal, wherein the transforming step comprises the input signal
  • a first conversion step of performing a first frequency conversion using a first conversion matrix to generate a first conversion output signal and a frequency conversion as the first conversion output signal are performed.
  • a second conversion step of performing a second frequency conversion on the first partial signal constituting a part of the received signal using a second conversion matrix, and in the second conversion step, In-plane preparation A matrix obtained by matrix multiplication of an inverse matrix of the first transformation matrix to a transformation matrix of one-stage transformation designed based on a statistical model of signal error is used as the second transformation matrix. Used for second frequency conversion.
  • the decoding method of the present invention also performs entropy decoding on the encoded signal to generate a quantized coefficient, and dequantizes the quantized coefficient to generate a decoded transform output signal.
  • An inverse quantization step, and a second inverse transform is performed on the first partial signal constituting a part of the decoded transform output signal using a transform matrix of the second inverse transform, and the inverse transformed first
  • a second inverse transform step for generating one partial signal, the first partial signal that has been inversely transformed, and a second partial signal that has not been subjected to the second inverse transformation
  • a first inverse transform step for performing an inverse transform using a transform matrix for the first inverse transform, wherein the second inverse transform transform matrix is the first in the encoding method according to one aspect of the present invention.
  • 2 is an inverse matrix of two transformation matrices.
  • the encoded signal can be decoded with a small amount of computation and a small transformation matrix.
  • the present invention can be realized not only as such a decoding method or an encoding method, but also as a decoding device, an encoding device or an integrated circuit for performing processing according to the method, and processing according to the method.
  • the amount of computation of the transformation is reduced and the number of elements of the transformation matrix is reduced. Can do. Note that the number of elements of a matrix is a value obtained by multiplying the size of a matrix column and row, and is 16 for a 4 ⁇ 4 matrix.
  • FIG. 1 is a block diagram illustrating a conversion unit in the encoding apparatus according to the first embodiment.
  • FIG. 2 is a block diagram showing an AV data encoding process.
  • FIG. 3 is a conceptual diagram illustrating a data flow of the conversion unit according to the first embodiment.
  • FIG. 4 is a conceptual diagram illustrating a data flow of the conversion unit according to the first embodiment.
  • FIG. 5 is a flowchart of the conversion process according to the first embodiment.
  • FIG. 6 is a flowchart of the conversion process according to the first embodiment.
  • FIG. 7 is a block diagram showing a decoding process of the encoded signal.
  • FIG. 8 is a block diagram illustrating an inverse transform unit in the decoding apparatus according to the second embodiment.
  • FIG. 9A is a diagram conceptually illustrating a data flow of the inverse conversion unit of the second embodiment.
  • FIG. 9B is a diagram conceptually showing the data flow of the inverse transform unit in the second embodiment.
  • FIG. 9C is a diagram conceptually illustrating a data flow of the inverse transform unit in the second embodiment.
  • FIG. 10 is a flowchart of the inverse conversion process according to the second embodiment.
  • FIG. 11 is a flowchart of the inverse conversion process according to the second embodiment.
  • FIG. 12 is a block diagram of the encoding apparatus according to the third embodiment.
  • FIG. 13 is a block diagram of the decoding apparatus according to the third embodiment.
  • FIG. 14 is a diagram illustrating the transformation matrix of the fifth embodiment
  • [1] represents the transformation matrix A (four-point input, real number notation) of the fifth embodiment
  • [2] represents the fifth embodiment
  • [3] represents the transformation matrix D (4-point input, 8-bit precision notation) of Embodiment 5
  • [4] The transformation matrix E (four-point input, real number notation) of the fifth embodiment is shown
  • [5] represents the transformation matrix E (four-point input, eight-bit precision notation) of the fifth embodiment.
  • FIG. 15 is a diagram illustrating the transformation matrix of the fifth embodiment, [1] represents the transformation matrix E (four-point input, real number notation) of the fifth embodiment, and [2] represents the fifth embodiment.
  • FIG. 16 is a diagram illustrating the transformation matrix of the fifth embodiment
  • FIG. 17 is a diagram illustrating the transformation matrix of the fifth embodiment, [1] represents the transformation matrix A (eight-point input, real number notation) of the fifth embodiment, and [2] represents the fifth embodiment.
  • FIG. 18 is a diagram showing the transformation matrix of the fifth embodiment, [3] shows the transformation matrix D (8-point input, 8-bit precision notation) of the fifth embodiment, and [4] The transformation matrix E of form 5 (8-point input, real number notation) is shown.
  • FIG. 19 is a diagram illustrating a transformation matrix according to the fifth embodiment, and [5] represents a transformation matrix E (8-point input, 8-bit precision notation) according to the fifth embodiment.
  • FIG. 21 is a diagram illustrating the transformation matrix of the fifth embodiment
  • FIG. 22 is a diagram showing the transformation matrix of the fifth embodiment
  • FIG. 23 is a diagram conceptually illustrating target elements of the separation-type second conversion according to the sixth embodiment.
  • FIG. 24A is a diagram conceptually illustrating a non-separable second conversion target element (example of 10-point selection) according to the sixth embodiment.
  • FIG. 24B is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment.
  • FIG. 24C is a diagram conceptually illustrating a non-separable second conversion target element (example of three-point selection) according to the sixth embodiment.
  • FIG. 25A is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment.
  • FIG. 25B is an example of assigning an index indicating a correspondence relationship from the two-dimensional to the one-dimensional of the non-separable second transformation according to the sixth embodiment.
  • FIG. 26 shows a transformation matrix E (4 ⁇ 4 points input, 8-bit precision notation) according to the sixth embodiment.
  • FIG. 31A is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment.
  • FIG. 32A is a diagram conceptually illustrating a non-separable second conversion target element (example of three-point selection) according to the sixth embodiment.
  • FIG. 2 is a conceptual diagram of a relationship between a prediction mode number of H.264 / AVC prediction and an extrapolation angle.
  • FIG. 33B is a relationship table (part 1) between the method of deriving the transformation matrix G or the presence / absence of use and the prediction mode number according to the fourth to seventh embodiments.
  • FIG. 33C is a relationship table (part 2) between the method of deriving the transformation matrix G or the presence / absence of use and the prediction mode number in the fourth to seventh embodiments.
  • FIG. 34A is a flowchart for deriving the transformation matrix of the separation-type second transformation described in the fourth and fifth embodiments.
  • FIG. 34B is a flowchart of transform matrix derivation of the non-separable second transform described in the sixth embodiment.
  • FIG. 35 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 36 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 37 is a block diagram illustrating a configuration example of a television.
  • FIG. 38 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 39 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 40A is a diagram illustrating an example of a mobile phone.
  • FIG. 40B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 41 shows a structure of multiplexed data.
  • FIG. 42 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 43 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 40A is a diagram illustrating an example of a mobile phone.
  • FIG. 40B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 41 shows a structure
  • FIG. 44 is a diagram showing the structure of TS packets and source packets in multiplexed data.
  • FIG. 45 shows the data structure of the PMT.
  • FIG. 46 shows the internal structure of the multiplexed data information.
  • FIG. 47 shows the internal structure of stream attribute information.
  • FIG. 48 is a diagram showing steps for identifying video data.
  • FIG. 49 is a block diagram illustrating a configuration example of an integrated circuit that implements the moving picture encoding method and the moving picture decoding method according to each embodiment.
  • FIG. 50 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 51 is a diagram showing steps for identifying video data and switching between driving frequencies.
  • FIG. 52 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 53A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 53B is a diagram illustrating another example of a configuration for sharing
  • FIG. 1 is a diagram showing a configuration of a conversion unit in the encoding apparatus of the present invention.
  • the conversion unit 120 of the present invention divides the first conversion output into two parts, a first conversion output that performs a first conversion on a conversion input, and a signal that is not subjected to the second conversion, and a signal that is not a target.
  • the integration unit 230 is conceptually described in the sense that the signals that have been conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
  • This conversion target signal (Original Signal) or a prediction error signal that is a difference between this signal and a prediction signal created based on the previously input encoding target signal is used as a conversion input, and the first conversion unit 200 Is input.
  • a prediction error signal is often input as a conversion target. However, when prediction is not performed assuming that an error is mixed in the transmission path, or when energy is small, prediction is not performed.
  • An input signal is input as a conversion target.
  • Such a conversion input Transform Input
  • FIG. 3 is a diagram conceptually showing the data flow of the conversion unit 120 in the encoding apparatus of the present invention.
  • the first conversion unit 200 converts the input x n is alleviated correlation is converted into the first conversion output y 1 n, which concentrates the energy in the low frequency band.
  • the first conversion output y 1 n is divided into a first partial signal and a second partial signal by the second conversion target determination unit 210.
  • the division of the first partial signal and the second partial signal is performed based on the division integration information so that the correlation energy of the first partial signal is larger than the correlation energy of the second partial signal.
  • the division integration information is information that causes the second conversion target determination unit 210 to perform control to divide the low frequency band as the first part and the high frequency band as the second part.
  • the division integration information may be information instructing to dynamically control a component having a large energy to the first portion and a component having a small energy to the second portion according to the input.
  • the first partial signals divided as described above are rearranged in a one-dimensional manner by the second conversion target determining unit 210, the correlation is further reduced by the second conversion unit 220, and the energy is transferred to a lower frequency band.
  • the second conversion output y 2 n is rearranged in the dimension before being rearranged by the second conversion target determination unit 210, and is integrated with the second partial signal.
  • the second conversion target is illustrated as an arbitrary area, but is not limited thereto, and may be a rectangular area.
  • FIG. 4 shows a case where the second conversion has a non-separation type configuration, and when the second conversion has a separation type configuration, rearrangement to one dimension in division and integration is not performed.
  • the data flow shown in FIG. 4 is a conceptual diagram.
  • FIG. 5 is a flowchart of the conversion process in the conversion unit 120.
  • a first transformation matrix is determined based on the conversion input x n (step S101).
  • the first conversion unit 200 the first conversion is performed using the first transformation matrix determined (step S102).
  • division integration information is determined (step S103).
  • the division integration information is read from the memory of the encoding device or the like as long as it controls the second conversion target determination unit 210 to perform predetermined division.
  • the division integration information controls the second conversion target determination unit 210 to perform division according to the first conversion output, in view of the distribution of energy states based on the first conversion output. Derivation of division integration information.
  • the second conversion target determination unit 210 divides the data (step S108), and the second conversion unit 220 performs the second conversion based on the first partial signal.
  • a matrix is determined (step S105).
  • a second conversion is performed using the second transformation matrix determined (step S106).
  • the integration unit 230 the second conversion output and the divided second partial signal are integrated and output as a conversion output (step S107). Further, the entire operation of steps S101 to S107 in FIG. 5 is defined as step S100.
  • a predetermined transformation matrix and division integration information may be used, and the operation in that case is as shown in FIG.
  • the first conversion unit 200 performs the first conversion, determines the second conversion target from the first conversion output, performs the second conversion on a part of the determined conversion output, and performs the second conversion Generate conversion output.
  • the second conversion output and the portion of the first conversion output to which the second conversion is not applied are integrated to obtain the conversion output of the conversion process of the present embodiment.
  • the second conversion target determining unit 210 and the integrating unit 230 perform the rearrangement of the dimensions of the first partial signal and the second conversion output
  • the second conversion unit 220 performs the respective rearrangements.
  • the structure to perform may be sufficient.
  • the target of encoding is a one-dimensional signal such as speech data, or in separation-type processing of each dimension that can be regarded as one-dimensional signal processing
  • the conversion input x n input to the conversion unit 120 is Since it is one-dimensional, these rearrangement processes are unnecessary.
  • the processing of the second conversion target determination unit 210 and the integration unit 230 may be substantially replaced by the second conversion unit by setting the coefficient to zero. The same applies to the following embodiments.
  • FIG. 7 is a diagram illustrating a process of decoding audio data or moving image data from an encoded signal obtained by encoding audio data or moving image data at a low bit rate.
  • entropy decoding is performed on the encoded signal
  • inverse quantization is performed
  • inverse conversion is performed. This process is almost the reverse of the encoding process described with reference to FIG.
  • the inverse transform unit 150 of the present invention will be described in detail.
  • FIG. 8 is a diagram showing a configuration of the inverse transform unit 150 in the decoding device of the present invention.
  • the inverse transform unit 150 of the present invention includes a second inverse transform target determination unit 215 that divides the decoded transform input into two parts, a target to be subjected to the second inverse transform and a signal that is not the target.
  • a second inverse transform unit 260 that performs the second inverse transform on the converted output; and an integration unit 235 that integrates the decoded first part subjected to the second inverse transform and the divided decoded second part.
  • the integration unit 235 is conceptually described in the sense that the signals that are conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
  • An encoded signal obtained by encoding a signal such as a voice, a still image, or a moving image is input to the decoding device.
  • the encoded signal is entropy-decoded and the inversely quantized signal is input to the second inverse transform target determining unit 215 as a decoded transform output y ⁇ .
  • FIGS. 9A and 9B are diagrams conceptually showing the data flow of the inverse transform unit 150 in the decoding apparatus of the present embodiment.
  • the entropy decoding unit 240 decodes the decoded quantization coefficient from the encoded signal, and the inverse quantization unit 140 generates a decoded conversion output y ⁇ .
  • the decoded transformation output ⁇ is divided into two regions, and one decoded second transformation output ⁇ 2 of the region is subjected to the second inverse transformation by the second inverse transformation unit 260, and the decoded first part. Get.
  • the decoded second part y 2 H of the other region is not converted, but is integrated with the decoded first part to become the decoded first converted output y 1 , and the first inverse conversion unit 250 performs the first inverse. Conversion is performed.
  • the second inverse transform has a separable configuration, the second inverse transform target determining unit 215 and the integrating unit 235 do not need to rearrange them into one-dimensional signals.
  • the conceptual diagram of the data flow in this case is FIG. 9C.
  • FIG. 10 is a flowchart of the inverse transformation process in the inverse transformation unit 150.
  • the inverse transformation process will be described using these.
  • division integration information is acquired (step S201).
  • the decoded transform output y ⁇ described above is divided into a decoded second transform output including a low frequency band and a decoded second partial signal including a high frequency band (Ste S208).
  • the correlation energy of the decoded second converted output is larger than the correlation energy of the decoded second partial signal based on the division integration information. To be done.
  • the division integration information is the same as that described in the first embodiment, and the acquisition of division integration information may be read out in advance and stored in a memory or the like, or dynamically according to the decoding conversion output It may be decided to.
  • the decoded second conversion output divided as described above is rearranged one-dimensionally by the second inverse conversion target determination unit 215 and input to the second inverse conversion unit 260.
  • the transformation matrix (transformation coefficient) of the inverse transformation performed by the second inverse transformation unit 260 is the inverse matrix of the transformation matrix of the second transformation described in the first embodiment or a matrix approximated thereto.
  • the inverse transformation matrix is obtained based on the set SD including the decoded second transformation output using, for example, KLT as in the first embodiment (step S203).
  • the second inverse transformation unit 260 performs the second inverse transformation of the decoded second transformation output using the transformation matrix obtained in this way, and outputs the decoded first partial signal (step S204).
  • the decoded first partial signal is rearranged in the dimension before being rearranged by the second inverse transformation target determining unit 215, integrated with the decoded second partial signal, and the decoded first converted output y ⁇ 1 is input to the first inverse transform unit 250 (step S205).
  • the inverse transformation matrix performed by the first inverse transformation unit 250 is the inverse matrix of the first transformation described in the first embodiment or a matrix approximated thereto.
  • the inverse transformation matrix is obtained based on the set S E including the decoded first transformation output ⁇ 1 using, for example, KLT as in the first embodiment (step S206).
  • the first inverse transform of the decoded first transform output y ⁇ 1 is performed using the transformation matrix thus obtained, and the decoded transform input x ⁇ is output. (Step S207). Further, the entire operation from step S201 to step S207 in FIG.
  • the set S D and the set S E are in the relationship between the set S C and the set S A of the first embodiment, and the set D is a smaller set that includes fewer samples than the set E.
  • the decoding apparatus provided with the inverse transform unit 150 according to the present embodiment can achieve both high-efficiency conversion and reduction of the calculation amount and the data amount as in the first embodiment.
  • the second inverse transformation target determination unit 215 and the integration unit 235 rearrange the dimensions of the decoded second conversion output and the decoded first partial signal.
  • the structure performed in the conversion part 260 may be sufficient. That is, a separation type conversion may be used, or a conversion including a zero coefficient may be used.
  • the decoding target is a one-dimensional signal such as speech data or a multi-dimensional signal configured as a separate type
  • a signal of each dimension can be regarded as a one-dimensional signal, so that the decoded conversion output y ⁇ input to the inverse conversion unit 155 Is one-dimensional, and the above-described dimension rearrangement (rearrangement to the one-dimensional signal in the second inverse transformation target determination unit 215 and rearrangement to the original dimension in the integration unit) becomes unnecessary.
  • the decoded conversion output, the decoded conversion input, the decoded signal, and the prediction signal are P-dimensional signals (P is an integer of 2 or more). That is, the decoding conversion output, the decoding second part, the decoding first conversion output, and the decoding conversion input are P-dimensional signals.
  • the second inverse transform unit 260 may be either for inputting / outputting a P-dimensional signal or for inputting / outputting a one-dimensional signal.
  • the second inverse transformation target determination unit 215 divides the P-dimensional signal into a decoded second converted output and a decoded second part according to the division integration information, and further rearranges the decoded second converted output into one dimension. Rearrangement order information is additionally stored in the division integration information.
  • the integration unit 235 integrates the decoded first part and the decoded second part according to the division integration information, and generates a conversion output. At this time, the integration unit 235 rearranges the decoded first part, which is a one-dimensional signal, into a P-dimensional signal based on the rearrangement information stored in the division integration information, and then integrates the first part.
  • the second inverse transform unit 260 may input / output P-dimensional signals and do not rearrange them into one-dimensional signals.
  • a conceptual diagram of the data flow is shown in FIG. 9B.
  • the second inverse conversion unit 260 may be a separation type (two-stage conversion in the horizontal axis direction and the vertical axis direction), and the conceptual diagram of the data flow in this case is FIG. 9C.
  • Inverse conversion is performed in units of rows in the horizontal direction, and inverse conversion is performed in units of columns in the vertical direction. The order of horizontal and vertical may be reversed. Since the conversion in units of one row or column with the number of elements is equivalent to not performing substantial processing, the processing may be skipped, or the norm correction processing in the subsequent stage may be performed here.
  • the transformation matrices for the row transformation and the inverse transformation of the column transformation may be the same or different.
  • the transformation matrix of row transformation may reduce the data volume of the transformation matrix by using the same transformation matrix for all rows, or adapt to the difference in statistical properties by row by using different transformation matrices for each row. The conversion performance may be improved.
  • the column transformation is the same as the row transformation, and the same transformation matrix may be used for all the columns, or different transformation matrices may be used.
  • the transformation matrix and the division integration information may be switched according to the prediction mode of in-plane prediction or inter-plane prediction. Or you may explicitly multiplex to an encoding stream which is selected from the set of a some conversion matrix and division
  • a plurality of prediction modes may be associated with one transformation matrix and the division integration information. Since the division integration information is information with relatively little change, the type of switching may be less than the conversion matrix to reduce the memory usage related to the division integration information.
  • FIG. 12 is a block diagram of the encoding apparatus according to the present embodiment.
  • the encoding apparatus according to the present embodiment selects one transformation matrix from a plurality of transformation matrices determined in advance according to the type information (prediction mode) of the prediction method.
  • the prediction control unit determines a prediction mode signal, outputs it to the prediction unit, and outputs it to the local set determination unit 223.
  • the local set determination unit 223 outputs a selection signal for selecting a predetermined transformation matrix and division integration information based on the prediction mode signal.
  • the memory Based on the selection signal, the memory outputs a predetermined conversion matrix and division integration information to the second conversion unit 220.
  • the prediction mode signal is subjected to entropy coding and multiplexed into a coded signal by compressing the amount of information, for example, by taking a difference between estimated values from information of neighboring blocks in a prediction mode signal coding unit.
  • the local set determination unit 223 may output a derivation control signal that instructs the second transformation matrix derivation unit 222 to derive a new transformation matrix and division integration information.
  • the new derivation result is stored in the memory.
  • the new transformation matrix and the division integration information are compressed in the amount of information in the transformation matrix and division integration information encoding, entropy encoded in the entropy encoding unit 190, and multiplexed into the encoded signal.
  • the conversion matrix of the second conversion and the division integration information may be switched according to the size of the conversion input.
  • the prediction may be inter-frame prediction or intra-frame prediction.
  • the intra-frame prediction may be a method of performing prediction by extrapolating code-encoded (decoded) neighboring pixels in a predetermined direction.
  • FIG. 13 is a block diagram of the decoding apparatus according to the present embodiment.
  • the decoding apparatus according to the present embodiment inversely converts a predetermined transformation matrix and division integration information based on a prediction signal decoded from an encoded signal.
  • the entropy decoding unit extracts the compressed prediction mode signal subjected to entropy decoding from the encoded signal, and decodes the prediction mode signal in combination with the estimated value from the information of the neighboring blocks.
  • the prediction mode signal is output to the prediction unit, and the prediction unit generates a prediction signal.
  • the prediction mode signal is sent to the selection signal determination unit, and the selection signal determination unit outputs a selection signal for selecting the transformation matrix and the division integration information corresponding to the prediction mode signal.
  • the selection signal is output to a memory for storing a transformation matrix for inverse transformation and a memory for storing division integration information. From each memory, the transformation matrix for the second inverse transformation and the division integration information are converted into the present embodiment. Is output to the inverse transform unit 150.
  • the conversion coefficient (conversion matrix) C of the second conversion of the present embodiment is derived from the conversion matrix C or R of the one-stage separation type conversion expressed by the following equation 5 and the conversion coefficient D of the first conversion. Is done.
  • FIG. 34A shows a flowchart of the transformation matrix derivation operation of the second transformation in the present embodiment.
  • C is vertical conversion and R is horizontal conversion.
  • C and R are defined based on the characteristics and model of the input signal, and D is determined as a transform with a small number of multiplications such as discrete cosine transform (DCT) and a low amount of calculation.
  • DCT discrete cosine transform
  • a transformation matrix E of two-stage transformation is derived as shown in the following formula 6 (step S402).
  • the matrix A is the transformation matrix C or R of the above-described one-stage transformation
  • the transformation matrix E of the two-stage transformation is derived by multiplying the matrix A by inv (B) that is an inverse matrix of B.
  • inv (B) is a B shift matrix.
  • the discrete cosine transform is one of normal matrices.
  • the conversion coefficients of B and A are N ⁇ N
  • E is also N ⁇ N.
  • the transformation matrix F ij after extraction is as shown in Equation 7,
  • the extraction means that it is a target of the second conversion of the two-stage conversion.
  • the transformation matrix G of the separation type second transformation of the two-stage transformation designed by the method shown here reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy. Therefore, equivalent conversion performance can be obtained with a small amount of calculation.
  • the conversion matrix having a size of 4 ⁇ 4 has the value indicated by [1] in FIG. When this is represented by an integer of 8-bit precision, it is [2] in FIG.
  • the 8-bit integer value of the transform matrix of the first transform is [3] in FIG.
  • the transformation matrix E of the second transformation of the two-stage transformation is [4] in FIG.
  • the 8-bit integer value of E is [5] in FIG.
  • the norm correction at the time of extraction will be described with reference to FIG.
  • the transformation matrix E of the second transformation before extraction is [1] in FIG. 15 (the same as [4] in FIG. 14).
  • the norm N (E) of each regulation is shown on the right side.
  • the same value is obtained because a discrete cosine transform with a uniform norm is used. If two points on the low frequency side are extracted from this, [2] in FIG. 15 is obtained.
  • the norm N (F) after extraction is similarly shown on the right side.
  • the result is [3] in FIG.
  • the transformation matrix G of the second transformation after the correction of Expression 11 is [4] in FIG.
  • [5] in FIG. 15 is obtained.
  • Fig. 16 shows an example in which three low-frequency points are extracted.
  • the transformation matrix F extracted from the three low frequency points is [2] in FIG.
  • the 8-bit integer notation is [3] in FIG.
  • the transformation matrix G after the norm correction is [4] in FIG.
  • the 8-bit integer notation is [5] in FIG.
  • the transformation matrix A described in Equation 12 having a size of 8 ⁇ 8 will be described.
  • the transformation matrix A is [1] in FIG.
  • the 8-bit integer notation is [2] in FIG.
  • the 8-bit notation of 8 ⁇ 8 discrete cosine transform is [3] in FIG.
  • the transformation matrix of the second transformation of the two-stage transformation is [4] in FIG.
  • the 8-bit notation is [5] in FIG.
  • FIG. 20 shows an example in which six points on the low frequency side are extracted.
  • a transformation matrix F obtained by extracting 6 points on the low frequency side is [2] in FIG.
  • the 8-bit integer notation is [3] in FIG.
  • the transformation matrix G after the norm correction is [4] in FIG.
  • the 8-bit integer notation is [5] in FIG.
  • Fig. 21 shows an example when 5 points on the low frequency side are extracted.
  • a transformation matrix F obtained by extracting five points on the low frequency side is [2] in FIG.
  • the 8-bit integer notation is [3] in FIG.
  • the transformation matrix G after norm correction is [4] in FIG.
  • the 8-bit integer notation is [5] in FIG.
  • FIG. 22 shows an example in which four low-frequency points are extracted.
  • the transformation matrix F extracted from the four low frequency points is [2] in FIG.
  • the 8-bit integer notation is [3] in FIG.
  • the transformation matrix G after the norm correction is [4] in FIG.
  • the 8-bit integer notation is [5] in FIG.
  • the separation-type second conversion matrix shown in FIGS. 14 to 22 in the present embodiment is an example in which the conversion matrix A is a vertical conversion matrix.
  • the conversion matrix of the vertical conversion of the second conversion in this example is optimized for the vertical conversion of the vertical mode (0 in FIG. 33A) of the in-plane prediction mode, and also for the vertical conversion of modes 5 and 7 having close angles. Applicable.
  • the power can be concentrated to a lower frequency side substantially sufficiently than the DCT of the first conversion, and the horizontal conversion of the second conversion may not be performed.
  • the horizontal conversion of the second conversion in the vertical mode 0 may not be performed.
  • a statistically optimal transformation may be derived from the prediction error and applied.
  • the same transformation matrix of the vertical transformation of the second transformation can be used for the horizontal mode (1 in FIG. 33A) of the in-plane prediction mode, and is optimized. It is also applicable to horizontal conversion in modes 8 and 6 having close angles.
  • the vertical conversion in the horizontal mode (mode 1) the power is sufficiently concentrated by the first conversion, and the vertical conversion in the second conversion may not be performed. For the same reason, the vertical conversion of modes 8 and 6 having close angles may not be performed.
  • a statistically optimal transformation may be derived from the prediction error and applied.
  • the second conversion matrix G shown in the present embodiment may be applied to the second horizontal conversion and the second vertical conversion.
  • FIG. 33B summarizes the relationship between the selection of D and G and the prediction mode.
  • the selection shown in FIG. 33C may be used.
  • the conversion matrix described in this embodiment is an example, and may have slightly different values due to differences in the accuracy of the conversion matrix.
  • the numerical value in 8-bit notation is an example, and is not limited to 8 bits.
  • the extraction is a representative example, and is not limited to the number of extractions or the extraction positions described here.
  • the conversion size of 4 points or 8 points is an example and is not limited to this. Use of the vicinity of the numerical value shown in this example is not denied due to the accuracy of the expression of the transformation matrix.
  • H. When using H.264 / AVC integer precision conversion, the norm may be corrected. The norm correction is not performed with sufficient accuracy due to the accuracy of calculation accuracy, and the first transformation may be assumed to have an irregular norm. In that case, the irregularity is converted to the transformation matrix of the second transformation. Weighting for correction may be added.
  • the transformation matrix G of the separation-type second transformation of the two-stage transformation shown in the present embodiment reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy. Therefore, equivalent conversion performance can be obtained with a small amount of calculation.
  • the second transformation in the present embodiment has a non-separable configuration, and the derivation of the transformation matrix of the second transformation shown in the fourth and fifth embodiments is similarly applied.
  • FIG. 34B shows a flowchart of the operation of deriving the transformation matrix of the second transformation in the present embodiment.
  • the encoding apparatus according to the present embodiment derives a matrix H in which a matrix operation result obtained by using the transformation matrix A and the discrete cosine transformation as horizontal transformation or vertical transformation is expanded into a separation type.
  • the horizontal / vertical low frequency side is extracted (the upper left is extracted in a triangle), and the same non-separation type is performed by performing correction processing similar to the norm correction described in the fourth and fifth embodiments.
  • a transformation matrix of the second transformation is derived and transformation is performed.
  • FIG. 23 is a conceptual diagram of a data flow in the case of performing horizontal conversion GH and vertical conversion Gv in which processing is performed on three out of four points in the separation type two-stage conversion.
  • the element marked with “X” is the target position for the second conversion, and the element marked with “1” means not targeted.
  • 24A to 24C show examples of conversion targets in the non-separable second conversion.
  • FIG. 24A is an example in which the upper left 10 are the targets of the second conversion.
  • FIG. 24B is an example of 6 points
  • FIG. 24C is an example of 3 points.
  • the output of the first transformation of the prediction error signal (transformation input) is concentrated in the upper left triangular element as in these examples. Tend. Therefore, selection as in these examples can exhibit high conversion performance with a small amount of computation (reducing the number of elements of the conversion matrix of the second conversion).
  • FIG. 25A is an example in which the target position of the two-stage conversion is indicated by X.
  • FIG. 25B is an example in which numbers (indexes) are assigned to elements in raster order. The order of assigning numbers may be in the order of energy, but is assumed to be a raster for simplicity of explanation.
  • the four-point transformation matrix A is a vertical transformation matrix and the four-point DCT is a horizontal transformation matrix
  • the transformation matrix E is as shown in FIG. 26 (8-bit integer notation).
  • FIG. 27 is a transformation matrix F of the non-separable two-stage transformation in the case of extracting the top 10 pieces shown in FIG. 24A (8-bit precision notation).
  • FIG. 28 shows a transformation matrix G after norm correction (8-bit precision notation).
  • FIG. 29 is another notation of F in FIG. 27 described above.
  • the elements that are not subject to the two-step conversion are indicated by a notation having 256 on the diagonal and 0 on the other than the diagonal. Even if matrix multiplication is performed with this matrix, the same result as the transformation matrix shown in FIG. 27 is obtained.
  • FIG. 30 shows another notation of the transformation matrix G after norm correction.
  • FIG. 31A to FIG. 31C are examples in the case where the upper left six points shown in FIG. 31A are the targets of the second conversion.
  • FIG. 31B shows a transformation matrix F before norm correction
  • FIG. 31C shows a transformation matrix G after norm correction.
  • 32B and 32C are examples of transformation matrices in the case where the upper left three points shown in FIG. 32A are to be subjected to the second transformation.
  • FIG. 32B shows a transformation matrix F before norm correction
  • FIG. 32C shows a transformation matrix G after norm correction.
  • the transformation matrix of the second transformation shown so far in the present embodiment is a case where the 4-point transformation matrix A is a vertical transformation matrix and the 4-point DCT is a horizontal transformation matrix.
  • the transformation matrix in this example is optimized for the vertical mode (0 in FIG. 33A) of the in-plane prediction mode, and can also be applied to modes 5 and 7 having close angles.
  • the in-plane prediction mode is set to the horizontal mode (FIG. 33A).
  • the transformation matrix (E, F, G) of the second transformation optimized to 1) is obtained. It is also applicable to modes 8 and 6 having close angles.
  • a specific numerical example of the transformation matrix is obtained by transposing the transformation matrices E, F, and G shown in FIGS.
  • Two transformation matrices (E, F, G) are obtained.
  • the numerical value in 8-bit notation is an example and is not limited to 8 bits.
  • the extraction is a representative example, and is not limited to the number of extractions or the extraction positions described here.
  • the conversion size of 4 points is an example and is not limited to this. Use of the vicinity of the numerical value shown in this example is not denied due to the accuracy of the expression of the transformation matrix.
  • H. When using H.264 / AVC integer precision conversion, the norm may be corrected. The norm correction is not performed with sufficient accuracy due to the accuracy of calculation accuracy, and the first transformation may be assumed to have an irregular norm. In that case, the irregularity is converted to the transformation matrix of the second transformation. Weighting for correction may be added.
  • the transformation matrix G of the non-separable second transformation of the two-stage transformation shown in the present embodiment accurately reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements. Therefore, equivalent conversion performance can be obtained with a small amount of calculation. This is particularly effective for a prediction error signal for in-plane prediction in which extrapolation is performed at a predetermined angle.
  • the decoding apparatus is the inverse of the transformation matrix G of the second transformation derived in the fourth to sixth embodiments with the transform coefficient of the second inverse transformation in the decoding apparatus of the first to third embodiments.
  • the matrix invG is used.
  • the transformation matrix of the second transformation is a normal matrix
  • the inverse matrix invG is a transposed matrix GT.
  • InvG and G may have different effective bit lengths for convenience of calculation accuracy.
  • G may be G ′ of the inverse matrix of invG.
  • the transformation matrix invG of the second inverse transformation of the two-stage transformation shown in the present embodiment reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy.
  • the equivalent conversion performance can be obtained with a small amount of calculation. This is particularly effective for a prediction error signal for in-plane prediction in which extrapolation is performed at a predetermined angle.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • FIG. 35 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, an LTE (Long Terminal Evolution) system, an HSPA ( High-speed-Packet-Access) mobile phone or PHS (Personal-Handyphone System), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • W-CDMA Wideband-Code Division Multiple Access
  • LTE Long Terminal Evolution
  • HSPA High-speed-Packet-Access
  • PHS Personal-Handyphone System
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • At least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments.
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 37 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 38 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary.
  • the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 includes, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 39 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG.
  • FIG. 40A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments.
  • the encoded video data is sent to the multiplexing / separating unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data is multiplexed with video data is received and transmitted.
  • character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 41 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 42 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 43 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 43 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 44 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • source packets are arranged in the multiplexed data, and a number incremented from the head of the multiplexed data is called an SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 45 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 48 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 49 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 50 shows a configuration ex800 in the present embodiment.
  • Driving frequency switching unit ex803 includes, video data, if they were generated by the moving picture coding method or apparatus described in each of embodiments, set high driving frequency. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • video data when the video data conforms to the conventional standard, compared with the case where the video data are those generated by the moving picture coding method or apparatus described in each of embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 of FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to.
  • the drive frequency control unit ex512 sets the drive frequency.
  • the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the ninth embodiment.
  • the identification information is not limited to that described in Embodiment 9, and any information that can identify which standard the video data conforms to may be used. For example, one in which video data is available to the television, based on the external signal identifying and whether it is intended to be utilized in the disk can be identified or are those to which standard the video data conforms In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG.
  • a look-up table, buffer ex508 and may be stored in an internal memory of an LSI, and by CPUex502 refers to the look-up table, it is possible to select the drive frequency.
  • FIG. 51 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • step ExS201 identifying the CPU ex 502, whether the image data based on the identification information is one that was generated by the encoding method or apparatus described in each of embodiments.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • the CPU ex502 drives the signal for setting the drive frequency low in step exS203. This is sent to the frequency control unit ex512. Then, the driving frequency control unit ex 512, compared with the case where the video data were generated by the encoding method or apparatus described in each of embodiments is set to a lower drive frequency.
  • the voltage applied to the apparatus including the LSI ex 500 or LSI ex 500 by changing the voltage applied to the apparatus including the LSI ex 500 or LSI ex 500, it is possible to enhance the power saving effect.
  • the drive frequency when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1
  • the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped.
  • the CPUex 502 is temporarily stopped because there is a margin in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 53A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used.
  • ex1000 in FIG. 53B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the moving picture decoding method of the present invention the processing contents to be shared by the moving picture decoding method of the conventional standard, by sharing the decoding processing unit, to reduce the circuit scale of LSI, and cost It is possible to reduce.
  • the decoding method and the encoding method according to the present invention have an effect that the processing load can be reduced by reducing the amount of calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

In an encoding method capable of reducing processing load by reducing the amount of computation, a first frequency transform is carried out on an input signal using a first transform matrix, a first transform output signal is generated, and a second frequency transform is carried out on a first partial signal forming a part of the first transform output signal using a second transform matrix. The second transform matrix used in the second frequency transform is a matrix obtained by the matrix multiplication inverse matrix of the first transform matrix by the transform matrix of a one-stage transform designed on the basis of a statistical model of the errors in a planar prediction signal.

Description

符号化方法および復号化方法Encoding method and decoding method
 本発明は、オーディオ符号・復号化、静止画像符号・復号化、または動画像符号・復号化に関し、特に、時空間ドメインの信号ベクトルを周波数ドメインへ変換する処理に関する方法に関する、及び、それらの方法をコンピュータに実行させるプログラムに関する。 The present invention relates to audio encoding / decoding, still image encoding / decoding, or moving image encoding / decoding, and more particularly, to a method related to a process of converting a space-time domain signal vector to a frequency domain, and the methods. The present invention relates to a program that causes a computer to execute.
 音声データや動画像データを圧縮するために、複数の音声符号化規格、動画像符号化規格が開発されてきた。動画像符号化規格の例として、H.26xと称されるITU-T規格やMPEG-xと称されるISO/IEC規格が挙げられる。最新の動画像符号化規格は、H.264/MPEG-4AVCと称される規格である。 In order to compress voice data and moving picture data, a plurality of voice coding standards and moving picture coding standards have been developed. As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x. The latest video coding standard is H.264. H.264 / MPEG-4AVC.
 図2は、これらの音声データや動画像データを低ビットレートで符号化するための処理について示した図である。変換部120は、各種データである入力信号もしくは入力信号に何らかの処理を加えた変換入力を時空間ドメインから周波数ドメインへ変換し、相関を軽減した変換出力を出力する。量子化部130は、変換部120から出力された変換出力を量子化し、総データ量の少ない量子化係数を出力する。エントロピー符号化部190は、量子化部130から出力された量子化係数を、エントロピー符号化アルゴリズムを用いて符号化し、残りのデータを圧縮した符号化信号を出力する。 FIG. 2 is a diagram showing processing for encoding these audio data and moving image data at a low bit rate. The conversion unit 120 converts an input signal, which is various data, or a conversion input obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output with reduced correlation. The quantization unit 130 quantizes the conversion output output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount. The entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal obtained by compressing the remaining data.
 この変換部120における変換処理について詳細に説明する。以下の式1に示すように、変換部120へ入力されるN点のベクトル(N次元信号)を変換入力(Transform Input)ベクトルxとし、ある変換Tの出力を変換出力(Transform Output)ベクトルyとする。 The conversion process in the conversion unit 120 will be described in detail. As shown in the following Expression 1, an N-point vector (N-dimensional signal) input to the conversion unit 120 is a conversion input vector xn, and an output of a certain conversion T is a conversion output (Transform Output) vector. Let y be n .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 変換Tが線形変換であるとすると、式2および式3に示すように、変換Tは、N×N行列の変換行列Aと変換入力ベクトルxとの行列積で表現できる。 Assuming that the transformation T is a linear transformation, the transformation T can be expressed by a matrix product of a transformation matrix A of an N × N matrix and a transformation input vector x n as shown in Equation 2 and Equation 3.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 変換行列Aは入力信号の相関を軽減し低次元エネルギーが集中するように設計される。この変換行列Aの設計にあたり、KLT(Karhunen Loeve transform)という変換行列導出方法、又は変換方法が知られている。KLTは、入力信号の統計的性質に基づいて、最適な変換行列を導出する方法、あるいは、その導出した最適な変換行列を用いた変換方法である(詳細は非特許文献1を参照)。KLTは入力信号の相関性を完全に無くし、最も効率良くエネルギーを低域へ集中させることができるとして知られている。 The transformation matrix A is designed to reduce the correlation of input signals and concentrate low-dimensional energy. In designing the transformation matrix A, a transformation matrix derivation method or transformation method called KLT (Karhunen Loeve transform) is known. KLT is a method for deriving an optimum transformation matrix based on the statistical properties of an input signal, or a transformation method using the derived optimum transformation matrix (refer to Non-Patent Document 1 for details). KLT is known to eliminate the correlation of input signals completely and to concentrate energy to a low frequency most efficiently.
 しかしながら、KLTには演算量が大きくなるという問題がある。つまり、従来の画像符号化装置及び復号化装置における、統計的な性質に最適化された周波数ドメインへの変換は、変換に乗算が必要であり、乗算のための演算量が大きいという課題があった。言い換えれば、入力信号の統計的性質に基づき計算される変換行列を用いる変換には、演算量が多い、及び、変換行列の要素数が多いという課題がある。 However, KLT has a problem that the amount of calculation becomes large. In other words, the conversion to the frequency domain optimized for statistical properties in the conventional image encoding device and decoding device requires multiplication for conversion, and there is a problem that the amount of calculation for multiplication is large. It was. In other words, the conversion using the conversion matrix calculated based on the statistical properties of the input signal has a problem that the amount of calculation is large and the number of elements of the conversion matrix is large.
 そこで、本発明は、かかる問題に鑑みてなされたものであって、演算量を抑えて処理負担を軽減することができる符号化方法および復号化方法を提供することを目的とする。 Therefore, the present invention has been made in view of such a problem, and an object thereof is to provide an encoding method and a decoding method capable of reducing the processing load by reducing the amount of calculation.
 上記課題を解決するために、本発明の一態様に係る符号化方法は、入力信号に対して周波数変換を行い、複数の周波数成分の係数値を有する変換出力信号を生成する変換ステップと、前記変換出力信号を量子化して量子化係数を生成する量子化ステップと、前記量子化係数をエントロピー符号化して符号化信号を生成するエントロピー符号化ステップと、を含み、前記変換ステップは、前記入力信号に対して、第1の変換行列を用いて第1の周波数変換を行い、第1の変換出力信号を生成する第1の変換ステップと、前記第1の変換出力信号である周波数変換が行われた信号の一部を構成する第1の部分信号に対して、第2の変換行列を用いて第2の周波数変換を行う第2の変換ステップと、を含み、前記第2の変換ステップでは、面内予測信号の誤差の統計的なモデルに基づいて設計された1段階の変換の変換行列に、前記第1の変換行列の逆行列を行列乗算して得られる行列を、前記第2の変換行列として前記第2の周波数変換に用いる。 In order to solve the above problem, an encoding method according to an aspect of the present invention includes a conversion step of performing frequency conversion on an input signal and generating a converted output signal having coefficient values of a plurality of frequency components, A quantization step for quantizing the transformed output signal to generate a quantized coefficient; and an entropy coding step for entropy coding the quantized coefficient to generate a coded signal, wherein the transforming step comprises the input signal On the other hand, a first conversion step of performing a first frequency conversion using a first conversion matrix to generate a first conversion output signal and a frequency conversion as the first conversion output signal are performed. A second conversion step of performing a second frequency conversion on the first partial signal constituting a part of the received signal using a second conversion matrix, and in the second conversion step, In-plane preparation A matrix obtained by matrix multiplication of an inverse matrix of the first transformation matrix to a transformation matrix of one-stage transformation designed based on a statistical model of signal error is used as the second transformation matrix. Used for second frequency conversion.
 上記構成によれば、次元数を低減した第2の変換ステップを用いることで、演算量の削減と変換行列の総数の削減が可能となる。 According to the above configuration, it is possible to reduce the amount of calculation and the total number of transformation matrices by using the second transformation step with a reduced number of dimensions.
 また、本発明の復号化方法は、符号化信号に対してエントロピー復号化を行い、量子化係数を生成するエントロピー復号化ステップと、前記量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換行列を用いて第2の逆変換を行い、逆変換された第1の部分信号を生成する第2の逆変換ステップと、前記逆変換された第1の部分信号と、前記第2の逆変換を行わなかった部分である第2の部分信号とを一括して、第1の逆変換の変換行列を用いて逆変換を行う、第1逆変換ステップとを含み、前記第2の逆変換の変換行列は、上記本発明の一態様に係る符号化方法における第2の変換行列の逆行列である。 The decoding method of the present invention also performs entropy decoding on the encoded signal to generate a quantized coefficient, and dequantizes the quantized coefficient to generate a decoded transform output signal. An inverse quantization step, and a second inverse transform is performed on the first partial signal constituting a part of the decoded transform output signal using a transform matrix of the second inverse transform, and the inverse transformed first A second inverse transform step for generating one partial signal, the first partial signal that has been inversely transformed, and a second partial signal that has not been subjected to the second inverse transformation, And a first inverse transform step for performing an inverse transform using a transform matrix for the first inverse transform, wherein the second inverse transform transform matrix is the first in the encoding method according to one aspect of the present invention. 2 is an inverse matrix of two transformation matrices.
 上記構成によれば、少ない演算量と少ない変換行列で符号化信号を復号化することができる。 According to the above configuration, the encoded signal can be decoded with a small amount of computation and a small transformation matrix.
 なお、本発明は、このような復号化方法または符号化方法として実現することができるだけでなく、その方法にしたがった処理を行う復号化装置、符号化装置あるいは集積回路、その方法にしたがった処理をコンピュータに実行させるプログラム、または、そのプログラムを格納する記録媒体としても実現することができる。 The present invention can be realized not only as such a decoding method or an encoding method, but also as a decoding device, an encoding device or an integrated circuit for performing processing according to the method, and processing according to the method. Can also be realized as a program that causes a computer to execute the program or a recording medium that stores the program.
 本発明の符号化方法又は復号化方法により、入力信号の統計的性質に基づいて計算される変換行列を用いる変換において、変換の演算量の削減、及び、変換行列の要素数の削減をすることができる。なお、行列の要素数とは行列の列と行の大きさを乗じた値であり、4x4の行列であれは16である。 In the transformation using the transformation matrix calculated based on the statistical properties of the input signal by the encoding method or decoding method of the present invention, the amount of computation of the transformation is reduced and the number of elements of the transformation matrix is reduced. Can do. Note that the number of elements of a matrix is a value obtained by multiplying the size of a matrix column and row, and is 16 for a 4 × 4 matrix.
図1は、実施の形態1の符号化装置における変換部を示すブロック図である。FIG. 1 is a block diagram illustrating a conversion unit in the encoding apparatus according to the first embodiment. 図2は、AVデータの符号化処理を示すブロック図である。FIG. 2 is a block diagram showing an AV data encoding process. 図3は、実施の形態1の変換部のデータフローを示す概念図である。FIG. 3 is a conceptual diagram illustrating a data flow of the conversion unit according to the first embodiment. 図4は、実施の形態1の変換部のデータフローを示す概念図である。FIG. 4 is a conceptual diagram illustrating a data flow of the conversion unit according to the first embodiment. 図5は、実施の形態1の変換処理のフローチャートである。FIG. 5 is a flowchart of the conversion process according to the first embodiment. 図6は、実施の形態1の変換処理のフローチャートである。FIG. 6 is a flowchart of the conversion process according to the first embodiment. 図7は、符号化信号の復号化処理を示すブロック図である。FIG. 7 is a block diagram showing a decoding process of the encoded signal. 図8は、実施の形態2の復号化装置における逆変換部を示すブロック図である。FIG. 8 is a block diagram illustrating an inverse transform unit in the decoding apparatus according to the second embodiment. 図9Aは、実施の形態2の逆変換部のデータフローを概念的に示す図である。FIG. 9A is a diagram conceptually illustrating a data flow of the inverse conversion unit of the second embodiment. 図9Bは、実施の形態2の逆変換部のデータフローを概念的に示す図である。FIG. 9B is a diagram conceptually showing the data flow of the inverse transform unit in the second embodiment. 図9Cは、実施の形態2の逆変換部のデータフローを概念的に示す図である。FIG. 9C is a diagram conceptually illustrating a data flow of the inverse transform unit in the second embodiment. 図10は、実施の形態2の逆変換処理のフローチャートである。FIG. 10 is a flowchart of the inverse conversion process according to the second embodiment. 図11は、実施の形態2の逆変換処理のフローチャートである。FIG. 11 is a flowchart of the inverse conversion process according to the second embodiment. 図12は、実施の形態3の符号化装置のブロック図である。FIG. 12 is a block diagram of the encoding apparatus according to the third embodiment. 図13は、実施の形態3の復号化装置のブロック図である。FIG. 13 is a block diagram of the decoding apparatus according to the third embodiment. 図14は、実施の形態5の変換行列を示す図であり、[1]は、実施の形態5の変換行列A(4点入力、実数表記)を示し、[2]は、実施の形態5の変換行列A(4点入力、8ビット精度表記)を示し、[3]は、実施の形態5の変換行列D(4点入力、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列E(4点入力、実数表記)を示し、[5]は、実施の形態5の変換行列E(4点入力、8ビット精度表記)を示す。FIG. 14 is a diagram illustrating the transformation matrix of the fifth embodiment, [1] represents the transformation matrix A (four-point input, real number notation) of the fifth embodiment, and [2] represents the fifth embodiment. [3] represents the transformation matrix D (4-point input, 8-bit precision notation) of Embodiment 5, and [4] The transformation matrix E (four-point input, real number notation) of the fifth embodiment is shown, and [5] represents the transformation matrix E (four-point input, eight-bit precision notation) of the fifth embodiment. 図15は、実施の形態5の変換行列を示す図であり、[1]は、実施の形態5の変換行列E(4点入力、実数表記)を示し、[2]は、実施の形態5の変換行列F(第2変換の対象要素=2、実数表記)を示し、[3]は、実施の形態5の変換行列F(第2変換の対象要素=2、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列G(第2変換の対象要素=2、実数表記)を示し、[5]は、実施の形態5の変換行列G(第2変換の対象要素=2、8ビット精度表記)を示す。FIG. 15 is a diagram illustrating the transformation matrix of the fifth embodiment, [1] represents the transformation matrix E (four-point input, real number notation) of the fifth embodiment, and [2] represents the fifth embodiment. The transformation matrix F (second conversion target element = 2, real number notation) is shown, and [3] shows the transformation matrix F of the fifth embodiment (second conversion target element = 2, 8-bit precision notation). , [4] represents the transformation matrix G (second conversion target element = 2, real number notation) of the fifth embodiment, and [5] represents the transformation matrix G (second conversion target element of the fifth embodiment). = 2, 8-bit precision notation). 図16は、実施の形態5の変換行列を示す図であり、[2]は、実施の形態5の変換行列F(第2変換の対象要素=3、実数表記)を示し、[3]は、実施の形態5の変換行列F(第2変換の対象要素=3、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列G(第2変換の対象要素=3、実数表記)を示し、[5]は、実施の形態5の変換行列G(第2変換の対象要素=3、8ビット精度表記)を示す。FIG. 16 is a diagram illustrating the transformation matrix of the fifth embodiment, [2] represents the transformation matrix F (second conversion target element = 3, real number notation) of the fifth embodiment, and [3] , Shows a transformation matrix F (second conversion target element = 3, 8-bit precision notation) according to the fifth embodiment, and [4] is a transformation matrix G according to the fifth embodiment (second conversion target element = 3, [5] indicates the transformation matrix G (second conversion target element = 3, 8-bit precision notation) according to the fifth embodiment. 図17は、実施の形態5の変換行列を示す図であり、[1]は、実施の形態5の変換行列A(8点入力、実数表記)を示し、[2]は、実施の形態5の変換行列A(8点入力、8ビット精度表記)を示す。FIG. 17 is a diagram illustrating the transformation matrix of the fifth embodiment, [1] represents the transformation matrix A (eight-point input, real number notation) of the fifth embodiment, and [2] represents the fifth embodiment. The conversion matrix A (8-point input, 8-bit precision notation) is shown. 図18は、実施の形態5の変換行列を示す図であり、[3]は、実施の形態5の変換行列D(8点入力、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列E(8点入力、実数表記)を示す。FIG. 18 is a diagram showing the transformation matrix of the fifth embodiment, [3] shows the transformation matrix D (8-point input, 8-bit precision notation) of the fifth embodiment, and [4] The transformation matrix E of form 5 (8-point input, real number notation) is shown. 図19は、実施の形態5の変換行列を示す図であり、[5]は、実施の形態5の変換行列E(8点入力、8ビット精度表記)を示す。FIG. 19 is a diagram illustrating a transformation matrix according to the fifth embodiment, and [5] represents a transformation matrix E (8-point input, 8-bit precision notation) according to the fifth embodiment. 図20は、実施の形態5の変換行列を示す図であり、[2]は、実施の形態5の変換行列F(第2変換の対象要素=6、実数表記)を示し、[3]は、実施の形態5の変換行列F(第2変換の対象要素=6、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列G(第2変換の対象要素=6、実数表記)を示し、[5]は、実施の形態5の変換行列G(第2変換の対象要素=6、8ビット精度表記)を示す。FIG. 20 is a diagram showing the transformation matrix of the fifth embodiment, [2] shows the transformation matrix F (second conversion target element = 6, real number notation) of the fifth embodiment, and [3] , Shows the transformation matrix F of the fifth embodiment (target element of the second transformation = 6, 8-bit precision notation), and [4] represents the transformation matrix G of the fifth embodiment (target element of the second transformation = 6, [5] indicates the transformation matrix G (second conversion target element = 6, 8-bit precision notation) according to the fifth embodiment. 図21は、実施の形態5の変換行列を示す図であり、[2]は、実施の形態5の変換行列F(第2変換の対象要素=5、実数表記)を示し、[3]は、実施の形態5の変換行列F(第2変換の対象要素=5、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列G(第2変換の対象要素=5、実数表記)を示し、[5]は、実施の形態5の変換行列G(第2変換の対象要素=5、8ビット精度表記)を示す。FIG. 21 is a diagram illustrating the transformation matrix of the fifth embodiment, [2] represents the transformation matrix F (second conversion target element = 5, real number notation) of the fifth embodiment, and [3] , Shows a transformation matrix F (second conversion target element = 5, 8-bit precision notation) according to the fifth embodiment, and [4] is a transformation matrix G according to the fifth embodiment (second conversion target element = 5, [5] indicates the transformation matrix G (second conversion target element = 5, 8-bit precision notation) according to the fifth embodiment. 図22は、実施の形態5の変換行列を示す図であり、[2]は、実施の形態5の変換行列F(第2変換の対象要素=4、実数表記)を示し、[3]は、実施の形態5の変換行列F(第2変換の対象要素=4、8ビット精度表記)を示し、[4]は、実施の形態5の変換行列G(第2変換の対象要素=4、実数表記)を示し、[5]は、実施の形態5の変換行列G(第2変換の対象要素=4、8ビット精度表記)を示す。FIG. 22 is a diagram showing the transformation matrix of the fifth embodiment, [2] shows the transformation matrix F (second conversion target element = 4, real number notation) of the fifth embodiment, and [3] , Shows a transformation matrix F (second conversion target element = 4, 8-bit precision notation) according to the fifth embodiment, and [4] is a transformation matrix G according to the fifth embodiment (second conversion target element = 4, [5] indicates the transformation matrix G (second conversion target element = 4, 8-bit precision notation) according to the fifth embodiment. 図23は、実施の形態6の分離型の第2の変換の対象要素を概念的に示す図である。FIG. 23 is a diagram conceptually illustrating target elements of the separation-type second conversion according to the sixth embodiment. 図24Aは、実施の形態6の非分離型の第2の変換の対象要素(10点選択の例)を概念的に示す図である。FIG. 24A is a diagram conceptually illustrating a non-separable second conversion target element (example of 10-point selection) according to the sixth embodiment. 図24Bは、実施の形態6の非分離型の第2の変換の対象要素(6点選択の例)を概念的に示す図である。FIG. 24B is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment. 図24Cは、実施の形態6の非分離型の第2の変換の対象要素(3点選択の例)を概念的に示す図である。FIG. 24C is a diagram conceptually illustrating a non-separable second conversion target element (example of three-point selection) according to the sixth embodiment. 図25Aは、実施の形態6の非分離型の第2の変換の対象要素(6点選択の例)を概念的に示す図である。FIG. 25A is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment. 図25Bは、実施の形態6の非分離型の第2の変換の2次元から1次元への対応関係を示すインデックスの付与例である。FIG. 25B is an example of assigning an index indicating a correspondence relationship from the two-dimensional to the one-dimensional of the non-separable second transformation according to the sixth embodiment. 図26は、実施の形態6の変換行列E(4x4点入力、8ビット精度表記)である。FIG. 26 shows a transformation matrix E (4 × 4 points input, 8-bit precision notation) according to the sixth embodiment. 図27は、実施の形態6の変換行列F(第2変換の対象要素=10、8ビット精度表記)である。FIG. 27 is a transformation matrix F (second conversion target element = 10, 8-bit precision notation) according to the sixth embodiment. 図28は、実施の形態6の変換行列G(第2変換の対象要素=10、8ビット精度表記)である。FIG. 28 is a transformation matrix G (second conversion target element = 10, 8-bit precision notation) according to the sixth embodiment. 図29は、実施の形態6の変換行列F(第2変換の対象要素=10、8ビット精度表記、別形式表記)である。FIG. 29 shows a transformation matrix F (second conversion target element = 10, 8-bit precision notation, another format notation) according to the sixth embodiment. 図30は、実施の形態6の変換行列G(第2変換の対象要素=10、8ビット精度表記、別形式表記)である。FIG. 30 shows a transformation matrix G (second conversion target element = 10, 8-bit precision notation, another format notation) according to the sixth embodiment. 図31Aは、実施の形態6の非分離型の第2の変換の対象要素(6点選択の例)を概念的に示す図である。FIG. 31A is a diagram conceptually illustrating a non-separable second conversion target element (an example of 6-point selection) according to the sixth embodiment. 図31Bは、実施の形態6の変換行列F(第2変換の対象要素=6、8ビット精度表記)である。FIG. 31B is a transformation matrix F (second conversion target element = 6, 8-bit precision notation) according to the sixth embodiment. 図31Cは、実施の形態6の変換行列G(第2変換の対象要素=6、8ビット精度表記)である。FIG. 31C is a transformation matrix G (second conversion target element = 6, 8-bit precision notation) according to the sixth embodiment. 図32Aは、実施の形態6の非分離型の第2の変換の対象要素(3点選択の例)を概念的に示す図である。FIG. 32A is a diagram conceptually illustrating a non-separable second conversion target element (example of three-point selection) according to the sixth embodiment. 図32Bは、実施の形態6の変換行列F(第2変換の対象要素=3、8ビット精度表記)である。FIG. 32B is a transformation matrix F (second conversion target element = 3, 8-bit precision notation) according to the sixth embodiment. 図32Cは、実施の形態6の変換行列G(第2変換の対象要素=3、8ビット精度表記)である。FIG. 32C is the transformation matrix G (second conversion target element = 3, 8-bit precision notation) according to the sixth embodiment. 図33Aは、H.264/AVCの面内予測の予測モード番号と外挿角度の関係の概念図である。FIG. 2 is a conceptual diagram of a relationship between a prediction mode number of H.264 / AVC prediction and an extrapolation angle. 図33Bは、実施の形態4から7の変換行列Gの導出方法あるいは使用の有無と予測モード番号との関係表(その1)である。FIG. 33B is a relationship table (part 1) between the method of deriving the transformation matrix G or the presence / absence of use and the prediction mode number according to the fourth to seventh embodiments. 図33Cは、実施の形態4から7の変換行列Gの導出方法あるいは使用の有無と予測モード番号との関係表(その2)である。FIG. 33C is a relationship table (part 2) between the method of deriving the transformation matrix G or the presence / absence of use and the prediction mode number in the fourth to seventh embodiments. 図34Aは、実施の形態4及び5記載の分離型の第2変換の変換行列導出のフローチャートである。FIG. 34A is a flowchart for deriving the transformation matrix of the separation-type second transformation described in the fourth and fifth embodiments. 図34Bは、実施の形態6記載の非分離型の第2変換の変換行列導出のフローチャートである。FIG. 34B is a flowchart of transform matrix derivation of the non-separable second transform described in the sixth embodiment. 図35は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 35 is an overall configuration diagram of a content supply system that implements a content distribution service. 図36は、デジタル放送用システムの全体構成図である。FIG. 36 is an overall configuration diagram of a digital broadcasting system. 図37は、テレビの構成例を示すブロック図である。FIG. 37 is a block diagram illustrating a configuration example of a television. 図38は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 38 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図39は、光ディスクである記録メディアの構造例を示す図である。FIG. 39 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図40Aは、携帯電話の一例を示す図である。FIG. 40A is a diagram illustrating an example of a mobile phone. 図40Bは、携帯電話の構成例を示すブロック図である。FIG. 40B is a block diagram illustrating a configuration example of a mobile phone. 図41は、多重化データの構成を示す図である。FIG. 41 shows a structure of multiplexed data. 図42は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 42 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図43は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 43 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図44は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 44 is a diagram showing the structure of TS packets and source packets in multiplexed data. 図45は、PMTのデータ構成を示す図である。FIG. 45 shows the data structure of the PMT. 図46は、多重化データ情報の内部構成を示す図である。FIG. 46 shows the internal structure of the multiplexed data information. 図47は、ストリーム属性情報の内部構成を示す図である。FIG. 47 shows the internal structure of stream attribute information. 図48は、映像データを識別するステップを示す図である。FIG. 48 is a diagram showing steps for identifying video data. 図49は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 49 is a block diagram illustrating a configuration example of an integrated circuit that implements the moving picture encoding method and the moving picture decoding method according to each embodiment. 図50は、駆動周波数を切り替える構成を示す図である。FIG. 50 is a diagram illustrating a configuration for switching the driving frequency. 図51は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 51 is a diagram showing steps for identifying video data and switching between driving frequencies. 図52は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 52 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies. 図53Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 53A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図53Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 53B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は本発明の符号化装置における変換部の構成を示す図である。本発明の変換部120は、変換入力に第1の変換を行う第1の変換部200と、第1の変換出力を第2の変換を行う対象と対象でない信号の二つの部分に分割する第2の変換対象決定部210と、分割された第1の部分に第2の変換を行う第2の変換部220と、第2の変換出力と分割された第2の部分を統合する統合部230とを有する。統合部230は、概念的に分割された信号同士を分割された状態ではなく元の次元の信号にするという意味で概念的に記載しているものであり、実際の情報処理で統合という特段の動作を行う必要があるわけではない。以下の実施の形態でも同様である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a conversion unit in the encoding apparatus of the present invention. The conversion unit 120 of the present invention divides the first conversion output into two parts, a first conversion output that performs a first conversion on a conversion input, and a signal that is not subjected to the second conversion, and a signal that is not a target. The second conversion target determination unit 210, the second conversion unit 220 that performs the second conversion on the divided first part, and the integration unit 230 that integrates the second conversion output and the divided second part. And have. The integration unit 230 is conceptually described in the sense that the signals that have been conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
 符号化装置には音声、静止画像、または動画像などの信号が入力される。この符号化対象信号(Original Signal)、又はこの信号と以前に入力された符号化対象信号に基づいて作成された予測信号との差分である予測誤差信号が変換入力として、第1の変換部200に入力される。一般的には予測誤差信号が変換の対象として入力されることが多いが、伝送路にエラーが混入する場合を想定して予測を行わない場合、又はエネルギーが小さい場合には予測を行わずに入力信号が変換の対象として入力される。このような変換入力(Transform Input)を式4に示すようなベクトルxと表す。 Signals such as audio, still images, or moving images are input to the encoding device. This conversion target signal (Original Signal) or a prediction error signal that is a difference between this signal and a prediction signal created based on the previously input encoding target signal is used as a conversion input, and the first conversion unit 200 Is input. In general, a prediction error signal is often input as a conversion target. However, when prediction is not performed assuming that an error is mixed in the transmission path, or when energy is small, prediction is not performed. An input signal is input as a conversion target. Such a conversion input (Transform Input) is represented as a vector xn as shown in Equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図3は、本発明の符号化装置における変換部120のデータフローを概念的に示す図である。まず、第1の変換部200で、変換入力xは相関を軽減され、低周波数帯域にエネルギーを集中させた第1の変換出力y に変換される。第1の変換出力y は第2の変換対象決定部210で第1の部分信号と、第2の部分信号に分割される。この第1の部分信号と第2の部分信号との分割は、分割統合情報に基づいて、第1の部分信号の相関エネルギーが第2の部分信号の相関エネルギーよりも大きくなるように行われる。分割統合情報とは、第2の変換対象決定部210に対して、低周波数帯域を第1の部分とし、高周波数帯域を第2の部分として分割する制御を行わせるような情報である。分割統合情報は、その他にエネルギーの大きな成分を第1の部分へ、エネルギーの小さな成分を第2の部分へと入力に応じて動的に制御するように指示する情報であってもよい。以上のようにして分割された第1の部分信号は、第2の変換対象決定部210で1次元に並び替えられ、第2の変換部220でさらに相関を軽減され、より低周波数帯域にエネルギーを集中させた第2の変換出力y に変換される。統合部230では、第2の変換出力y が第2の変換対象決定部210で並び替えられる前の次元に並び替えられ、第2の部分信号と統合される。なお、図3では第2の変換の対象は任意の領域であるように図示したがこれに限るものではなく矩形領域であっても構わない。なお図4は、第2変換が非分離型の構成の場合であり、第2変換が分離型の構成の場合には、分割および統合における一次元への並び替えを行わない。図4に示すデータフローは概念図である。 FIG. 3 is a diagram conceptually showing the data flow of the conversion unit 120 in the encoding apparatus of the present invention. First, in the first conversion unit 200, converts the input x n is alleviated correlation is converted into the first conversion output y 1 n, which concentrates the energy in the low frequency band. The first conversion output y 1 n is divided into a first partial signal and a second partial signal by the second conversion target determination unit 210. The division of the first partial signal and the second partial signal is performed based on the division integration information so that the correlation energy of the first partial signal is larger than the correlation energy of the second partial signal. The division integration information is information that causes the second conversion target determination unit 210 to perform control to divide the low frequency band as the first part and the high frequency band as the second part. The division integration information may be information instructing to dynamically control a component having a large energy to the first portion and a component having a small energy to the second portion according to the input. The first partial signals divided as described above are rearranged in a one-dimensional manner by the second conversion target determining unit 210, the correlation is further reduced by the second conversion unit 220, and the energy is transferred to a lower frequency band. Are converted into a second converted output y 2 n . In the integration unit 230, the second conversion output y 2 n is rearranged in the dimension before being rearranged by the second conversion target determination unit 210, and is integrated with the second partial signal. In FIG. 3, the second conversion target is illustrated as an arbitrary area, but is not limited thereto, and may be a rectangular area. Note that FIG. 4 shows a case where the second conversion has a non-separation type configuration, and when the second conversion has a separation type configuration, rearrangement to one dimension in division and integration is not performed. The data flow shown in FIG. 4 is a conceptual diagram.
 図5は、変換部120における変換処理のフローチャートである。まず、第1の変換部200において、変換入力xに基づいて第1の変換行列が決定される(ステップS101)。次に、第1の変換部200において、決定された第1の変換行列を用いて第1の変換が行われる(ステップS102)。次に、分割統合情報が決定される(ステップS103)。この分割統合情報は、あらかじめ決められた分割を行うよう第2の変換対象決定部210を制御するものであれば、符号化装置のメモリ等から読み出される。また、分割統合情報が、第1の変換出力に応じた分割を行うよう第2の変換対象決定部210を制御するものであれば、第1の変換出力に基づいてエネルギー状態の分布に鑑みて分割統合情報を導出する。このようにして決定された分割統合情報に基づいて、第2の変換対象決定部210において分割され(ステップS108)、第2の変換部220において、第1の部分信号に基づいて第2の変換行列が決定される(ステップS105)。次に第2の変換部220において、決定された第2の変換行列を用いて第2の変換が行われる(ステップS106)。統合部230において、第2の変換出力と分割された第2の部分信号が統合され、変換出力として出力される(ステップS107)。また、図5のステップS101~ステップS107の動作全体をステップS100とする。 FIG. 5 is a flowchart of the conversion process in the conversion unit 120. First, in the first conversion unit 200, a first transformation matrix is determined based on the conversion input x n (step S101). Next, the first conversion unit 200, the first conversion is performed using the first transformation matrix determined (step S102). Next, division integration information is determined (step S103). The division integration information is read from the memory of the encoding device or the like as long as it controls the second conversion target determination unit 210 to perform predetermined division. In addition, if the division integration information controls the second conversion target determination unit 210 to perform division according to the first conversion output, in view of the distribution of energy states based on the first conversion output. Derivation of division integration information. Based on the division integration information determined in this way, the second conversion target determination unit 210 divides the data (step S108), and the second conversion unit 220 performs the second conversion based on the first partial signal. A matrix is determined (step S105). Next, in the second conversion unit 220, a second conversion is performed using the second transformation matrix determined (step S106). In the integration unit 230, the second conversion output and the divided second partial signal are integrated and output as a conversion output (step S107). Further, the entire operation of steps S101 to S107 in FIG. 5 is defined as step S100.
 あらかじめ定めた変換行列と分割統合情報を使ってもよく、その場合の動作は図6のようになる。第1の変換部200において第1の変換を行い、第1の変換出力から第2の変換対象を決定し、決定された変換出力の一部に対して、第2の変換を行い第2の変換出力を生成する。第2の変換出力と、第1の変換出力のうち第2の変換を適用していない部分とを統合し、本実施の形態の変換処理の変換出力とする。 A predetermined transformation matrix and division integration information may be used, and the operation in that case is as shown in FIG. The first conversion unit 200 performs the first conversion, determines the second conversion target from the first conversion output, performs the second conversion on a part of the determined conversion output, and performs the second conversion Generate conversion output. The second conversion output and the portion of the first conversion output to which the second conversion is not applied are integrated to obtain the conversion output of the conversion process of the present embodiment.
 なお、第1の部分信号と第2の変換出力の次元の並び替えを第2の変換対象決定部210と統合部230が行うこととしたが、それぞれの並び替えを第2の変換部220で行う構成であってもよい。また、符号化の対象が音声データ等の一次元信号である場合、あるいは、一次元信号処理と見なすことができる分離型の各次元の処理において、変換部120に入力される変換入力xは1次元であるため、これらの並び替えの処理は不要となる。なお、係数をゼロに設定することで、第2の変換対象決定部210と統合部230の処理を実質的に第2の変換部で代替してもよい。これは、以下の実施の形態においても同様である。 Although the second conversion target determining unit 210 and the integrating unit 230 perform the rearrangement of the dimensions of the first partial signal and the second conversion output, the second conversion unit 220 performs the respective rearrangements. The structure to perform may be sufficient. In addition, when the target of encoding is a one-dimensional signal such as speech data, or in separation-type processing of each dimension that can be regarded as one-dimensional signal processing, the conversion input x n input to the conversion unit 120 is Since it is one-dimensional, these rearrangement processes are unnecessary. Note that the processing of the second conversion target determination unit 210 and the integration unit 230 may be substantially replaced by the second conversion unit by setting the coefficient to zero. The same applies to the following embodiments.
 (実施の形態2)
 図7は、音声データや動画像データを低ビットレートで符号化した符号化信号から音声データや動画像データを復号する処理について示した図である。復号化の処理は、符号化信号に対してエントロピー復号化をし、逆量子化をし、逆変換をするという図2を用いて説明した符号化の処理とほぼ逆の処理を行う。以下では、本発明の逆変換部150について詳細に説明する。
(Embodiment 2)
FIG. 7 is a diagram illustrating a process of decoding audio data or moving image data from an encoded signal obtained by encoding audio data or moving image data at a low bit rate. In the decoding process, entropy decoding is performed on the encoded signal, inverse quantization is performed, and inverse conversion is performed. This process is almost the reverse of the encoding process described with reference to FIG. Hereinafter, the inverse transform unit 150 of the present invention will be described in detail.
 図8は、本発明の復号化装置における逆変換部150の構成を示す図である。本発明の逆変換部150は、復号変換入力を第2の逆変換を行う対象と対象でない信号との二つの部分に分割する第2の逆変換対象決定部215、分割された復号第2の変換出力に第2の逆変換を行う第2の逆変換部260、第2の逆変換がされた復号第1の部分と分割された復号第2の部分とを統合する統合部235とを有する。統合部235は、概念的に分割された信号同士を分割された状態ではなく元の次元の信号にするという意味で概念的に記載しているものであり、実際の情報処理で統合という特段の動作を行う必要があるわけではない。以下の実施の形態でも同様である。 FIG. 8 is a diagram showing a configuration of the inverse transform unit 150 in the decoding device of the present invention. The inverse transform unit 150 of the present invention includes a second inverse transform target determination unit 215 that divides the decoded transform input into two parts, a target to be subjected to the second inverse transform and a signal that is not the target. A second inverse transform unit 260 that performs the second inverse transform on the converted output; and an integration unit 235 that integrates the decoded first part subjected to the second inverse transform and the divided decoded second part. . The integration unit 235 is conceptually described in the sense that the signals that are conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
 復号化装置には音声、静止画像、動画像などの信号を符号化した符号化信号が入力される。この符号化信号をエントロピー復号化し、逆量子化した信号が復号変換出力y^として第2の逆変換対象決定部215に入力される。 An encoded signal obtained by encoding a signal such as a voice, a still image, or a moving image is input to the decoding device. The encoded signal is entropy-decoded and the inversely quantized signal is input to the second inverse transform target determining unit 215 as a decoded transform output y ^.
 図9A及び図9Bは、本実施の形態の復号化装置における逆変換部150のデータフローを概念的に示す図である。符号化信号よりエントロピー復号部240にて復号量子化係数を復号し、逆量子化部140にて、復号変換出力y^を生成する。復号変換出力y^は、二つの領域に分割され、領域の一つの復号第2の変換出力y^は第2の逆変換部260にて第2の逆変換がされ、復号第1の部分を得る。もう一方の領域の復号第2の部分y^2Hは変換されず、復号第1の部分と統合され、復号第1の変換出力y^となり第1の逆変換部250にて第1の逆変換が行われる。第2の逆変換が分離型の構成をとる場合は、第2の逆変換対象決定部215と統合部235における一次元信号への並び替えを行わなくてもよい。この場合のデータフローの概念図は図9Cである。 9A and 9B are diagrams conceptually showing the data flow of the inverse transform unit 150 in the decoding apparatus of the present embodiment. The entropy decoding unit 240 decodes the decoded quantization coefficient from the encoded signal, and the inverse quantization unit 140 generates a decoded conversion output y ^. The decoded transformation output ^ is divided into two regions, and one decoded second transformation output ^ 2 of the region is subjected to the second inverse transformation by the second inverse transformation unit 260, and the decoded first part. Get. The decoded second part y 2 H of the other region is not converted, but is integrated with the decoded first part to become the decoded first converted output y 1 , and the first inverse conversion unit 250 performs the first inverse. Conversion is performed. When the second inverse transform has a separable configuration, the second inverse transform target determining unit 215 and the integrating unit 235 do not need to rearrange them into one-dimensional signals. The conceptual diagram of the data flow in this case is FIG. 9C.
 図10は、逆変換部150における逆変換処理のフローチャートである。これらを用いて、逆変換処理について説明する。まず、分割統合情報が取得される(ステップS201)。第2の逆変換対象決定部215で、上記で説明した復号変換出力y^は低周波数帯域を含む復号第2の変換出力と、高周波数帯域を含む復号第2の部分信号に分割される(ステップS208)。この復号第2の変換出力と復号第2の部分信号との分割は、分割統合情報に基づいて、復号第2の変換出力の相関エネルギーが復号第2の部分信号の相関エネルギーよりも大きくなるように行われる。分割統合情報は実施の形態1で説明したものと同様であり、分割統合情報の取得とは、あらかじめ定められメモリ等に保存されたものを読み出してもよいし、復号変換出力に応じて動的に決定するのであってもよい。以上のようにして分割された復号第2の変換出力は、第2の逆変換対象決定部215で1次元に並び替えられ、第2の逆変換部260に入力される。第2の逆変換部260で行う逆変換の変換行列(変換係数)は、実施の形態1で説明した第2の変換の変換行列の逆行列又はそれに近似した行列である。この逆行列の変換行列は、実施の形態1と同様に例えばKLTを用いて、復号第2の変換出力を含む集合Sに基づいて求められる(ステップS203)。 FIG. 10 is a flowchart of the inverse transformation process in the inverse transformation unit 150. The inverse transformation process will be described using these. First, division integration information is acquired (step S201). In the second inverse transform target determination unit 215, the decoded transform output y ^ described above is divided into a decoded second transform output including a low frequency band and a decoded second partial signal including a high frequency band ( Step S208). In this division of the decoded second converted output and the decoded second partial signal, the correlation energy of the decoded second converted output is larger than the correlation energy of the decoded second partial signal based on the division integration information. To be done. The division integration information is the same as that described in the first embodiment, and the acquisition of division integration information may be read out in advance and stored in a memory or the like, or dynamically according to the decoding conversion output It may be decided to. The decoded second conversion output divided as described above is rearranged one-dimensionally by the second inverse conversion target determination unit 215 and input to the second inverse conversion unit 260. The transformation matrix (transformation coefficient) of the inverse transformation performed by the second inverse transformation unit 260 is the inverse matrix of the transformation matrix of the second transformation described in the first embodiment or a matrix approximated thereto. The inverse transformation matrix is obtained based on the set SD including the decoded second transformation output using, for example, KLT as in the first embodiment (step S203).
 第2の逆変換部260では、このようにして求められた変換行列を用いて、復号第2の変換出力の第2の逆変換が行われ、復号第1の部分信号が出力される(ステップS204)。統合部235では、復号第1の部分信号が第2の逆変換対象決定部215で並び替えられる前の次元に並び替えられ、復号第2の部分信号と統合され、復号第1の変換出力y^として第1の逆変換部250に入力される(ステップS205)。第1の逆変換部250で行う逆変換の変換行列は、実施の形態1で説明した第1の変換の逆行列又はそれに近似した行列である。この逆行列の変換行列は、実施の形態1と同様に例えばKLTを用いて、復号第1の変換出力y^を含む集合Sに基づいて求められる(ステップS206)。第1の逆変換部250では、このようにして求められた変換行列を用いて、復号第1の変換出力y^の第1の逆変換が行われ、復号変換入力x^が出力される(ステップS207)。また、図10のステップS201~ステップS207の動作全体をステップS200とする。 The second inverse transformation unit 260 performs the second inverse transformation of the decoded second transformation output using the transformation matrix obtained in this way, and outputs the decoded first partial signal (step S204). In the integrating unit 235, the decoded first partial signal is rearranged in the dimension before being rearranged by the second inverse transformation target determining unit 215, integrated with the decoded second partial signal, and the decoded first converted output y ^ 1 is input to the first inverse transform unit 250 (step S205). The inverse transformation matrix performed by the first inverse transformation unit 250 is the inverse matrix of the first transformation described in the first embodiment or a matrix approximated thereto. The inverse transformation matrix is obtained based on the set S E including the decoded first transformation output ^ 1 using, for example, KLT as in the first embodiment (step S206). In the first inverse transform unit 250, the first inverse transform of the decoded first transform output y ^ 1 is performed using the transformation matrix thus obtained, and the decoded transform input x ^ is output. (Step S207). Further, the entire operation from step S201 to step S207 in FIG.
 なお、あらかじめ定めた逆変換行列と分割統合情報を用いる場合には、それらの導出処理を明示的に行う必要が無いとも考えられる。この場合の動作フロー図は図11になる。 In addition, when using a predetermined inverse transformation matrix and division integration information, it is considered that there is no need to explicitly perform the derivation process. The operation flowchart in this case is shown in FIG.
 なお、集合Sと集合Sは実施の形態1の集合Sと集合Sの関係にあり、集合Dのほうが集合Eよりも含むサンプル数が少ない小さな集合である。以上のようにして、本実施の形態に係る逆変換部150を備えた復号化装置では、実施の形態1と同様に高効率な変換と演算量、データ量の削減を両立させることができる。 Note that the set S D and the set S E are in the relationship between the set S C and the set S A of the first embodiment, and the set D is a smaller set that includes fewer samples than the set E. As described above, the decoding apparatus provided with the inverse transform unit 150 according to the present embodiment can achieve both high-efficiency conversion and reduction of the calculation amount and the data amount as in the first embodiment.
 なお、復号第2の変換出力と復号第1の部分信号の次元の並び替えを第2の逆変換対象決定部215と統合部235が行うこととしたが、それぞれの並び替えを第2の逆変換部260で行う構成であってもよい。つまり、分離型の変換を用いてもよいし、ゼロ係数を含む変換を用いてもよい。復号化の対象が音声データ等の一次元信号あるいは、多次元信号を分離型で構成する場合の各次元の信号は1次元信号と見なせるため、逆変換部155に入力される復号変換出力y^は1次元であり、前述の次元の並び替え(第2の逆変換対象決定部215における一次元信号への並び替え、及び、統合部における元の次元への並び替え)の処理は不要となる。 Note that the second inverse transformation target determination unit 215 and the integration unit 235 rearrange the dimensions of the decoded second conversion output and the decoded first partial signal. The structure performed in the conversion part 260 may be sufficient. That is, a separation type conversion may be used, or a conversion including a zero coefficient may be used. Since the decoding target is a one-dimensional signal such as speech data or a multi-dimensional signal configured as a separate type, a signal of each dimension can be regarded as a one-dimensional signal, so that the decoded conversion output y ^ input to the inverse conversion unit 155 Is one-dimensional, and the above-described dimension rearrangement (rearrangement to the one-dimensional signal in the second inverse transformation target determination unit 215 and rearrangement to the original dimension in the integration unit) becomes unnecessary. .
 本実施の形態では復号変換出力、復号変換入力、復号信号、予測信号がP次元信号(Pは2以上の整数)である。つまり、復号変換出力、復号第2の部分、復号第1の変換出力、復号変換入力はP次元信号である。第2の逆変換部260はP次元信号を入出力する場合と1次元信号を入出力する場合のどちらであってもよい。 In this embodiment, the decoded conversion output, the decoded conversion input, the decoded signal, and the prediction signal are P-dimensional signals (P is an integer of 2 or more). That is, the decoding conversion output, the decoding second part, the decoding first conversion output, and the decoding conversion input are P-dimensional signals. The second inverse transform unit 260 may be either for inputting / outputting a P-dimensional signal or for inputting / outputting a one-dimensional signal.
 第2の逆変換対象決定部215はP次元信号を分割統合情報に従って復号第2の変換出力と復号第2の部分に分割した後、さらに、復号第2の変換出力を1次元に並び替える。並び替えの順序情報は分割統合情報に追加的に格納されている。統合部235は復号第1の部分と復号第2の部分を分割統合情報に従って統合し変換出力を生成する。この際、統合部235は、1次元信号である復号第1の部分を、分割統合情報に格納された並び替え情報に基づいてP次元信号へ並び替えた後、統合する。 The second inverse transformation target determination unit 215 divides the P-dimensional signal into a decoded second converted output and a decoded second part according to the division integration information, and further rearranges the decoded second converted output into one dimension. Rearrangement order information is additionally stored in the division integration information. The integration unit 235 integrates the decoded first part and the decoded second part according to the division integration information, and generates a conversion output. At this time, the integration unit 235 rearranges the decoded first part, which is a one-dimensional signal, into a P-dimensional signal based on the rearrangement information stored in the division integration information, and then integrates the first part.
 第2の逆変換部260がP次元信号を入出力し、1次元信号への並び替えを行わなくてもよい。データフローの概念図は図9Bになる。更にこの場合、第2の逆変換部260は分離型(水平軸方向と垂直軸方向の2段階変換)としてもよく、この場合のデータフローの概念図は図9Cとなる。水平方向に行単位に逆変換を行い、垂直方向に列単位に逆変換を行う。水平と垂直の順は逆でも良い。要素数が1個の行または列単位の変換は実質処理をしていないのと同等であるため処理をスキップしてもよいし、あるいは、後段のノルム補正の処理をここで行ってもよい。行変換と列変換の逆変換の変換行列は同じでも異なってもよい。行変換の変換行列は全ての行で同じ変換行列を用いて変換行列のデータ量を削減してもよいし、行単位に異なる変換行列を用いて、行単位の統計的な性質の違いに適応させ変換性能を上げてもよい。列変換についても行変換と同様であり、全列で同じ変換行列を用いてもよいし、異なる変換行列を用いてもよい。 The second inverse transform unit 260 may input / output P-dimensional signals and do not rearrange them into one-dimensional signals. A conceptual diagram of the data flow is shown in FIG. 9B. Further, in this case, the second inverse conversion unit 260 may be a separation type (two-stage conversion in the horizontal axis direction and the vertical axis direction), and the conceptual diagram of the data flow in this case is FIG. 9C. Inverse conversion is performed in units of rows in the horizontal direction, and inverse conversion is performed in units of columns in the vertical direction. The order of horizontal and vertical may be reversed. Since the conversion in units of one row or column with the number of elements is equivalent to not performing substantial processing, the processing may be skipped, or the norm correction processing in the subsequent stage may be performed here. The transformation matrices for the row transformation and the inverse transformation of the column transformation may be the same or different. The transformation matrix of row transformation may reduce the data volume of the transformation matrix by using the same transformation matrix for all rows, or adapt to the difference in statistical properties by row by using different transformation matrices for each row. The conversion performance may be improved. The column transformation is the same as the row transformation, and the same transformation matrix may be used for all the columns, or different transformation matrices may be used.
 (実施の形態3)
 ここで、変換係数(変換行列)を導出した際に参照した集合と異なる統計的性質を持つ集合が入力されると変換が最適ではなくなる。入力信号の性質に応じて変換係数を逐次導出すると変換係数のデータ量が膨大となる。これに対し、本実施の形態では、第2の変換の変換行列を、時間的あるいは空間的に切り替える。第2変換の変換行列の要素数は第1変換の変換行列の要素数よりも少ないため、変換係数を格納するメモリ量を削減できる。
(Embodiment 3)
Here, if a set having statistical properties different from the set referred to when the transform coefficient (transformation matrix) is derived is input, the transform is not optimal. If the transform coefficients are sequentially derived according to the nature of the input signal, the data amount of the transform coefficients becomes enormous. In contrast, in the present embodiment, the transformation matrix of the second transformation, temporal or spatial switches. Since the number of elements in the second transformation of the transformation matrix less than the number of elements of the transformation matrix of the first conversion, it can reduce the amount of memory for storing the transform coefficients.
 具体的には、面内予測あるいは面間予測の予測モードに応じて変換行列及び分割統合情報を切り替えてもよい。あるいは、複数の変換行列と分割統合情報のセットの中から、どれを選択するかを明示的に符号化ストリームに多重化してもよい。面内予測あるいは面間予測モードから変換行列及び分割統合情報を切り替える際、複数の予測モードを一つの変換行列と分割統合情報と対応付けてもよい。分割統合情報は比較的変化の少ない情報であるので、変換行列よりも切り替えの種類を少なくして、分割統合情報に関連するメモリ使用量を軽減してもよい。 Specifically, the transformation matrix and the division integration information may be switched according to the prediction mode of in-plane prediction or inter-plane prediction. Or you may explicitly multiplex to an encoding stream which is selected from the set of a some conversion matrix and division | segmentation integration information. When switching the transformation matrix and the division integration information from the in-plane prediction or the inter-plane prediction mode, a plurality of prediction modes may be associated with one transformation matrix and the division integration information. Since the division integration information is information with relatively little change, the type of switching may be less than the conversion matrix to reduce the memory usage related to the division integration information.
 図12は、本実施の形態の符号化装置のブロック図である。本実施の形態の符号化装置は、予測方法の種類情報(予測モード)に応じてあらかじめ定めた複数の変換行列から1つの変換行列を選択する。 FIG. 12 is a block diagram of the encoding apparatus according to the present embodiment. The encoding apparatus according to the present embodiment selects one transformation matrix from a plurality of transformation matrices determined in advance according to the type information (prediction mode) of the prediction method.
 予測制御部は予測モード信号を決定し、予測部へ出力するとともに、局所集合判定部223へ出力する。局所集合判定部223は、予測モード信号に基づいて、あらかじめ定めた変換行列と分割統合情報を選択する選択信号を出力する。選択信号に基づき、メモリは、あらかじめ定めた変換行列と分割統合情報を、第2の変換部220へ出力する。予測モード信号は、予測モード信号符号化部において、近傍ブロックの情報からの推測値の差分をとるなどして情報量を圧縮し、エントロピー符号化され符号化信号へ多重化される。 The prediction control unit determines a prediction mode signal, outputs it to the prediction unit, and outputs it to the local set determination unit 223. The local set determination unit 223 outputs a selection signal for selecting a predetermined transformation matrix and division integration information based on the prediction mode signal. Based on the selection signal, the memory outputs a predetermined conversion matrix and division integration information to the second conversion unit 220. The prediction mode signal is subjected to entropy coding and multiplexed into a coded signal by compressing the amount of information, for example, by taking a difference between estimated values from information of neighboring blocks in a prediction mode signal coding unit.
 また、局所集合判定部223は、新しい変換行列と分割統合情報を導出するように第2の変換行列導出部222へ指示する導出制御信号を出力することもある。このとき、新しい導出結果は、メモリに格納される。新しい変換行列と分割統合情報は、変換行列、分割統合情報符号化において、情報量が圧縮され、エントロピー符号化部190においてエントロピー符号化され、符号化信号に多重化される。なお、変換入力の大小に応じて第2の変換の変換行列と分割統合情報を切り替えてもよい。なお予測の方法は複数種類ありその一つが予測モード信号で指示される。予測はフレーム間予測でもフレーム内予測でもよい。フレーム内予測は、符号符号化済み(復号済み)の周辺隣接画素を所定の方向で外挿して予測する方法であってもよい。 Also, the local set determination unit 223 may output a derivation control signal that instructs the second transformation matrix derivation unit 222 to derive a new transformation matrix and division integration information. At this time, the new derivation result is stored in the memory. The new transformation matrix and the division integration information are compressed in the amount of information in the transformation matrix and division integration information encoding, entropy encoded in the entropy encoding unit 190, and multiplexed into the encoded signal. Note that the conversion matrix of the second conversion and the division integration information may be switched according to the size of the conversion input. There are a plurality of prediction methods, one of which is indicated by a prediction mode signal. The prediction may be inter-frame prediction or intra-frame prediction. The intra-frame prediction may be a method of performing prediction by extrapolating code-encoded (decoded) neighboring pixels in a predetermined direction.
 図13は、本実施の形態の復号化装置のブロック図である。本実施の形態の復号化装置はあらかじめ定めた変換行列及び分割統合情報を、符号化信号から復号した予測信号に基づき逆変換する。符号化信号から、エントロピー復号部は、エントロピー復号された圧縮済み予測モード信号を取り出し、近傍ブロックの情報からの推定値と組み合わせて予測モード信号を復号する。予測モード信号は予測部へ出力され、予測部は予測信号を生成する。予測モード信号は選択信号決定部へ送られ、選択信号決定部は、予測モード信号に対応する、変換行列、及び、分割統合情報を選択する選択信号を出力する。選択信号は、逆変換の変換行列を格納するメモリと、分割統合情報を格納するメモリへ出力され、それぞれのメモリから、第2の逆変換の変換行列と、分割統合情報とが、本実施の形態の逆変換部150へ出力される。 FIG. 13 is a block diagram of the decoding apparatus according to the present embodiment. The decoding apparatus according to the present embodiment inversely converts a predetermined transformation matrix and division integration information based on a prediction signal decoded from an encoded signal. The entropy decoding unit extracts the compressed prediction mode signal subjected to entropy decoding from the encoded signal, and decodes the prediction mode signal in combination with the estimated value from the information of the neighboring blocks. The prediction mode signal is output to the prediction unit, and the prediction unit generates a prediction signal. The prediction mode signal is sent to the selection signal determination unit, and the selection signal determination unit outputs a selection signal for selecting the transformation matrix and the division integration information corresponding to the prediction mode signal. The selection signal is output to a memory for storing a transformation matrix for inverse transformation and a memory for storing division integration information. From each memory, the transformation matrix for the second inverse transformation and the division integration information are converted into the present embodiment. Is output to the inverse transform unit 150.
 (実施の形態4)
 本実施の形態の第2変換の変換係数(変換行列)Cは、下記の式5で表現される、1段階の分離型変換の変換行列CまたはRと第1の変換の変換係数Dより導出される。また、図34Aに本実施の形態における第2変換の変換行列の導出動作のフローチャートを示す。
(Embodiment 4)
The conversion coefficient (conversion matrix) C of the second conversion of the present embodiment is derived from the conversion matrix C or R of the one-stage separation type conversion expressed by the following equation 5 and the conversion coefficient D of the first conversion. Is done. FIG. 34A shows a flowchart of the transformation matrix derivation operation of the second transformation in the present embodiment.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここでCは垂直変換でありRは水平変換である。あるブロックの予測誤差信号Xに対して行列乗算を行いその出力をスキャンし量子化しエントロピー符号化するという一般的な符号化装置における変換を指す。入力信号の特性やモデルに基づいてCとRを定義し、Dを離散コサイン変換(DCT)など乗算回数が少なく演算量の低い変換に定める。このとき、下記の式6に示すように2段階変換の変換行列Eを導出する(ステップS402)。 Where C is vertical conversion and R is horizontal conversion. This refers to transformation in a general coding apparatus that performs matrix multiplication on the prediction error signal X of a certain block, scans the output, quantizes it, and performs entropy coding. C and R are defined based on the characteristics and model of the input signal, and D is determined as a transform with a small number of multiplications such as discrete cosine transform (DCT) and a low amount of calculation. At this time, a transformation matrix E of two-stage transformation is derived as shown in the following formula 6 (step S402).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 行列Aは上記1段階変換の変換行列CまたはRであり、それに対して、Bの逆行列であるinv(B)を乗算することによって、2段階変換の変換行列Eを導出する。Bが正規行列であるときinv(B)はBの転地行列となる。離散コサイン変換は正規行列の一つである。BとAの変換係数がN×Nの大きさであるとき、Eの大きさもN×Nである。Eのうち、演算量を軽減するため低域側の係数のみを抜き出し、高域側は第2の変換の対象外としてもよい。すなわち、抜き出し後の変換行列Fijを、式7に示すように、 The matrix A is the transformation matrix C or R of the above-described one-stage transformation, and the transformation matrix E of the two-stage transformation is derived by multiplying the matrix A by inv (B) that is an inverse matrix of B. When B is a normal matrix, inv (B) is a B shift matrix. The discrete cosine transform is one of normal matrices. When the conversion coefficients of B and A are N × N, E is also N × N. Of E, to reduce the calculation amount extracting only coefficients of the low-frequency side, the high-frequency side may be covered by the second conversion. That is, the transformation matrix F ij after extraction is as shown in Equation 7,
Figure JPOXMLDOC01-appb-M000007
とする。MはNよりも小さな自然数である(ステップS404)。
Figure JPOXMLDOC01-appb-M000007
And M is a natural number smaller than N (step S404).
 さらに、抜き出しにより基底の大きさ(ノルム)が不揃いになるため調整を行う。すなわち、変換行列は各行が基底に対応する行列であり行単位に以下の式8と式9で説明する調整を行う。抜き出し前の行列Eのk行の基底の大きさN(E)は下記の式8で得られる。 Further, adjustment is performed because the base size (norm) becomes uneven due to extraction. That is, the adjustment described in Equation 8 and Equation 9, below the matrix a and the row unit conversion matrix each row corresponds to a base. Size N (E) k of the base of the k rows of the previous matrix E withdrawal is obtained by Equation 8 below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 抜き出し後の変換行列Fのk行の基底の大きさN(F)は以下の式9または式10で得られる。 Size N (F) k of the base of the k rows of the transformation matrix F after extraction is obtained by the formula 9 or formula 10 below.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このとき、ノルム補正後の変換行列Gは次の式11で得られる(ステップS406)。 At this time, the transformation matrix G after the norm correction is obtained by the following equation 11 (step S406).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 抜き出し後の基底の大きさで除算し、抜き出し前の基底の大きさで乗算する。抜き出し前の変換行列のノルムが揃っているならば、この補正処理を行った変換行列Gの基底のノルムを揃えることができる。なお、抜き出しとは、2段階変換の第2変換の対象とするという意味である。 ÷ Divide by the size of the base after extraction, and multiply by the size of the base before extraction. If the norms of the transformation matrix before extraction are uniform, the norms of the bases of the transformation matrix G subjected to this correction processing can be uniformed. Note that the extraction means that it is a target of the second conversion of the two-stage conversion.
 ここで示した方法で設計した2段階変換の分離型の第2の変換の変換行列Gは、1段階変換の変換行列A(CまたはR)の特性を少ない要素数で精度良く反映させたものであり、同等の変換性能を少ない演算量で得ることができる。 The transformation matrix G of the separation type second transformation of the two-stage transformation designed by the method shown here reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy. Therefore, equivalent conversion performance can be obtained with a small amount of calculation.
 (実施の形態5)
 H.264/AVC規格における面内予測は、当該符号化ブロックの符号化済み(復号済みの)隣接する周辺画素から、符号化ストリームに符号化される予測モードに応じて、所定の角度で外挿した予測を行う。予測モードは所定の種類の角度を備えており、それぞれの角度に最適な変換行列があるとされている。特に、分離型の変換において、垂直方向予測モード時の垂直方向の変換の変換行列、及び、水平方向予測モード時の水平軸方向の変換の変換行列は、次の式12で得られる。
(Embodiment 5)
H. In-plane prediction in the H.264 / AVC standard is extrapolated at a predetermined angle from the encoded (decoded) adjacent neighboring pixels of the coding block in accordance with the prediction mode encoded in the encoded stream. Make a prediction. The prediction mode has a predetermined type of angle, and it is assumed that there is an optimum transformation matrix for each angle. In particular, in the separation type conversion, a conversion matrix for vertical conversion in the vertical prediction mode and a conversion matrix for conversion in the horizontal axis direction in the horizontal prediction mode are obtained by the following Expression 12.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 この変換行列Aを用いて、実施の形態4で示した変換係数の導出を具体的に更に説明する。4x4の大きさの変換行列は図14の[1]に示す値になる。これを8ビット精度の整数で示すと図14の[2]になる。離散コサイン変換が第1の変換であるとき、第1の変換の変換行列の8ビット整数値は図14の[3]になる。2段階変換の第2変換の変換行列Eは図14の[4]になる。Eの8ビット整数値は図14の[5]になる。図15を用いて抜き出し時のノルム補正を説明する。抜き出し前の第2変換の変換行列Eは図15の[1]である(図14の[4]と同じもの)。各規程のノルムN(E)を右側に記載している。本例ではノルムが揃っている離散コサイン変換を用いているため同じ値になる。これから低域側の2点を抜き出すと、図15の[2]になる。抜き出し後のノルムN(F)を同様に右側に記載している。8ビット整数で表記すると図15の[3]になる。式11の補正後の第2変換の変換行列Gは図15の[4]となる。8ビット整数で表記すると図15の[5]となる。 Using this transformation matrix A, the derivation of the transformation coefficient shown in the fourth embodiment will be specifically described further. The conversion matrix having a size of 4 × 4 has the value indicated by [1] in FIG. When this is represented by an integer of 8-bit precision, it is [2] in FIG. When the discrete cosine transform is the first transform, the 8-bit integer value of the transform matrix of the first transform is [3] in FIG. The transformation matrix E of the second transformation of the two-stage transformation is [4] in FIG. The 8-bit integer value of E is [5] in FIG. The norm correction at the time of extraction will be described with reference to FIG. The transformation matrix E of the second transformation before extraction is [1] in FIG. 15 (the same as [4] in FIG. 14). The norm N (E) of each regulation is shown on the right side. In this example, the same value is obtained because a discrete cosine transform with a uniform norm is used. If two points on the low frequency side are extracted from this, [2] in FIG. 15 is obtained. The norm N (F) after extraction is similarly shown on the right side. When expressed as an 8-bit integer, the result is [3] in FIG. The transformation matrix G of the second transformation after the correction of Expression 11 is [4] in FIG. When represented by an 8-bit integer, [5] in FIG. 15 is obtained.
 図16は低域側の3点を抜き出した場合の例である。低域側3点を抜き出した変換行列Fは図16の[2]になる。8ビット整数表記は図16の[3]になる。ノルム補正後の変換行列Gは図16の[4]になる。8ビット整数表記は図16の[5]になる。 Fig. 16 shows an example in which three low-frequency points are extracted. The transformation matrix F extracted from the three low frequency points is [2] in FIG. The 8-bit integer notation is [3] in FIG. The transformation matrix G after the norm correction is [4] in FIG. The 8-bit integer notation is [5] in FIG.
 8x8の大きさの式12記載の変換行列Aを用いる例を説明する。変換行列Aは図17の[1]になる。8ビット整数表記は図17の[2]になる。8x8の離散コサイン変換の8ビット表記は図18の[3]になる。2段階変換の第2変換の変換行列は図18の[4]になる。8ビット表記は図19の[5]になる。 An example using the transformation matrix A described in Equation 12 having a size of 8 × 8 will be described. The transformation matrix A is [1] in FIG. The 8-bit integer notation is [2] in FIG. The 8-bit notation of 8 × 8 discrete cosine transform is [3] in FIG. The transformation matrix of the second transformation of the two-stage transformation is [4] in FIG. The 8-bit notation is [5] in FIG.
 図20は低域側の6点を抜き出した場合の例である。低域側6点を抜き出した変換行列Fは図20の[2]になる。8ビット整数表記は図20の[3]になる。ノルム補正後の変換行列Gは図20の[4]になる。8ビット整数表記は図20の[5]になる。 FIG. 20 shows an example in which six points on the low frequency side are extracted. A transformation matrix F obtained by extracting 6 points on the low frequency side is [2] in FIG. The 8-bit integer notation is [3] in FIG. The transformation matrix G after the norm correction is [4] in FIG. The 8-bit integer notation is [5] in FIG.
 図21は低域側の5点を抜き出した場合の例である。低域側5点を抜き出した変換行列Fは図21の[2]になる。8ビット整数表記は図21の[3]になる。ノルム補正後の変換行列Gは図21の[4]になる。8ビット整数表記は図21の[5]になる。 Fig. 21 shows an example when 5 points on the low frequency side are extracted. A transformation matrix F obtained by extracting five points on the low frequency side is [2] in FIG. The 8-bit integer notation is [3] in FIG. The transformation matrix G after norm correction is [4] in FIG. The 8-bit integer notation is [5] in FIG.
 図22は低域側の4点を抜き出した場合の例である。低域側4点を抜き出した変換行列Fは図22の[2]になる。8ビット整数表記は図22の[3]になる。ノルム補正後の変換行列Gは図22の[4]になる。8ビット整数表記は図22の[5]になる。 FIG. 22 shows an example in which four low-frequency points are extracted. The transformation matrix F extracted from the four low frequency points is [2] in FIG. The 8-bit integer notation is [3] in FIG. The transformation matrix G after the norm correction is [4] in FIG. The 8-bit integer notation is [5] in FIG.
 なお、本実施の形態で図14から図22を用いて示した分離型の第2変換の変換行列は、変換行列Aを垂直変換の変換行列とした場合の一例である。この例の第2変換の垂直変換の変換行列は、面内予測モードの垂直モード(図33Aの0)の垂直変換に最適化されており、近い角度を持つモード5と7の垂直変換にも適用可能である。なおそれらモード0,5,7の水平方向の相関は第1の変換のDCTよりほぼ十分に低域側へパワーが集中できており、第2変換の水平変換は行わなくてもよい。特に垂直モード0の第2変換の水平変換は行わなくてもよい。モード5と7については予測誤差から統計的に最適な変換を導出して適用してもよい。 Note that the separation-type second conversion matrix shown in FIGS. 14 to 22 in the present embodiment is an example in which the conversion matrix A is a vertical conversion matrix. The conversion matrix of the vertical conversion of the second conversion in this example is optimized for the vertical conversion of the vertical mode (0 in FIG. 33A) of the in-plane prediction mode, and also for the vertical conversion of modes 5 and 7 having close angles. Applicable. In the horizontal correlation of these modes 0, 5, and 7, the power can be concentrated to a lower frequency side substantially sufficiently than the DCT of the first conversion, and the horizontal conversion of the second conversion may not be performed. In particular, the horizontal conversion of the second conversion in the vertical mode 0 may not be performed. For modes 5 and 7, a statistically optimal transformation may be derived from the prediction error and applied.
 また、同時に、それら第2変換の垂直変換の変換行列は、面内予測モードの水平モード(図33Aの1)にも同じものを用いることができ、最適化されている。また、近い角度を持つモード8と6の水平変換にも適用可能である。水平モード(モード1)の垂直変換は、第1の変換により十分にパワーの集中ができており、第2変換の垂直変換は行わなくてもよい。同じ理由で、近い角度を持つモード8と6の垂直変換は行わなくてもよい。あるいは、予測誤差から統計的に最適な変換を導出して適用してもよい。水平変換で図33Aに示す面内予測モード4と3については、第2の水平変換と第2の垂直変換へ、本実施の形態で示した第2の変換行列Gを適用してもよい。これらDとGの選択と予測モードとの関係をまとめたのが図33Bである。また図33Cに示す選択であってもよい。 At the same time, the same transformation matrix of the vertical transformation of the second transformation can be used for the horizontal mode (1 in FIG. 33A) of the in-plane prediction mode, and is optimized. It is also applicable to horizontal conversion in modes 8 and 6 having close angles. In the vertical conversion in the horizontal mode (mode 1), the power is sufficiently concentrated by the first conversion, and the vertical conversion in the second conversion may not be performed. For the same reason, the vertical conversion of modes 8 and 6 having close angles may not be performed. Alternatively, a statistically optimal transformation may be derived from the prediction error and applied. In the in- plane prediction modes 4 and 3 shown in FIG. 33A by horizontal conversion, the second conversion matrix G shown in the present embodiment may be applied to the second horizontal conversion and the second vertical conversion. FIG. 33B summarizes the relationship between the selection of D and G and the prediction mode. Alternatively, the selection shown in FIG. 33C may be used.
 本実施の形態に記載した変換行列は一例であり、変換行列の精度の相違により若干異なる値となる場合もある。また8ビット表記の数値は一例であり、8ビットに限定されるものではない。また、抜き出しは代表的な例であり、ここに記載した抜き出しの個数や抜き出しの位置に限定されるものではない。4点や8点という変換のサイズは一例でありこれに限定されるものではない。変換行列の表現の精度の都合等により、本例で示した数値の近傍を用いることを否定するものではない。第1変換にH.264/AVCの整数精度の変換を用いる場合、ノルムの補正を行うことがある。ノルムの補正は演算精度の都合等により、十分な精度で実施されず、第1変換は不揃いなノルムを持つ場合も想定されるが、その際は、第2変換の変換行列へ、その不揃いを補正するような重み付けを加えてもよい。 The conversion matrix described in this embodiment is an example, and may have slightly different values due to differences in the accuracy of the conversion matrix. The numerical value in 8-bit notation is an example, and is not limited to 8 bits. Further, the extraction is a representative example, and is not limited to the number of extractions or the extraction positions described here. The conversion size of 4 points or 8 points is an example and is not limited to this. Use of the vicinity of the numerical value shown in this example is not denied due to the accuracy of the expression of the transformation matrix. H. When using H.264 / AVC integer precision conversion, the norm may be corrected. The norm correction is not performed with sufficient accuracy due to the accuracy of calculation accuracy, and the first transformation may be assumed to have an irregular norm. In that case, the irregularity is converted to the transformation matrix of the second transformation. Weighting for correction may be added.
 本実施の形態で示した、2段階変換の分離型の第2の変換の変換行列Gは、1段階変換の変換行列A(CまたはR)の特性を少ない要素数で精度良く反映させたものであり、同等の変換性能を少ない演算量で得ることができる。 The transformation matrix G of the separation-type second transformation of the two-stage transformation shown in the present embodiment reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy. Therefore, equivalent conversion performance can be obtained with a small amount of calculation.
(実施の形態6)
 本実施の形態における第2変換は非分離型の構成をとり、実施の形態4及び5で示した第2変換の変換行列の導出を同様に適用する。また図34Bに本実施の形態における第2変換の変換行列の導出動作のフローチャートを示す。本実施の形態の符号化装置は、上記変換行列A、及び、離散コサイン変換を、水平変換、あるいは、垂直変換として用いた行列演算結果を、分離型へ展開した行列Hを導出する。次に、二次元の状態で、水平・垂直の低域側を抜き出し(左上を三角に抜き出す)、実施の形態4と5に記載のノルム補正と同様の補正処理を行い、補正した非分離型の第2変換の変換行列を導出し、変換を行う。
(Embodiment 6)
The second transformation in the present embodiment has a non-separable configuration, and the derivation of the transformation matrix of the second transformation shown in the fourth and fifth embodiments is similarly applied. FIG. 34B shows a flowchart of the operation of deriving the transformation matrix of the second transformation in the present embodiment. The encoding apparatus according to the present embodiment derives a matrix H in which a matrix operation result obtained by using the transformation matrix A and the discrete cosine transformation as horizontal transformation or vertical transformation is expanded into a separation type. Next, in the two-dimensional state, the horizontal / vertical low frequency side is extracted (the upper left is extracted in a triangle), and the same non-separation type is performed by performing correction processing similar to the norm correction described in the fourth and fifth embodiments. A transformation matrix of the second transformation is derived and transformation is performed.
 図23は、分離型の2段階変換で、4点中3点に対して処理を行う、水平変換GHと垂直変換Gvとを行った場合の、データフローの概念図である。“X”で記した要素は第2変換の対象位置であり、“1”で記した要素は対象外を意味する。図24A~図24Cは非分離型の第2変換で変換対象の例を示したものである。4x4のブロックに対して、図24Aは左上の10個を第2変換の対象とする例である。図24Bは6点の例であり、図24Cは3点の例であり。必ずしもこの対象に限定されるものではないが、多くの画像において、予測誤差信号(変換の入力)の第1の変換の出力は、これら例のように、左上の三角形の要素にエネルギーが集中する傾向がある。そのため、これら例のように選択をすることは少ない演算量(第2変換の変換行列の要素数を削減)で、高い変換性能を発揮することができる。 FIG. 23 is a conceptual diagram of a data flow in the case of performing horizontal conversion GH and vertical conversion Gv in which processing is performed on three out of four points in the separation type two-stage conversion. The element marked with “X” is the target position for the second conversion, and the element marked with “1” means not targeted. 24A to 24C show examples of conversion targets in the non-separable second conversion. For a 4 × 4 block, FIG. 24A is an example in which the upper left 10 are the targets of the second conversion. FIG. 24B is an example of 6 points, and FIG. 24C is an example of 3 points. Although not necessarily limited to this target, in many images, the output of the first transformation of the prediction error signal (transformation input) is concentrated in the upper left triangular element as in these examples. Tend. Therefore, selection as in these examples can exhibit high conversion performance with a small amount of computation (reducing the number of elements of the conversion matrix of the second conversion).
 次に、各要素位置の変換行列を導出する方法について説明する。図25Aは2段階変換の対象位置をXで記した例である。図25Bはラスター順で要素に番号(インデックス)を付与した例である。番号の付与順はエネルギー順であってもよいが説明の簡略化のためラスターとする。4点の上記変換行列Aを垂直変換の変換行列とし、4点のDCTを水平変換の変換行列とすると、上記付与した順でスキャンした1次元信号に対する非分離型の2段階変換の第2変換の変換行列Eは図26となる(8ビット整数表記)。各要素の変換行列の導出は、式5の行列Xへ当該要素のみを1とし残りの要素を0とすると得られる。図27は図24Aに示した左上の10個を抜き出し場合の非分離型の2段階変換の変換行列Fである(8ビット精度表記)。図28はノルム補正後の変換行列Gである(8ビット精度表記)。 Next, a method for deriving a transformation matrix for each element position will be described. FIG. 25A is an example in which the target position of the two-stage conversion is indicated by X. FIG. 25B is an example in which numbers (indexes) are assigned to elements in raster order. The order of assigning numbers may be in the order of energy, but is assumed to be a raster for simplicity of explanation. When the four-point transformation matrix A is a vertical transformation matrix and the four-point DCT is a horizontal transformation matrix, the second transformation of the non-separation type two-stage transformation for the one-dimensional signal scanned in the given order. The transformation matrix E is as shown in FIG. 26 (8-bit integer notation). Derivation of the transformation matrix of each element is obtained when only the element is set to 1 and the remaining elements are set to 0 in the matrix X of Equation 5. FIG. 27 is a transformation matrix F of the non-separable two-stage transformation in the case of extracting the top 10 pieces shown in FIG. 24A (8-bit precision notation). FIG. 28 shows a transformation matrix G after norm correction (8-bit precision notation).
 図29は前述の図27のFの別表記である。図29では、2段階変換の対象外の要素は対角に256を、対角以外に0を持つ表記で示している。この行列で行列乗算を行っても図27に示す変換行列と同じ結果が得られる。図30はノルム補正後の変換行列Gの別表記である。図31A~図31Cは、図31Aに示す左上6点を第2変換の対象とする場合の例である。図31Bはノルム補正前の変換行列Fであり、図31Cはノルム補正後の変換行列Gである。図32Bおよび図32Cは、図32Aに示す左上3点を第2変換の対象とする場合の変換行列の例である。図32Bはノルム補正前の変換行列Fであり、図32Cはノルム補正後の変換行列Gである。 FIG. 29 is another notation of F in FIG. 27 described above. In FIG. 29, the elements that are not subject to the two-step conversion are indicated by a notation having 256 on the diagonal and 0 on the other than the diagonal. Even if matrix multiplication is performed with this matrix, the same result as the transformation matrix shown in FIG. 27 is obtained. FIG. 30 shows another notation of the transformation matrix G after norm correction. FIG. 31A to FIG. 31C are examples in the case where the upper left six points shown in FIG. 31A are the targets of the second conversion. FIG. 31B shows a transformation matrix F before norm correction, and FIG. 31C shows a transformation matrix G after norm correction. 32B and 32C are examples of transformation matrices in the case where the upper left three points shown in FIG. 32A are to be subjected to the second transformation. FIG. 32B shows a transformation matrix F before norm correction, and FIG. 32C shows a transformation matrix G after norm correction.
 なお、本実施の形態でここまで示した第2変換の変換行列は、4点の変換行列Aを垂直変換の変換行列とし、4点のDCTを水平変換の変換行列とした場合である。この例の変換行列は、面内予測モードの垂直モード(図33Aの0)に最適化されており、近い角度を持つモード5と7にも適用可能である。 Note that the transformation matrix of the second transformation shown so far in the present embodiment is a case where the 4-point transformation matrix A is a vertical transformation matrix and the 4-point DCT is a horizontal transformation matrix. The transformation matrix in this example is optimized for the vertical mode (0 in FIG. 33A) of the in-plane prediction mode, and can also be applied to modes 5 and 7 having close angles.
 4点の変換行列Aを水平変換の変換行列とし、4点のDCTを垂直変換の変換行列として、本実施の形態で示した同様の導出を行うと、面内予測モードを水平モード(図33Aの1)に最適化した、第2変換の変換行列(E,F,G)が得られる。また、近い角度を持つモード8と6にも適用可能である。具体的な変換行列の数値例は、図26から図32C記載の変換行列E,F,Gを転置したものになる。また、図33Aに示す面内予測モード4と3については、4点の変換行列Aを垂直変換と水平変換として、本実施の形態でしめした導出を行うと、それらモードに最適化された第2変換の変換行列(E,F,G)が得られる。これら関係をまとめたのが図33Bであり図33Cであってもよい。 When the same derivation shown in this embodiment is performed using the 4-point transformation matrix A as the horizontal transformation matrix and the 4-point DCT as the vertical transformation matrix, the in-plane prediction mode is set to the horizontal mode (FIG. 33A). The transformation matrix (E, F, G) of the second transformation optimized to 1) is obtained. It is also applicable to modes 8 and 6 having close angles. A specific numerical example of the transformation matrix is obtained by transposing the transformation matrices E, F, and G shown in FIGS. In addition, for the in- plane prediction modes 4 and 3 shown in FIG. 33A, if the derivation shown in the present embodiment is performed using the four-point transformation matrix A as the vertical transformation and the horizontal transformation, Two transformation matrices (E, F, G) are obtained. These relationships are summarized in FIG. 33B and FIG. 33C.
 8ビット表記の数値は一例であり、8ビットに限定されるものではない。また、抜き出しは代表的な例であり、ここに記載した抜き出しの個数や抜き出しの位置に限定されるものではない。4点という変換のサイズは一例でありこれに限定されるものではない。変換行列の表現の精度の都合等により、本例で示した数値の近傍を用いることを否定するものではない。第1変換にH.264/AVCの整数精度の変換を用いる場合、ノルムの補正を行うことがある。ノルムの補正は演算精度の都合等により、十分な精度で実施されず、第1変換は不揃いなノルムを持つ場合も想定されるが、その際は、第2変換の変換行列へ、その不揃いを補正するような重み付けを加えてもよい。 The numerical value in 8-bit notation is an example and is not limited to 8 bits. Further, the extraction is a representative example, and is not limited to the number of extractions or the extraction positions described here. The conversion size of 4 points is an example and is not limited to this. Use of the vicinity of the numerical value shown in this example is not denied due to the accuracy of the expression of the transformation matrix. H. When using H.264 / AVC integer precision conversion, the norm may be corrected. The norm correction is not performed with sufficient accuracy due to the accuracy of calculation accuracy, and the first transformation may be assumed to have an irregular norm. In that case, the irregularity is converted to the transformation matrix of the second transformation. Weighting for correction may be added.
 本実施の形態で示した、2段階変換の非分離型の第2の変換の変換行列Gは、1段階変換の変換行列A(CまたはR)の特性を少ない要素数で精度良く反映させたものであり、同等の変換性能を少ない演算量で得ることができる。特に所定の角度で外挿を行う面内予測の予測誤差信号に対して効果的である。 The transformation matrix G of the non-separable second transformation of the two-stage transformation shown in the present embodiment accurately reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements. Therefore, equivalent conversion performance can be obtained with a small amount of calculation. This is particularly effective for a prediction error signal for in-plane prediction in which extrapolation is performed at a predetermined angle.
 (実施の形態7)
 本実施の形態の復号化装置は、実施の形態1から3の復号化装置において、第2の逆変換の変換係数を、実施の形態4から6で導出した第2変換の変換行列Gの逆行列invGを用いる。第2変換の変換行列は正規行列である場合は、逆行列invGは転置行列GTとなる。invGとGは演算精度の都合等により有効ビット長が異なってもよい。invGの有効精度を低く抑えたときGはinvGの逆行列のG’としてもよい。
(Embodiment 7)
The decoding apparatus according to the present embodiment is the inverse of the transformation matrix G of the second transformation derived in the fourth to sixth embodiments with the transform coefficient of the second inverse transformation in the decoding apparatus of the first to third embodiments. The matrix invG is used. When the transformation matrix of the second transformation is a normal matrix, the inverse matrix invG is a transposed matrix GT. InvG and G may have different effective bit lengths for convenience of calculation accuracy. When the effective accuracy of invG is kept low, G may be G ′ of the inverse matrix of invG.
 本実施の形態で示した、2段階変換の第2の逆変換の変換行列invGは、1段階変換の変換行列A(CまたはR)の特性を少ない要素数で精度良く反映させたものであり、同等の変換性能を少ない演算量で得ることができる。特に所定の角度で外挿を行う面内予測の予測誤差信号に対して効果的である。 The transformation matrix invG of the second inverse transformation of the two-stage transformation shown in the present embodiment reflects the characteristics of the transformation matrix A (C or R) of the one-stage transformation with a small number of elements with high accuracy. The equivalent conversion performance can be obtained with a small amount of calculation. This is particularly effective for a prediction error signal for in-plane prediction in which extrapolation is performed at a predetermined angle.
 (実施の形態8)
 上記各実施の形態で示した動画像符号化方法または動画像復号化方法の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 8)
By recording a program for realizing the configuration of the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments on a storage medium, the computer system in which the processing shown in each of the above embodiments is independent It becomes possible to carry out easily. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法や動画像復号化方法の応用例とそれを用いたシステムを説明する。 Further, application examples of the moving picture encoding method and the moving picture decoding method shown in the above embodiments and a system using the same will be described.
 図35は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 35 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図35のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration as shown in FIG. 35, and any element may be combined and connected. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. In addition, the mobile phone ex114 is a GSM (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, an LTE (Long Terminal Evolution) system, an HSPA ( High-speed-Packet-Access) mobile phone or PHS (Personal-Handyphone System), etc.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図36に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置または動画像復号化装置のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する。 In addition to the example of the content supply system ex100, as shown in FIG. 36, at least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments. Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図37は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 37 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal. A speaker ex307 for outputting, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図38に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 38 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary. The modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 includes, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図39に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 39 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図37に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. Note that the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG.
 図40Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 40A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図40Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 40B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. The encoded video data is sent to the multiplexing / separating unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data is multiplexed with video data is received and transmitted. However, in addition to audio data, character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態9)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 9)
The moving picture coding method or apparatus shown in each of the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図41は、多重化データの構成を示す図である。図41に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 41 is a diagram showing a structure of multiplexed data. As shown in FIG. 41, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図42は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 42 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図43は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図43における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図43の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 43 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 43 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 43, a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図44は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図44下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 44 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. As shown in the lower part of FIG. 44, source packets are arranged in the multiplexed data, and a number incremented from the head of the multiplexed data is called an SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図45はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 45 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図46に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 46, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図46に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 As shown in FIG. 46, the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図47に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 47, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図48に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 48 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態10)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図49に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 10)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 49 shows a configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態11)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 11)
When decoding video data generated by the moving picture encoding method or apparatus described in each of the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図50は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 50 shows a configuration ex800 in the present embodiment. Driving frequency switching unit ex803 includes, video data, if they were generated by the moving picture coding method or apparatus described in each of embodiments, set high driving frequency. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, video data, when the video data conforms to the conventional standard, compared with the case where the video data are those generated by the moving picture coding method or apparatus described in each of embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図49のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図49の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態9で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態9で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図52のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 of FIG. Further, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, it is conceivable to use the identification information described in the ninth embodiment. The identification information is not limited to that described in Embodiment 9, and any information that can identify which standard the video data conforms to may be used. For example, one in which video data is available to the television, based on the external signal identifying and whether it is intended to be utilized in the disk can be identified or are those to which standard the video data conforms In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. A look-up table, buffer ex508 and may be stored in an internal memory of an LSI, and by CPUex502 refers to the look-up table, it is possible to select the drive frequency.
 図51は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 51 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step ExS201, identifying the CPU ex 502, whether the image data based on the identification information is one that was generated by the encoding method or apparatus described in each of embodiments. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 drives the signal for setting the drive frequency low in step exS203. This is sent to the frequency control unit ex512. Then, the driving frequency control unit ex 512, compared with the case where the video data were generated by the encoding method or apparatus described in each of embodiments is set to a lower drive frequency.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, along with the switching of the driving frequencies, by changing the voltage applied to the apparatus including the LSI ex 500 or LSI ex 500, it is possible to enhance the power saving effect. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 The setting method of setting the driving frequency, when the processing amount in decoding is large, and set a high driving frequency, when the processing amount in decoding is small, it is sufficient to set a low driving frequency, the above-mentioned It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, it may be considered to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, and VC-1, the CPUex 502 is temporarily stopped because there is a margin in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. Further, when driving the device comprising LSIex500 or LSIex500 using batteries, with the power saving, it is possible to increase the life of the battery.
 (実施の形態12)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 12)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図53Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 53A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing contents, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inverse quantization, for example, a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used. For any or all of the processes, it is conceivable to share the decoding processing unit. For sharing of the decoding processing unit, for processing contents in common, to share the decoding processing unit for executing a moving picture decoding method described in each of embodiments, specific to the MPEG4-AVC standard processing content As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図53Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 53B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 Thus, the moving picture decoding method of the present invention, the processing contents to be shared by the moving picture decoding method of the conventional standard, by sharing the decoding processing unit, to reduce the circuit scale of LSI, and cost It is possible to reduce.
 本発明にかかる復号化方法および符号化方法は、演算量を抑えて処理負担を軽減することができるという効果を奏し、例えば、ビデオカメラ、動画の撮影および再生機能を有する携帯電話、パーソナルコンピュータ、または録画再生装置などに適用することができる。 The decoding method and the encoding method according to the present invention have an effect that the processing load can be reduced by reducing the amount of calculation. For example, a video camera, a mobile phone having video shooting and playback functions, a personal computer, Alternatively, it can be applied to a recording / playback apparatus.
 120  変換部
 150  逆変換部
 200  第1の変換部
 202  第1の変換行列導出部
 210  第2の変換対象決定部
 215  第2の逆変換対象決定部
 220  第2の変換部
 222  第2の変換行列導出部
 223  局所集合判定部
 230,235  統合部
 240  エントロピー復号部
 250  第1の逆変換部
 260  第2の逆変換部
120 conversion unit 150 inverse conversion unit 200 first conversion unit 202 first conversion matrix derivation unit 210 second conversion target determination unit 215 second inverse conversion target determination unit 220 second conversion unit 222 second conversion matrix inverse transform unit of the lead-out portion 223 locally set determining section 230, 235 integrating unit 240 entropy decoding unit 250 first 260 second inverse transformation unit

Claims (6)

  1.  入力信号に対して周波数変換を行い、複数の周波数成分の係数値を有する変換出力信号を生成する変換ステップと、
     前記変換出力信号を量子化して量子化係数を生成する量子化ステップと、
     前記量子化係数をエントロピー符号化して符号化信号を生成するエントロピー符号化ステップと、を含み、
     前記変換ステップは、
      前記入力信号に対して、第1の変換行列を用いて第1の周波数変換を行い、第1の変換出力信号を生成する第1の変換ステップと、
      前記第1の変換出力信号である周波数変換が行われた信号の一部を構成する第1の部分信号に対して、第2の変換行列を用いて第2の周波数変換を行う第2の変換ステップと、を含み、
     前記第2の変換ステップでは、
     面内予測信号の誤差の統計的なモデルに基づいて設計された1段階の変換の変換行列に、前記第1の変換行列の逆行列を行列乗算して得られる行列を、前記第2の変換行列として前記第2の周波数変換に用いる
     符号化方法。
    A conversion step of performing frequency conversion on the input signal and generating a converted output signal having coefficient values of a plurality of frequency components;
    A quantization step of quantizing the transformed output signal to generate a quantization coefficient;
    Entropy encoding the entropy encoding of the quantized coefficients to generate an encoded signal, and
    The converting step includes
    With respect to the input signal, performing a first frequency conversion using the first conversion matrix, a first transformation step of generating a first transformed signal,
    A second conversion for performing a second frequency conversion on the first partial signal constituting a part of the frequency-converted signal that is the first conversion output signal by using a second conversion matrix. And including steps,
    In the second conversion step,
    A matrix obtained by matrix-multiplying an inverse matrix of the first transformation matrix by a transformation matrix of one-stage transformation designed based on a statistical model of the error of the in-plane prediction signal is used as the second transformation. An encoding method used for the second frequency conversion as a matrix.
  2.  前記第2の変換ステップでは、
     前記第2の変換行列から、行列の要素の前方側を抜き出して要素数を減じ、前記第2の変換行列の基底の大きさである行列の各行のノルムが、抜き出しの前後で一致するように前記第2の変換行列を補正し、補正を行った第2の変換行列を、前記第2の周波数変換に用いる
     請求項1記載の符号化方法。
    In the second conversion step,
    From the second transformation matrix, the front side of the matrix element is extracted to reduce the number of elements so that the norm of each row of the matrix, which is the base size of the second transformation matrix, matches before and after extraction. The encoding method according to claim 1, wherein the second transformation matrix is corrected, and the corrected second transformation matrix is used for the second frequency transformation.
  3.  前記第2の周波数変換は水平軸方向の変換と垂直軸方向の変換とからなる分離型の変換であり、前記水平軸方向の変換の変換行列は、前記第2の変換行列または離散コサイン変換の変換行列のいずれかであり、前記垂直軸方向の変換の変換行列も同様に、前記第2の変換行列または離散コサイン変換の変換行列のいずれかであり、前記第2の変換行列または離散コサイン変換の変換行列の選択は、面内予測の予測方向の角度に基づいて所定のルールで行われる、
     請求項1または2記載の符号化方法。
    The second frequency conversion is a separation type conversion including horizontal axis conversion and vertical axis conversion, and the conversion matrix of the horizontal axis conversion is the second conversion matrix or discrete cosine conversion. Similarly, the transformation matrix of the transformation in the vertical axis direction is either the second transformation matrix or the transformation matrix of the discrete cosine transformation, and the second transformation matrix or the discrete cosine transformation. The selection of the transformation matrix is performed according to a predetermined rule based on the angle of the prediction direction of the in-plane prediction.
    The encoding method according to claim 1 or 2.
  4.  前記第2の周波数変換は、変換の入力信号を一次元の信号とみなして処理を行う非分離型の変換であり、
     前記第2の変換ステップでは、
     前記第2の変換行列と、離散コサイン変換の変換行列とから、所定の方法で非分離型の変換行列を導出し、前記非分離型の変換行列を用いて前記第2の周波数変換を行う、
     請求項1記載の符号化方法。
    The second frequency transform is a non-separable transform that performs processing by regarding the input signal of the transform as a one-dimensional signal,
    In the second conversion step,
    A non-separable transformation matrix is derived from the second transformation matrix and a discrete cosine transformation matrix by a predetermined method, and the second frequency transformation is performed using the non-separable transformation matrix.
    The encoding method according to claim 1.
  5.  前記第2の変換ステップでは、
     前記非分離型の変換行列から、水平方向と垂直方向の位置の和が小さい要素を選択し、選択された要素を抜き出して要素数を減じ、前記非分離型の変換行列の基底の大きさである行列の各行のノルムが、抜き出しの前後で一致するように、前記非分離型の変換行列を補正し、補正を行った非分離型の変換行列を、前記第2の周波数変換に用いる
     請求項4記載の符号化方法。
    In the second conversion step,
    From the non-separable transformation matrix, an element having a small sum of horizontal and vertical positions is selected, the selected element is extracted and the number of elements is reduced, and the base size of the non-separable transformation matrix is The non-separable transformation matrix is corrected for the second frequency transformation so that the norm of each row of a matrix matches before and after extraction, and the non-separable transformation matrix is corrected. 4. The encoding method according to 4.
  6.  符号化信号に対してエントロピー復号化を行い、量子化係数を生成するエントロピー復号化ステップと、
     前記量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換行列を用いて第2の逆変換を行い、逆変換された第1の部分信号を生成する第2の逆変換ステップと、
     前記逆変換された第1の部分信号と、前記第2の逆変換を行わなかった部分である第2の部分信号とを一括して、第1の逆変換の変換行列を用いて逆変換を行う、第1逆変換ステップとを含み、
     前記第2の逆変換の変換行列は、請求項1から5の何れか1項に記載の符号化方法における第2の変換行列の逆行列である、
     復号化方法。
    An entropy decoding step for performing entropy decoding on the encoded signal to generate a quantized coefficient;
    An inverse quantization step of inversely quantizing the quantization coefficient to generate a decoded transformed output signal;
    A first partial signal constituting a part of the decoded conversion output signal is subjected to a second inverse transformation using a transformation matrix of a second inverse transformation to generate an inversely transformed first partial signal. A second inverse transforming step,
    The first partial signal that has been subjected to the inverse transformation and the second partial signal that has not been subjected to the second inverse transformation are collectively subjected to an inverse transformation using a transformation matrix of the first inverse transformation. Performing a first inverse transformation step,
    The transformation matrix of the second inverse transformation is an inverse matrix of the second transformation matrix in the encoding method according to any one of claims 1 to 5.
    Decryption method.
PCT/JP2011/004234 2010-07-28 2011-07-27 Encoding method, and decoding method WO2012014461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36840310P 2010-07-28 2010-07-28
US61/368,403 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014461A1 true WO2012014461A1 (en) 2012-02-02

Family

ID=45529692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004234 WO2012014461A1 (en) 2010-07-28 2011-07-27 Encoding method, and decoding method

Country Status (1)

Country Link
WO (1) WO2012014461A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096195A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Encoding method, decoding method, encoding device, decoding device, and encoding/decoding device
CN108141597A (en) * 2015-09-29 2018-06-08 高通股份有限公司 For having the non-separable quadratic transformation of the video coding of recombination
WO2018199002A1 (en) * 2017-04-28 2018-11-01 シャープ株式会社 Moving picture encoding device and moving picture decoding device
CN113678459A (en) * 2019-04-12 2021-11-19 北京字节跳动网络技术有限公司 Adaptation of matrix-based intra prediction
US11805275B2 (en) 2019-06-05 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Context determination for matrix-based intra prediction
US11943444B2 (en) 2019-05-31 2024-03-26 Beijing Bytedance Network Technology Co., Ltd. Restricted upsampling process in matrix-based intra prediction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008157360A2 (en) * 2007-06-15 2008-12-24 Qualcomm Incorporated Adaptive transformation of residual blocks depending on the intra prediction mode
JP2010525675A (en) * 2007-04-17 2010-07-22 クゥアルコム・インコーポレイテッド Direction change for intra coding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525675A (en) * 2007-04-17 2010-07-22 クゥアルコム・インコーポレイテッド Direction change for intra coding
WO2008157360A2 (en) * 2007-06-15 2008-12-24 Qualcomm Incorporated Adaptive transformation of residual blocks depending on the intra prediction mode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUOHAO YEO ET AL.: "Mode-Dependent Fast Separable KLT for Block-based Intra Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 2ND MEETING, 21 July 2010 (2010-07-21), GENEVA, CH *
MADHUKAR BUDAGAVI ET AL.: "Orthogonal MDDT and Mode Dependent DCT", ITU - TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG) 39TH MEETING, 17 January 2010 (2010-01-17), KYOTO, JP *
YAN YE ET AL.: "Improved Intra Coding", ITU - TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG) 33RD MEETING, 20 October 2007 (2007-10-20), SHENZHEN, CHINA *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096195A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Encoding method, decoding method, encoding device, decoding device, and encoding/decoding device
CN108141597A (en) * 2015-09-29 2018-06-08 高通股份有限公司 For having the non-separable quadratic transformation of the video coding of recombination
JP2018530247A (en) * 2015-09-29 2018-10-11 クゥアルコム・インコーポレイテッドQualcomm Incorporated Non-separable secondary transform for video coding with reorganization
JP6995744B2 (en) 2015-09-29 2022-01-17 クゥアルコム・インコーポレイテッド Non-separable secondary transformation for video coding with reorganization
CN108141597B (en) * 2015-09-29 2022-03-08 高通股份有限公司 Non-separable quadratic transforms for video coding with recombination
WO2018199002A1 (en) * 2017-04-28 2018-11-01 シャープ株式会社 Moving picture encoding device and moving picture decoding device
CN113678459A (en) * 2019-04-12 2021-11-19 北京字节跳动网络技术有限公司 Adaptation of matrix-based intra prediction
CN113678459B (en) * 2019-04-12 2023-09-19 北京字节跳动网络技术有限公司 Matrix-based intra prediction adaptation
US11831877B2 (en) 2019-04-12 2023-11-28 Beijing Bytedance Network Technology Co., Ltd Calculation in matrix-based intra prediction
US11943444B2 (en) 2019-05-31 2024-03-26 Beijing Bytedance Network Technology Co., Ltd. Restricted upsampling process in matrix-based intra prediction
US11805275B2 (en) 2019-06-05 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Context determination for matrix-based intra prediction

Similar Documents

Publication Publication Date Title
JP6195179B2 (en) Image decoding method and image decoding apparatus
JP6064235B2 (en) Encoding method, program, and encoding apparatus
JP6384650B2 (en) Encoding method, encoding apparatus, decoding method, and decoding apparatus
JP6210396B2 (en) Decoding method and decoding apparatus
WO2012108205A1 (en) Picture encoding method, picture encoding device, picture decoding method, picture decoding device and picture encoding decoding device
JP6327435B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP2014030234A (en) Image encoding and decoding apparatus
JP6004375B2 (en) Image encoding method and image decoding method
JP6489337B2 (en) Arithmetic decoding method and arithmetic coding method
JP2013526199A (en) Predictive coding using block shapes derived from prediction errors
WO2011129090A1 (en) Encoding distortion removal method, encoding method, decoding method, encoding distortion removal device, encoding device and decoding device
WO2012014461A1 (en) Encoding method, and decoding method
WO2012098868A1 (en) Image-encoding method, image-decoding method, image-encoding device, image-decoding device, and image-encoding/decoding device
JP6399433B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2011132400A1 (en) Image coding method and image decoding method
WO2013014884A1 (en) Moving image encoding method, moving image encoding device, moving image decoding method, and moving image decoding device
WO2012014426A1 (en) Decoding method and encoding method
WO2012077347A1 (en) Decoding method
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2012096156A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012096195A1 (en) Encoding method, decoding method, encoding device, decoding device, and encoding/decoding device
WO2012053210A1 (en) Decoding method, encoding method, decoding device, and encoding device
WO2012095930A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012102023A1 (en) Decoding method and encoding method
WO2013069258A1 (en) Image decoding method, image encoding method, image decoding device, image encoding device, and image encoding and decoding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP