WO2012102023A1 - Decoding method and encoding method - Google Patents

Decoding method and encoding method Download PDF

Info

Publication number
WO2012102023A1
WO2012102023A1 PCT/JP2012/000428 JP2012000428W WO2012102023A1 WO 2012102023 A1 WO2012102023 A1 WO 2012102023A1 JP 2012000428 W JP2012000428 W JP 2012000428W WO 2012102023 A1 WO2012102023 A1 WO 2012102023A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverse transform
unit
inverse
transform
conversion
Prior art date
Application number
PCT/JP2012/000428
Other languages
French (fr)
Japanese (ja)
Inventor
陽司 柴原
西 孝啓
寿郎 笹井
敏康 杉尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012102023A1 publication Critical patent/WO2012102023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/649Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding the transform being applied to non rectangular image segments

Definitions

  • the present invention relates to audio encoding and decoding, still image encoding and decoding, or moving image encoding and decoding, and more particularly, to a method of converting a space-time domain signal vector to a frequency domain, and the like. .
  • H.264 ITU-T As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • MPEG-x As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x.
  • the latest video coding standard is H.264. H.264 / MPEG-4AVC.
  • FIG. 1 is a block diagram of an encoding apparatus that encodes these audio data or moving image data at a low bit rate.
  • the conversion unit 120 converts an input signal, which is various data, or a converted input obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output with reduced correlation.
  • the quantization unit 130 quantizes the conversion output output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount.
  • the entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal.
  • a vector of N points (N-dimensional signal) input to the conversion unit 120 is a conversion input vector xn, and an output of a certain conversion T is a conversion output vector (Transform Output) vector.
  • y be n .
  • the transformation T is a linear transformation
  • the transformation T can be expressed by a matrix product of a transformation coefficient A that is an N ⁇ N matrix and a transformation input vector xn , as shown in (Equation 2). Therefore, the element y i of the transform output vector y n is expressed as shown in (Equation 3) using the transform coefficient a ik that is each element of the transform coefficient A.
  • the conversion coefficient A is designed to reduce the correlation of input signals and concentrate low-dimensional energy.
  • a conversion coefficient derivation method or conversion method called KLT Karhunen Loeve transform
  • KLT is a method for deriving an optimum transform coefficient based on the statistical properties of an input signal, or a transform method using the derived optimum transform coefficient (refer to Non-Patent Document 1 for details).
  • KLT is known to eliminate the correlation of input signals completely and to concentrate energy to a low frequency most efficiently.
  • the conversion to the frequency domain optimized based on statistical properties in the conventional image encoding device and image decoding device requires multiplication, and the operation for multiplication There is a problem that the amount is large. That is, the conversion using the conversion coefficient calculated based on the statistical properties of the input signal has a problem that the amount of calculation is large and the total number of conversion coefficients is large.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a decoding method and an encoding method capable of reducing the amount of calculation.
  • a decoding method includes an entropy decoding step of performing entropy decoding on an encoded signal to generate a plurality of quantized coefficients, and the plurality of quantum
  • a second inverse transform step for performing a second inverse transform and generating a first partial signal subjected to the second inverse transform, and a first partial signal subjected to the second inverse transform.
  • the first inverse transformation is performed using the transform coefficient of the first inverse transformation in a lump.
  • the encoding method includes a conversion step of performing frequency conversion on an input signal to generate a conversion output signal having coefficient values of a plurality of frequency components, and quantizing the conversion output signal.
  • a quantization step for generating a plurality of quantized coefficients an entropy encoding step for generating an encoded signal by entropy encoding the plurality of quantized coefficients, and a decoding transform by dequantizing the plurality of quantized coefficients
  • An inverse quantization step for generating an output signal, and a second inverse transform is performed on a first partial signal constituting a part of the decoded transformed output signal using a transform coefficient of the second inverse transform,
  • a second inverse transformation step for generating a first partial signal subjected to the second inverse transformation, a first partial signal subjected to the second inverse transformation, and the second inverse transformation.
  • the second part that was not done A first inverse transform step for performing a first inverse transform on a partial signal using a transform coefficient of the first inverse transform in a lump, and an internal necessary for matrix multiplication of the first inverse transform Control for controlling the shift amount after matrix multiplication of the transform coefficient of the second inverse transform according to the bit length of the decoded transform output signal for each block so that the maximum bit length of the variable does not exceed a predetermined value Steps.
  • the present invention can be realized not only as such an encoding method or decoding method, but also as a device for processing according to the method, an integrated circuit, and a program for causing a computer to execute processing according to the method. It can also be realized as a storage medium for storing the program.
  • the decoding method or the encoding method of the present invention can reduce the amount of calculation of conversion and reduce the total number of transform coefficients.
  • FIG. 1 is a block diagram of an AV data encoding apparatus.
  • FIG. 2 is a block diagram of the conversion unit of the encoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 3A is a conceptual diagram showing a data flow of the conversion unit in Embodiment 1 of the present invention.
  • FIG. 3B is a conceptual diagram showing another data flow of the conversion unit in Embodiment 1 of the present invention.
  • FIG. 4A is a flowchart of the conversion process in the first embodiment of the present invention.
  • FIG. 4B is a flowchart of another conversion process according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram of an AV data decoding apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a block diagram of the inverse transform unit of the decoding apparatus according to Embodiment 2 of the present invention.
  • FIG. 7A is a diagram conceptually showing the data flow of the inverse transform unit in Embodiment 2 of the present invention.
  • FIG. 7B is a diagram conceptually illustrating another data flow of the inverse transform unit in Embodiment 2 of the present invention.
  • FIG. 7C is a diagram conceptually showing another data flow of the inverse transform unit in Embodiment 2 of the present invention.
  • FIG. 8A is a flowchart of the inverse conversion process in Embodiment 2 of the present invention.
  • FIG. 8B is a flowchart of another inverse conversion process according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram of a decoding apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart showing processing operations of the decoding apparatus according to Embodiment 3 of the present invention.
  • FIG. 11A is a diagram for describing a shift amount determination method according to Embodiment 3 of the present invention.
  • FIG. 11B is a diagram for explaining a shift amount determination method according to Embodiment 3 of the present invention.
  • FIG. 12 is a block diagram of a decoding apparatus according to Embodiment 4 of the present invention.
  • FIG. 13 is a diagram for explaining a shift amount determination method according to Embodiment 4 of the present invention.
  • FIG. 14 is a diagram for explaining another method for determining the shift amount according to the fourth embodiment of the present invention.
  • FIG. 11A is a diagram for describing a shift amount determination method according to Embodiment 3 of the present invention.
  • FIG. 11B is a diagram for explaining a shift amount determination method according
  • FIG. 15 is a block diagram of a decoding apparatus according to Embodiment 5 of the present invention.
  • FIG. 16A is a flowchart of the pre-shift down process in the inverse transform process according to Embodiment 5 of the present invention.
  • FIG. 16B is a flowchart of another pre-shift down process in the inverse transform process according to Embodiment 5 of the present invention.
  • FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 18 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 19 is a block diagram illustrating a configuration example of a television.
  • FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 22A illustrates an example of a mobile phone.
  • FIG. 22B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 27 is a diagram illustrating a data structure of the PMT.
  • FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information.
  • FIG. 29 shows the internal structure of stream attribute information.
  • FIG. 30 shows steps for identifying video data.
  • FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 32 is a diagram showing a configuration for switching the drive frequency.
  • FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies.
  • FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 35 is a diagram illustrating an example of a configuration for sharing a module of the signal processing unit.
  • FIG. 36 is a diagram illustrating another example of a configuration for
  • FIG. 2 is a diagram illustrating a configuration of a conversion unit in the encoding apparatus according to the present embodiment.
  • the conversion unit of the present invention performs a second conversion on the first conversion output and the first conversion unit 200 that generates the first conversion output by performing the first conversion on the conversion input (input signal).
  • a second conversion target determining unit 210 that divides the target part (first part) and a non-target part (second part) into two parts, and performs the second conversion on the first part
  • the second conversion unit 220 that generates the second conversion output and the integration unit 230 that generates the conversion output by integrating the second conversion output and the second part are included.
  • the integration unit 230 is conceptually described in the sense that the signals that have been conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
  • Signals such as audio, still images, or moving images are input to the encoding device.
  • the signal to be encoded (Original Signal) that is this signal, or a prediction error signal that is a difference between this signal and a prediction signal that is created based on the previously input encoding target signal is used as the conversion input.
  • Input to the conversion unit 200 In general, a prediction error signal is often input as a conversion target, but prediction is not performed when prediction is not performed assuming that an error is mixed in the transmission path or when energy is small.
  • an encoding target signal is input as a conversion target.
  • Such a conversion input Transform Input
  • FIG. 3A is a diagram conceptually illustrating a data flow of the conversion unit in the encoding device of the present embodiment.
  • the first conversion unit 200 is reduced correlation of the transform input x n, it converts the input x n is transformed into a first conversion output y 1 n, which concentrates the energy in the low frequency band.
  • the first conversion output y 1 n is divided into a first part (first partial signal) and a second part (second partial signal) by the second conversion target determining unit 210.
  • the division into the first part and the second part is performed so that the correlation energy of the first part is larger than the correlation energy of the second part based on the division integration information.
  • the division integration information is information that causes the second conversion target determination unit 210 to perform control to divide the low frequency band as the first part and the high frequency band as the second part.
  • the division integration information may be information instructing dynamic control according to input.
  • the division integration information may be information instructing to distribute a component having a large energy to a first portion and to distribute a component having a small energy to a second portion.
  • the first part (each element included in the first part) generated as described above is rearranged in one dimension by the second conversion target determining unit 210. Further, the second conversion unit 220 reduces the correlation of the first portion, and the first portion is converted into a second conversion output y 2 n in which energy is concentrated in a lower frequency band. In the integration unit 230, the second conversion output y 2 n (each element included in the second conversion output) is rearranged in the dimension before being rearranged by the second conversion target determination unit 210, and the second part Integrated with.
  • the second conversion target is illustrated as an arbitrary area, but is not limited thereto, and may be a rectangular area.
  • the second conversion target determining unit 210 performs the rearrangement to one dimension.
  • FIG. 3B is a conceptual diagram showing another data flow of the conversion unit in the present embodiment.
  • the second conversion target determining unit 210 does not perform the rearrangement to one dimension.
  • FIG. 4A is a flowchart of conversion processing by the conversion unit of the present embodiment.
  • a first conversion coefficient is determined based on the conversion input xn (step S101).
  • the first conversion unit 200 performs the first conversion using the determined first conversion coefficient (step S102).
  • division integration information is determined (step S103). If this division integration information controls the second conversion target determination unit 210 to perform predetermined division, this division integration information is read from the memory or the like of the encoding device. In addition, if the division integration information controls the second conversion target determination unit 210 to perform division according to the first conversion output, the distribution of energy states is considered based on the first conversion output. Thus, the division integration information is derived.
  • the first conversion output is divided in the second conversion target determination unit 210 (step S108), and in the second conversion unit 220, based on the first part.
  • the second conversion coefficient is determined (step S105).
  • the second conversion unit 220 performs second conversion using the determined second conversion coefficient (step S106).
  • the integration unit 230 the second conversion output and the second part are integrated and output as a conversion output (step S107). Further, the entire operation of steps S101 to S107 in FIG. 4A is defined as step S100.
  • FIG. 4B is a flowchart of another conversion process by the conversion unit of the present embodiment.
  • the conversion unit performs the first conversion in the first conversion unit 200 (step S102), determines the second conversion target from the first conversion output (step S105), and sets the determined second conversion target. On the other hand, the second conversion is performed (step S106), and a second conversion output is generated. Further, the conversion unit integrates the second conversion output and the portion of the first conversion output to which the second conversion is not applied (step S107), thereby converting the conversion output of the conversion processing of the present invention. Generate.
  • the second conversion target determining unit 210 and the integrating unit 230 perform the rearrangement of the dimensions of the first part and the second conversion output, the respective rearrangements are performed by the second conversion unit 220. You may go on. Further, when the encoding target is a one-dimensional signal such as audio data, the rearrangement process is not necessary. Further, in the separation-type processing of each dimension that can be regarded as one-dimensional signal processing, the conversion input xn input to the conversion unit is a one-dimensional signal, so that the rearrangement processing is not necessary. Note that the second conversion unit 220 may substantially substitute the processing of the second conversion target determination unit 210 and the integration unit 230 by setting the coefficient to zero. The same applies to the following embodiments.
  • FIG. 5 is a block diagram of an AV data decoding apparatus according to the present embodiment.
  • This decoding apparatus includes an entropy decoding unit 240, an inverse quantization unit 140, and an inverse conversion unit 150, and decodes an encoded signal obtained by encoding audio data or moving image data at a low bit rate.
  • the decoding process is substantially the reverse process of the encoding process described with reference to FIG. 1 in which entropy decoding is performed on the encoded signal, inverse quantization is performed, and inverse transform is performed.
  • the inverse transform unit 150 in the present embodiment will be described in detail.
  • FIG. 6 is a block diagram showing a configuration of the inverse transform unit 150 of the decoding device according to the present embodiment.
  • the inverse transform unit 150 according to the present embodiment has two decoded transform outputs that are a part to be subjected to the second inverse transform (decoded second converted output) and a part that is not the target (decoded second part).
  • a second inverse transformation target determination unit 215 that divides the data into two parts, a second inverse transformation unit 260 that generates a decoded first part by performing a second inverse transformation on the decoded second transformation output, and a decoding
  • An integration unit 235 that generates a decoded first converted output by integrating the first part and the decoded second part, and a decoding conversion input by performing a first inverse conversion on the decoded first converted output.
  • a first inverse conversion unit 250 to be generated.
  • the integration unit 235 is conceptually described in the sense that the signals generated by conceptually dividing the signals are not in a divided state but in the original dimension, and in actual information processing. It is not necessary to perform a special operation of integration. The same applies to the following embodiments.
  • An encoded signal obtained by encoding a signal such as a voice, a still image, or a moving image is input to the decoding device.
  • the encoded signal is entropy-decoded and the inversely quantized signal is input to the second inverse transform target determining unit 215 as a decoded transform output y ⁇ .
  • FIGS. 7A, 7B, and 7C are diagrams conceptually showing the data flow of inverse transform section 150 in the decoding apparatus of the present embodiment.
  • the entropy decoding unit 240 generates a plurality of decoded quantized coefficients by decoding the encoded signal, and the inverse quantizing unit 140 inversely quantizes the plurality of decoded quantized coefficients to obtain the decoded transform output y ⁇ . Generate.
  • the decoded conversion output y ⁇ is divided into two regions by the second inverse conversion target determination unit 215.
  • the second inverse transform unit 260 performs the second inverse transform on the decoded second transform output y ⁇ 2 in one of the two regions, and the decrypted first part becomes Generated.
  • the decoded second part y ⁇ 2H in the other region is not converted, and is integrated with the decoded first part by the integrating unit 235.
  • a decoded first conversion output ⁇ 1 is generated, and the first reverse conversion unit 250 performs the first reverse conversion on the decoded first conversion output ⁇ 1 .
  • the second inverse transformation target determining unit 215 and the integrating unit 235 do not perform the one-dimensional rearrangement. May be.
  • FIG. 8A is a flowchart of the inverse conversion process by the inverse conversion unit 150 of the present embodiment.
  • division integration information is acquired (step S201).
  • the second inverse transformation target determination unit 215 divides the decoding transformation output y ⁇ described above into a decoding second transformation output including a low frequency band and a decoding second portion including a high frequency band (Ste S208).
  • the division into the decoded second converted output and the decoded second part is performed based on the division integration information so that the correlation energy of the decoded second converted output is larger than the correlation energy of the decoded second part. Is called.
  • the division integration information is the same as that described in the first embodiment, and the acquisition of the division integration information may be to read out information stored in a predetermined memory or the like, depending on the decoding conversion output. It may be determined dynamically.
  • the decoded second conversion output (each element included in the decoded second conversion output) generated as described above is rearranged one-dimensionally by the second inverse conversion target determination unit 215, and the second inverse output Input to the converter 260.
  • the transform coefficient of the inverse transform performed by the second inverse transform unit 260 is the inverse matrix of the transform coefficient of the second transform described in the first embodiment or a matrix approximated thereto.
  • the transform coefficient of the inverse matrix is obtained based on the set SD including the decoded second transform output using, for example, KLT as in the first embodiment (step S203).
  • the second inverse transform unit 260 performs the second inverse transform on the decoded second transform output using the transform coefficient thus obtained, and outputs the decrypted first part (step S204). ).
  • the integration unit 235 rearranges the decoded first part (each element included in the decoded first part) into the dimension before being rearranged by the second inverse transformation target determination unit 215, and outputs the decoded second partial signal. Are integrated with each other to generate a decoded first conversion output y 1 and output it to the first inverse conversion unit 250 (step S205).
  • the transform coefficient of the inverse transform performed by the first inverse transform unit 250 is the inverse matrix of the first transform described in the first embodiment or a matrix approximated thereto.
  • the transform coefficient of the inverse matrix is obtained based on the set S E including the decoded first transform output ⁇ 1 using, for example, KLT as in the first embodiment (step S206).
  • the first inverse transform unit 250 performs the first inverse transform on the decrypted first transform output y ⁇ 1 using the transform coefficient thus obtained, and outputs the decoded transform input x ⁇ . (Step S207). Further, the entire operation from step S201 to step S207 in FIG. 8A is defined as step S200.
  • FIG. 8B is a flowchart of another inverse conversion process by the inverse conversion unit 150 of the present embodiment.
  • the set S D and the set S E are in the relationship between the set S C and the set S A in the first embodiment, and the set S D is a smaller set with a smaller number of samples than the set S E.
  • the decoding apparatus provided with the inverse transform unit 150 according to the present embodiment can achieve both high-efficiency conversion and reduction in the calculation amount and the data amount as in the first embodiment. .
  • the second inverse transformation target determination unit 215 and the integration unit 235 perform the rearrangement of the respective dimensions of the decoded second conversion output and the decoded first part.
  • the inverse conversion unit 260 may perform this. That is, a separation type conversion may be used, or a conversion including a zero coefficient may be used.
  • the decoding target is a one-dimensional signal such as audio data
  • the rearrangement process is not necessary.
  • the decoded transform output y ⁇ input to the inverse transform unit 150 is a one-dimensional signal, and the above-described dimension arrangement is performed.
  • the process of replacement (rearrangement to one dimension in the second inverse conversion target determination unit 215 and rearrangement to the original dimension in the integration unit 235) is not necessary.
  • the decoded conversion output, the decoded conversion input, the decoded signal, and the prediction signal are P-dimensional signals (P is an integer of 2 or more). That is, the decoded conversion output, the decoded second part, the decoded first converted output, and the decoded converted input are P-dimensional signals.
  • the second inverse transform unit 260 may input / output P-dimensional signals or input / output one-dimensional signals.
  • the second inverse transform target determining unit 215 divides the P-dimensional signal (decoded transform output) into a decoded second converted output and a decoded second part according to the division integration information, and then further outputs a decoded second converted output ( Each element included in the decoded second conversion output is rearranged in one dimension. Rearrangement order information is additionally stored in the division integration information.
  • the integration unit 235 integrates the decoded first part and the decoded second part according to the division integration information, and generates a decoded first conversion output.
  • the integration unit 235 rearranges the decoded first part (each element included in the decoded first part), which is a one-dimensional signal, into the P dimension based on the rearrangement information stored in the divided integration information. After that, integrate.
  • the second inverse transform unit 260 may input and output P-dimensional signals and do not rearrange them into one-dimensional signals.
  • the second inverse conversion unit 260 may be a separation type (two-stage conversion in the horizontal axis direction and the vertical axis direction). That is, the second inverse transformation unit 260 performs the inverse transformation (first coordinate axis transformation of the second inverse transformation) in the horizontal direction in units of rows, and the inverse transformation in the vertical direction (second coordinate of the second inverse transformation). Coordinate axis conversion). The order of horizontal and vertical may be reversed.
  • a row- or column-by-column conversion with one element is equivalent to not performing the actual processing, so the conversion may be skipped, or the norm correction processing in the subsequent stage may be replaced with the conversion.
  • You may go to The transform coefficient of the inverse transform of the row transform and the transform coefficient of the inverse transform of the column transform may be the same or different. By using the same conversion coefficient for all rows, the data amount of the conversion coefficient may be reduced, or by using different conversion coefficients for each row, the row conversion is performed due to the difference in statistical properties for each row. May be applied to improve the conversion performance.
  • the column conversion is similar to the row conversion, and the same conversion coefficient may be used for all the columns, or different conversion coefficients may be used.
  • the decoding apparatus performs a shift described later that performs processing after the second inverse transform for each block according to the bit length of the input signal of the second inverse transform or the bit length of the output signal.
  • a shift unit (to be described later) that performs processing after the first inverse transformation adaptively downshifts or upshifts the signal (bit length), and the circuit resources necessary for the first inverse transformation are constant. The following is to be suppressed.
  • FIG. 9 is a block diagram of the decoding apparatus according to the present embodiment. Signals and components having the same meaning as in FIGS. 5 and 6 are given the same reference numerals, and description of the same parts of operation is omitted.
  • FIG. 10 is a flowchart showing the processing operation of the decoding apparatus according to the present embodiment.
  • the entropy decoding unit 240 performs entropy decoding on the encoded signal to generate a plurality of quantized coefficients (step S208).
  • the inverse quantization unit 140 inversely quantizes the plurality of quantized coefficients and outputs a decoded transform output (decoded transform output signal) (step S209).
  • the second inverse transformation target determination unit 215 uses the decoded second transformation output (first partial signal) as a part for performing the second inverse transformation and the decoded second as a part for which the second inverse transformation target determination unit 215 does not perform the decoding transformation output. (Second partial signal).
  • the bit length control unit 301 detects the bit length of the decoded second conversion output for each input block, and shifts SA for each of the second inverse transform shift unit 303 and the first inverse transform shift unit 305. And SB are output (step S210).
  • the second inverse transform shift unit 303 and the first inverse transform shift unit 305 are the above-described shift units.
  • the second inverse transformation unit 260 in FIG. 6 shifts down the multiplication result (bit length) by a predetermined amount, with the second inverse transformation matrix multiplication unit 302 that performs multiplication of the matrix of transformation coefficients shown in FIG. This corresponds to the second inverse transform shift unit 303.
  • Expressing the inverse transformation process as a matrix multiplication followed by a shift-down is conceptual, and the multiplication and shift-down processes are performed sequentially for frequency position units, frequency position rows and columns, etc. You may go.
  • the downshifting may be performed in a plurality of downshifts instead of at once. For example, when performing 2N-bit shift-down, the 2N-bit shift-down may be performed twice, such as N-bit shift-down and N-bit shift-down.
  • the second inverse transformation matrix multiplication unit 302 performs matrix multiplication on the decoded second transformation output with a matrix of transformation coefficients of the second inverse transformation to generate a second inverse transformation multiplication output. It is assumed that the maximum effective bit length that can be processed by the second inverse transformation matrix multiplication unit 302 is MK, and the bit length increased by the matrix operation is K.
  • the second inverse transform shift unit 303 shifts down or up according to the shift amount SA of the second inverse transform multiplication output, and outputs the decoded first part (step S204).
  • the integration unit 235 integrates the decoded second part and the decoded first part, and outputs a decoded first conversion output.
  • the first inverse transformation matrix multiplication unit 304 and the first inverse transformation shift unit 305 correspond to the first inverse transformation unit 250 shown in FIG. 6 and perform a transform coefficient multiplication process and a subsequent downshift process. These processes are similar to the above-described second inverse transformation and are conceptual.
  • the first inverse transformation matrix multiplication unit 304 performs matrix multiplication on the decoded first transformation output with a matrix of transformation coefficients of the first inverse transformation, and outputs a first inverse transformation multiplication output (step S207).
  • the first inverse transform shift unit 305 shifts down or up the first transform multiplication output according to the shift amount SB, and outputs a decoded transform input.
  • FIG. 11A and FIG. 11B are diagrams for explaining a method of determining the shift amounts SA and SB.
  • FIG. 11A describes information on the bit length of each processing unit from left to right in correspondence with the flow of processing during decoding. It is assumed that the bit length of the output signal of each processing unit matches the bit length of the variable inside the processing unit.
  • the decoding conversion output of the inverse quantization unit 140 is A bits. If the second inverse transform matrix multiplication unit 302 increases the bit length by K bits by multiplication, the second inverse transform multiplication output becomes A + K bits. Next, since the second inverse transform shift unit 303 outputs the input signal without shifting up or down in this example, the bit length of the second inverse transform multiplication output that is the first decoded portion is A + K bits. Remains. If the first inverse transformation matrix multiplication unit 304 increases D bits by multiplication, the bit length of the first inverse transformation multiplication output (and the internal variable of the first inverse transformation matrix multiplication unit 304) that is the output is A + K + D. .
  • the decoding apparatus determines shift amount SA and shift amount SB so that A + K + D is equal to or less than MD.
  • the second inverse conversion shift unit 303 performs 4-bit shift-up.
  • the shift amount SA is zero
  • the second inverse transform shift unit 303 does not shift up or down.
  • bit length when this determination method is used will be described with reference to FIG. 11B.
  • the bit length control unit 301 controls the shift amount SA of the second inverse transform shift unit 303 according to the bit length of each block, so that the first inverse transform matrix multiplication unit 304 has a bit length to be supported.
  • a certain MD can be kept low, and the circuit scale can be reduced.
  • the shift amount SA when the shift amount SA is positive, the bit length of the input signal to the first inverse transformation matrix multiplication unit 304 increases, so the first inverse transformation matrix multiplication unit 304 and The effect of the calculation error that may occur in the first inverse transformation shift unit 305 is reduced, and the effect of increasing the accuracy of the first inverse transformation (inverse transformation with respect to the decoded first transformation output) is also obtained.
  • the second inverse transform shift unit 303 may set the shift amount SA to 0 when the bit length control unit 301 determines the positive shift amount SA. Further, for example, the target maximum bit length is given to the bit of the decoding conversion input due to the relationship with the process (prediction process or filter process) following the inverse conversion. Assuming that it is E bits, the bit length control unit 301 determines the shift amount SB of the first inverse transform shift unit 305 as E-MD. Similar to the second inverse transform shift unit 303, the first inverse transform shift unit 305 shifts up if the E-MD is a positive number and shifts down if the E-MD is a negative number.
  • the second partial shift is performed so that the bit accuracy of the decoded second portion matches the bit accuracy of the decoded first portion.
  • the unit 306 shifts the decoded second part, and outputs the shifted decoded second part to the integrating unit 235.
  • the bit length control unit 301 determines and outputs the shift amount SA2 of the second partial shift unit 306.
  • bit length control unit 301 and the second inverse conversion target determination unit 215 may interchange the processing order.
  • the bit length of the second conversion target coefficient may be controlled as described so far, or all the coefficients may be replaced regardless of whether it is the second conversion target.
  • the bit length may be controlled.
  • bit length control unit 301 calculates the bit length for each coefficient (element) of the input decoded transform output, and sets the maximum value as the bit length of the block. Since the decoded transform output is before inverse transform, it includes many zero coefficients. These zero coefficients may be excluded from the target of the bit length calculation to reduce the calculation amount of the bit length calculation. As described above, the bit length control unit 301 detects the bit length of the decoding conversion output of the block.
  • FIG. 12 is a block diagram of the decoding apparatus according to the present embodiment.
  • the decoding apparatus performs the second inverse transform (processing by the second inverse transform matrix multiplier 302 and the second inverse transform shift unit 303) and the first inverse transform (first Norm correction is performed between the 1 inverse transformation matrix multiplication unit 304 and the first inverse transformation shift unit 305).
  • the norm correction is a process for correcting a mismatch in the size (norm) of the conversion base that occurs when the multiplication process is reduced by using shift and addition in the conversion coefficient of the first inverse transform. This process is realized by a norm correction multiplication unit 310 that performs multiplication processing for each frequency position, and a norm correction shift unit 311 that performs subsequent shift processing.
  • the bit length control unit 301 determines the shift amount SA so that the bit length required for norm correction does not exceed the maximum bit length of the norm correction multiplication unit 310, and the shift amount of the norm correction shift unit 311. Determine the SC.
  • the norm correction shift unit 311 performs a shift so that the number of bits necessary for the first inverse transformation on the output does not exceed the maximum bit length MD of the first inverse transformation matrix multiplication unit 304. That is, D bits are increased by multiplication of the first inverse transformation by the first inverse transformation matrix multiplication unit 304 and the current bit length is MN. Therefore, the bit length control unit 301 includes the shift amount SC of the norm correction shift unit 311. Is determined to be MD ⁇ (D + MN).
  • the output shifted by the shift amount SC by the norm correction shift unit 311 is MD-D bits, and is input to the first inverse transformation matrix multiplication unit 304, and is increased by D bits to become MD bits. Therefore, it is possible to prevent the output from exceeding the maximum bit length MD of the circuit of the first inverse transformation matrix multiplication unit 304.
  • the subsequent processing is the same as in the third embodiment.
  • FIG. 14 is a diagram for explaining another calculation method (determination method) of the shift amount in the present embodiment.
  • the bit length of the input signal (decoded second conversion output) to the second inverse transformation matrix multiplication unit 302 may be controlled in advance. That is, as shown in FIG. 14, the A bit may be shifted by + MK ⁇ (K + A). Thereby, the number of bits necessary for the second inverse transformation can be suppressed to be equal to or less than the maximum bit length MK of the second inverse transformation matrix multiplication unit 302. Subsequent processing is equivalent to the above-described processing, and thus description thereof is omitted. Note that such a calculation method, that is, a method of controlling the bit length in advance for the decoded second conversion output may be applied to the third embodiment.
  • the decoding methods in Embodiments 3 and 4 are also used when the quantization coefficient is inversely quantized and inversely transformed in an encoding device that encodes an input signal. That is, the encoding device performs a frequency conversion on an input signal, generates a conversion output signal having coefficient values of a plurality of frequency components, and quantizes the conversion output signal to generate a plurality of quantization coefficients.
  • the first inverse transform step for performing the first inverse transform using the transform coefficient of the first inverse transform collectively and the maximum bit length of the internal variable required for the matrix multiplication of the first inverse transform
  • the result of the inverse transformation process including the inverse quantization step, the second inverse transformation step, the first inverse transformation step, and the control step is an input signal (for example, a prediction error signal) to be transformed in the transformation step. ).
  • the IBDI bit extension may be inserted in an arbitrary processing step. Here, it is assumed that the output value of the inverse quantization unit 140 is extended by a predetermined bit.
  • FIG. 15 is a block diagram of the decoding apparatus according to the present embodiment.
  • the decoding device in the present embodiment includes a second inverse transform preshift unit 321 and a second inverse transform control unit 320.
  • the second inverse transform control unit 320 operates the control signal CtrlA for instructing the operation of the second inverse transform matrix multiplication unit 302 based on a flag signal that is linked with the in-plane prediction mode or is multiplexed separately in the stream. decide.
  • the instruction indicated by the control signal CtrlA includes an instruction hx for performing only horizontal reverse conversion, an instruction xv for performing only vertical reverse conversion, an instruction hv for performing both horizontal reverse conversion and vertical reverse conversion, and both horizontal reverse conversion and vertical reverse conversion.
  • the second inverse transform preshift unit 321 receives the input signal of the second inverse transform matrix multiplication unit 302 (that is, the decoded second signal) so that the required bit length does not exceed the maximum length of the circuit.
  • the conversion output is shifted down by a predetermined value in advance (no special processing is required for the second decoding portion).
  • the second inverse transformation preshift unit 321 Only when it is shifted down by 3 bits in advance. In the case of the instructions hx, xv, and xx, the second inverse transform preshift unit 321 does not perform this downshift.
  • N bits of pre-shift down are performed, the shift down amount of the second inverse transform shift unit 303 following the second inverse transform is reduced by N.
  • the bit length required for the second inverse transformation is changed to the second inverse transformation by IBDI by performing the downshift.
  • Control can be performed so as not to exceed the maximum value of the circuit of the matrix multiplication unit 302, and further, downshifting is limited to the case of the instruction hv in which the increase in bit length is maximum (when both horizontal reverse conversion and vertical reverse conversion are performed) By applying, loss of information amount due to shift down application can be minimized.
  • the above bit lengths 4, 7, and 3 are examples, and the present invention is not limited to these.
  • FIG. 16A is a flowchart showing processing operations of the second inverse transform control unit 320 and the second inverse transform preshift unit 321.
  • the second inverse transform control unit 320 determines the presence / absence of each of the horizontal inverse transform (H) and the vertical inverse transform (V) in conjunction with the in-plane prediction mode. Alternatively, it is determined based on flag information in the encoded stream. Or it determines using these combinations etc. (step S220).
  • the second inverse transform pre-shift unit 321 determines whether to perform both vertical inverse transform and horizontal inverse transform based on the control signal CtrlA indicating the determined content (step S221). When performing, the 2nd inverse transformation preshift part 321 performs the preshift down of predetermined bit length (step S222). If not, the second inverse transform preshift unit 321 does not perform preshift down (step S223).
  • FIG. 16B is a flowchart showing another processing operation of the second inverse transform control unit 320 and the second inverse transform preshift unit 321.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the encoding device of the present invention).
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the video encoding device (encoding device) or the video decoding device according to each of the above embodiments. Any of (decoding device) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of audio data and video data, or encodes each information, an audio signal processing unit ex304, a video signal processing unit ex305 (functions as an encoding device or a decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration shown in FIG.
  • FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 25 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of video presentation units in a video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 27 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 30 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 31 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 32 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the seventh embodiment.
  • the identification information is not limited to that described in Embodiment 7, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 33 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 35A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 35B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the encoding method and decoding method according to the present invention have the effect of reducing the amount of calculation, and are applied to, for example, a video camera, a mobile phone having a video shooting and playback function, a personal computer, or a recording / playback apparatus. Can do.
  • Second inverse transform target determination unit Integration unit 240 Entropy decoding unit 250 First inverse transform unit 260 Second inverse transform unit 301 Bit length control unit 302 Second inverse transform matrix multiplication unit 303 2 inverse transformation shift unit 304 first inverse transformation matrix multiplication unit 305 first inverse transformation shift unit 306 second partial shift unit 310 norm correction multiplication unit 310 311 norm correction shift unit 311 320 Second inverse transformation control unit 321 Second inverse transformation preshift unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A decoding method with which the amount of calculation can be reduced involves: a step (S208) of performing entropy decoding and generating a plurality of quantization coefficients; a step (S209) of dequantizing the plurality of quantization coefficients and generating a decoding-transformation output; a step (S204) of performing a second inverse transformation with respect to a second decode transformation output that constitutes a portion of said decoding-transformation output; a step (S207) of performing, by a single operation, a first inverse transformation with respect to said second decode transformation output, which has been subjected to said second inverse transformation, and a second decode portion which is a portion that was not subjected to said second inverse transformation; and a control step (S210) of controlling, on a block-by-block basis and in accordance with the bit length of the decoding-transformation output, the shift amount obtained after the matrix multiplication of the transformation coefficient for the second inverse transformation in a manner such that the maximum bit length of internal variables necessary for the matrix multiplication of said first inverse transformation does not exceed a predetermined value.

Description

復号化方法および符号化方法Decoding method and encoding method
 本発明は、オーディオの符号化および復号化、静止画像の符号化および復号化、あるいは、動画像の符号化および復号化に関し、特に、時空間ドメインの信号ベクトルを周波数ドメインへ変換する方法などに関する。 The present invention relates to audio encoding and decoding, still image encoding and decoding, or moving image encoding and decoding, and more particularly, to a method of converting a space-time domain signal vector to a frequency domain, and the like. .
 音声データや動画像データを圧縮するために、複数の音声符号化規格および動画像符号化規格が開発されてきた。動画像符号化規格の例として、H.26xと称されるITU-T規格やMPEG-xと称されるISO/IEC規格が挙げられる。最新の動画像符号化規格は、H.264/MPEG-4AVCと称される規格である。 In order to compress voice data and moving picture data, a plurality of voice coding standards and moving picture coding standards have been developed. As an example of the video coding standard, H.264 ITU-T standard called 26x and ISO / IEC standard called MPEG-x. The latest video coding standard is H.264. H.264 / MPEG-4AVC.
 図1は、これらの音声データまたは動画像データを低ビットレートで符号化する符号化装置のブロック図である。変換部120は、各種データである入力信号もしくは入力信号に何らかの処理を加えた変換入力を、時空間ドメインから周波数ドメインへ変換し、相関を軽減した変換出力を出力する。量子化部130は、変換部120から出力された変換出力を量子化し、総データ量の少ない量子化係数を出力する。エントロピー符号化部190は、量子化部130から出力された量子化係数を、エントロピー符号化アルゴリズムを用いて符号化し、符号化信号を出力する。 FIG. 1 is a block diagram of an encoding apparatus that encodes these audio data or moving image data at a low bit rate. The conversion unit 120 converts an input signal, which is various data, or a converted input obtained by performing some processing on the input signal from the space-time domain to the frequency domain, and outputs a converted output with reduced correlation. The quantization unit 130 quantizes the conversion output output from the conversion unit 120 and outputs a quantization coefficient with a small total data amount. The entropy encoding unit 190 encodes the quantization coefficient output from the quantization unit 130 using an entropy encoding algorithm, and outputs an encoded signal.
 この変換部120における変換処理について詳細に説明する。(式1)に示すように、変換部120へ入力されるN点のベクトル(N次元信号)を変換入力(Transform Input)ベクトルxとし、ある変換Tの出力を変換出力(Transform Output)ベクトルyとする。 The conversion process in the conversion unit 120 will be described in detail. As shown in (Expression 1), a vector of N points (N-dimensional signal) input to the conversion unit 120 is a conversion input vector xn, and an output of a certain conversion T is a conversion output vector (Transform Output) vector. Let y be n .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 変換Tが線形変換であるとすると、(式2)に示すように、変換Tは、N×N行列である変換係数Aと変換入力ベクトルxとの行列積で表現できる。したがって、変換出力ベクトルyの要素yは、変換係数Aの各要素である変換係数aikを用いて、(式3)に示すように表現される。 If the transformation T is a linear transformation, the transformation T can be expressed by a matrix product of a transformation coefficient A that is an N × N matrix and a transformation input vector xn , as shown in (Equation 2). Therefore, the element y i of the transform output vector y n is expressed as shown in (Equation 3) using the transform coefficient a ik that is each element of the transform coefficient A.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 変換係数Aは、入力信号の相関を軽減し低次元エネルギーが集中するように設計される。この変換係数Aの設計にあたり、KLT(Karhunen Loeve transform)という変換係数導出方法又は変換方法が知られている。KLTは、入力信号の統計的性質に基づいて、最適な変換係数を導出する方法、あるいは、その導出した最適な変換係数を用いた変換方法である(詳細は非特許文献1を参照)。KLTは入力信号の相関性を完全に無くし、最も効率良くエネルギーを低域へ集中させることができるとして知られている。 The conversion coefficient A is designed to reduce the correlation of input signals and concentrate low-dimensional energy. In designing the conversion coefficient A, a conversion coefficient derivation method or conversion method called KLT (Karhunen Loeve transform) is known. KLT is a method for deriving an optimum transform coefficient based on the statistical properties of an input signal, or a transform method using the derived optimum transform coefficient (refer to Non-Patent Document 1 for details). KLT is known to eliminate the correlation of input signals completely and to concentrate energy to a low frequency most efficiently.
 しかしながら、KLTを用いた従来の符号化方法および復号化方法では演算量が多くなるという問題がある。 However, the conventional encoding method and decoding method using KLT has a problem that the amount of calculation increases.
 具体的には、従来の画像符号化装置及び画像復号化装置における、統計的な性質に基づいて最適化された周波数ドメインへの変換は、その変換に乗算が必要であり、乗算のための演算量が大きいという課題がある。つまり、入力信号の統計的性質に基づき計算される変換係数を用いる変換には、演算量が多い、及び、変換係数の総数が多いという課題がある。 Specifically, the conversion to the frequency domain optimized based on statistical properties in the conventional image encoding device and image decoding device requires multiplication, and the operation for multiplication There is a problem that the amount is large. That is, the conversion using the conversion coefficient calculated based on the statistical properties of the input signal has a problem that the amount of calculation is large and the total number of conversion coefficients is large.
 そこで、本発明は、かかる問題に鑑みてなされたものであって、演算量を少なく抑えることができる復号化方法および符号化方法を提供することを目的とする。 Therefore, the present invention has been made in view of such a problem, and an object thereof is to provide a decoding method and an encoding method capable of reducing the amount of calculation.
 上記課題を解決するために、本発明の一態様に係る復号化方法は、符号化信号に対してエントロピー復号化を行い、複数の量子化係数を生成するエントロピー復号化ステップと、前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の変換係数の行列乗算後のシフト量を、ブロック単位に前記復号変換出力信号のビット長に応じて制御する制御ステップと、を含む。 In order to solve the above problem, a decoding method according to an aspect of the present invention includes an entropy decoding step of performing entropy decoding on an encoded signal to generate a plurality of quantized coefficients, and the plurality of quantum An inverse quantization step of inversely quantizing the quantization coefficient to generate a decoded transformed output signal, and a transform coefficient of the second inverse transform is used for the first partial signal constituting a part of the decoded transformed output signal A second inverse transform step for performing a second inverse transform and generating a first partial signal subjected to the second inverse transform, and a first partial signal subjected to the second inverse transform. And a second partial signal that is a portion that has not been subjected to the second inverse transformation, the first inverse transformation is performed using the transform coefficient of the first inverse transformation in a lump. The inverse transformation step and the internal variable necessary for matrix multiplication of the first inverse transformation. A control step of controlling the shift amount after matrix multiplication of the transform coefficient of the second inverse transform according to the bit length of the decoded transform output signal in units of blocks so that the bit length does not exceed a predetermined value; including.
 上記構成によれば、次元数を低減した第2の逆変換ステップを用いることで、演算量の削減と変換係数(要素)の総数の削減が可能となる。 According to the above configuration, it is possible to reduce the amount of calculation and the total number of transform coefficients (elements) by using the second inverse transform step with a reduced number of dimensions.
 また、本発明の一態様に係る符号化方法は、入力信号に対して周波数変換を行い、複数の周波数成分の係数値を有する変換出力信号を生成する変換ステップと、前記変換出力信号を量子化して複数の量子化係数を生成する量子化ステップと、前記複数の量子化係数をエントロピー符号化して符号化信号を生成するエントロピー符号化ステップと、前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の変換係数の行列乗算後のシフト量を、ブロック単位に前記復号変換出力信号のビット長に応じて制御する制御ステップと、を含む。 The encoding method according to an aspect of the present invention includes a conversion step of performing frequency conversion on an input signal to generate a conversion output signal having coefficient values of a plurality of frequency components, and quantizing the conversion output signal. A quantization step for generating a plurality of quantized coefficients, an entropy encoding step for generating an encoded signal by entropy encoding the plurality of quantized coefficients, and a decoding transform by dequantizing the plurality of quantized coefficients An inverse quantization step for generating an output signal, and a second inverse transform is performed on a first partial signal constituting a part of the decoded transformed output signal using a transform coefficient of the second inverse transform, A second inverse transformation step for generating a first partial signal subjected to the second inverse transformation, a first partial signal subjected to the second inverse transformation, and the second inverse transformation. The second part that was not done A first inverse transform step for performing a first inverse transform on a partial signal using a transform coefficient of the first inverse transform in a lump, and an internal necessary for matrix multiplication of the first inverse transform Control for controlling the shift amount after matrix multiplication of the transform coefficient of the second inverse transform according to the bit length of the decoded transform output signal for each block so that the maximum bit length of the variable does not exceed a predetermined value Steps.
 上記構成によれば、逆変換を利用した入力信号の符号化において、演算量の削減と変換係数(要素)の総数の削減が可能となる。 According to the above configuration, it is possible to reduce the amount of calculation and the total number of transform coefficients (elements) in encoding of an input signal using inverse transform.
 なお、本発明は、このような符号化方法または復号化方法として実現することができるだけでなく、その方法にしたがって処理する装置、集積回路、その方法にしたがった処理をコンピュータに実行させるためのプログラム、そのプログラムを格納する記憶媒体としても実現することができる。 The present invention can be realized not only as such an encoding method or decoding method, but also as a device for processing according to the method, an integrated circuit, and a program for causing a computer to execute processing according to the method. It can also be realized as a storage medium for storing the program.
 本発明の復号化方法又は符号化方法は、変換の演算量を削減し、変換係数の総数を削減することができる。 The decoding method or the encoding method of the present invention can reduce the amount of calculation of conversion and reduce the total number of transform coefficients.
図1は、AVデータの符号化装置のブロック図である。FIG. 1 is a block diagram of an AV data encoding apparatus. 図2は、本発明の実施の形態1における符号化装置の変換部のブロック図である。FIG. 2 is a block diagram of the conversion unit of the encoding apparatus according to Embodiment 1 of the present invention. 図3Aは、本発明の実施の形態1における変換部のデータフローを示す概念図である。FIG. 3A is a conceptual diagram showing a data flow of the conversion unit in Embodiment 1 of the present invention. 図3Bは、本発明の実施の形態1における変換部の他のデータフローを示す概念図である。FIG. 3B is a conceptual diagram showing another data flow of the conversion unit in Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態1における変換処理のフローチャートである。FIG. 4A is a flowchart of the conversion process in the first embodiment of the present invention. 図4Bは、本発明の実施の形態1における他の変換処理のフローチャートである。FIG. 4B is a flowchart of another conversion process according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態2におけるAVデータの復号化装置のブロック図である。FIG. 5 is a block diagram of an AV data decoding apparatus according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2における復号化装置の逆変換部のブロック図である。FIG. 6 is a block diagram of the inverse transform unit of the decoding apparatus according to Embodiment 2 of the present invention. 図7Aは、本発明の実施の形態2における逆変換部のデータフローを概念的に示す図である。FIG. 7A is a diagram conceptually showing the data flow of the inverse transform unit in Embodiment 2 of the present invention. 図7Bは、本発明の実施の形態2における逆変換部の他のデータフローを概念的に示す図である。FIG. 7B is a diagram conceptually illustrating another data flow of the inverse transform unit in Embodiment 2 of the present invention. 図7Cは、本発明の実施の形態2における逆変換部の他のデータフローを概念的に示す図である。FIG. 7C is a diagram conceptually showing another data flow of the inverse transform unit in Embodiment 2 of the present invention. 図8Aは、本発明の実施の形態2における逆変換処理のフローチャートである。FIG. 8A is a flowchart of the inverse conversion process in Embodiment 2 of the present invention. 図8Bは、本発明の実施の形態2における他の逆変換処理のフローチャートである。FIG. 8B is a flowchart of another inverse conversion process according to Embodiment 2 of the present invention. 図9は、本発明の実施の形態3における復号化装置のブロック図である。FIG. 9 is a block diagram of a decoding apparatus according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態3における復号化装置の処理動作を示すフローチャートである。FIG. 10 is a flowchart showing processing operations of the decoding apparatus according to Embodiment 3 of the present invention. 図11Aは、本発明の実施の形態3におけるシフト量の決定方法を説明するための図である。FIG. 11A is a diagram for describing a shift amount determination method according to Embodiment 3 of the present invention. 図11Bは、本発明の実施の形態3におけるシフト量の決定方法を説明するための図である。FIG. 11B is a diagram for explaining a shift amount determination method according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態4における復号化装置のブロック図である。FIG. 12 is a block diagram of a decoding apparatus according to Embodiment 4 of the present invention. 図13は、本発明の実施の形態4におけるシフト量の決定方法を説明するための図である。FIG. 13 is a diagram for explaining a shift amount determination method according to Embodiment 4 of the present invention. 図14は、本発明の実施の形態4におけるシフト量の他の決定方法を説明するための図である。FIG. 14 is a diagram for explaining another method for determining the shift amount according to the fourth embodiment of the present invention. 図15は、本発明の実施の形態5における復号化装置のブロック図である。FIG. 15 is a block diagram of a decoding apparatus according to Embodiment 5 of the present invention. 図16Aは、本発明の実施の形態5における逆変換処理のプレシフトダウン処理のフローチャートである。FIG. 16A is a flowchart of the pre-shift down process in the inverse transform process according to Embodiment 5 of the present invention. 図16Bは、本発明の実施の形態5における逆変換処理の他のプレシフトダウン処理のフローチャートである。FIG. 16B is a flowchart of another pre-shift down process in the inverse transform process according to Embodiment 5 of the present invention. 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service. 図18は、デジタル放送用システムの全体構成図である。FIG. 18 is an overall configuration diagram of a digital broadcasting system. 図19は、テレビの構成例を示すブロック図である。FIG. 19 is a block diagram illustrating a configuration example of a television. 図20は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図21は、光ディスクである記録メディアの構造例を示す図である。FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図22Aは、携帯電話の一例を示す図である。FIG. 22A illustrates an example of a mobile phone. 図22Bは、携帯電話の構成例を示すブロック図である。FIG. 22B is a block diagram illustrating a configuration example of a mobile phone. 図23は、多重化データの構成を示す図である。FIG. 23 is a diagram showing a structure of multiplexed data. 図24は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図25は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図26は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data. 図27は、PMTのデータ構成を示す図である。FIG. 27 is a diagram illustrating a data structure of the PMT. 図28は、多重化データ情報の内部構成を示す図である。FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information. 図29は、ストリーム属性情報の内部構成を示す図である。FIG. 29 shows the internal structure of stream attribute information. 図30は、映像データを識別するステップを示す図である。FIG. 30 shows steps for identifying video data. 図31は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図32は、駆動周波数を切り替える構成を示す図である。FIG. 32 is a diagram showing a configuration for switching the drive frequency. 図33は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies. 図34は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies. 図35は、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 35 is a diagram illustrating an example of a configuration for sharing a module of the signal processing unit. 図36は、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 36 is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 (実施の形態1)
 図2は、本実施の形態の符号化装置における変換部の構成を示す図である。本発明の変換部は変換入力(入力信号)に第1の変換を行うことによって第1の変換出力を生成する第1の変換部200と、第1の変換出力を、第2の変換を行う対象となる部分(第1の部分)と対象でない部分(第2の部分)とである二つの部分に分割する第2の変換対象決定部210と、第1の部分に第2の変換を行うことによって第2の変換出力を生成する第2の変換部220と、第2の変換出力と第2の部分とを統合することによって変換出力を生成する統合部230とを有する。統合部230は、概念的に分割された信号同士を分割された状態ではなく元の次元の信号にするという意味で概念的に記載しているものであり、実際の情報処理で統合という特段の動作を行う必要があるわけではない。以下の実施の形態でも同様である。
(Embodiment 1)
FIG. 2 is a diagram illustrating a configuration of a conversion unit in the encoding apparatus according to the present embodiment. The conversion unit of the present invention performs a second conversion on the first conversion output and the first conversion unit 200 that generates the first conversion output by performing the first conversion on the conversion input (input signal). A second conversion target determining unit 210 that divides the target part (first part) and a non-target part (second part) into two parts, and performs the second conversion on the first part Accordingly, the second conversion unit 220 that generates the second conversion output and the integration unit 230 that generates the conversion output by integrating the second conversion output and the second part are included. The integration unit 230 is conceptually described in the sense that the signals that have been conceptually divided are not in a divided state but in the original dimension, and is a special case of integration in actual information processing. There is no need to perform an action. The same applies to the following embodiments.
 符号化装置には音声、静止画像、または動画像などの信号が入力される。この信号である符号化対象信号(Original Signal)、又はこの信号と以前に入力された符号化対象信号に基づいて作成された予測信号との差分である予測誤差信号が変換入力として、第1の変換部200に入力される。一般的には、予測誤差信号が変換の対象として入力されることが多いが、伝送路にエラーが混入する場合を想定して予測を行わない場合、又はエネルギーが小さい場合には予測を行わずに、符号化対象信号が変換の対象として入力される。このような変換入力(Transform Input)は、(式4)に示すようなベクトルxで表される。 Signals such as audio, still images, or moving images are input to the encoding device. The signal to be encoded (Original Signal) that is this signal, or a prediction error signal that is a difference between this signal and a prediction signal that is created based on the previously input encoding target signal is used as the conversion input. Input to the conversion unit 200. In general, a prediction error signal is often input as a conversion target, but prediction is not performed when prediction is not performed assuming that an error is mixed in the transmission path or when energy is small. In addition, an encoding target signal is input as a conversion target. Such a conversion input (Transform Input) is represented by a vector xn as shown in (Expression 4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図3Aは、本実施の形態の符号化装置における変換部のデータフローを概念的に示す図である。まず、第1の変換部200で、変換入力xの相関が軽減され、変換入力xは、低周波数帯域にエネルギーを集中させた第1の変換出力y に変換される。第1の変換出力y は第2の変換対象決定部210で第1の部分(第1の部分信号)と第2の部分(第2の部分信号)に分割される。この第1の部分と第2の部分への分割は、分割統合情報に基づいて、第1の部分の相関エネルギーが第2の部分の相関エネルギーよりも大きくなるように行われる。分割統合情報とは、第2の変換対象決定部210に対して、低周波数帯域を第1の部分とし、高周波数帯域を第2の部分として分割する制御を行わせるような情報である。分割統合情報は、その他に、入力に応じて動的に制御するように指示する情報であってもよい。例えば、分割統合情報は、エネルギーの大きな成分を第1の部分へ振り分け、エネルギーの小さな成分を第2の部分へ振り分けるように指示する情報であってもよい。 FIG. 3A is a diagram conceptually illustrating a data flow of the conversion unit in the encoding device of the present embodiment. First, in the first conversion unit 200, is reduced correlation of the transform input x n, it converts the input x n is transformed into a first conversion output y 1 n, which concentrates the energy in the low frequency band. The first conversion output y 1 n is divided into a first part (first partial signal) and a second part (second partial signal) by the second conversion target determining unit 210. The division into the first part and the second part is performed so that the correlation energy of the first part is larger than the correlation energy of the second part based on the division integration information. The division integration information is information that causes the second conversion target determination unit 210 to perform control to divide the low frequency band as the first part and the high frequency band as the second part. In addition, the division integration information may be information instructing dynamic control according to input. For example, the division integration information may be information instructing to distribute a component having a large energy to a first portion and to distribute a component having a small energy to a second portion.
 以上のようにして生成された第1の部分(第1の部分に含まれる各要素)は、第2の変換対象決定部210で1次元に並び替えられる。さらに、第2の変換部220で、その第1の部分の相関が軽減され、第1の部分は、より低周波数帯域にエネルギーを集中させた第2の変換出力y に変換される。統合部230では、第2の変換出力y (第2の変換出力に含まれる各要素)が第2の変換対象決定部210で並び替えられる前の次元に並び替えられ、第2の部分と統合される。 The first part (each element included in the first part) generated as described above is rearranged in one dimension by the second conversion target determining unit 210. Further, the second conversion unit 220 reduces the correlation of the first portion, and the first portion is converted into a second conversion output y 2 n in which energy is concentrated in a lower frequency band. In the integration unit 230, the second conversion output y 2 n (each element included in the second conversion output) is rearranged in the dimension before being rearranged by the second conversion target determination unit 210, and the second part Integrated with.
 なお、図3Aでは、第2の変換の対象は任意の領域であるように図示したがこれに限るものではなく矩形領域であっても構わない。また、第2の変換が非分離型であるため、第2の変換対象決定部210は1次元への並び替えを行っている。 In FIG. 3A, the second conversion target is illustrated as an arbitrary area, but is not limited thereto, and may be a rectangular area. In addition, since the second conversion is a non-separable type, the second conversion target determining unit 210 performs the rearrangement to one dimension.
 図3Bは、本実施の形態における変換部の他のデータフローを示す概念図である。 FIG. 3B is a conceptual diagram showing another data flow of the conversion unit in the present embodiment.
 図3Bに示すように、第2の変換が分離型の構成の場合には、第2の変換対象決定部210は1次元への並び替えを行わない。 As shown in FIG. 3B, when the second conversion has a separation type configuration, the second conversion target determining unit 210 does not perform the rearrangement to one dimension.
 図4Aは、本実施の形態の変換部による変換処理のフローチャートである。まず、第1の変換部200において、変換入力xに基づいて第1の変換係数が決定される(ステップS101)。次に、第1の変換部200において、決定された第1の変換係数を用いて第1の変換が行われる(ステップS102)。次に、分割統合情報が決定される(ステップS103)。この分割統合情報が、あらかじめ決められた分割を行うよう第2の変換対象決定部210を制御するものであれば、この分割統合情報は符号化装置のメモリ等から読み出される。また、分割統合情報が、第1の変換出力に応じた分割を行うよう第2の変換対象決定部210を制御するものであれば、第1の変換出力に基づいて、エネルギー状態の分布に鑑みて分割統合情報が導出される。このようにして決定された分割統合情報に基づいて、第1の変換出力は第2の変換対象決定部210において分割され(ステップS108)、第2の変換部220において、第1の部分に基づいて第2の変換係数が決定される(ステップS105)。次に、第2の変換部220において、決定された第2の変換係数を用いて第2の変換が行われる(ステップS106)。統合部230において、第2の変換出力と第2の部分とが統合され、変換出力として出力される(ステップS107)。また、図4AのステップS101~ステップS107の動作全体をステップS100とする。 FIG. 4A is a flowchart of conversion processing by the conversion unit of the present embodiment. First, in the first conversion unit 200, a first conversion coefficient is determined based on the conversion input xn (step S101). Next, the first conversion unit 200 performs the first conversion using the determined first conversion coefficient (step S102). Next, division integration information is determined (step S103). If this division integration information controls the second conversion target determination unit 210 to perform predetermined division, this division integration information is read from the memory or the like of the encoding device. In addition, if the division integration information controls the second conversion target determination unit 210 to perform division according to the first conversion output, the distribution of energy states is considered based on the first conversion output. Thus, the division integration information is derived. Based on the division integration information determined in this way, the first conversion output is divided in the second conversion target determination unit 210 (step S108), and in the second conversion unit 220, based on the first part. Thus, the second conversion coefficient is determined (step S105). Next, the second conversion unit 220 performs second conversion using the determined second conversion coefficient (step S106). In the integration unit 230, the second conversion output and the second part are integrated and output as a conversion output (step S107). Further, the entire operation of steps S101 to S107 in FIG. 4A is defined as step S100.
 なお、あらかじめ定めた変換係数と分割統合情報を使ってもよく、その場合の動作は図4Bのようになる。 Note that a predetermined conversion coefficient and division integration information may be used, and the operation in that case is as shown in FIG. 4B.
 図4Bは、本実施の形態の変換部による他の変換処理のフローチャートである。 FIG. 4B is a flowchart of another conversion process by the conversion unit of the present embodiment.
 変換部は、第1の変換部200において第1の変換を行い(ステップS102)、第1の変換出力から第2の変換対象を決定し(ステップS105)、決定された第2の変換対象に対して、第2の変換を行い(ステップS106)、第2の変換出力を生成する。さらに、変換部は、第2の変換出力と、第1の変換出力のうち第2の変換を適用していない部分とを統合することによって(ステップS107)、本発明の変換処理の変換出力を生成する。 The conversion unit performs the first conversion in the first conversion unit 200 (step S102), determines the second conversion target from the first conversion output (step S105), and sets the determined second conversion target. On the other hand, the second conversion is performed (step S106), and a second conversion output is generated. Further, the conversion unit integrates the second conversion output and the portion of the first conversion output to which the second conversion is not applied (step S107), thereby converting the conversion output of the conversion processing of the present invention. Generate.
 なお、第1の部分と第2の変換出力のそれぞれの次元の並び替えを第2の変換対象決定部210と統合部230が行うこととしたが、それぞれの並び替えを第2の変換部220で行ってもよい。また、符号化の対象が音声データ等の1次元信号である場合、これらの並び替えの処理は不要となる。また、1次元信号処理と見なすことができる分離型の各次元の処理において、変換部に入力される変換入力xは1次元信号であるため、これらの並び替えの処理は不要となる。なお、係数をゼロに設定することで、第2の変換対象決定部210と統合部230の処理を実質的に第2の変換部220で代替してもよい。これは、以下の実施の形態においても同様である。 Although the second conversion target determining unit 210 and the integrating unit 230 perform the rearrangement of the dimensions of the first part and the second conversion output, the respective rearrangements are performed by the second conversion unit 220. You may go on. Further, when the encoding target is a one-dimensional signal such as audio data, the rearrangement process is not necessary. Further, in the separation-type processing of each dimension that can be regarded as one-dimensional signal processing, the conversion input xn input to the conversion unit is a one-dimensional signal, so that the rearrangement processing is not necessary. Note that the second conversion unit 220 may substantially substitute the processing of the second conversion target determination unit 210 and the integration unit 230 by setting the coefficient to zero. The same applies to the following embodiments.
 (実施の形態2)
 図5は、本実施の形態におけるAVデータの復号化装置のブロック図である。この復号化装置は、エントロピー復号部240、逆量子化部140および逆変換部150を備え、音声データまたは動画像データを低ビットレートで符号化した符号化信号を復号する。復号化の処理は、符号化信号に対してエントロピー復号化をし、逆量子化をし、逆変換をするという、図1を用いて説明した符号化の処理とほぼ逆の処理である。以下では、本実施の形態における逆変換部150について詳細に説明する。
(Embodiment 2)
FIG. 5 is a block diagram of an AV data decoding apparatus according to the present embodiment. This decoding apparatus includes an entropy decoding unit 240, an inverse quantization unit 140, and an inverse conversion unit 150, and decodes an encoded signal obtained by encoding audio data or moving image data at a low bit rate. The decoding process is substantially the reverse process of the encoding process described with reference to FIG. 1 in which entropy decoding is performed on the encoded signal, inverse quantization is performed, and inverse transform is performed. Hereinafter, the inverse transform unit 150 in the present embodiment will be described in detail.
 図6は、本実施の形態における復号化装置の逆変換部150の構成を示すブロック図である。本実施の形態における逆変換部150は、復号変換出力を、第2の逆変換を行う対象となる部分(復号第2の変換出力)と対象でない部分(復号第2の部分)とである二つの部分に分割する第2の逆変換対象決定部215と、復号第2の変換出力に第2の逆変換を行うことによって復号第1の部分を生成する第2の逆変換部260と、復号第1の部分と復号第2の部分とを統合することによって復号第1の変換出力を生成する統合部235と、復号第1の変換出力に第1の逆変換を行うことによって復号変換入力を生成する第1の逆変換部250とを有する。統合部235は、概念的に分割することによって生成された信号同士を分割された状態ではなく元の次元の信号にするという意味で概念的に記載しているものであり、実際の情報処理で統合という特段の動作を行う必要があるわけではない。以下の実施の形態でも同様である。 FIG. 6 is a block diagram showing a configuration of the inverse transform unit 150 of the decoding device according to the present embodiment. The inverse transform unit 150 according to the present embodiment has two decoded transform outputs that are a part to be subjected to the second inverse transform (decoded second converted output) and a part that is not the target (decoded second part). A second inverse transformation target determination unit 215 that divides the data into two parts, a second inverse transformation unit 260 that generates a decoded first part by performing a second inverse transformation on the decoded second transformation output, and a decoding An integration unit 235 that generates a decoded first converted output by integrating the first part and the decoded second part, and a decoding conversion input by performing a first inverse conversion on the decoded first converted output. And a first inverse conversion unit 250 to be generated. The integration unit 235 is conceptually described in the sense that the signals generated by conceptually dividing the signals are not in a divided state but in the original dimension, and in actual information processing. It is not necessary to perform a special operation of integration. The same applies to the following embodiments.
 復号化装置には音声、静止画像、または動画像などの信号を符号化した符号化信号が入力される。この符号化信号をエントロピー復号化し、逆量子化した信号が復号変換出力y^として第2の逆変換対象決定部215に入力される。 An encoded signal obtained by encoding a signal such as a voice, a still image, or a moving image is input to the decoding device. The encoded signal is entropy-decoded and the inversely quantized signal is input to the second inverse transform target determining unit 215 as a decoded transform output y ^.
 図7A、図7B及び図7Cは、本実施の形態の復号化装置における逆変換部150のデータフローを概念的に示す図である。エントロピー復号部240は、符号化信号を復号することによって複数の復号量子化係数を生成し、逆量子化部140は、複数の復号量子化係数を逆量子化することによって復号変換出力y^を生成する。復号変換出力y^は、第2の逆変換対象決定部215によって、二つの領域に分割される。その二つの領域のうちの一つ領域にある復号第2の変換出力y^に対しては、第2の逆変換部260によって、第2の逆変換が行われ、復号第1の部分が生成される。もう一方の領域にある復号第2の部分y^2Hは変換されず、統合部235によって、復号第1の部分と統合される。これにより、復号第1の変換出力y^が生成され、その復号第1の変換出力y^に対しては、第1の逆変換部250によって、第1の逆変換が行われる。なお、図7Bおよび図7Cに示すように、第2の逆変換が分離型の構成をとる場合は、第2の逆変換対象決定部215と統合部235における1次元への並び替えを行わなくてもよい。 7A, 7B, and 7C are diagrams conceptually showing the data flow of inverse transform section 150 in the decoding apparatus of the present embodiment. The entropy decoding unit 240 generates a plurality of decoded quantized coefficients by decoding the encoded signal, and the inverse quantizing unit 140 inversely quantizes the plurality of decoded quantized coefficients to obtain the decoded transform output y ^. Generate. The decoded conversion output y ^ is divided into two regions by the second inverse conversion target determination unit 215. The second inverse transform unit 260 performs the second inverse transform on the decoded second transform output y ^ 2 in one of the two regions, and the decrypted first part becomes Generated. The decoded second part y ^ 2H in the other region is not converted, and is integrated with the decoded first part by the integrating unit 235. As a result, a decoded first conversion output ^ 1 is generated, and the first reverse conversion unit 250 performs the first reverse conversion on the decoded first conversion output ^ 1 . As shown in FIGS. 7B and 7C, when the second inverse transformation takes a separation type configuration, the second inverse transformation target determining unit 215 and the integrating unit 235 do not perform the one-dimensional rearrangement. May be.
 図8Aは、本実施の形態の逆変換部150による逆変換処理のフローチャートである。まず、分割統合情報が取得される(ステップS201)。第2の逆変換対象決定部215は、上記で説明した復号変換出力y^を、低周波数帯域を含む復号第2の変換出力と、高周波数帯域を含む復号第2の部分とに分割する(ステップS208)。この復号第2の変換出力と復号第2の部分への分割は、分割統合情報に基づいて、復号第2の変換出力の相関エネルギーが復号第2の部分の相関エネルギーよりも大きくなるように行われる。分割統合情報は実施の形態1で説明したものと同様であり、分割統合情報の取得とは、あらかじめ定められメモリ等に保存されたものを読み出すことであってもよいし、復号変換出力に応じて動的に決定することであってもよい。 FIG. 8A is a flowchart of the inverse conversion process by the inverse conversion unit 150 of the present embodiment. First, division integration information is acquired (step S201). The second inverse transformation target determination unit 215 divides the decoding transformation output y ^ described above into a decoding second transformation output including a low frequency band and a decoding second portion including a high frequency band ( Step S208). The division into the decoded second converted output and the decoded second part is performed based on the division integration information so that the correlation energy of the decoded second converted output is larger than the correlation energy of the decoded second part. Is called. The division integration information is the same as that described in the first embodiment, and the acquisition of the division integration information may be to read out information stored in a predetermined memory or the like, depending on the decoding conversion output. It may be determined dynamically.
 以上のようにして生成された復号第2の変換出力(復号第2の変換出力に含まれる各要素)は、第2の逆変換対象決定部215によって1次元に並び替えられ、第2の逆変換部260に入力される。第2の逆変換部260で行う逆変換の変換係数は、実施の形態1で説明した第2の変換の変換係数の逆行列又はそれに近似した行列である。この逆行列の変換係数は、実施の形態1と同様に例えばKLTを用いて、復号第2の変換出力を含む集合Sに基づいて求められる(ステップS203)。第2の逆変換部260は、このようにして求められた変換係数を用いて、復号第2の変換出力に対して第2の逆変換を行い、復号第1の部分を出力する(ステップS204)。統合部235は、復号第1の部分(復号第1の部分に含まれる各要素)を、第2の逆変換対象決定部215で並び替えられる前の次元に並び替え、復号第2の部分信号と統合することによって、復号第1の変換出力y^を生成して第1の逆変換部250に出力する(ステップS205)。 The decoded second conversion output (each element included in the decoded second conversion output) generated as described above is rearranged one-dimensionally by the second inverse conversion target determination unit 215, and the second inverse output Input to the converter 260. The transform coefficient of the inverse transform performed by the second inverse transform unit 260 is the inverse matrix of the transform coefficient of the second transform described in the first embodiment or a matrix approximated thereto. The transform coefficient of the inverse matrix is obtained based on the set SD including the decoded second transform output using, for example, KLT as in the first embodiment (step S203). The second inverse transform unit 260 performs the second inverse transform on the decoded second transform output using the transform coefficient thus obtained, and outputs the decrypted first part (step S204). ). The integration unit 235 rearranges the decoded first part (each element included in the decoded first part) into the dimension before being rearranged by the second inverse transformation target determination unit 215, and outputs the decoded second partial signal. Are integrated with each other to generate a decoded first conversion output y 1 and output it to the first inverse conversion unit 250 (step S205).
 第1の逆変換部250で行う逆変換の変換係数は、実施の形態1で説明した第1の変換の逆行列又はそれに近似した行列である。この逆行列の変換係数は、実施の形態1と同様に例えばKLTを用いて、復号第1の変換出力y^を含む集合Sに基づいて求められる(ステップS206)。第1の逆変換部250は、このようにして求められた変換係数を用いて、復号第1の変換出力y^に対して第1の逆変換を行い、復号変換入力x^を出力する(ステップS207)。また、図8AのステップS201~ステップS207の動作全体をステップS200とする。 The transform coefficient of the inverse transform performed by the first inverse transform unit 250 is the inverse matrix of the first transform described in the first embodiment or a matrix approximated thereto. The transform coefficient of the inverse matrix is obtained based on the set S E including the decoded first transform output ^ 1 using, for example, KLT as in the first embodiment (step S206). The first inverse transform unit 250 performs the first inverse transform on the decrypted first transform output y ^ 1 using the transform coefficient thus obtained, and outputs the decoded transform input x ^. (Step S207). Further, the entire operation from step S201 to step S207 in FIG. 8A is defined as step S200.
 図8Bは、本実施の形態の逆変換部150による他の逆変換処理のフローチャートである。 FIG. 8B is a flowchart of another inverse conversion process by the inverse conversion unit 150 of the present embodiment.
 あらかじめ定めた逆変換係数と分割統合情報を用いる場合には、図8Bに示すように、それらの導出処理を明示的に行う必要が無い。 When using a predetermined inverse transform coefficient and division integration information, as shown in FIG. 8B, it is not necessary to explicitly perform the derivation process.
 なお、集合Sと集合Sは、実施の形態1の集合Sと集合Sの関係にあり、集合Sのほうが集合Sよりも含むサンプル数が少ない小さな集合である。以上のようにして、本実施の形態に係る逆変換部150を備えた復号化装置では、実施の形態1と同様に高効率な変換と、演算量およびデータ量の削減を両立させることができる。 Note that the set S D and the set S E are in the relationship between the set S C and the set S A in the first embodiment, and the set S D is a smaller set with a smaller number of samples than the set S E. As described above, the decoding apparatus provided with the inverse transform unit 150 according to the present embodiment can achieve both high-efficiency conversion and reduction in the calculation amount and the data amount as in the first embodiment. .
 なお、復号第2の変換出力と復号第1の部分のそれぞれの次元の並び替えを第2の逆変換対象決定部215と統合部235が行うこととしたが、それぞれの並び替えを第2の逆変換部260で行ってもよい。つまり、分離型の変換を用いてもよいし、ゼロ係数を含む変換を用いてもよい。復号化の対象が音声データ等の1次元信号である場合、これらの並び替えの処理は不要となる。また、多次元信号を分離型で構成する場合の各次元の信号は1次元信号と見なせるため、逆変換部150に入力される復号変換出力y^は1次元信号であり、前述の次元の並び替え(第2の逆変換対象決定部215における1次元への並び替え、及び、統合部235における元の次元への並び替え)の処理は不要となる。 Note that the second inverse transformation target determination unit 215 and the integration unit 235 perform the rearrangement of the respective dimensions of the decoded second conversion output and the decoded first part. The inverse conversion unit 260 may perform this. That is, a separation type conversion may be used, or a conversion including a zero coefficient may be used. When the decoding target is a one-dimensional signal such as audio data, the rearrangement process is not necessary. Further, since a signal of each dimension when a multi-dimensional signal is configured as a separation type can be regarded as a one-dimensional signal, the decoded transform output y ^ input to the inverse transform unit 150 is a one-dimensional signal, and the above-described dimension arrangement is performed. The process of replacement (rearrangement to one dimension in the second inverse conversion target determination unit 215 and rearrangement to the original dimension in the integration unit 235) is not necessary.
 本実施の形態では、復号変換出力、復号変換入力、復号信号および予測信号がP次元信号(Pは2以上の整数)である。つまり、復号変換出力、復号第2の部分、復号第1の変換出力および復号変換入力はP次元信号である。第2の逆変換部260は、P次元信号を入出力しても、1次元信号を入出力してもよい。 In this embodiment, the decoded conversion output, the decoded conversion input, the decoded signal, and the prediction signal are P-dimensional signals (P is an integer of 2 or more). That is, the decoded conversion output, the decoded second part, the decoded first converted output, and the decoded converted input are P-dimensional signals. The second inverse transform unit 260 may input / output P-dimensional signals or input / output one-dimensional signals.
 第2の逆変換対象決定部215は、P次元信号(復号変換出力)を分割統合情報に従って復号第2の変換出力と復号第2の部分に分割した後、さらに、復号第2の変換出力(復号第2の変換出力に含まれる各要素)を1次元に並び替える。並び替えの順序情報は分割統合情報に追加的に格納されている。統合部235は、復号第1の部分と復号第2の部分を分割統合情報に従って統合し、復号第1の変換出力を生成する。この際、統合部235は、1次元信号である復号第1の部分(復号第1の部分に含まれる各要素)を、分割統合情報に格納された並び替え情報に基づいてP次元へ並び替えた後、統合する。 The second inverse transform target determining unit 215 divides the P-dimensional signal (decoded transform output) into a decoded second converted output and a decoded second part according to the division integration information, and then further outputs a decoded second converted output ( Each element included in the decoded second conversion output is rearranged in one dimension. Rearrangement order information is additionally stored in the division integration information. The integration unit 235 integrates the decoded first part and the decoded second part according to the division integration information, and generates a decoded first conversion output. At this time, the integration unit 235 rearranges the decoded first part (each element included in the decoded first part), which is a one-dimensional signal, into the P dimension based on the rearrangement information stored in the divided integration information. After that, integrate.
 なお、図7Bに示すように、第2の逆変換部260がP次元信号を入出力し、1次元信号への並び替えを行わなくてもよい。この場合、図7Cに示すように、第2の逆変換部260は分離型(水平軸方向と垂直軸方向の2段階変換)としてもよい。つまり、第2の逆変換部260は水平方向に行単位に逆変換(第2の逆変換の第1座標軸変換)を行い、垂直方向に列単位に逆変換(第2の逆変換の第2座標軸変換)を行う。水平と垂直の順は逆でも良い。要素数が1個の行または列単位の変換は、実質処理をしていないのと同等であるため、その変換をスキップしてもよいし、あるいは、後段のノルム補正の処理をその変換の代わりに行ってもよい。行変換の逆変換の変換係数と列変換の逆変換の変換係数は同じでも異なってもよい。全ての行に対して同じ変換係数を用いることにより、変換係数のデータ量を削減してもよいし、行単位に異なる変換係数を用いることにより、行単位の統計的な性質の違いに行変換を適応させ、変換性能を上げてもよい。列変換についても行変換と同様であり、全列で同じ変換係数を用いてもよいし、異なる変換係数を用いてもよい。 Note that, as shown in FIG. 7B, the second inverse transform unit 260 may input and output P-dimensional signals and do not rearrange them into one-dimensional signals. In this case, as shown in FIG. 7C, the second inverse conversion unit 260 may be a separation type (two-stage conversion in the horizontal axis direction and the vertical axis direction). That is, the second inverse transformation unit 260 performs the inverse transformation (first coordinate axis transformation of the second inverse transformation) in the horizontal direction in units of rows, and the inverse transformation in the vertical direction (second coordinate of the second inverse transformation). Coordinate axis conversion). The order of horizontal and vertical may be reversed. A row- or column-by-column conversion with one element is equivalent to not performing the actual processing, so the conversion may be skipped, or the norm correction processing in the subsequent stage may be replaced with the conversion. You may go to The transform coefficient of the inverse transform of the row transform and the transform coefficient of the inverse transform of the column transform may be the same or different. By using the same conversion coefficient for all rows, the data amount of the conversion coefficient may be reduced, or by using different conversion coefficients for each row, the row conversion is performed due to the difference in statistical properties for each row. May be applied to improve the conversion performance. The column conversion is similar to the row conversion, and the same conversion coefficient may be used for all the columns, or different conversion coefficients may be used.
 (実施の形態3)
 本実施の形態の復号化装置は、第2の逆変換の入力信号のビット長、あるいは、出力信号のビット長に応じて、ブロック毎に、第2の逆変換後の処理を行う後述のシフト部、及び、第1の逆変換後の処理を行う後述のシフト部にて、信号(ビット長)のシフトダウンあるいはシフトアップを適応的に行い、第1の逆変換に必要な回路資源を一定以下に抑えるものである。
(Embodiment 3)
The decoding apparatus according to the present embodiment performs a shift described later that performs processing after the second inverse transform for each block according to the bit length of the input signal of the second inverse transform or the bit length of the output signal. And a shift unit (to be described later) that performs processing after the first inverse transformation adaptively downshifts or upshifts the signal (bit length), and the circuit resources necessary for the first inverse transformation are constant. The following is to be suppressed.
 図9は、本実施の形態における復号化装置のブロック図である。図5及び図6と同じ意味を持つ信号及び構成要素には同じ符号を付与し、動作の同じ部分は説明を省略する。また、図10は、本実施の形態における復号化装置の処理動作を示すフローチャートである。 FIG. 9 is a block diagram of the decoding apparatus according to the present embodiment. Signals and components having the same meaning as in FIGS. 5 and 6 are given the same reference numerals, and description of the same parts of operation is omitted. FIG. 10 is a flowchart showing the processing operation of the decoding apparatus according to the present embodiment.
 エントロピー復号部240は符号化信号に対してエントロピー復号化を行い、複数の量子化係数を生成する(ステップS208)。逆量子化部140は複数の量子化係数を逆量子化し、復号変換出力(復号変換出力信号)を出力する(ステップS209)。第2の逆変換対象決定部215は、その復号変換出力を、第2の逆変換を行う部分である復号第2の変換出力(第1の部分信号)と、行わない部分である復号第2の部分(第2の部分信号)とに分割する。ビット長制御部301は、復号第2の変換出力のビット長を、入力のブロック単位に検出し、第2逆変換シフト部303と第1逆変換シフト部305のそれぞれに対して、シフト量SAとSBを出力する(ステップS210)。第2逆変換シフト部303と第1逆変換シフト部305は上述のシフト部である。 The entropy decoding unit 240 performs entropy decoding on the encoded signal to generate a plurality of quantized coefficients (step S208). The inverse quantization unit 140 inversely quantizes the plurality of quantized coefficients and outputs a decoded transform output (decoded transform output signal) (step S209). The second inverse transformation target determination unit 215 uses the decoded second transformation output (first partial signal) as a part for performing the second inverse transformation and the decoded second as a part for which the second inverse transformation target determination unit 215 does not perform the decoding transformation output. (Second partial signal). The bit length control unit 301 detects the bit length of the decoded second conversion output for each input block, and shifts SA for each of the second inverse transform shift unit 303 and the first inverse transform shift unit 305. And SB are output (step S210). The second inverse transform shift unit 303 and the first inverse transform shift unit 305 are the above-described shift units.
 なお、図6における第2の逆変換部260は、図9に示す、変換係数の行列の乗算を行う第2逆変換行列乗算部302と、乗算結果(ビット長)を所定の量だけシフトダウンする第2逆変換シフト部303とに対応する。逆変換の処理を、行列乗算とそれに続くシフトダウンで表現するのは概念的なものであり、乗算とシフトダウンの処理を、周波数位置単位、周波数位置の行や列単位などに対して、逐次行ってもよい。あるいは、シフトダウンは一度に行うのではなく、複数回のシフトダウンに分けて行ってもよい。例えば、2Nビットのシフトダウンを行うとき、その2Nビットのシフトダウンを、NビットのシフトダウンとNビットのシフトダウンのように2度に分けて行ってもよい。 The second inverse transformation unit 260 in FIG. 6 shifts down the multiplication result (bit length) by a predetermined amount, with the second inverse transformation matrix multiplication unit 302 that performs multiplication of the matrix of transformation coefficients shown in FIG. This corresponds to the second inverse transform shift unit 303. Expressing the inverse transformation process as a matrix multiplication followed by a shift-down is conceptual, and the multiplication and shift-down processes are performed sequentially for frequency position units, frequency position rows and columns, etc. You may go. Alternatively, the downshifting may be performed in a plurality of downshifts instead of at once. For example, when performing 2N-bit shift-down, the 2N-bit shift-down may be performed twice, such as N-bit shift-down and N-bit shift-down.
 第2逆変換行列乗算部302は、復号第2の変換出力に対して、第2の逆変換の変換係数の行列で行列乗算を行い、第2逆変換乗算出力を生成する。第2逆変換行列乗算部302が処理できる最大の有効ビット長をMKとし、行列演算によって増加するビット長はKであるとする。第2逆変換シフト部303は、第2逆変換乗算出力をシフト量SAにしたがい、シフトダウンあるいはシフトアップし、復号第1の部分を出力する(ステップS204)。統合部235は、復号第2の部分と復号第1の部分を統合し、復号第1の変換出力を出力する。第1逆変換行列乗算部304と第1逆変換シフト部305は、図6に示す第1の逆変換部250に対応し、変換係数の乗算処理とそれに続くシフトダウン処理を行う。これらの処理は、前述の第2の逆変換と同様のものであり、概念的なものである。第1逆変換行列乗算部304は、復号第1の変換出力を第1の逆変換の変換係数の行列で行列乗算を行い、第1逆変換乗算出力を出力する(ステップS207)。第1逆変換シフト部305は第1変換乗算出力を、シフト量SBに従い、シフトダウンあるいはシフトアップし、復号変換入力を出力する。 The second inverse transformation matrix multiplication unit 302 performs matrix multiplication on the decoded second transformation output with a matrix of transformation coefficients of the second inverse transformation to generate a second inverse transformation multiplication output. It is assumed that the maximum effective bit length that can be processed by the second inverse transformation matrix multiplication unit 302 is MK, and the bit length increased by the matrix operation is K. The second inverse transform shift unit 303 shifts down or up according to the shift amount SA of the second inverse transform multiplication output, and outputs the decoded first part (step S204). The integration unit 235 integrates the decoded second part and the decoded first part, and outputs a decoded first conversion output. The first inverse transformation matrix multiplication unit 304 and the first inverse transformation shift unit 305 correspond to the first inverse transformation unit 250 shown in FIG. 6 and perform a transform coefficient multiplication process and a subsequent downshift process. These processes are similar to the above-described second inverse transformation and are conceptual. The first inverse transformation matrix multiplication unit 304 performs matrix multiplication on the decoded first transformation output with a matrix of transformation coefficients of the first inverse transformation, and outputs a first inverse transformation multiplication output (step S207). The first inverse transform shift unit 305 shifts down or up the first transform multiplication output according to the shift amount SB, and outputs a decoded transform input.
 図11Aおよび図11Bは、シフト量SAとSBの決定方法を説明するための図である。はじめに、図11Aを用いて、シフト量SAが0であるとき、つまり、第2逆変換シフト部303において、シフトダウンもシフトアップもしないときの、ビット長の一例を説明する。なお、図11Aは、左から右へ、復号時の処理の流れに対応させて、各処理部のビット長に関する情報を記載したものである。各処理部の出力信号のビット長と、当該処理部の内部の変数のビット長は一致するものとする。 FIG. 11A and FIG. 11B are diagrams for explaining a method of determining the shift amounts SA and SB. First, an example of the bit length when the shift amount SA is 0, that is, when neither downshifting nor upshifting is performed in the second inverse transform shift unit 303 will be described with reference to FIG. 11A. Note that FIG. 11A describes information on the bit length of each processing unit from left to right in correspondence with the flow of processing during decoding. It is assumed that the bit length of the output signal of each processing unit matches the bit length of the variable inside the processing unit.
 逆量子化部140の復号変換出力がAビットであるとする。第2逆変換行列乗算部302は、乗算によってビット長をKビット増加させるとすると、第2逆変換乗算出力はA+Kビットになる。次に、第2逆変換シフト部303は、本例では、シフトアップもシフトダウンもせずに入力信号を出力するため、復号第1の部分である第2逆変換乗算出力のビット長はA+Kビットのままである。第1逆変換行列乗算部304は、乗算によりDビット増加させるとすると、その出力である第1逆変換乗算出力(及び第1逆変換行列乗算部304の内部変数)のビット長はA+K+Dとなる。 Suppose that the decoding conversion output of the inverse quantization unit 140 is A bits. If the second inverse transform matrix multiplication unit 302 increases the bit length by K bits by multiplication, the second inverse transform multiplication output becomes A + K bits. Next, since the second inverse transform shift unit 303 outputs the input signal without shifting up or down in this example, the bit length of the second inverse transform multiplication output that is the first decoded portion is A + K bits. Remains. If the first inverse transformation matrix multiplication unit 304 increases D bits by multiplication, the bit length of the first inverse transformation multiplication output (and the internal variable of the first inverse transformation matrix multiplication unit 304) that is the output is A + K + D. .
 ここで、第1逆変換行列乗算部304が処理可能な最大ビット長をMDとすると、本実施の形態における復号化装置は、A+K+DがMD以下となるようにシフト量SAとシフト量SBを決定する。すなわち、第2逆変換シフト部303のシフト量SAは、ビット長制御部301によって、SA=MD-(A+K+D)と決定される。例えば、K=8, D=10, MD=24のとき、当該ブロックの復号変換出力のビット長Aが12ビットなら、シフト量SA=24-(12+8+10)=-6となり、第2逆変換シフト部303は6ビットのシフトダウンを行う。当該ブロックの復号変換出力のビット長Aが2ビットなら、シフト量SA=24-(2+8+10)=4となり、第2逆変換シフト部303は4ビットのシフトアップを行う。シフト量SAがゼロのときは、第2逆変換シフト部303はシフトアップもシフトダウンも行わない。 Here, assuming that the maximum bit length that can be processed by first inverse transformation matrix multiplication section 304 is MD, the decoding apparatus according to the present embodiment determines shift amount SA and shift amount SB so that A + K + D is equal to or less than MD. To do. That is, the shift amount SA of the second inverse transform shift unit 303 is determined by the bit length control unit 301 as SA = MD− (A + K + D). For example, when K = 8, D = 10, MD = 24, if the bit length A of the decoding conversion output of the block is 12 bits, the shift amount SA = 24− (12 + 8 + 10) = − 6, and the second inverse conversion shift The unit 303 performs 6-bit shift down. If the bit length A of the decoding conversion output of the block is 2 bits, the shift amount SA = 24− (2 + 8 + 10) = 4, and the second inverse conversion shift unit 303 performs 4-bit shift-up. When the shift amount SA is zero, the second inverse transform shift unit 303 does not shift up or down.
 この決定方法を用いた場合のビット長を、図11Bを用いて説明する。第2逆変換シフト部303が、MD-(A+K+D)のシフトアップまたはシフトダウンを行うと、その出力のビット長は A+K+(MD-(A+K+D))=MD-Dとなる。第1逆変換行列乗算部304は、乗算によりDビット増加させるので、その出力のビット長はMD-D+D=MDとなる。このビット長は、第1逆変換行列乗算部304の最大ビット長であるMDと一致している(つまり超えていない)。 The bit length when this determination method is used will be described with reference to FIG. 11B. When the second inverse transform shift unit 303 shifts up or down MD− (A + K + D), the bit length of the output is A + K + (MD− (A + K + D)) = MD−D. Since the first inverse transformation matrix multiplication unit 304 increases D bits by multiplication, the bit length of the output is MD−D + D = MD. This bit length matches (that is, does not exceed) the MD that is the maximum bit length of the first inverse transformation matrix multiplication unit 304.
 この方法によって、ビット長制御部301が各ブロックのビット長に応じて、第2逆変換シフト部303のシフト量SAを制御するので、第1逆変換行列乗算部304のサポートすべきビット長であるMDを低く抑え、回路規模を小さくすることができる。また、回路規模削減の効果だけではなく、シフト量SAが正の場合には、第1逆変換行列乗算部304への入力信号のビット長が増加するため、第1逆変換行列乗算部304及び第1逆変換シフト部305で発生する可能性のある演算誤差の影響を軽減し、第1の逆変換(復号第1の変換出力に対する逆変換)の精度を上げる効果も得られる。なお、演算精度を上げる効果を求めない場合には、ビット長制御部301が正のシフト量SAを決定したときには、第2逆変換シフト部303はシフト量SAを0にしてもよい。また、例えば、復号変換入力のビットには、逆変換に続く処理(予測処理やフィルタ処理)などとの関係により、目標の最大ビット長が与えられる。それをEビットとすると、ビット長制御部301は、第1逆変換シフト部305のシフト量SBをE-MDと決定する。第1逆変換シフト部305は、第2逆変換シフト部303と同様に、E-MDが正数ならシフトアップし、負数ならシフトダウンする。 By this method, the bit length control unit 301 controls the shift amount SA of the second inverse transform shift unit 303 according to the bit length of each block, so that the first inverse transform matrix multiplication unit 304 has a bit length to be supported. A certain MD can be kept low, and the circuit scale can be reduced. In addition to the effect of reducing the circuit scale, when the shift amount SA is positive, the bit length of the input signal to the first inverse transformation matrix multiplication unit 304 increases, so the first inverse transformation matrix multiplication unit 304 and The effect of the calculation error that may occur in the first inverse transformation shift unit 305 is reduced, and the effect of increasing the accuracy of the first inverse transformation (inverse transformation with respect to the decoded first transformation output) is also obtained. If the effect of increasing the calculation accuracy is not required, the second inverse transform shift unit 303 may set the shift amount SA to 0 when the bit length control unit 301 determines the positive shift amount SA. Further, for example, the target maximum bit length is given to the bit of the decoding conversion input due to the relationship with the process (prediction process or filter process) following the inverse conversion. Assuming that it is E bits, the bit length control unit 301 determines the shift amount SB of the first inverse transform shift unit 305 as E-MD. Similar to the second inverse transform shift unit 303, the first inverse transform shift unit 305 shifts up if the E-MD is a positive number and shifts down if the E-MD is a negative number.
 また、第2逆変換行列乗算部302を通過しない復号第2の部分については、その復号第2の部分のビット精度が復号第1の部分のビット精度と一致するように、第2の部分シフト部306が復号第2の部分に対してシフトを行い、シフトされた復号第2の部分を統合部235へ出力する。ビット長制御部301は第2の部分シフト部306のシフト量SA2を決定し出力する。シフト量SA2は、シフト量SAから第2逆変換行列乗算部302の増加ビット量Kを減じることによって、つまりSA2=SA-K=MD-(A+D)によって決定される。 In addition, for the decoded second portion that does not pass through the second inverse transformation matrix multiplication unit 302, the second partial shift is performed so that the bit accuracy of the decoded second portion matches the bit accuracy of the decoded first portion. The unit 306 shifts the decoded second part, and outputs the shifted decoded second part to the integrating unit 235. The bit length control unit 301 determines and outputs the shift amount SA2 of the second partial shift unit 306. The shift amount SA2 is determined by subtracting the increased bit amount K of the second inverse transform matrix multiplication unit 302 from the shift amount SA, that is, SA2 = SA−K = MD− (A + D).
 なお、ビット長制御部301と第2の逆変換対象決定部215は処理の順序を入れ替えてもよい。入れ替えて、第2の変換対象の係数のビット長を、ここまで説明したように制御してもよいし、あるいは、入れ替えて、第2の変換対象であるか否かに関わらず、全係数のビット長を制御してもよい。 Note that the bit length control unit 301 and the second inverse conversion target determination unit 215 may interchange the processing order. The bit length of the second conversion target coefficient may be controlled as described so far, or all the coefficients may be replaced regardless of whether it is the second conversion target. The bit length may be controlled.
 なお、ビット長制御部301は、入力される復号変換出力の各係数(要素)について、それぞれビット長を計算し、それらの最大値を当該ブロックのビット長とする。復号変換出力は逆変換前であるため、多くのゼロ係数を含む。それらゼロ係数はビット長計算の対象より除外し、ビット長計算の演算量を削減してもよい。このように、ビット長制御部301は、ブロックの復号変換出力のビット長を検出する。 Note that the bit length control unit 301 calculates the bit length for each coefficient (element) of the input decoded transform output, and sets the maximum value as the bit length of the block. Since the decoded transform output is before inverse transform, it includes many zero coefficients. These zero coefficients may be excluded from the target of the bit length calculation to reduce the calculation amount of the bit length calculation. As described above, the bit length control unit 301 detects the bit length of the decoding conversion output of the block.
 (実施の形態4)
 図12は、本実施の形態における復号化装置のブロック図である。
(Embodiment 4)
FIG. 12 is a block diagram of the decoding apparatus according to the present embodiment.
 図12に示すように、本実施の形態における復号化装置は、第2の逆変換(第2逆変換行列乗算部302と第2逆変換シフト部303による処理)と第1の逆変換(第1逆変換行列乗算部304と第1逆変換シフト部305)との間でノルム補正を行う。ノルム補正とは、第1の逆変換の変換係数における、シフトと加算などを用いて乗算処理を軽減したときに発生する変換基底の大きさ(ノルム)の不一致を補正する処理である。この処理は、各周波数位置毎の乗算処理を行うノルム補正乗算部310と、それに続くシフト処理を行うノルム補正シフト部311とによって実現される。前述の逆変換の乗算とシフトとの関係と同様に、この順序関係は概念的なものであり、周波数位置などの小さな粒度で、乗算とシフトを行ってもよい。この構成では、ビット長制御部301は、ノルム補正に必要とされるビット長がノルム補正乗算部310の最大ビット長を超えないようにシフト量SAを決定し、ノルム補正シフト部311のシフト量SCを決定する。 As shown in FIG. 12, the decoding apparatus according to the present embodiment performs the second inverse transform (processing by the second inverse transform matrix multiplier 302 and the second inverse transform shift unit 303) and the first inverse transform (first Norm correction is performed between the 1 inverse transformation matrix multiplication unit 304 and the first inverse transformation shift unit 305). The norm correction is a process for correcting a mismatch in the size (norm) of the conversion base that occurs when the multiplication process is reduced by using shift and addition in the conversion coefficient of the first inverse transform. This process is realized by a norm correction multiplication unit 310 that performs multiplication processing for each frequency position, and a norm correction shift unit 311 that performs subsequent shift processing. Similar to the above-described relationship between inverse multiplication and shift, this order relationship is conceptual, and multiplication and shift may be performed with a small granularity such as a frequency position. In this configuration, the bit length control unit 301 determines the shift amount SA so that the bit length required for norm correction does not exceed the maximum bit length of the norm correction multiplication unit 310, and the shift amount of the norm correction shift unit 311. Determine the SC.
 図13は、本実施の形態におけるシフト量の算出方法(決定方法)を説明するための図である。ノルム補正乗算部310の処理できる最大のビット長がMNであるとし、乗算処理による増加ビット長はNであるとする。第2逆変換行列乗算部302の出力のビット長はA+Kであり、ノルム補正乗算部310においてNビット増加する。したがって、A+K+Nがノルム補正乗算部310の最大ビット長MNを超えないようにするために、ビット長制御部301は、第2逆変換シフト部303のシフト量SA=+MN-(A+K+N)を決定する。これにより、ノルム補正乗算部310の出力(及び内部処理)のビット長はMNとなる。この出力に対する第1の逆変換に必要なビット数が、第1逆変換行列乗算部304の最大ビット長MDを超えないように、ノルム補正シフト部311はシフトを行う。つまり、第1逆変換行列乗算部304による第1の逆変換の乗算によってDビット増加し、現時点のビット長がMNであるので、ビット長制御部301は、ノルム補正シフト部311のシフト量SCをMD-(D+MN)に決定する。ノルム補正シフト部311によってこのシフト量SCだけシフトされた出力は、MD-Dビットであり、第1逆変換行列乗算部304へ入力され、Dビット増加し、MDビットとなる。したがって、その出力が第1逆変換行列乗算部304の回路の最大ビット長MDを越えないようにできる。これ以降の処理は実施の形態3と同じである。 FIG. 13 is a diagram for explaining a shift amount calculation method (determination method) in the present embodiment. It is assumed that the maximum bit length that can be processed by the norm correction multiplication unit 310 is MN, and the increased bit length by the multiplication processing is N. The bit length of the output of the second inverse transform matrix multiplier 302 is A + K, and the norm correction multiplier 310 increases N bits. Therefore, in order to prevent A + K + N from exceeding the maximum bit length MN of the norm correction multiplication unit 310, the bit length control unit 301 determines the shift amount SA = + MN− (A + K + N) of the second inverse transform shift unit 303. . Thereby, the bit length of the output (and internal processing) of the norm correction multiplication unit 310 is MN. The norm correction shift unit 311 performs a shift so that the number of bits necessary for the first inverse transformation on the output does not exceed the maximum bit length MD of the first inverse transformation matrix multiplication unit 304. That is, D bits are increased by multiplication of the first inverse transformation by the first inverse transformation matrix multiplication unit 304 and the current bit length is MN. Therefore, the bit length control unit 301 includes the shift amount SC of the norm correction shift unit 311. Is determined to be MD− (D + MN). The output shifted by the shift amount SC by the norm correction shift unit 311 is MD-D bits, and is input to the first inverse transformation matrix multiplication unit 304, and is increased by D bits to become MD bits. Therefore, it is possible to prevent the output from exceeding the maximum bit length MD of the circuit of the first inverse transformation matrix multiplication unit 304. The subsequent processing is the same as in the third embodiment.
 図14は、本実施の形態におけるシフト量の他の算出方法(決定方法)を説明するための図である。第2逆変換行列乗算部302への入力信号(復号第2の変換出力)に対して、あらかじめビット長を制御しておいてもよい。すなわち、図14に示すように、Aビットを+MK-(K+A)分シフトしておいてもよい。これにより、第2の逆変換に必要なビット数を、第2逆変換行列乗算部302の最大ビット長MK以下に抑えることができる。それ以降の処理は、上述の処理と同等であるため説明を省略する。なお、このような算出方法、つまり復号第2の変換出力に対して事前にビット長を制御しておく方法を、実施の形態3に適用してもよい。 FIG. 14 is a diagram for explaining another calculation method (determination method) of the shift amount in the present embodiment. The bit length of the input signal (decoded second conversion output) to the second inverse transformation matrix multiplication unit 302 may be controlled in advance. That is, as shown in FIG. 14, the A bit may be shifted by + MK− (K + A). Thereby, the number of bits necessary for the second inverse transformation can be suppressed to be equal to or less than the maximum bit length MK of the second inverse transformation matrix multiplication unit 302. Subsequent processing is equivalent to the above-described processing, and thus description thereof is omitted. Note that such a calculation method, that is, a method of controlling the bit length in advance for the decoded second conversion output may be applied to the third embodiment.
 また、実施の形態3と4における復号化方法は、入力信号を符号化する符号化装置において、量子化係数を逆量子化して逆変換する際にも使われる。つまり、この符号化装置は、入力信号に対して周波数変換を行い、複数の周波数成分の係数値を有する変換出力信号を生成する変換ステップと、前記変換出力信号を量子化して複数の量子化係数を生成する量子化ステップと、前記複数の量子化係数をエントロピー符号化して符号化信号を生成するエントロピー符号化ステップと、前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の変換係数の行列乗算後のシフト量を、ブロック単位に前記復号変換出力信号のビット長に応じて制御する制御ステップと、を実行する。なお、逆量子化ステップ、第2の逆変換ステップ、第1の逆変換ステップ、および制御ステップからなる逆変換の処理の結果は、変換ステップにおける変換の対象とされる入力信号(例えば予測誤差信号)の生成に利用される。 Further, the decoding methods in Embodiments 3 and 4 are also used when the quantization coefficient is inversely quantized and inversely transformed in an encoding device that encodes an input signal. That is, the encoding device performs a frequency conversion on an input signal, generates a conversion output signal having coefficient values of a plurality of frequency components, and quantizes the conversion output signal to generate a plurality of quantization coefficients. An entropy encoding step for entropy encoding the plurality of quantized coefficients to generate an encoded signal, and an inverse for dequantizing the plurality of quantized coefficients to generate a decoded transform output signal. A second inverse transform using a transform coefficient of a second inverse transform on the first partial signal that constitutes a part of the decoded transform output signal; and the second inverse transform In the second inverse transform step for generating the first partial signal, the first partial signal subjected to the second inverse transform, and the portion not subjected to the second inverse transform Pair with some second partial signal The first inverse transform step for performing the first inverse transform using the transform coefficient of the first inverse transform collectively and the maximum bit length of the internal variable required for the matrix multiplication of the first inverse transform And a control step for controlling the shift amount after matrix multiplication of the transform coefficient of the second inverse transform in accordance with the bit length of the decoded transform output signal so as not to exceed a predetermined value. To do. Note that the result of the inverse transformation process including the inverse quantization step, the second inverse transformation step, the first inverse transformation step, and the control step is an input signal (for example, a prediction error signal) to be transformed in the transformation step. ).
 (実施の形態5)
 シフトダウンの処理毎に情報量(情報精度)が失われる。つまり、予測、逆量子化、および逆変換などの個々の処理で都度シフトダウンを行うと、その度に情報量(情報精度)の消失が発生することとなる。そこで、ビット精度をむしろ多目に確保し、都度のシフトダウン処理を出来るだけ最終段のみへ集中させ、情報量(情報精度)の消失を抑える手法がある。これは、内部ビット拡張手法(IBDI:Internal Bit Depth Increase)と呼ばれることもある。このIBDI手法は、逆変換回路の最大ビット長をできるだけ抑えようとする設計思想と反対のものである。もしIBDI手法が適用される場合には、次のような処理を行って、必要とされるビット長が回路規模の最大値を超えないように制御する。IBDIのビット拡張は、任意の処理ステップに挿入される可能性があるが、ここでは逆量子化部140の出力値が所定ビット拡張されるとする。
(Embodiment 5)
The amount of information (information accuracy) is lost for each shift-down process. That is, if a downshift is performed each time in individual processes such as prediction, inverse quantization, and inverse transformation, the amount of information (information accuracy) disappears each time. Therefore, there is a method of ensuring bit accuracy rather frequently and concentrating the downshift processing for each time as much as possible only at the final stage to suppress the loss of information amount (information accuracy). This is sometimes called an internal bit extension technique (IBDI: Internal Bit Depth Increase). This IBDI method is the opposite of the design philosophy of trying to suppress the maximum bit length of the inverse conversion circuit as much as possible. If the IBDI method is applied, the following processing is performed to control the required bit length so as not to exceed the maximum value of the circuit scale. The IBDI bit extension may be inserted in an arbitrary processing step. Here, it is assumed that the output value of the inverse quantization unit 140 is extended by a predetermined bit.
 図15は、本実施の形態における復号化装置のブロック図である。本実施の形態における復号化装置は第2逆変換プレシフト部321と第2逆変換制御部320とを備える。第2逆変換制御部320は、面内予測モードと連動するか、あるいは、ストリームに別途多重化されるフラグ信号に基づいて、第2逆変換行列乗算部302の動作を指示する制御信号CtrlAを決定する。制御信号CtrlAによって示される指示には、水平逆変換のみ行う指示hx、垂直逆変換のみ行う指示xv、水平逆変換と垂直逆変換の両方を行う指示hv、および水平逆変換と垂直逆変換の両方を行わない指示xx、の4種がありえる。第2の逆変換によるビット増加が最大となるのは、指示hvの場合である。したがって、この場合のみ、必要とされるビット長が回路の最大長を超えないように、第2逆変換プレシフト部321は、第2逆変換行列乗算部302の入力信号(つまり、復号第2の変換出力)を、あらかじめ、所定の値だけシフトダウンする(復号第2の部分に対しては特に処理は不要である)。 FIG. 15 is a block diagram of the decoding apparatus according to the present embodiment. The decoding device in the present embodiment includes a second inverse transform preshift unit 321 and a second inverse transform control unit 320. The second inverse transform control unit 320 operates the control signal CtrlA for instructing the operation of the second inverse transform matrix multiplication unit 302 based on a flag signal that is linked with the in-plane prediction mode or is multiplexed separately in the stream. decide. The instruction indicated by the control signal CtrlA includes an instruction hx for performing only horizontal reverse conversion, an instruction xv for performing only vertical reverse conversion, an instruction hv for performing both horizontal reverse conversion and vertical reverse conversion, and both horizontal reverse conversion and vertical reverse conversion. There may be four types of instructions xx that do not perform. The bit increase due to the second inverse transformation is maximized in the case of the instruction hv. Therefore, only in this case, the second inverse transform preshift unit 321 receives the input signal of the second inverse transform matrix multiplication unit 302 (that is, the decoded second signal) so that the required bit length does not exceed the maximum length of the circuit. The conversion output) is shifted down by a predetermined value in advance (no special processing is required for the second decoding portion).
 具体的には、IBDIのビット長が4ビットで、第2逆変換行列乗算部302による第2の逆変換の変換行列が7ビットの場合は、第2逆変換プレシフト部321は、指示hvの場合のみ、3ビットあらかじめシフトダウンしておく。指示hx、xvおよびxxの場合は、第2逆変換プレシフト部321はこのシフトダウンを行わない。また、プレシフトダウンをNビット行った場合、第2の逆変換に続く第2逆変換シフト部303のシフトダウン量をNだけ減じておく。このように、第2逆変換行列乗算部302への復号第2の変換出力の入力時に、シフトダウンを行うことで、第2の逆変換に必要とされるビット長がIBDIによる第2逆変換行列乗算部302の回路の最大値を超えないように制御でき、さらに、ビット長の増加が最大となる指示hvの場合(水平逆変換と垂直逆変換を両方行う場合)に限定してシフトダウンを適用することで、シフトダウン適用による情報量の消失を最小限に抑えることができる。上記のビット長4、7および3は一例であり、これに限るものではない。 Specifically, when the bit length of IBDI is 4 bits and the transformation matrix of the second inverse transformation by the second inverse transformation matrix multiplication unit 302 is 7 bits, the second inverse transformation preshift unit 321 Only when it is shifted down by 3 bits in advance. In the case of the instructions hx, xv, and xx, the second inverse transform preshift unit 321 does not perform this downshift. When N bits of pre-shift down are performed, the shift down amount of the second inverse transform shift unit 303 following the second inverse transform is reduced by N. As described above, when the decoded second conversion output is input to the second inverse transformation matrix multiplication unit 302, the bit length required for the second inverse transformation is changed to the second inverse transformation by IBDI by performing the downshift. Control can be performed so as not to exceed the maximum value of the circuit of the matrix multiplication unit 302, and further, downshifting is limited to the case of the instruction hv in which the increase in bit length is maximum (when both horizontal reverse conversion and vertical reverse conversion are performed) By applying, loss of information amount due to shift down application can be minimized. The above bit lengths 4, 7, and 3 are examples, and the present invention is not limited to these.
 図16Aは、第2逆変換制御部320および第2逆変換プレシフト部321の処理動作を示すフローチャートである。第2逆変換制御部320は、水平逆変換(H)および垂直逆変換(V)のそれぞれの有無を、面内予測モードに連動させて決定する。あるいは、符号化ストリーム中のフラグ情報に基づいて決定する。あるいは、これらの組み合わせなどを用いて決定する(ステップS220)。第2逆変換プレシフト部321は、その決定された内容を示す制御信号CtrlAに基づいて、垂直逆変換と水平逆変換を両方行うか判定する(ステップS221)。行う場合、第2逆変換プレシフト部321は、所定ビット長のプレシフトダウンを行う(ステップS222)。行わない場合、第2逆変換プレシフト部321は、プレシフトダウンを行わない(ステップS223)。 FIG. 16A is a flowchart showing processing operations of the second inverse transform control unit 320 and the second inverse transform preshift unit 321. The second inverse transform control unit 320 determines the presence / absence of each of the horizontal inverse transform (H) and the vertical inverse transform (V) in conjunction with the in-plane prediction mode. Alternatively, it is determined based on flag information in the encoded stream. Or it determines using these combinations etc. (step S220). The second inverse transform pre-shift unit 321 determines whether to perform both vertical inverse transform and horizontal inverse transform based on the control signal CtrlA indicating the determined content (step S221). When performing, the 2nd inverse transformation preshift part 321 performs the preshift down of predetermined bit length (step S222). If not, the second inverse transform preshift unit 321 does not perform preshift down (step S223).
 図16Bは、第2逆変換制御部320および第2逆変換プレシフト部321の他の処理動作を示すフローチャートである。第2逆変換プレシフト部321は、ステップS220で決定された内容を示す制御信号CtrlAに基づいて、水平逆変換および垂直逆変換のそれぞれの有無を判定し(ステップS221)、水平逆変換と垂直逆変換の両方が有と判定された場合(H=V=1)、プレシフトダウンを行う(ステップS224)。ステップS221の判定で、両方が有ではないが、どちらか一方だけが有と判定された場合(H=1,V=0 || H=0,V=1)、第2逆変換プレシフト部321は、ステップS224と比べて少ない量のプレシフトダウンを行う(ステップS225)。ステップS221の判定で、どちらも無と判定された場合、第2逆変換プレシフト部321は、プレシフトダウンを行わない(ステップS226)。 FIG. 16B is a flowchart showing another processing operation of the second inverse transform control unit 320 and the second inverse transform preshift unit 321. The second inverse transform preshift unit 321 determines the presence or absence of each of the horizontal inverse transform and the vertical inverse transform based on the control signal CtrlA indicating the content determined in step S220 (step S221), and the horizontal inverse transform and the vertical inverse When it is determined that both conversions are present (H = V = 1), pre-shift down is performed (step S224). When it is determined in step S221 that both are not present but only one is present (H = 1, V = 0 || H = 0, V = 1), the second inverse transform preshift unit 321 Performs a pre-shift down by a small amount compared to step S224 (step S225). If it is determined in step S221 that neither is present, the second inverse transform preshift unit 321 does not perform preshift down (step S226).
 このように制御することで、IBDIが適用されている場合でも、第2逆変換行列乗算部302の回路の最大ビットの範囲内で、適切な第2の逆変換ができ、かつ、適応的な制御により、プレシフトダウンによる演算精度の低下を最小限に抑えることができる。 By controlling in this way, even when IBDI is applied, appropriate second inverse transformation can be performed within the maximum bit range of the circuit of the second inverse transformation matrix multiplication unit 302, and adaptive By the control, it is possible to minimize a decrease in calculation accuracy due to the preshift down.
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法(符号化方法)または動画像復号化方法(復号化方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 6)
By recording a program for realizing the configuration of the moving image encoding method (encoding method) or the moving image decoding method (decoding method) described in each of the above embodiments on a storage medium, The processing shown in the form can be easily performed in an independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(符号化方法)や動画像復号化方法(復号化方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture encoding method (encoding method) and moving picture decoding method (decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図17のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 17, and may be connected by combining any one of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の復号化装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the encoding device of the present invention). ) To the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図18に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(符号化装置)または動画像復号化装置(復号化装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の復号化装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 18, the digital broadcast system ex200 also includes at least the video encoding device (encoding device) or the video decoding device according to each of the above embodiments. Any of (decoding device) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図19は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の符号化装置または復号化装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Also, the television ex300 decodes each of audio data and video data, or encodes each information, an audio signal processing unit ex304, a video signal processing unit ex305 (functions as an encoding device or a decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図20に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図21に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図19に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. The configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration shown in FIG.
 図22Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図22Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 22B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の復号化装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態7)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 7)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図23は、多重化データの構成を示す図である。図23に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 23 is a diagram showing a structure of multiplexed data. As shown in FIG. 23, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図24は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図25は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図25における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図25の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 25 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 25, a plurality of video presentation units in a video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図26は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図26下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図27はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 27 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図28に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 28, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図28に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図29に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 29, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図30に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 30 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態8)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図31に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 8)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 31 shows a configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態9)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 9)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図32は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 32 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図31のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図31の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態7で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態7で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図34のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, it is conceivable to use the identification information described in the seventh embodiment. The identification information is not limited to that described in Embodiment 7, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図33は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 33 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態10)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 10)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図35Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 35A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inverse quantization, for example, a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used. For any or all of the processes, it is conceivable to share the decoding processing unit. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図35Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 35B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明にかかる符号化方法および復号化方法は、演算量を少なく抑える効果を奏し、例えば、ビデオカメラ、動画の撮影および再生機能を有する携帯電話、パーソナルコンピュータ、または録画再生装置などに適用することができる。 INDUSTRIAL APPLICABILITY The encoding method and decoding method according to the present invention have the effect of reducing the amount of calculation, and are applied to, for example, a video camera, a mobile phone having a video shooting and playback function, a personal computer, or a recording / playback apparatus. Can do.
 140  逆量子化部
 215  第2の逆変換対象決定部
 235  統合部
 240  エントロピー復号部
 250  第1の逆変換部
 260  第2の逆変換部
 301  ビット長制御部
 302  第2逆変換行列乗算部
 303  第2逆変換シフト部
 304  第1逆変換行列乗算部
 305  第1逆変換シフト部
 306  第2の部分シフト部
 310  ノルム補正乗算部310
 311  ノルム補正シフト部311
 320  第2逆変換制御部
 321  第2逆変換プレシフト部
 
140 Inverse quantization unit 215 Second inverse transform target determination unit 235 Integration unit 240 Entropy decoding unit 250 First inverse transform unit 260 Second inverse transform unit 301 Bit length control unit 302 Second inverse transform matrix multiplication unit 303 2 inverse transformation shift unit 304 first inverse transformation matrix multiplication unit 305 first inverse transformation shift unit 306 second partial shift unit 310 norm correction multiplication unit 310
311 norm correction shift unit 311
320 Second inverse transformation control unit 321 Second inverse transformation preshift unit

Claims (4)

  1.  符号化信号に対してエントロピー復号化を行い、複数の量子化係数を生成するエントロピー復号化ステップと、
     前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、
     前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、
     前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の変換係数の行列乗算後のシフト量を、ブロック単位に前記復号変換出力信号のビット長に応じて制御する制御ステップと、
     を含む復号化方法。
    An entropy decoding step for entropy decoding the encoded signal to generate a plurality of quantized coefficients;
    An inverse quantization step of inversely quantizing the plurality of quantized coefficients to generate a decoded transformed output signal;
    A second inverse transform is performed on a first partial signal constituting a part of the decoded transform output signal using a transform coefficient of a second inverse transform, and the second inverse transform is performed. A second inverse transform step for generating a partial signal of 1;
    The first inverse transform is collectively performed on the first partial signal that has been subjected to the second inverse transform and the second partial signal that has not been subjected to the second inverse transform. A first inverse transform step for performing a first inverse transform using the transform coefficients of:
    The shift amount after matrix multiplication of the transform coefficient of the second inverse transform is set in block units so that the maximum bit length of the internal variable necessary for matrix multiplication of the first inverse transform does not exceed a predetermined value. A control step for controlling according to the bit length of the decoded conversion output signal;
    A decoding method including:
  2.  前記復号変換出力信号のビット長をブロック単位に算出し、
     前記制御ステップでは、
     所定のブロックに対して算出された前記ビット長をA、前記第2の逆変換の行列乗算による増加ビット長をK、前記第1の逆変換の行列乗算による増加ビット長をD、前記第1の逆変換における最大ビット長をMDとすると、前記第2の逆変換の行列乗算後に、MD-(A+D+K)のシフト量の調整を行う、
     請求項1に記載の復号化方法。
    Calculating the bit length of the decoded conversion output signal in units of blocks;
    In the control step,
    The bit length calculated for a predetermined block is A, the increased bit length by matrix multiplication of the second inverse transformation is K, the increased bit length by matrix multiplication of the first inverse transformation is D, the first When the maximum bit length in the inverse transformation of MD is MD, the shift amount of MD− (A + D + K) is adjusted after matrix multiplication of the second inverse transformation.
    The decoding method according to claim 1.
  3.  入力信号に対して周波数変換を行い、複数の周波数成分の係数値を有する変換出力信号を生成する変換ステップと、
     前記変換出力信号を量子化して複数の量子化係数を生成する量子化ステップと、
     前記複数の量子化係数をエントロピー符号化して符号化信号を生成するエントロピー符号化ステップと、
     前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、
     前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、
     前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の変換係数の行列乗算後のシフト量を、ブロック単位に前記復号変換出力信号のビット長に応じて制御する制御ステップと、
     を含む符号化方法。
    A conversion step of performing frequency conversion on the input signal and generating a converted output signal having coefficient values of a plurality of frequency components;
    A quantization step of quantizing the transformed output signal to generate a plurality of quantization coefficients;
    An entropy encoding step of entropy encoding the plurality of quantized coefficients to generate an encoded signal;
    An inverse quantization step of inversely quantizing the plurality of quantized coefficients to generate a decoded transformed output signal;
    A second inverse transform is performed on a first partial signal constituting a part of the decoded transform output signal using a transform coefficient of a second inverse transform, and the second inverse transform is performed. A second inverse transform step for generating a partial signal of 1;
    The first inverse transform is collectively performed on the first partial signal that has been subjected to the second inverse transform and the second partial signal that has not been subjected to the second inverse transform. A first inverse transform step for performing a first inverse transform using the transform coefficients of:
    The shift amount after matrix multiplication of the transform coefficient of the second inverse transform is set in block units so that the maximum bit length of the internal variable necessary for matrix multiplication of the first inverse transform does not exceed a predetermined value. A control step for controlling according to the bit length of the decoded conversion output signal;
    An encoding method including:
  4.  符号化信号に対してエントロピー復号化を行い、複数の量子化係数を生成するエントロピー復号化ステップと、
     前記複数の量子化係数を逆量子化して復号変換出力信号を生成する逆量子化ステップと、
     前記復号変換出力信号の一部を構成する第1の部分信号に対して、第2の逆変換の変換係数を用いて第2の逆変換を行い、前記第2の逆変換が行われた第1の部分信号を生成する第2の逆変換ステップと、
     前記第2の逆変換が行われた第1の部分信号と、前記第2の逆変換が行われなかった部分である第2の部分信号とに対して、一括して、第1の逆変換の変換係数を用いて第1の逆変換を行う第1の逆変換ステップと、
     前記第1の逆変換の行列乗算に必要な内部変数の最大ビット長が所定の値を超えないように、前記第2の逆変換の垂直逆変換および水平逆変換の動作の有無に応じて、前記第2の逆変換の入力信号である前記第1の部分信号を所定の値だけシフトダウンするプレシフトダウンステップと、
     を含む復号化方法。
    An entropy decoding step for entropy decoding the encoded signal to generate a plurality of quantized coefficients;
    An inverse quantization step of inversely quantizing the plurality of quantized coefficients to generate a decoded transformed output signal;
    A second inverse transform is performed on a first partial signal constituting a part of the decoded transform output signal using a transform coefficient of a second inverse transform, and the second inverse transform is performed. A second inverse transform step for generating a partial signal of 1;
    The first inverse transform is collectively performed on the first partial signal that has been subjected to the second inverse transform and the second partial signal that has not been subjected to the second inverse transform. A first inverse transform step for performing a first inverse transform using the transform coefficients of:
    In accordance with the presence or absence of the operations of the vertical inverse transform and the horizontal inverse transform of the second inverse transform so that the maximum bit length of the internal variable required for the matrix multiplication of the first inverse transform does not exceed a predetermined value, A pre-shift down step of down-shifting the first partial signal which is an input signal of the second inverse transform by a predetermined value;
    A decoding method including:
PCT/JP2012/000428 2011-01-26 2012-01-24 Decoding method and encoding method WO2012102023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161436349P 2011-01-26 2011-01-26
US61/436,349 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102023A1 true WO2012102023A1 (en) 2012-08-02

Family

ID=46580599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000428 WO2012102023A1 (en) 2011-01-26 2012-01-24 Decoding method and encoding method

Country Status (1)

Country Link
WO (1) WO2012102023A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326667A (en) * 1991-04-26 1992-11-16 Konica Corp Compression and expansion device for picture data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326667A (en) * 1991-04-26 1992-11-16 Konica Corp Compression and expansion device for picture data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUJI SHIBAHARA ET AL.: "Mode Dependent 2-step Transform for Intra Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/ SC29/WG11 4TH MEETING, 28 January 2011 (2011-01-28), DAEGU, KR *

Similar Documents

Publication Publication Date Title
JP6078921B2 (en) Image encoding / decoding device
JP6210396B2 (en) Decoding method and decoding apparatus
JP6459075B2 (en) Image decoding method and image decoding apparatus
JP6384690B2 (en) Image encoding method, image encoding device, image decoding method, and image decoding device
JP6327435B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP6210375B2 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding / decoding device
WO2016103542A1 (en) Encoding method, decoding method, encoding device, and decoding device
JP6489337B2 (en) Arithmetic decoding method and arithmetic coding method
WO2012120840A1 (en) Image decoding method, image coding method, image decoding device and image coding device
WO2012014461A1 (en) Encoding method, and decoding method
WO2013001813A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP6391018B2 (en) Image coding method and image coding apparatus
WO2012014426A1 (en) Decoding method and encoding method
WO2012077347A1 (en) Decoding method
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012014472A1 (en) Moving image coding method, moving image coding device, moving image decoding method, and moving image decoding device
WO2012102023A1 (en) Decoding method and encoding method
WO2012053210A1 (en) Decoding method, encoding method, decoding device, and encoding device
WO2011135829A1 (en) Encoding method and decoding method
WO2012077349A1 (en) Image encoding method and image decoding method
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method
WO2012096195A1 (en) Encoding method, decoding method, encoding device, decoding device, and encoding/decoding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP