WO2012095930A1 - Image encoding method, image decoding method, image encoding device, and image decoding device - Google Patents

Image encoding method, image decoding method, image encoding device, and image decoding device Download PDF

Info

Publication number
WO2012095930A1
WO2012095930A1 PCT/JP2011/007137 JP2011007137W WO2012095930A1 WO 2012095930 A1 WO2012095930 A1 WO 2012095930A1 JP 2011007137 W JP2011007137 W JP 2011007137W WO 2012095930 A1 WO2012095930 A1 WO 2012095930A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan order
unit
encoding
image
decoding
Prior art date
Application number
PCT/JP2011/007137
Other languages
French (fr)
Japanese (ja)
Inventor
寿郎 笹井
西 孝啓
陽司 柴原
敏康 杉尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012095930A1 publication Critical patent/WO2012095930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation

Definitions

  • the present invention relates to an image encoding method, an image decoding method, an image encoding device, and an image decoding device, and in particular, an image encoding method, an image decoding method, and an image code that perform quantization or inverse quantization using a quantization matrix.
  • the present invention relates to an encoding device and an image decoding device.
  • a conventional image coding system represented by the ITU-T standard called 26x and the ISO / IEC standard called MPEG-x
  • the picture to be coded is divided into predetermined units. Encoding is performed in the division unit.
  • H.M. In the H.264 / MPEG-4 AVC standard (see, for example, Non-Patent Document 1), an encoding target picture is encoded in units of 16 horizontal pixels and 16 vertical pixels called macroblocks.
  • the encoding target picture is encoded by performing frequency conversion, quantization, and entropy encoding for each macroblock.
  • the coefficient values (pixel values) of the quantized macroblock are coded in a predetermined scan order.
  • subjective image quality is improved by changing a quantization step (quantization width) between a high frequency component and a low frequency component using a quantization matrix.
  • the conventional technique has a problem that the encoding efficiency cannot be sufficiently improved.
  • the nonzero coefficient and the zero coefficient included in the macroblock are located at positions where the zero coefficient continues to the end. It is preferable to encode the information earlier.
  • the coefficient values of the quantized macroblock are encoded in a predetermined scan order. For this reason, there are cases where the quantized macroblocks cannot be encoded in an optimal order, and the encoding efficiency cannot be sufficiently improved.
  • the present invention has been made to solve the above-described conventional problems, and provides an image encoding method, an image decoding method, an image encoding device, and an image decoding device that can sufficiently improve encoding efficiency.
  • the purpose is to provide.
  • an image encoding method is an image encoding method for encoding image data, and a quantization target block of the image data is quantized using a quantization matrix. Based on the quantization matrix, the scan order of the coefficients included in the quantized encoding target block is determined, and the quantized encoding target block is encoded in the determined scan order.
  • the coefficient value of the quantization matrix and whether the coefficient of the block to be encoded after quantization is a zero coefficient or a non-zero coefficient has a dependency relationship, so adaptive scanning is performed based on the quantization matrix.
  • the encoding efficiency can be further improved.
  • a scan order corresponding to a quantization matrix used for quantization of the encoding target block may be selected from at least one predetermined scan order.
  • the scan order is adaptively determined based on the quantization matrix used for quantization from at least one predetermined scan order, the encoding efficiency can be further improved. Furthermore, since the process of deriving the scan order for each encoding target block can be omitted, the processing amount can be reduced.
  • the coefficient values included in the quantization matrix are ordered from the coefficient position where the coefficient value is small to the coefficient position where the value is large, that is, from the position where fine quantization is performed to the position where coarse quantization is performed.
  • the scanning order may be determined as the scanning order of the coefficients included in the encoding target block.
  • the encoding target block is scanned in the order from the smallest value of the quantization matrix, it is possible to increase the probability that the non-zero coefficients are concentrated in the scanning order and the zero coefficients are concentrated in the backward order. Therefore, the encoding efficiency can be sufficiently improved.
  • the determined scan order may be stored in the memory.
  • the scan order of the coefficients included in the coding target block may be determined based on the quantization width calculated based on the quantization matrix.
  • the quantization width it is possible to further increase the probability that non-zero coefficients are concentrated on the front side in the scan order and zero coefficients are concentrated on the back side. Therefore, the encoding efficiency can be further improved.
  • An image decoding method is an image decoding method for decoding an encoded stream, wherein the scan order of coefficients included in a decoding target block of the encoded stream is determined based on a quantization matrix.
  • the decoding target block is decoded in the determined scan order, and the decoded decoding target block is inversely quantized using the quantization matrix.
  • the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix can be correctly decoded.
  • Encoding efficiency can be further improved.
  • a scan order corresponding to a quantization matrix used for quantization of the decoding target block may be selected from at least one predetermined scan order.
  • the scan order is adaptively determined based on the quantization matrix used for quantization from at least one predetermined scan order, the encoding efficiency can be further improved. Furthermore, since the process of deriving the scan order for each decoding target block can be omitted, the processing amount can be reduced.
  • the coefficient values constituting the quantization matrix are ordered from the coefficient position having the smallest value to the coefficient value having the largest value, that is, in the order of the coarsely quantized position to the coarsely quantized position.
  • the scanning order may be determined as the scanning order of the coefficients included in the decoding target block.
  • the decoding target block is scanned in the order of the smaller value of the quantization matrix, the encoded stream generated by encoding the encoding target block in the order of the smaller value of the quantization matrix can be correctly decoded. Can do.
  • the determined scan order may be stored in the memory.
  • the scan order of the coefficients included in the decoding target block may be determined based on the quantization width calculated based on the quantization matrix.
  • the present invention can be realized not only as an image encoding method and an image decoding method, but also as an apparatus including a processing unit that performs steps included in the image encoding method and the image decoding method. Moreover, you may implement
  • a communication network such as the Internet.
  • a part or all of the processing units that perform the steps included in each of the image encoding methods and image decoding methods described above may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like.
  • Computer system is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like.
  • the encoding efficiency can be sufficiently improved.
  • FIG. 1 is a block diagram showing an example of a configuration of an image encoding device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of the quantization matrix, the initial scan order, and the transform coefficient according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of the changed scan order according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing an example of the operation of the image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing an example of a scan order determination method according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart showing an example of the operation of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart showing an example of a scan order determination method according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of the changed scan order according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 2 of the present invention.
  • FIG. 14 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 3 of the present invention.
  • FIG. 15 is a flowchart showing an example of a scan order determination method according to the third embodiment of the present invention.
  • FIG. 16 is a diagram showing an example of determining the scan order according to Embodiment 3 of the present invention.
  • FIG. 17 is a block diagram showing an example of a configuration of a decoding control unit according to Embodiment 3 of the present invention.
  • FIG. 18 is an explanatory diagram for explaining a multi-layer block structure according to the embodiment of the present invention.
  • FIG. 18 is an explanatory diagram for explaining a multi-layer block structure according to the embodiment of the present invention.
  • FIG. 19 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 20 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 21 is a block diagram illustrating a configuration example of a television.
  • FIG. 22 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 23 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 24A is a diagram illustrating an example of a mobile phone.
  • FIG. 24B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 25 is a diagram showing a structure of multiplexed data.
  • FIG. 26 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 27 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 28 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 29 is a diagram illustrating a data structure of the PMT.
  • FIG. 30 is a diagram showing an internal configuration of multiplexed data information.
  • FIG. 31 shows the internal structure of stream attribute information.
  • FIG. 32 is a diagram illustrating steps for identifying video data.
  • FIG. 33 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 33 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 33 is a block diagram illustrating a configuration example of an
  • FIG. 34 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 35 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 36 is a diagram illustrating an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 37A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 37B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • An image encoding method is an image encoding method for encoding image data, wherein a block to be encoded of image data is quantized using a quantization matrix and is converted into a quantization matrix. Based on this, the scan order of the coefficients included in the quantized encoding target block is determined, and the quantized encoding target block is encoded in the determined scan order.
  • the image decoding method according to Embodiment 1 of the present invention is an image decoding method for decoding an encoded stream, and based on a quantization matrix, the scan order of coefficients included in a decoding target block of the encoded stream
  • the decoding target block is decoded in the determined scan order, and the decoded decoding target block is inversely quantized using a quantization matrix.
  • FIG. 1 is a block diagram showing an example of the configuration of an image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the image encoding apparatus 1000 includes an encoding processing unit 1100 and an encoding control unit 1200.
  • the encoding processing unit 1100 generates an encoded stream by encoding a moving image for each block.
  • Such an encoding processing unit 1100 includes a subtractor 1101, an orthogonal transform unit 1102, a quantization unit 1103, an entropy encoding unit 1104, an inverse quantization unit 1105, an inverse orthogonal transform unit 1106, and an adder. 1107, a deblocking filter 1108, a memory 1109, an in-plane prediction unit 1110, a motion compensation unit 1111, a motion detection unit 1112, and a switch 1113.
  • the subtractor 1101 acquires a moving image and acquires a predicted image from the switch 1113. Then, the subtracter 1101 generates a difference image by subtracting the predicted image from the encoding target block included in the moving image.
  • the orthogonal transform unit 1102 performs orthogonal transform such as discrete cosine transform on the difference image generated by the subtractor 1101, thereby transforming the difference image into a coefficient block including a plurality of frequency coefficients.
  • the quantization unit 1103 generates a quantized coefficient block by quantizing each frequency coefficient included in the coefficient block.
  • the entropy encoding unit 1104 generates an encoded stream by entropy encoding (variable length encoding) the coefficient block quantized by the quantization unit 1103 and the motion vector detected by the motion detection unit 1112. .
  • the inverse quantization unit 1105 performs inverse quantization on the coefficient block quantized by the quantization unit 1103.
  • the inverse orthogonal transform unit 1106 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
  • the adder 1107 acquires a predicted image from the switch 1113, and generates a local decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 1106.
  • the deblocking filter 1108 removes block distortion of the local decoded image generated by the adder 1107 and stores the local decoded image in the memory 1109.
  • a memory 1109 is a memory for storing a locally decoded image as a reference image in motion compensation.
  • the in-plane prediction unit 1110 generates a prediction image (intra prediction image) by performing in-plane prediction on the current block using the local decoded image generated by the adder 1107.
  • the motion detection unit 1112 detects a motion vector for the encoding target block included in the moving image, and outputs the detected motion vector to the motion compensation unit 1111 and the entropy encoding unit 1104.
  • the motion compensation unit 1111 refers to the image stored in the memory 1109 as a reference image, and performs motion compensation on the coding target block by using the motion vector detected by the motion detection unit 1112.
  • the motion compensation unit 1111 performs such motion compensation to generate a prediction image (inter prediction image) of the encoding target block.
  • the switch 1113 outputs the prediction image (intra prediction image) generated by the intra prediction unit 1110 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to intra prediction encoding.
  • the switch 1113 outputs the prediction image (inter prediction image) generated by the motion compensation unit 1111 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to inter-frame prediction encoding.
  • the encoding control unit 1200 controls the encoding processing unit 1100. Specifically, the encoding control unit 1200 determines the scan order of the coefficients included in the encoding target block based on the quantization matrix used for the quantization of the encoding target block.
  • FIG. 2 is a block diagram showing an example of the configuration of the encoding control unit 1200 according to Embodiment 1 of the present invention.
  • the encoding control unit 1200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 120.
  • the quantization matrix acquisition unit 110 acquires a quantization matrix used for quantization of the encoding target block.
  • the encoding target block is a rectangular block including a predetermined number of pixels such as 4 ⁇ 4, 8 ⁇ 8, 16 ⁇ 16, 32 ⁇ 32, 64 ⁇ 64, and 128 ⁇ 128 pixels.
  • the number of pixels and the shape included in the encoding target block are not limited to this.
  • the encoding control unit 1200 includes a memory that holds one or more quantization matrices, and the quantization matrix acquisition unit 110 acquires the quantization matrix used by the quantization unit 1103 from the memory.
  • the quantization matrix acquisition unit 110 receives index information indicating the quantization matrix used for quantization from the quantization unit 1103, and acquires a quantization matrix corresponding to the received index information from the memory.
  • the quantization matrix acquisition unit 110 acquires the quantization matrix from the quantization unit 1103.
  • the scan order determination unit 120 determines the scan order of the coefficients included in the encoding target block based on the quantization matrix acquired by the quantization matrix acquisition unit 110. Specifically, the scan order determining unit 120 determines the scan order (encoding order) of the coefficients of the encoding target block based on the coefficient distribution of the quantization matrix.
  • the scan order determination unit 120 rearranges the coefficients of the quantization matrix acquired by the quantization matrix acquisition unit 110 in ascending order, and generates scan order information indicating the order. Specifically, the scan order determination unit 120 scans the coefficients of the quantization matrix along a predetermined initial scan order, and arranges them in order from the coefficient with the smallest value. That is, the scan order determining unit 120 determines the order of scanning in the order of coefficient positions from the coefficient position with the smallest coefficient value included in the quantization matrix to the coefficient position included in the encoding target block.
  • the order of the coefficient position in which the value of the coefficient included in the quantization matrix is small to the large coefficient position is the order of the position where the coefficient of the coding target block is coarsely quantized from the position where the coefficient of the code target block is finely quantized.
  • the order of these coefficients is the order according to the initial scan order.
  • FIG. 3 is a diagram showing an example of the quantization matrix, the initial scan order, and the transform coefficient according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of the changed scan order according to the first embodiment of the present invention.
  • the quantization matrix and the transform coefficient are both composed of 4 ⁇ 4 pixel blocks.
  • the transform coefficient is a coefficient block generated by the orthogonal transform unit 1102 and is an example of data to be quantized.
  • the upper left coefficient of the coefficient block indicates the low frequency component of the encoding target block, and the upper right coefficient indicates the high frequency component of the encoding target block.
  • the initial scan order indicates the order in which the quantized transform coefficients are encoded.
  • the initial scan order shown in FIG. 3 is a so-called zigzag scan, and indicates that the order when encoding the quantized transform coefficients is from the low frequency component to the high frequency component.
  • the scan order determination unit 120 rearranges the coefficients of the quantization matrix shown in FIG. 3 in ascending order, the order becomes “2 ⁇ 6 ⁇ 6 ⁇ 13 ⁇ 13 ⁇ . Therefore, as shown in FIG. 4, the scan order of the transform coefficients is changed to “C 22 ⁇ C 00 ⁇ C 11 ⁇ C 10 ⁇ C 01 ⁇ .
  • the scan order determination unit 120 outputs scan order information indicating the changed scan order to the entropy encoding unit 1104.
  • the entropy encoding unit 1104 encodes the quantized transform coefficient based on the scan order information determined by the scan order determination unit 120.
  • the scan order of the coefficients of the encoding target block becomes the order of the coefficient of the quantization matrix used for quantization of the encoding target block.
  • the larger the coefficient value of the quantization matrix the higher the probability that the corresponding coefficient of the coefficient block after quantization will be zero. Therefore, by encoding the coefficients of the encoding target block in ascending order of the coefficients of the quantization matrix, the non-zero coefficients can be concentrated in the scanning order and the zero coefficients can be concentrated in the backward order. .
  • the entropy encoding unit 1104 encodes a significant flag indicating whether the coefficient is a non-zero coefficient or a zero coefficient in accordance with the encoding (scan) order. To do. For example, if the significance flag is “1”, it indicates that the coefficient is a non-zero coefficient. Further, if the significance flag is “0”, it indicates that the coefficient is a zero coefficient.
  • the entropy encoding unit 1104 encodes a last flag indicating whether or not the coefficient is the last non-zero coefficient in the scan order in the encoding target block.
  • the last flag is encoded following the significant flag when the coefficient is a non-zero coefficient, and is not encoded when the coefficient is a zero coefficient. For example, if the last flag is “1”, it indicates that the coefficient is the last non-zero coefficient. If the last flag is “0”, it indicates that the coefficient is not the last non-zero coefficient, that is, the encoding target block still contains a non-zero coefficient.
  • FIG. 5 is a flowchart showing an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the quantization unit 1103 quantizes the encoding target block using the quantization matrix (S10). Specifically, the orthogonal transform unit 1102 generates transform coefficients by orthogonally transforming the encoding target block, and the quantization unit 1103 quantizes the generated transform coefficients using a quantization matrix.
  • the encoding target block to be quantized is a difference image between the encoding target block included in the input moving image and the predicted image.
  • the encoding target block to be quantized may be the encoding target block itself included in the input moving image. That is, prediction coding may not be performed in the image coding apparatus 1000 according to Embodiment 1 of the present invention.
  • the encoding control unit 1200 determines the scan order of the coefficients included in the quantized encoding target block based on the quantization matrix used for quantization (S20). Details of the scan order determination method will be described later with reference to FIG.
  • the entropy encoding unit 1104 encodes the quantized block to be encoded in the determined scan order (S30). Specifically, as described above, the entropy encoding unit 1104 encodes the significant flag and the last flag, and entropy-encodes the non-zero coefficient included in the encoding target block, thereby encoding the encoded stream. Generate.
  • FIG. 6 is a flowchart showing an example of the scan order determination method according to the first embodiment of the present invention.
  • the scan order determination unit 120 determines an initial scan order (S101). Specifically, the initial scan order includes a zigzag scan, a horizontal direction priority scan, and a vertical direction priority scan. At this time, the scan order determination unit 120 may determine the initial scan order according to the encoding target block. For example, the scan order determination unit 120 determines the zigzag scan as the initial scan order when the encoding target block is a progressive image, and the vertical scan is the initial scan when the block is a field scan image (interlaced image). The order may be determined.
  • the quantization matrix acquisition unit 110 acquires all the coefficients of the quantization matrix used by the quantization unit 1103 to quantize the encoding target block (S102).
  • the scan order determination unit 120 scans the quantization matrix in the initial scan order, and rearranges the coefficients of the quantization matrix in ascending order of values (S103). Then, the scan order determination unit 120 determines the scan order of the coefficients included in the encoding target block based on the sorting result (S104). Specifically, the scan order determination unit 120 determines the order in which the coefficient value of the quantization matrix is small as it is as the scan order of the coefficients included in the encoding target block. At this time, if the values of the coefficients of the quantization matrix are the same, the scan order is determined according to the order of the initial scan order.
  • the image encoding apparatus 1000 determines the scan order based on the quantization matrix and encodes the encoding target block in the determined scan order. Since the probability of non-zero coefficient and zero coefficient varies for each coefficient position of the encoding target block depending on the value of the quantization matrix, the encoding efficiency is further improved by determining the scan order based on the quantization matrix. be able to.
  • the order in which the coefficients of the quantization matrix are arranged in ascending order is determined as the scan order of the coefficients included in the encoding target block. For this reason, since the coefficients of the quantization matrix can always be arranged in ascending order, it is possible to improve the probability that the non-zero coefficients are concentrated on the front side and the zero coefficients are concentrated on the back side in the scan order.
  • the significant flag and the last flag can be reduced, so that the encoding efficiency can be improved. .
  • FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
  • the image decoding apparatus 2000 includes a decoding processing unit 2100 and a decoding control unit 2200.
  • the decoding processing unit 2100 generates a decoded image by decoding the encoded stream for each block.
  • a decoding processing unit 2100 includes an entropy decoding unit 2101, an inverse quantization unit 2102, an inverse orthogonal transform unit 2103, an adder 2104, a deblocking filter 2105, a memory 2106, and an in-plane prediction unit 2107.
  • the entropy decoding unit 2101 acquires an encoded stream and performs entropy decoding (variable length decoding) on the encoded stream.
  • the inverse quantization unit 2102 inversely quantizes the quantized coefficient block generated by entropy decoding by the entropy decoding unit 2101.
  • the inverse orthogonal transform unit 2103 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
  • the adder 2104 obtains a predicted image from the switch 2109, and generates a decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 2103.
  • the deblocking filter 2105 removes block distortion of the decoded image generated by the adder 2104, stores the decoded image in the memory 2106, and outputs the decoded image.
  • the intra prediction unit 2107 generates a prediction image (intra prediction image) by performing intra prediction on the decoding target block using the decoded image generated by the adder 2104.
  • the motion compensation unit 2108 refers to the image stored in the memory 2106 as a reference image, and performs motion compensation on the decoding target block by using a motion vector generated by entropy decoding by the entropy decoding unit 2101. .
  • the motion compensation unit 2108 generates a prediction image (inter prediction image) for the decoding target block through such motion compensation.
  • the switch 2109 outputs the prediction image (intra prediction image) generated by the intra prediction unit 2107 to the adder 2104 when the decoding target block is subjected to intra prediction encoding.
  • the switch 2109 outputs the prediction image (inter prediction image) generated by the motion compensation unit 2108 to the adder 2104 when the decoding target block is subjected to inter-frame prediction encoding.
  • the decoding control unit 2200 controls the decoding processing unit 2100. Specifically, the decoding control unit 2200 determines the scan order of the coefficients included in the decoding target block based on the quantization matrix used for the inverse quantization of the decoding target block.
  • FIG. 8 is a block diagram showing an example of the configuration of the decoding control unit 2200 according to Embodiment 2 of the present invention.
  • the decoding control unit 2200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 120.
  • the quantization matrix acquisition unit 110 performs the same operation as the quantization matrix acquisition unit 110 included in the encoding control unit 1200.
  • the decoding control unit 2200 includes a memory that holds one or more quantization matrices, and the quantization matrix acquisition unit 110 acquires a quantization matrix used by the inverse quantization unit 2102 from the memory.
  • the quantization matrix acquisition unit 110 acquires the index information from the entropy decoding unit 2101 and corresponds to the acquired index information.
  • the quantization matrix is acquired from the memory.
  • the entropy decoding unit 2101 when the coefficient value of the quantization matrix is included in the encoded stream, the entropy decoding unit 2101 generates a quantization matrix by decoding the encoded stream, and outputs the quantization matrix to the quantization matrix acquisition unit 110. .
  • the quantization matrix acquisition unit 110 acquires the quantization matrix from the entropy decoding unit 2101.
  • the scan order determination unit 120 performs the same operation as the scan order determination unit 120 included in the encoding control unit 1200. Therefore, in the following, detailed description of the scan order determination unit 120 is omitted.
  • the scan order information indicating the scan order determined by the scan order determining unit 120 is output to the entropy decoding unit 2101.
  • the entropy decoding unit 2101 generates a restored quantized coefficient (quantized coefficient block) by decoding the decoding target block of the encoded stream based on the scan order information.
  • the image decoding apparatus correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to.
  • FIG. 9 is a flowchart showing an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
  • the decoding control unit 2200 determines the scan order of the coefficients included in the decoding target block based on the quantization matrix used for inverse quantization (S20). Details of the method for determining the scan order are the same as those in FIG.
  • the entropy decoding unit 2101 decodes the decoding target block according to the determined scan order (S40). For example, the entropy decoding unit 2101 acquires a quantized coefficient value, a significant flag, and a last flag by entropy decoding a decoding target block included in the encoded stream. Then, the entropy decoding unit 2101 refers to the significant flag and the last flag according to the determined scan order, and arranges the obtained coefficient values at appropriate coefficient positions, thereby decoding the decoding target block.
  • the decoded block to be decoded corresponds to the block to be encoded after quantization generated by the quantization unit 1103 shown in FIG.
  • the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used to determine the scan order (S50). That is, the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used in the quantization at the time of encoding.
  • the coefficient block generated by the inverse quantization is subjected to inverse orthogonal transform by the inverse orthogonal transform unit 2103 and converted into a decoded difference image.
  • the inverse orthogonal transform unit 2103 when predictive encoding is not performed at the time of encoding, the inverse orthogonal transform unit 2103 generates a decoded image by performing inverse orthogonal transform on the coefficient block. That is, the image decoding apparatus 2000 according to Embodiment 1 of the present invention may not perform predictive decoding.
  • the image decoding apparatus 2000 determines the scan order based on the quantization matrix, and decodes the decoding target block in the determined scan order. Thereby, the image decoding apparatus according to Embodiment 1 of the present invention correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to.
  • the scan order based on the quantization matrix Encoding efficiency can be further improved.
  • the scan order of the coefficients included in the encoding target block is determined for each encoding target block based on the quantization matrix. Specifically, the quantization matrix is scanned based on the initial scan order, and when the target coefficient value is smaller than the immediately preceding coefficient value, the scan order is changed.
  • the scan order of the coefficients included in the decoding target block is determined for each decoding target block based on the quantization matrix. Specifically, the quantization matrix is scanned based on the initial scan order, and when the target coefficient value is smaller than the immediately preceding coefficient value, the scan order is changed.
  • the configuration of the image coding apparatus according to the second embodiment of the present invention is almost the same as that of the image coding apparatus 1000 of FIG. 1 according to the first embodiment.
  • the explanation is centered.
  • the image coding apparatus according to Embodiment 2 of the present invention is different from the image coding apparatus 1000 according to Embodiment 1 in that the coding control unit 200 shown in FIG. 10 is used instead of the coding control unit 1200.
  • the point to prepare is different.
  • FIG. 10 is a block diagram showing an example of the configuration of the encoding control unit 200 according to Embodiment 2 of the present invention.
  • the encoding control unit 200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 220.
  • the quantization matrix acquisition unit 110 is the same as that in the first embodiment.
  • the scan order determination unit 220 includes a comparison unit 221, a setting unit 222, and an order determination unit 223, as shown in FIG.
  • the comparison unit 221 compares the coefficient values of the quantization matrix acquired by the quantization matrix acquisition unit 110. Specifically, the comparison unit 221 compares the current value set by the setting unit 222 with the coefficient value of the quantization matrix. The comparison result is output to the setting unit 222 and the order determination unit 223.
  • the setting unit 222 sets the initial scan order of the quantization matrix.
  • the initial scan order is the same as the initial scan order of the encoding target block, for example, zigzag scan, horizontal direction priority scan, and vertical direction priority scan.
  • the setting unit 222 sets the first coefficient value as the current value in the initial scan order of the quantization matrix acquired by the quantization matrix acquisition unit 110.
  • the set current value is updated based on the comparison result by the comparison unit 221. Specifically, when receiving a comparison result indicating that the current value is smaller than the coefficient value, the setting unit 222 sets the coefficient value to the current value.
  • the order determination unit 223 determines the scan order of the coefficients included in the encoding target block based on the comparison result. Specifically, when the order determination unit 223 receives a comparison result indicating that the current value is larger than the coefficient value, the order determination unit 223 switches the scan order.
  • FIG. 11 is a flowchart showing an example of a scan order determination method according to the second embodiment of the present invention.
  • the setting unit 222 sets the initial scan order of the quantization matrix (S201). At this time, the setting unit 222 may determine the initial scan order according to the encoding target block.
  • the setting unit 222 may determine the initial scan order according to the encoding target block.
  • a case where a zigzag scan is selected as the initial scan order will be described.
  • the setting unit 222 acquires the coefficient value (p) of the first quantization matrix in the initial scan order and sets it as the current value (c) (S202).
  • the comparison unit 221 acquires the coefficient value (p + 1) of the quantization matrix in the initial scan order (S203). Then, the comparing unit 221 compares the set current value (c) with the acquired coefficient value (p + 1) (S204).
  • the order determining unit 223 switches the scan order between the current value (c) and the coefficient value (p + 1) (S205). Specifically, the order determination unit 223 changes the scan order to the order of “coefficient value (p + 1) ⁇ current value (c) (specifically, coefficient value set as the current value (c))”.
  • the order determining unit 223 does not change the scan order (S206). That is, the scan order remains “current value (c) (specifically, coefficient value set as current value (c)) ⁇ coefficient value (p + 1)”. Further, in this case, the setting unit 222 updates the current value (c) by setting the coefficient value (p + 1) to the current value (c).
  • FIG. 12 is a diagram showing an example of the changed scan order according to the second embodiment of the present invention.
  • zigzag scanning is set as the initial scanning order.
  • the setting unit 222 sets “6” that is the first coefficient value (p) as the current value (c) (S202). Then, the comparison unit 221 acquires “13” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204).
  • the comparison unit 221 acquires “13” as the next coefficient value (p + 1) and repeats the process.
  • the initial scan order is determined as it is as the scan order of the encoding target block (quantization coefficient) without changing the scan order.
  • the scan order is not changed up to the fourth coefficient in the initial scan order.
  • the current coefficient (c) is set to the value “20” of the fourth coefficient.
  • the comparison unit 221 acquires “28” as the next coefficient value (p + 1) and repeats the process.
  • the scan order in which C 02 and C 11 are switched from the initial scan order is determined as the changed scan order.
  • the setting unit 222 does not have to update the current value (c).
  • the scan order is not changed up to the seventh coefficient in the initial scan order.
  • the value “32” of the seventh coefficient is set as the current value (c).
  • the comparison unit 221 acquires “64” as the next coefficient value (p + 1) and repeats the processing.
  • the initial scan order from C 30 and C 21 and C 12 and are swapped scan order is determined as the scan order after the change.
  • the scan order is not changed up to the fourth coefficient in the initial scan order.
  • the current coefficient (c) is set to the value “32” of the fourth coefficient.
  • the comparison unit 221 acquires “64” as the next coefficient value (p + 1) and repeats the processing.
  • the initial scan order from C 11 and C 20 and C 02 and C 21 and C 12 and C 30 and are swapped scan order is determined as the scan order after the change.
  • the image coding apparatus scans the quantization matrix based on the initial scan order, and changes the scan order when the target coefficient value is smaller than the immediately preceding coefficient value. To do. As in the first embodiment, this makes it possible to increase the probability that non-zero coefficients are concentrated toward the front and the zero coefficients are concentrated toward the rear in the scan order, and the coding efficiency can be improved. .
  • the image coding apparatus can determine the scan order of the encoding matrix simultaneously with the scanning of the quantization matrix. Therefore, the processing amount can be reduced as compared with the case where the scan order is determined after all the coefficients of the quantization matrix are scanned once as in the first embodiment.
  • the process is repeated until all the coefficients of the quantization matrix are scanned.
  • a part of the coefficients constituting the quantization matrix is processed, and the rest The scan order of these coefficients may be determined as the initial scan order.
  • the coefficient of the high frequency component often has a larger coefficient value than the low frequency component, and therefore the probability that the corresponding quantized coefficient of the block to be encoded is a zero coefficient. Is expensive.
  • the scan order of the coefficients included in the block to be encoded may be determined based on the coefficient distribution of the quantization matrix only for low-frequency components that are likely to be non-zero coefficients after quantization. .
  • the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
  • the configuration of the image decoding apparatus according to the second embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 of FIG. 7 according to the first embodiment. explain.
  • the image decoding apparatus according to the second embodiment of the present invention is different from the image decoding apparatus 2000 according to the first embodiment in that a decoding control unit 201 illustrated in FIG. 13 is provided instead of the decoding control unit 2200. ing.
  • the configuration of the decoding control unit 201 is the same as that of the coding control unit 200 shown in FIG.
  • the image decoding apparatus scans the quantization matrix based on the initial scan order, and changes the scan order when the target coefficient value is smaller than the immediately preceding coefficient value. .
  • the image decoding apparatus correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to.
  • the scan order since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
  • the scan order is determined by selecting a scan order corresponding to the quantization matrix used for quantization from at least one predetermined scan order. It is characterized by that.
  • the scan order is determined by selecting a scan order corresponding to a quantization matrix used for inverse quantization from at least one predetermined scan order. It is characterized by doing.
  • the configuration of the image encoding apparatus according to the third embodiment of the present invention is substantially the same as that of the image encoding apparatus 1000 of FIG. 1 according to the first embodiment. The explanation will be centered.
  • the image coding apparatus according to the third embodiment of the present invention includes a coding control unit 300 illustrated in FIG. 14 instead of the coding control unit 1200. The point to prepare is different.
  • FIG. 14 is a block diagram showing an example of the configuration of the encoding control unit 300 according to Embodiment 3 of the present invention.
  • the encoding control unit 300 includes a quantization matrix acquisition unit 110, a scan order determination unit 320, and a variation value comparison unit 330.
  • the quantization matrix acquisition unit 110 is the same as in the first and second embodiments.
  • the scan order determination unit 320 obtains an evaluation value for each of at least one predetermined scan order, and determines the scan order having the highest evaluation value as the scan order of the coefficients included in the encoding target block. As illustrated in FIG. 14, the scan order determination unit 320 includes a comparison unit 221, a setting unit 322, a counter control unit 323, a selection unit 324, and a memory 325.
  • the comparison unit 221 is the same as that in the first embodiment.
  • the setting unit 322 selects one scan order from at least one predetermined scan order, and sets the selected scan order. At this time, the setting unit 322 selects a scan order for which an evaluation value has not yet been obtained from at least one predetermined scan order. For example, the setting unit 322 selects one scan order from among zigzag scanning, horizontal priority scanning, and vertical priority scanning.
  • the setting unit 322 sets the first coefficient value as the current value, which is the coefficient value of the quantization matrix acquired by the quantization matrix acquisition unit 110, in the set scan order.
  • the set current value is updated based on the comparison result by the comparison unit 221. Specifically, similarly to the setting unit 222 according to the second embodiment, when the setting unit 322 receives a comparison result indicating that the current value is smaller than the coefficient value, the setting unit 322 sets the coefficient value to the current value.
  • the counter control unit 323 includes a counter and controls the counter based on the comparison result by the comparison unit 221. Specifically, the counter control unit 323 increments the counter when receiving a comparison result indicating that the current value is larger than the coefficient value. Further, the counter control unit 323 is reset when all the coefficients included in the quantization matrix are scanned, that is, the count value is set to 0.
  • the count value is an example of an evaluation value corresponding to the scan order.
  • the count value increases when the current value is larger than the coefficient value. That is, when the quantization matrix is scanned in the set scan order, the count value increases when the current coefficient value is smaller than the previous coefficient value. Therefore, the count value is 0 when the coefficient values of the quantization matrix are arranged in order from the small coefficient value to the large coefficient value in the set scan order.
  • the selection unit 324 compares the count values corresponding to each scan order, and determines the scan order with the smallest count value as the scan order of the coefficients included in the encoding target block. When there are a plurality of scan orders having the smallest count value, the selection unit 324 can select an arbitrary scan order from the plurality of scan orders having the smallest count value.
  • the selection unit 324 selects a predetermined default scan order as the scan order of the coefficients included in the encoding target block.
  • the default scan order is, for example, a zigzag scan.
  • the default scan order may be changed according to the encoding target block. Specifically, when the encoding target block is a progressive image, zigzag scanning is selected as the default scanning order, and when it is a field scanning image, vertical priority scanning is selected as the default scanning order. Good.
  • the memory 325 is a memory for holding at least one predetermined scan order.
  • the memory 325 may hold count values corresponding to the scan order.
  • the fluctuation value comparison unit 330 calculates the fluctuation value of the quantization matrix acquired by the quantization matrix acquisition unit 110. Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value with a predetermined threshold value, and outputs the comparison result to the selection unit 324.
  • the fluctuation value is a value indicating the degree of variation of the coefficient of the quantization matrix.
  • the variation value is a difference between the maximum value and the minimum value of the coefficients constituting the quantization matrix.
  • the variation value may be a variance value of coefficients constituting the quantization matrix.
  • the counter control unit 323 may include a counter corresponding to each of at least one scan order. In this case, the counter need not be reset when determining the scan order of the coefficients included in the encoding target block. In addition, since the memory 325 does not have to hold the count values corresponding to the scan order, the memory area can be used effectively.
  • FIG. 15 is a flowchart showing an example of a scan order determination method according to the third embodiment of the present invention.
  • the fluctuation value comparison unit 330 calculates the fluctuation value of the quantization matrix acquired by the quantization matrix acquisition unit 110 (S301). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value with a predetermined threshold value (S302).
  • the counter control unit 323 resets the counter (S303). That is, the counter control unit 323 sets the count value to 0.
  • the setting unit 322 selects one scan order from at least one scan order held in the memory 325, and sets the selected scan order (S304).
  • the setting unit 322 acquires the coefficient value (p) of the first quantization matrix in the set scan order and sets it as the current value (c) (S305).
  • the comparison unit 221 acquires the coefficient value (p + 1) of the quantization matrix in the set scan order (S306). Then, the comparing unit 221 compares the set current value (c) with the acquired coefficient value (p + 1) (S307).
  • the counter control unit 323 increments the counter and increments the count value by 1 (S308).
  • the setting unit 322 sets the coefficient value (p + 1) to the current value (c), so that the current value (c ) Is updated (S309).
  • the setting unit 322 determines whether count values have been acquired for all of at least one scan order held in the memory 325 ( S311). If there is a scan order for which the count value has not been acquired (No in S311), the counter is reset and the above processing (S303 to S310) is repeated.
  • the selection unit 324 selects the scan order corresponding to the minimum count value as the scan order of the coefficients included in the encoding target block. (S312).
  • the smaller the count value the more the scan order that is set is the scan order in which the coefficient is scanned in the order of the smaller coefficient value. That is, when the encoding target block is scanned in the scan order with a small count value, it is possible to increase the probability that the non-zero coefficients are concentrated in the front and the zero coefficients are concentrated in the rear in the scan order.
  • the selection unit 324 selects the default scan order as the scan order of the coefficients included in the encoding target block (S313).
  • the default scan order is, for example, the scan order when the quantization matrix is not used. Specifically, zigzag scanning or the like is selected.
  • the coefficients constituting the quantization matrix indicate that the variation is small. Therefore, even if the scan order is determined according to the distribution of the coefficients of the quantization matrix, the effect of reducing the encoding efficiency due to the difference in the scan order cannot be expected. For this reason, when the variation value is smaller than the threshold value, it is possible to reduce the processing amount required for the scan order determination process by selecting the default scan order.
  • FIG. 16 is a diagram showing an example of determining the scan order according to Embodiment 3 of the present invention.
  • the fluctuation value comparison unit 330 calculates the difference between the maximum value and the minimum value of the coefficients constituting the quantization matrix as the fluctuation value. Further, it is assumed that the memory 325 holds three scan orders: zigzag scan, horizontal priority scan, and vertical priority scan.
  • the fluctuation value comparison unit 330 calculates the difference between the maximum value “18” and the minimum value “14” of the coefficients constituting the quantization matrix as a fluctuation value (S301). ). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value “4” with a threshold value (S302). If the threshold is “20”, for example, “variation value“ 4 ” ⁇ threshold“ 20 ”” (No in S302), the selection unit 324 sets the default scan order to the encoding target block. The scan order of the included coefficients is selected (S313).
  • the fluctuation value comparison unit 330 calculates the difference between the maximum value “42” and the minimum value “6” of the coefficients constituting the quantization matrix as a fluctuation value (S301). ). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value “36” with the threshold value “20” (S302). Since “variation value“ 36 ”> threshold value“ 20 ”” (Yes in S302), the counter control unit 323 resets the counter (S303).
  • the setting unit 322 sets, for example, zigzag scanning (S304).
  • the setting unit 322 acquires “6” that is the coefficient value (p) of the first quantization matrix in the set scan order, and sets it as the current value (c) (S305).
  • the comparison unit 221 acquires “13” as the next coefficient value (p + 1) (S306), and compares the current value (c) with the coefficient value (p + 1) (S307).
  • the counter is not incremented until the fourth coefficient value “20” in the zigzag scan.
  • the current value (c) is set to “20”.
  • the counter is not incremented until the last coefficient value “42” in the zigzag scan, so the count value finally becomes “1”. That is, the count value for the zigzag scan is “1”. This count value is held in the memory 325, for example.
  • the setting unit 322 sets, for example, a horizontal direction priority scan (S304).
  • the counter is not incremented up to the fourth coefficient value “28”.
  • “28” is set in the current value (c).
  • the counter is incremented until the seventh coefficient value is processed.
  • “28” remains set in the current value (c), and the count value is “3”.
  • the count value becomes “6” when the last coefficient value “42” is processed in the horizontal priority scan. That is, the count value for the horizontal direction priority scan is “6”.
  • the count value for the vertical direction priority scan becomes “6” by proceeding along the flowchart shown in FIG.
  • the selection unit 324 selects the scan order corresponding to the minimum count value (S312).
  • the count value of the zigzag scan is “1”
  • the count value of the horizontal direction priority scan is “6”
  • the count value of the vertical direction priority scan is “6”.
  • the zigzag scan is determined as the scan order of the coefficients included in the encoding target block.
  • the selection unit 324 determines the vertical direction priority scan as the scan order of the coefficients included in the encoding target block.
  • the image encoding device by selecting a scan order corresponding to the quantization matrix used for quantization from at least one predetermined scan order, Determine the scan order.
  • FIG. 15 an example is shown in which processing is performed until count values are acquired for all scan orders.
  • the scan order corresponding to the count value may be determined as the scan order of the coefficients included in the encoding target block.
  • the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
  • the processing is repeated until all the coefficients of the quantization matrix are scanned has been described.
  • the processing is performed on some of the coefficients constituting the quantization matrix, and the rest The scan order of these coefficients may be determined as the initial scan order.
  • the coefficient of the high frequency component often has a larger coefficient value than the low frequency component, and therefore the probability that the corresponding quantized coefficient of the block to be encoded is a zero coefficient. Is expensive.
  • the scan order of the coefficients included in the block to be encoded may be determined based on the coefficient distribution of the quantization matrix only for low-frequency components that are likely to be non-zero coefficients after quantization. .
  • the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
  • the image decoding apparatus according to Embodiment 3 of the present invention has substantially the same configuration as the image decoding apparatus 2000 of FIG. 7 according to Embodiment 1, the configuration of the image decoding apparatus according to Embodiment 1 is the same. Will be omitted, and different points will be mainly described.
  • the image decoding apparatus according to Embodiment 3 of the present invention is different from the image decoding apparatus 2000 according to Embodiment 1 in that a decoding control unit 301 shown in FIG. 17 is provided instead of the decoding control unit 2200. ing.
  • the configuration of the decoding control unit 301 is the same as that of the coding control unit 300 illustrated in FIG. 14, and thus description thereof is omitted below.
  • the image decoding apparatus selects a scan order corresponding to a quantization matrix used for inverse quantization from at least one predetermined scan order. Determine the order.
  • the image decoding apparatus correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to.
  • the scan order since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
  • the image encoding device, the image decoding device, the image encoding method, and the image decoding method according to the present invention have been described based on the embodiments.
  • the present invention is limited to the embodiments described above and below. It is not a thing. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the scan order of the coefficients included in the block to be encoded is determined based on the quantization matrix, but other quantization control parameters may be used.
  • Other quantization control parameters include, for example, a quantization offset, a quantization parameter, and a quantization matrix index.
  • the scan order of the coefficients included in the encoding target block may be determined based on the quantization width calculated based on the quantization control parameter. Specifically, the scan order of the coefficients included in the encoding target block may be determined based on the quantization width derived from the quantization matrix and the quantization offset. Alternatively, the scan order may be determined based on the coefficient value (quantization value) of the encoding target block after quantization.
  • a quantization matrix index is associated with each quantization matrix.
  • the quantization matrix index is an identifier indicating which quantization matrix is used for each block.
  • the scan order based on the quantization matrix is derived in advance, and the derived scan order is stored in a memory or the like in association with the quantization matrix index.
  • the scan order can be acquired by referring to the quantization matrix index for each block.
  • the encoding target block (decoding target block) for determining the scan order may be hierarchized as shown in FIG.
  • FIG. 18 is an explanatory diagram for explaining a hierarchized processing unit (multi-hierarchical block structure).
  • the encoding processing unit 1100 encodes a moving image for each processing unit, and the decoding processing unit 2100 decodes the encoded stream for each processing unit.
  • This processing unit is divided into a plurality of small processing units, and the small processing unit is further hierarchized so as to be further divided into a plurality of smaller processing units. Note that the smaller the processing unit is, the deeper the hierarchy in which the processing unit is and the lower the value, and the larger the value indicating the hierarchy. Conversely, the larger the processing unit is, the shallower the hierarchy in which the processing unit is, the higher the hierarchy, and the smaller the value indicating the hierarchy.
  • the processing unit includes a coding unit (CU), a prediction unit (PU), and a transform unit (TU).
  • a CU is a block composed of a maximum of 128 ⁇ 128 pixels, and is a unit corresponding to a conventional macroblock.
  • PU is a basic unit of inter-screen prediction.
  • the TU is a basic unit of orthogonal transformation, and the size of the TU is the same as the PU or a size smaller than the PU.
  • the CU is divided into, for example, four sub CUs, and one of the sub CUs includes a PU and a TU having the same size as the sub CU (in this case, the PU and the TU overlap each other).
  • the PU is further divided into four sub-PUs
  • the TU is further divided into four sub-TUs.
  • the picture is divided into slices.
  • a slice is a sequence of maximum coding units.
  • the position of the maximum coding unit is indicated by the maximum coding unit address lcuAddr.
  • Each coding unit including the maximum coding unit is divided into four coding units. As a result, quadtree partitioning with the size of the coding unit is configured. The position of the coding unit is indicated by a coding unit index cuIdx starting from the sample (pixel or coefficient) at the upper left corner of the maximum coding unit.
  • the coding unit is treated as a prediction unit. Similar to the coding unit, the position of the prediction unit is indicated by a prediction unit index puIdx starting from the sample at the upper left end of the maximum coding unit.
  • the prediction unit may include a plurality of partitions (prediction unit partition or sub PU).
  • the prediction unit partition is indicated by a prediction unit partition index puPartIdx starting from the upper left sample of the prediction unit.
  • the prediction unit may include a plurality of conversion units. Similar to the encoding unit, the conversion unit may be divided into four small size conversion units (sub-conversion units). This allows quadtree partitioning of the residual signal. The position of the conversion unit is indicated by a conversion unit index tuIdx starting from the upper left sample of the prediction unit.
  • each processing unit is as follows.
  • CTB (coding tree block): A basic unit for specifying quadtree partitioning of a square area.
  • CTB has various sizes of squares.
  • LCTB largest coding tree block: the largest size CTB allowed in a slice.
  • a slice is composed of a plurality of LCTBs that do not overlap.
  • SCTB (smallest coding tree block): CTB of the smallest size allowed in a slice. Splitting SCTB into smaller CTBs is not allowed.
  • PU prediction unit
  • the size of the PU is the same as the size of the CU that is not allowed to be divided.
  • the CU is allowed to be divided into four square areas, whereas in the PU, the PU can be divided into a plurality of partitions having an arbitrary shape.
  • TU transform unit
  • LCU large coding unit
  • SCU Smallest Coding Unit: Same as the smallest CTB.
  • a quantization matrix is associated with each hierarchical processing unit (block), and the scan order of the coefficients included in the target block may be determined based on this quantization matrix.
  • the embodiments described above and below will be configured using hardware and / or software, but the configuration using hardware can also be configured using software, and the configuration using software is hardware. It can also be configured using hardware.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 19 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • the content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going through the base stations ex106 to ex110 which are fixed wireless stations.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) method, a CDMA (Code Division Multiple Access) method, a W-CDMA (Wideband-Code Division MultipleL), or a W-CDMA (Wideband-Code Division MultipleT method). It may be a system, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution content that is shot by the user using the camera ex113 (for example, music live video) is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device and transmit to the streaming server ex103.
  • the streaming server ex103 streams the content data transmitted to the requested client.
  • the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, a game machine ex115, and the like that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the encoded processing of the captured data may be performed by the camera ex113, the streaming server ex103 that performs the data transmission processing, or may be performed in a shared manner.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in a shared manner.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • encoding / decoding processes are generally performed by the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording media (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding / decoding processing is performed using the software May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and even a user who does not have special rights or facilities can realize personal broadcasting.
  • the digital broadcasting system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcasting station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, encodes a video signal on the recording medium ex215, and in some cases multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus shown in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 21 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture coding method described in the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / separating unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information.
  • the audio signal processing unit ex304 and the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention).
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that controls each unit in an integrated manner, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside.
  • these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization.
  • the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or writes it to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and encodes an audio signal with the audio signal processing unit ex304 based on the control of the control unit ex310, and converts the video signal with the video signal processing unit ex305. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320 and ex321 so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration that can perform the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218.
  • the reader / recorder ex218 may be shared with each other.
  • FIG. 22 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to the optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disc to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary. To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot, but it may be configured to perform higher-density recording using near-field light.
  • FIG. 23 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording the user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner circumference or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may include a configuration in which a GPS receiving unit is added to the configuration illustrated in FIG. 21, and the same may be applied to the computer ex111, the mobile phone ex114, and the like.
  • FIG. 24A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of taking video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio,
  • a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio
  • an audio input unit ex356 such as a microphone for inputting audio
  • the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot portion ex364 is provided.
  • the cellular phone ex114 has a power supply circuit ex361, an operation input control unit ex362, and a video signal processing unit ex355 for a main control unit ex360 that comprehensively controls each part of the main body including the display unit ex358 and the operation key unit ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the mobile phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. This is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 amplifies the received data received through the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing in the modulation / demodulation unit ex352, and performs voice signal processing unit After converting to an analog audio signal at ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in each of the above embodiments. Encode (that is, function as an image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and sends the encoded audio data to the multiplexing / demultiplexing unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted through the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio output unit ex357 outputs the audio.
  • the terminal such as the mobile phone ex114 is referred to as a transmitting terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmitting terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted.
  • data in which character data or the like related to video is multiplexed It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 25 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 26 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 27 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 27 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 28 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 28, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 29 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data as shown in FIG. 30, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • the attribute information for each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 32 shows the steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 each of the above embodiments.
  • Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 33 shows the configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 starts up to an operable state by supplying power to each unit when the power supply is in an on state.
  • the LSI ex500 uses the AV I / O ex509 to perform the microphone ex117 and the camera ex113 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the The input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 has been described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 34 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that conforms to the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in the fifth embodiment may be used.
  • the identification information is not limited to that described in the fifth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to this look-up table.
  • FIG. 35 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives a signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency.
  • the drive frequency is set to be low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSI ex500 or the apparatus including the LSI ex500 is set high.
  • the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc.
  • the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is enough processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is enough processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 37A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents unique to the present invention that do not correspond to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for determination of the scan order, and other entropy coding, inverse quantization, deblocking, and the like.
  • -It is conceivable to share the decoding processing unit for any of the filtering, motion compensation, or all processing.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 37B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content specific to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the present invention has an effect that the encoding efficiency can be sufficiently improved, and can be used for various purposes such as storage, transmission, and communication.
  • the present invention can be used for high-resolution information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, mobile phones, digital cameras, and digital video cameras, and has high utility value.

Abstract

An image encoding method capable of further improving encoding efficiency is provided. This image encoding method is an image encoding method that encodes image data and whereby target encoding blocks for the image data are quantized (S10) using a quantization matrix, a scanning order for coefficients included in the quantized target encoding blocks is determined (S20) on the basis of the quantization matrix, and the quantized target encoding blocks are encoded (S30) in the determined scanning order.

Description

画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置Image encoding method, image decoding method, image encoding device, and image decoding device
 本発明は、画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置に関し、特に、量子化マトリクスを用いた量子化又は逆量子化を行う画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置に関する。 The present invention relates to an image encoding method, an image decoding method, an image encoding device, and an image decoding device, and in particular, an image encoding method, an image decoding method, and an image code that perform quantization or inverse quantization using a quantization matrix. The present invention relates to an encoding device and an image decoding device.
 H.26xと称されるITU-T規格、及び、MPEG-xと称されるISO/IEC規格などに代表される従来の画像符号化方式においては、符号化対象ピクチャを予め定められた単位に分割し、その分割単位で符号化を行う。例えば、H.264/MPEG-4 AVC規格(例えば、非特許文献1参照)においては、符号化対象ピクチャを、マクロブロックと呼ばれる水平16画素、垂直16画素の単位で符号化する。 H. In a conventional image coding system represented by the ITU-T standard called 26x and the ISO / IEC standard called MPEG-x, the picture to be coded is divided into predetermined units. Encoding is performed in the division unit. For example, H.M. In the H.264 / MPEG-4 AVC standard (see, for example, Non-Patent Document 1), an encoding target picture is encoded in units of 16 horizontal pixels and 16 vertical pixels called macroblocks.
 具体的には、H.264/MPEG-4 AVC規格では、マクロブロック毎に、周波数変換、量子化、及び、エントロピー符号化を行うことで、符号化対象ピクチャを符号化する。このとき、エントロピー符号化では、量子化後のマクロブロックの係数値(画素値)を予め定められたスキャン順で符号化する。また、量子化では、量子化マトリクスを用いて高周波成分と低周波成分とで量子化ステップ(量子化幅)を変更することで、主観的な画質を向上させている。 Specifically, H. In the H.264 / MPEG-4 AVC standard, the encoding target picture is encoded by performing frequency conversion, quantization, and entropy encoding for each macroblock. At this time, in entropy coding, the coefficient values (pixel values) of the quantized macroblock are coded in a predetermined scan order. In the quantization, subjective image quality is improved by changing a quantization step (quantization width) between a high frequency component and a low frequency component using a quantization matrix.
 しかしながら、上記従来技術においては、符号化効率を十分に向上させることができないという課題がある。 However, the conventional technique has a problem that the encoding efficiency cannot be sufficiently improved.
 符号化効率を向上させるためには、量子化後のマクロブロックを所定のスキャン順で符号化する際に、マクロブロックに含まれる非ゼロ係数とゼロ係数において、ゼロ係数が最後まで連続する位置の情報をより早く符号化することが好ましい。しかしながら、上記従来技術では、量子化後のマクロブロックの係数値を予め定められたスキャン順で符号化する。このため、量子化後のマクロブロックを最適な順序で符号化することができない場合が存在し、符号化効率を十分に向上させることはできない。 In order to improve the coding efficiency, when the quantized macroblock is encoded in a predetermined scan order, the nonzero coefficient and the zero coefficient included in the macroblock are located at positions where the zero coefficient continues to the end. It is preferable to encode the information earlier. However, in the above prior art, the coefficient values of the quantized macroblock are encoded in a predetermined scan order. For this reason, there are cases where the quantized macroblocks cannot be encoded in an optimal order, and the encoding efficiency cannot be sufficiently improved.
 そこで、本発明は、上記従来の課題を解決するためになされたものであり、符号化効率を十分に向上させることができる画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described conventional problems, and provides an image encoding method, an image decoding method, an image encoding device, and an image decoding device that can sufficiently improve encoding efficiency. The purpose is to provide.
 上記課題を解決するため、本発明の一態様に係る画像符号化方法は、画像データを符号化する画像符号化方法であって、量子化マトリクスを用いて前記画像データの符号化対象ブロックを量子化し、前記量子化マトリクスに基づいて、量子化された符号化対象ブロックに含まれる係数のスキャン順を決定し、決定したスキャン順で、前記量子化された符号化対象ブロックを符号化する。 In order to solve the above problem, an image encoding method according to an aspect of the present invention is an image encoding method for encoding image data, and a quantization target block of the image data is quantized using a quantization matrix. Based on the quantization matrix, the scan order of the coefficients included in the quantized encoding target block is determined, and the quantized encoding target block is encoded in the determined scan order.
 これにより、量子化マトリクスの係数値と、量子化後の符号化対象ブロックの係数がゼロ係数及び非ゼロ係数のいずれであるかとは依存関係を有するので、量子化マトリクスに基づいて適応的にスキャン順を変更することで、符号化効率をさらに向上させることができる。 As a result, the coefficient value of the quantization matrix and whether the coefficient of the block to be encoded after quantization is a zero coefficient or a non-zero coefficient has a dependency relationship, so adaptive scanning is performed based on the quantization matrix. By changing the order, the encoding efficiency can be further improved.
 また、前記スキャン順の決定では、予め定められた少なくとも1つのスキャン順から、前記符号化対象ブロックの量子化に用いた量子化マトリクスに対応するスキャン順を選択してもよい。 In the determination of the scan order, a scan order corresponding to a quantization matrix used for quantization of the encoding target block may be selected from at least one predetermined scan order.
 これにより、予め定められた少なくとも1つのスキャン順から、量子化に用いた量子化マトリクスに基づいてスキャン順を適応的に決定するので、符号化効率をさらに向上させることができる。さらに、符号化対象ブロック毎にスキャン順を導出する処理を省略することができるので、処理量を削減することができる。 Thereby, since the scan order is adaptively determined based on the quantization matrix used for quantization from at least one predetermined scan order, the encoding efficiency can be further improved. Furthermore, since the process of deriving the scan order for each encoding target block can be omitted, the processing amount can be reduced.
 また、前記スキャン順の決定では、前記量子化マトリクスに含まれる係数の値が小さい係数位置から値が大きい係数位置の順、すなわち、細かく量子化される位置から粗く量子化される位置の順でスキャンする順序を、前記符号化対象ブロックに含まれる係数のスキャン順として決定してもよい。 Further, in the determination of the scan order, the coefficient values included in the quantization matrix are ordered from the coefficient position where the coefficient value is small to the coefficient position where the value is large, that is, from the position where fine quantization is performed to the position where coarse quantization is performed. The scanning order may be determined as the scanning order of the coefficients included in the encoding target block.
 これにより、量子化マトリクスの値の小さい順に符号化対象ブロックをスキャンするので、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができる。したがって、符号化効率を十分に向上させることができる。 Thereby, since the encoding target block is scanned in the order from the smallest value of the quantization matrix, it is possible to increase the probability that the non-zero coefficients are concentrated in the scanning order and the zero coefficients are concentrated in the backward order. Therefore, the encoding efficiency can be sufficiently improved.
 また、前記スキャン順の決定では、さらに、決定したスキャン順をメモリに格納してもよい。 In the determination of the scan order, the determined scan order may be stored in the memory.
 これにより、導出したスキャン順をメモリに格納することで、以降の処理では、スキャン順の導出処理を省略することができるので、処理量を削減することができる。 Thus, by storing the derived scan order in the memory, it is possible to omit the scan order derivation process in the subsequent processes, so that the processing amount can be reduced.
 また、前記スキャン順の決定では、前記量子化マトリクスに基づいて算出される量子化幅に基づいて、前記符号化対象ブロックに含まれる係数のスキャン順を決定してもよい。 In the determination of the scan order, the scan order of the coefficients included in the coding target block may be determined based on the quantization width calculated based on the quantization matrix.
 これにより、量子化幅を用いることで、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率をさらに高めることができる。したがって、符号化効率をさらに向上させることができる。 Thus, by using the quantization width, it is possible to further increase the probability that non-zero coefficients are concentrated on the front side in the scan order and zero coefficients are concentrated on the back side. Therefore, the encoding efficiency can be further improved.
 また、本発明の一態様に係る画像復号方法は、符号化ストリームを復号する画像復号方法であって、量子化マトリクスに基づいて、前記符号化ストリームの復号対象ブロックに含まれる係数のスキャン順を決定し、決定したスキャン順で前記復号対象ブロックを復号し、前記量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する。 An image decoding method according to an aspect of the present invention is an image decoding method for decoding an encoded stream, wherein the scan order of coefficients included in a decoding target block of the encoded stream is determined based on a quantization matrix. The decoding target block is decoded in the determined scan order, and the decoded decoding target block is inversely quantized using the quantization matrix.
 これにより、量子化マトリクスに基づいて決定されたスキャン順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。符号化の際には、量子化マトリクスの値によって符号化対象ブロックの係数位置毎に、非ゼロ係数及びゼロ係数となる確率は変わるので、スキャン順を量子化マトリクスに基づいて決定することで、符号化効率をさらに向上させることができる。 Thus, the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix can be correctly decoded. At the time of encoding, since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
 また、前記スキャン順の決定では、予め定められた少なくとも1つのスキャン順から、前記復号対象ブロックの量子化に用いる量子化マトリクスに対応するスキャン順を選択してもよい。 In the determination of the scan order, a scan order corresponding to a quantization matrix used for quantization of the decoding target block may be selected from at least one predetermined scan order.
 これにより、予め定められた少なくとも1つのスキャン順から、量子化に用いた量子化マトリクスに基づいてスキャン順を適応的に決定するので、符号化効率をさらに向上させることができる。さらに、復号対象ブロック毎にスキャン順を導出する処理を省略することができるので、処理量を削減することができる。 Thereby, since the scan order is adaptively determined based on the quantization matrix used for quantization from at least one predetermined scan order, the encoding efficiency can be further improved. Furthermore, since the process of deriving the scan order for each decoding target block can be omitted, the processing amount can be reduced.
 また、前記スキャン順の決定では、前記量子化マトリクスを構成する係数の値が小さい係数位置から値が大きい係数位置の順、すなわち、細かく量子化される位置から粗く量子化される位置の順でスキャンする順序を、前記復号対象ブロックに含まれる係数のスキャン順として決定してもよい。 Further, in the determination of the scan order, the coefficient values constituting the quantization matrix are ordered from the coefficient position having the smallest value to the coefficient value having the largest value, that is, in the order of the coarsely quantized position to the coarsely quantized position. The scanning order may be determined as the scanning order of the coefficients included in the decoding target block.
 これにより、量子化マトリクスの値の小さい順に復号対象ブロックをスキャンするので、量子化マトリクスの値の小さい順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。符号化の際には、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができるので、符号化効率を十分に向上させることができる。 As a result, since the decoding target block is scanned in the order of the smaller value of the quantization matrix, the encoded stream generated by encoding the encoding target block in the order of the smaller value of the quantization matrix can be correctly decoded. Can do. At the time of encoding, it is possible to increase the probability that non-zero coefficients are concentrated on the front side in the scanning order and zero coefficients are concentrated on the back side, so that the encoding efficiency can be sufficiently improved.
 また、前記スキャン順の決定では、さらに、決定したスキャン順をメモリに格納してもよい。 In the determination of the scan order, the determined scan order may be stored in the memory.
 これにより、導出したスキャン順をメモリに格納することで、以降の処理では、スキャン順の導出処理を省略することができるので、処理量を削減することができる。 Thus, by storing the derived scan order in the memory, it is possible to omit the scan order derivation process in the subsequent processes, so that the processing amount can be reduced.
 また、前記スキャン順の決定では、前記量子化マトリクスに基づいて算出される量子化幅に基づいて、前記復号対象ブロックに含まれる係数のスキャン順を決定してもよい。 In the determination of the scan order, the scan order of the coefficients included in the decoding target block may be determined based on the quantization width calculated based on the quantization matrix.
 これにより、量子化幅を用いることで、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率をさらに高めることができるので、符号化効率をさらに向上させることができる。 As a result, by using the quantization width, it is possible to further increase the probability that non-zero coefficients are concentrated toward the front and the zero coefficients are concentrated toward the rear in the scan order, thereby further improving the encoding efficiency. be able to.
 なお、本発明は、画像符号化方法及び画像復号方法として実現できるだけではなく、当該画像符号化方法及び画像復号方法に含まれるステップを行う処理部を備える装置として実現することもできる。また、これらステップをコンピュータに実行させるプログラムとして実現してもよい。さらに、当該プログラムを記録したコンピュータ読み取り可能なCD-ROM(Compact Disc-Read Only Memory)などの記録媒体、並びに、当該プログラムを示す情報、データ又は信号として実現してもよい。そして、それらプログラム、情報、データ及び信号は、インターネットなどの通信ネットワークを介して配信してもよい。 Note that the present invention can be realized not only as an image encoding method and an image decoding method, but also as an apparatus including a processing unit that performs steps included in the image encoding method and the image decoding method. Moreover, you may implement | achieve as a program which makes a computer perform these steps. Furthermore, it may be realized as a recording medium such as a computer-readable CD-ROM (Compact Disc-Read Only Memory) in which the program is recorded, and information, data, or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.
 また、上記の各画像符号化方法及び画像復号方法に含まれるステップを行う処理部の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されていてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM及びRAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。 A part or all of the processing units that perform the steps included in each of the image encoding methods and image decoding methods described above may be configured by one system LSI (Large Scale Integration). . The system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically includes a microprocessor, ROM, RAM (Random Access Memory), and the like. Computer system.
 本発明によれば、符号化効率を十分に向上させることができる。 According to the present invention, the encoding efficiency can be sufficiently improved.
図1は、本発明の実施の形態1に係る画像符号化装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a configuration of an image encoding device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る符号化制御部の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る量子化マトリクス、初期スキャン順、及び、変換係数の一例を示す図である。FIG. 3 is a diagram showing an example of the quantization matrix, the initial scan order, and the transform coefficient according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る変更後のスキャン順の一例を示す図である。FIG. 4 is a diagram showing an example of the changed scan order according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係る画像符号化装置の動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the operation of the image coding apparatus according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係るスキャン順の決定方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a scan order determination method according to the first embodiment of the present invention. 図7は、本発明の実施の形態1に係る画像復号装置の構成の一例を示すブロック図である。FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る復号制御部の構成の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1に係る画像復号装置の動作の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the operation of the image decoding apparatus according to Embodiment 1 of the present invention. 図10は、本発明の実施の形態2に係る符号化制御部の構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 2 of the present invention. 図11は、本発明の実施の形態2に係るスキャン順の決定方法の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a scan order determination method according to the second embodiment of the present invention. 図12は、本発明の実施の形態2に係る変更後のスキャン順の一例を示す図である。FIG. 12 is a diagram showing an example of the changed scan order according to the second embodiment of the present invention. 図13は、本発明の実施の形態2に係る復号制御部の構成の一例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of the decoding control unit according to Embodiment 2 of the present invention. 図14は、本発明の実施の形態3に係る符号化制御部の構成の一例を示すブロック図である。FIG. 14 is a block diagram showing an example of the configuration of the coding control unit according to Embodiment 3 of the present invention. 図15は、本発明の実施の形態3に係るスキャン順の決定方法の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of a scan order determination method according to the third embodiment of the present invention. 図16は、本発明の実施の形態3に係るスキャン順の決定の一例を示す図である。FIG. 16 is a diagram showing an example of determining the scan order according to Embodiment 3 of the present invention. 図17は、本発明の実施の形態3に係る復号制御部の構成の一例を示すブロック図である。FIG. 17 is a block diagram showing an example of a configuration of a decoding control unit according to Embodiment 3 of the present invention. 図18は、本発明の実施の形態に係る多階層ブロック構造を説明するための説明図である。FIG. 18 is an explanatory diagram for explaining a multi-layer block structure according to the embodiment of the present invention. 図19は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 19 is an overall configuration diagram of a content supply system that realizes a content distribution service. 図20は、デジタル放送用システムの全体構成図である。FIG. 20 is an overall configuration diagram of a digital broadcasting system. 図21は、テレビの構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration example of a television. 図22は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 22 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図23は、光ディスクである記録メディアの構造例を示す図である。FIG. 23 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図24Aは、携帯電話の一例を示す図である。FIG. 24A is a diagram illustrating an example of a mobile phone. 図24Bは、携帯電話の構成例を示すブロック図である。FIG. 24B is a block diagram illustrating a configuration example of a mobile phone. 図25は、多重化データの構成を示す図である。FIG. 25 is a diagram showing a structure of multiplexed data. 図26は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 26 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図27は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 27 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図28は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 28 is a diagram illustrating the structure of TS packets and source packets in multiplexed data. 図29は、PMTのデータ構成を示す図である。FIG. 29 is a diagram illustrating a data structure of the PMT. 図30は、多重化データ情報の内部構成を示す図である。FIG. 30 is a diagram showing an internal configuration of multiplexed data information. 図31は、ストリーム属性情報の内部構成を示す図である。FIG. 31 shows the internal structure of stream attribute information. 図32は、映像データを識別するステップを示す図である。FIG. 32 is a diagram illustrating steps for identifying video data. 図33は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 33 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図34は、駆動周波数を切り替える構成を示す図である。FIG. 34 is a diagram illustrating a configuration for switching the driving frequency. 図35は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 35 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図36は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 36 is a diagram illustrating an example of a look-up table in which video data standards are associated with drive frequencies. 図37Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 37A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図37Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 37B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 以下、本発明の実施の形態における画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, an image encoding method, an image decoding method, an image encoding device, and an image decoding device according to embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 (実施の形態1)
 本発明の実施の形態1に係る画像符号化方法は、画像データを符号化する画像符号化方法であって、量子化マトリクスを用いて画像データの符号化対象ブロックを量子化し、量子化マトリクスに基づいて、量子化された符号化対象ブロックに含まれる係数のスキャン順を決定し、決定したスキャン順で、量子化された符号化対象ブロックを符号化することを特徴とする。
(Embodiment 1)
An image encoding method according to Embodiment 1 of the present invention is an image encoding method for encoding image data, wherein a block to be encoded of image data is quantized using a quantization matrix and is converted into a quantization matrix. Based on this, the scan order of the coefficients included in the quantized encoding target block is determined, and the quantized encoding target block is encoded in the determined scan order.
 また、本発明の実施の形態1に係る画像復号方法は、符号化ストリームを復号する画像復号方法であって、量子化マトリクスに基づいて、符号化ストリームの復号対象ブロックに含まれる係数のスキャン順を決定し、決定したスキャン順で復号対象ブロックを復号し、量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化することを特徴とする。 The image decoding method according to Embodiment 1 of the present invention is an image decoding method for decoding an encoded stream, and based on a quantization matrix, the scan order of coefficients included in a decoding target block of the encoded stream The decoding target block is decoded in the determined scan order, and the decoded decoding target block is inversely quantized using a quantization matrix.
 以下では、まず、本発明の実施の形態1に係る画像符号化方法を実行する画像符号化装置の構成の一例について説明する。 Hereinafter, first, an example of the configuration of an image encoding device that executes the image encoding method according to Embodiment 1 of the present invention will be described.
 図1は、本発明の実施の形態1に係る画像符号化装置1000の構成の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of the configuration of an image coding apparatus 1000 according to Embodiment 1 of the present invention.
 画像符号化装置1000は、符号化処理部1100と、符号化制御部1200とを備える。 The image encoding apparatus 1000 includes an encoding processing unit 1100 and an encoding control unit 1200.
 符号化処理部1100は、動画像をブロック毎に符号化することによって符号化ストリームを生成する。このような符号化処理部1100は、減算器1101と、直交変換部1102と、量子化部1103と、エントロピー符号化部1104と、逆量子化部1105と、逆直交変換部1106と、加算器1107と、デブロッキングフィルタ1108と、メモリ1109と、面内予測部1110と、動き補償部1111と、動き検出部1112と、スイッチ1113とを備える。 The encoding processing unit 1100 generates an encoded stream by encoding a moving image for each block. Such an encoding processing unit 1100 includes a subtractor 1101, an orthogonal transform unit 1102, a quantization unit 1103, an entropy encoding unit 1104, an inverse quantization unit 1105, an inverse orthogonal transform unit 1106, and an adder. 1107, a deblocking filter 1108, a memory 1109, an in-plane prediction unit 1110, a motion compensation unit 1111, a motion detection unit 1112, and a switch 1113.
 減算器1101は、動画像を取得するとともに、スイッチ1113から予測画像を取得する。そして、減算器1101は、その動画像に含まれる符号化対象ブロックから予測画像を減算することによって差分画像を生成する。 The subtractor 1101 acquires a moving image and acquires a predicted image from the switch 1113. Then, the subtracter 1101 generates a difference image by subtracting the predicted image from the encoding target block included in the moving image.
 直交変換部1102は、減算器1101によって生成された差分画像に対して、例えば離散コサイン変換などの直交変換を行うことによって、その差分画像を複数の周波数係数からなる係数ブロックに変換する。量子化部1103は、その係数ブロックに含まれる各周波数係数を量子化することによって、量子化された係数ブロックを生成する。 The orthogonal transform unit 1102 performs orthogonal transform such as discrete cosine transform on the difference image generated by the subtractor 1101, thereby transforming the difference image into a coefficient block including a plurality of frequency coefficients. The quantization unit 1103 generates a quantized coefficient block by quantizing each frequency coefficient included in the coefficient block.
 エントロピー符号化部1104は、量子化部1103によって量子化された係数ブロックと、動き検出部1112によって検出された動きベクトルとをエントロピー符号化(可変長符号化)することによって符号化ストリームを生成する。 The entropy encoding unit 1104 generates an encoded stream by entropy encoding (variable length encoding) the coefficient block quantized by the quantization unit 1103 and the motion vector detected by the motion detection unit 1112. .
 逆量子化部1105は、量子化部1103によって量子化された係数ブロックを逆量子化する。逆直交変換部1106は、その逆量子化された係数ブロックに含まれる各周波数係数に対して逆離散コサイン変換などの逆直交変換を行うことによって、復号差分画像を生成する。 The inverse quantization unit 1105 performs inverse quantization on the coefficient block quantized by the quantization unit 1103. The inverse orthogonal transform unit 1106 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
 加算器1107は、スイッチ1113から予測画像を取得し、その予測画像と、逆直交変換部1106によって生成された復号差分画像とを加算することによって局所復号画像を生成する。 The adder 1107 acquires a predicted image from the switch 1113, and generates a local decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 1106.
 デブロッキングフィルタ1108は、加算器1107によって生成された局所復号画像のブロック歪みを除去し、その局所復号画像をメモリ1109に格納する。メモリ1109は、動き補償の際の参照画像として、局所復号画像を格納するためのメモリである。 The deblocking filter 1108 removes block distortion of the local decoded image generated by the adder 1107 and stores the local decoded image in the memory 1109. A memory 1109 is a memory for storing a locally decoded image as a reference image in motion compensation.
 面内予測部1110は、加算器1107によって生成された局所復号画像を用いて、符号化対象ブロックに対して面内予測を行うことによって予測画像(イントラ予測画像)を生成する。 The in-plane prediction unit 1110 generates a prediction image (intra prediction image) by performing in-plane prediction on the current block using the local decoded image generated by the adder 1107.
 動き検出部1112は、動画像に含まれる符号化対象ブロックに対して動きベクトルを検出し、その検出された動きベクトルを動き補償部1111とエントロピー符号化部1104とに出力する。 The motion detection unit 1112 detects a motion vector for the encoding target block included in the moving image, and outputs the detected motion vector to the motion compensation unit 1111 and the entropy encoding unit 1104.
 動き補償部1111は、メモリ1109に格納されている画像を参照画像として参照するとともに、動き検出部1112によって検出された動きベクトルを用いることによって、符号化対象ブロックに対して動き補償を行う。動き補償部1111は、このような動き補償を行うことで、符号化対象ブロックの予測画像(インター予測画像)を生成する。 The motion compensation unit 1111 refers to the image stored in the memory 1109 as a reference image, and performs motion compensation on the coding target block by using the motion vector detected by the motion detection unit 1112. The motion compensation unit 1111 performs such motion compensation to generate a prediction image (inter prediction image) of the encoding target block.
 スイッチ1113は、符号化対象ブロックが面内予測符号化される場合には、面内予測部1110によって生成された予測画像(イントラ予測画像)を減算器1101及び加算器1107に出力する。一方、スイッチ1113は、符号化対象ブロックが画面間予測符号化される場合には、動き補償部1111によって生成された予測画像(インター予測画像)を減算器1101及び加算器1107に出力する。 The switch 1113 outputs the prediction image (intra prediction image) generated by the intra prediction unit 1110 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to intra prediction encoding. On the other hand, the switch 1113 outputs the prediction image (inter prediction image) generated by the motion compensation unit 1111 to the subtractor 1101 and the adder 1107 when the encoding target block is subjected to inter-frame prediction encoding.
 符号化制御部1200は、符号化処理部1100を制御する。具体的には、符号化制御部1200は、符号化対象ブロックの量子化に用いた量子化マトリクスに基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定する。 The encoding control unit 1200 controls the encoding processing unit 1100. Specifically, the encoding control unit 1200 determines the scan order of the coefficients included in the encoding target block based on the quantization matrix used for the quantization of the encoding target block.
 図2は、本発明の実施の形態1に係る符号化制御部1200の構成の一例を示すブロック図である。 FIG. 2 is a block diagram showing an example of the configuration of the encoding control unit 1200 according to Embodiment 1 of the present invention.
 符号化制御部1200は、量子化マトリクス取得部110と、スキャン順決定部120とを備える。 The encoding control unit 1200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 120.
 量子化マトリクス取得部110は、符号化対象ブロックの量子化に用いる量子化マトリクスを取得する。符号化対象ブロックは、例えば、4×4、8×8、16×16、32×32、64×64、128×128画素など所定数の画素を含む矩形のブロックである。なお、符号化対象ブロックに含まれる画素数及び形状は、これに限られない。 The quantization matrix acquisition unit 110 acquires a quantization matrix used for quantization of the encoding target block. The encoding target block is a rectangular block including a predetermined number of pixels such as 4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128 pixels. The number of pixels and the shape included in the encoding target block are not limited to this.
 例えば、符号化制御部1200は、1つ以上の量子化マトリクスを保持するメモリを有し、量子化マトリクス取得部110は、当該メモリから、量子化部1103が用いた量子化マトリクスを取得する。このとき、量子化マトリクス取得部110は、量子化部1103から量子化に用いた量子化マトリクスを示すインデックス情報を受け取り、受け取ったインデックス情報に対応する量子化マトリクスをメモリから取得する。あるいは、量子化部1103が1つ以上の量子化マトリクスを保持している場合、量子化マトリクス取得部110は、量子化部1103から量子化マトリクスを取得する。 For example, the encoding control unit 1200 includes a memory that holds one or more quantization matrices, and the quantization matrix acquisition unit 110 acquires the quantization matrix used by the quantization unit 1103 from the memory. At this time, the quantization matrix acquisition unit 110 receives index information indicating the quantization matrix used for quantization from the quantization unit 1103, and acquires a quantization matrix corresponding to the received index information from the memory. Alternatively, when the quantization unit 1103 holds one or more quantization matrices, the quantization matrix acquisition unit 110 acquires the quantization matrix from the quantization unit 1103.
 スキャン順決定部120は、量子化マトリクス取得部110によって取得された量子化マトリクスに基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定する。具体的には、スキャン順決定部120は、量子化マトリクスの係数の分布に基づいて、符号化対象ブロックの係数のスキャン順(符号化順)を決定する。 The scan order determination unit 120 determines the scan order of the coefficients included in the encoding target block based on the quantization matrix acquired by the quantization matrix acquisition unit 110. Specifically, the scan order determining unit 120 determines the scan order (encoding order) of the coefficients of the encoding target block based on the coefficient distribution of the quantization matrix.
 例えば、スキャン順決定部120は、量子化マトリクス取得部110によって取得された量子化マトリクスの係数を、小さい順に並べ替え、その順序を示すスキャン順序情報を生成する。具体的には、スキャン順決定部120は、予め定められた初期スキャン順に沿って、量子化マトリクスの係数をスキャンし、値が小さい係数から順に並べる。すなわち、スキャン順決定部120は、量子化マトリクスに含まれる係数の値が小さい係数位置から大きい係数位置の順でスキャンする順序を、符号化対象ブロックに含まれる係数のスキャン順として決定する。量子化マトリクスに含まれる係数の値が小さい係数位置から大きい係数位置の順とは、符号対象ブロックの係数が細かく量子化される位置から粗く量子化される位置の順である。なお、複数の係数の値が同じ場合、これらの係数の順序は、初期スキャン順に従った順となる。 For example, the scan order determination unit 120 rearranges the coefficients of the quantization matrix acquired by the quantization matrix acquisition unit 110 in ascending order, and generates scan order information indicating the order. Specifically, the scan order determination unit 120 scans the coefficients of the quantization matrix along a predetermined initial scan order, and arranges them in order from the coefficient with the smallest value. That is, the scan order determining unit 120 determines the order of scanning in the order of coefficient positions from the coefficient position with the smallest coefficient value included in the quantization matrix to the coefficient position included in the encoding target block. The order of the coefficient position in which the value of the coefficient included in the quantization matrix is small to the large coefficient position is the order of the position where the coefficient of the coding target block is coarsely quantized from the position where the coefficient of the code target block is finely quantized. When the values of a plurality of coefficients are the same, the order of these coefficients is the order according to the initial scan order.
 図3は、本発明の実施の形態1に係る量子化マトリクス、初期スキャン順、及び、変換係数の一例を示す図である。また、図4は、本発明の実施の形態1に係る変更後のスキャン順の一例を示す図である。 FIG. 3 is a diagram showing an example of the quantization matrix, the initial scan order, and the transform coefficient according to Embodiment 1 of the present invention. FIG. 4 is a diagram showing an example of the changed scan order according to the first embodiment of the present invention.
 図3に示す例では、量子化マトリクス及び変換係数は、ともに4×4画素のブロックで構成される。変換係数は、直交変換部1102によって生成された係数ブロックであり、量子化の対象となるデータの一例である。係数ブロックの左上の係数は、符号化対象ブロックの低周波成分を示し、右上の係数は、符号化対象ブロックの高周波成分を示す。 In the example shown in FIG. 3, the quantization matrix and the transform coefficient are both composed of 4 × 4 pixel blocks. The transform coefficient is a coefficient block generated by the orthogonal transform unit 1102 and is an example of data to be quantized. The upper left coefficient of the coefficient block indicates the low frequency component of the encoding target block, and the upper right coefficient indicates the high frequency component of the encoding target block.
 初期スキャン順は、量子化された変換係数を符号化する際の順序を示す。図3に示す初期スキャン順は、いわゆるジグザグスキャンであり、量子化された変換係数を符号化する際の順序が、低周波成分から高周波成分の順であることを示している。 The initial scan order indicates the order in which the quantized transform coefficients are encoded. The initial scan order shown in FIG. 3 is a so-called zigzag scan, and indicates that the order when encoding the quantized transform coefficients is from the low frequency component to the high frequency component.
 ここで、スキャン順決定部120が、図3に示す量子化マトリクスの係数を小さい順に並べ替えると、その順序は「2→6→6→13→13→・・・」となる。したがって、図4に示すように、変換係数のスキャン順は、「C22→C00→C11→C10→C01→・・・」に変更される。スキャン順決定部120は、変更後のスキャン順を示すスキャン順序情報をエントロピー符号化部1104に出力する。エントロピー符号化部1104は、スキャン順決定部120によって決定されたスキャン順序情報に基づいて、量子化後の変換係数を符号化する。 Here, when the scan order determination unit 120 rearranges the coefficients of the quantization matrix shown in FIG. 3 in ascending order, the order becomes “2 → 6 → 6 → 13 → 13 →. Therefore, as shown in FIG. 4, the scan order of the transform coefficients is changed to “C 22 → C 00 → C 11 → C 10 → C 01 →. The scan order determination unit 120 outputs scan order information indicating the changed scan order to the entropy encoding unit 1104. The entropy encoding unit 1104 encodes the quantized transform coefficient based on the scan order information determined by the scan order determination unit 120.
 これにより、符号化対象ブロックの係数のスキャン順は、符号化対象ブロックの量子化に用いた量子化マトリクスの係数の小さい順となる。量子化マトリクスの係数値が大きい程、量子化後の係数ブロックの対応する係数は、ゼロ値になる確率が高くなる。したがって、量子化マトリクスの係数の小さい順で符号化対象ブロックの係数を符号化することで、スキャン順で前の方に非ゼロ係数を集中させ、後の方にゼロ係数を集中させることができる。 Thereby, the scan order of the coefficients of the encoding target block becomes the order of the coefficient of the quantization matrix used for quantization of the encoding target block. The larger the coefficient value of the quantization matrix, the higher the probability that the corresponding coefficient of the coefficient block after quantization will be zero. Therefore, by encoding the coefficients of the encoding target block in ascending order of the coefficients of the quantization matrix, the non-zero coefficients can be concentrated in the scanning order and the zero coefficients can be concentrated in the backward order. .
 エントロピー符号化部1104は、符号化対象ブロックを符号化する際に、符号化(スキャン)順に従って、係数が非ゼロ係数であるかゼロ係数であるかを示すシグニフィカントフラグ(significant flag)を符号化する。例えば、シグニフィカントフラグが“1”であれば、係数が非ゼロ係数であることを示す。また、シグニフィカントフラグが“0”であれば、係数がゼロ係数であることを示す。 When encoding the block to be encoded, the entropy encoding unit 1104 encodes a significant flag indicating whether the coefficient is a non-zero coefficient or a zero coefficient in accordance with the encoding (scan) order. To do. For example, if the significance flag is “1”, it indicates that the coefficient is a non-zero coefficient. Further, if the significance flag is “0”, it indicates that the coefficient is a zero coefficient.
 さらに、エントロピー符号化部1104は、係数が符号化対象ブロック内で、スキャン順で最後の非ゼロ係数であるか否かを示すラストフラグ(last flag)を符号化する。ラストフラグは、係数が非ゼロ係数である場合に、シグニフィカントフラグに続いて符号化され、係数がゼロ係数である場合は、符号化されない。例えば、ラストフラグが“1”であれば、係数が最後の非ゼロ係数であることを示す。ラストフラグが“0”であれば、係数が最後の非ゼロ係数ではない、すなわち、符号化対象ブロックには、まだ非ゼロ係数が含まれていることを示す。 Furthermore, the entropy encoding unit 1104 encodes a last flag indicating whether or not the coefficient is the last non-zero coefficient in the scan order in the encoding target block. The last flag is encoded following the significant flag when the coefficient is a non-zero coefficient, and is not encoded when the coefficient is a zero coefficient. For example, if the last flag is “1”, it indicates that the coefficient is the last non-zero coefficient. If the last flag is “0”, it indicates that the coefficient is not the last non-zero coefficient, that is, the encoding target block still contains a non-zero coefficient.
 このとき、符号化対象ブロックを符号化する際に、非ゼロ係数がスキャン順で前の方に集中していれば、シグニフィカントフラグ及びラストフラグを少なくすることができるので、符号化効率を向上させることができる。したがって、本発明の実施の形態1に係る画像符号化装置では、量子化マトリクスに基づいてスキャン順を決定することで、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができ、符号化効率を向上させることができる。 At this time, when encoding the block to be encoded, if non-zero coefficients are concentrated toward the front in the scan order, the significant flag and the last flag can be reduced, thereby improving the encoding efficiency. be able to. Therefore, in the image coding apparatus according to Embodiment 1 of the present invention, by determining the scan order based on the quantization matrix, non-zero coefficients are concentrated on the front side in the scan order and zero on the back side. The probability that the coefficients are concentrated can be increased, and the encoding efficiency can be improved.
 続いて、本発明の実施の形態1に係る画像符号化装置1000の動作の一例について説明する。 Subsequently, an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention will be described.
 図5は、本発明の実施の形態1に係る画像符号化装置1000の動作の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of the operation of the image coding apparatus 1000 according to Embodiment 1 of the present invention.
 まず、量子化部1103は、量子化マトリクスを用いて符号化対象ブロックを量子化する(S10)。具体的には、直交変換部1102は、符号化対象ブロックを直交変換することで、変換係数を生成し、量子化部1103は、量子化マトリクスを用いて、生成した変換係数を量子化する。 First, the quantization unit 1103 quantizes the encoding target block using the quantization matrix (S10). Specifically, the orthogonal transform unit 1102 generates transform coefficients by orthogonally transforming the encoding target block, and the quantization unit 1103 quantizes the generated transform coefficients using a quantization matrix.
 このとき、量子化の対象となる符号化対象ブロックは、入力された動画像に含まれる符号化対象ブロックと、予測画像との差分画像である。なお、量子化の対象となる符号化対象ブロックは、入力された動画像に含まれる符号化対象ブロックそのものでもよい。すなわち、本発明の実施の形態1に係る画像符号化装置1000では、予測符号化を行わなくてもよい。 At this time, the encoding target block to be quantized is a difference image between the encoding target block included in the input moving image and the predicted image. Note that the encoding target block to be quantized may be the encoding target block itself included in the input moving image. That is, prediction coding may not be performed in the image coding apparatus 1000 according to Embodiment 1 of the present invention.
 次に、符号化制御部1200は、量子化に用いた量子化マトリクスに基づいて、量子化された符号化対象ブロックに含まれる係数のスキャン順を決定する(S20)。スキャン順の決定方法の詳細については、図6を用いて後で説明する。 Next, the encoding control unit 1200 determines the scan order of the coefficients included in the quantized encoding target block based on the quantization matrix used for quantization (S20). Details of the scan order determination method will be described later with reference to FIG.
 最後に、エントロピー符号化部1104は、決定されたスキャン順で、量子化された符号化対象ブロックを符号化する(S30)。具体的には、エントロピー符号化部1104は、上述したように、シグニフィカントフラグ及びラストフラグを符号化するとともに、符号化対象ブロックに含まれる非ゼロ係数をエントロピー符号化することで、符号化ストリームを生成する。 Finally, the entropy encoding unit 1104 encodes the quantized block to be encoded in the determined scan order (S30). Specifically, as described above, the entropy encoding unit 1104 encodes the significant flag and the last flag, and entropy-encodes the non-zero coefficient included in the encoding target block, thereby encoding the encoded stream. Generate.
 図6は、本発明の実施の形態1に係るスキャン順の決定方法の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of the scan order determination method according to the first embodiment of the present invention.
 まず、スキャン順決定部120は、初期スキャン順を決定する(S101)。初期スキャン順は、具体的には、ジグザグスキャン、横方向優先スキャン及び縦方向優先スキャンなどである。このとき、スキャン順決定部120は、符号化対象ブロックに応じて初期スキャン順を決定してもよい。例えば、スキャン順決定部120は、符号化対象ブロックがプログレッシブ画像である場合に、ジグザグスキャンを初期スキャン順として決定し、フィールドスキャン画像(インターレース画像)である場合に、縦方向優先スキャンを初期スキャン順として決定してもよい。 First, the scan order determination unit 120 determines an initial scan order (S101). Specifically, the initial scan order includes a zigzag scan, a horizontal direction priority scan, and a vertical direction priority scan. At this time, the scan order determination unit 120 may determine the initial scan order according to the encoding target block. For example, the scan order determination unit 120 determines the zigzag scan as the initial scan order when the encoding target block is a progressive image, and the vertical scan is the initial scan when the block is a field scan image (interlaced image). The order may be determined.
 次に、量子化マトリクス取得部110は、量子化部1103が符号化対象ブロックの量子化に用いた量子化マトリクスの全ての係数を取得する(S102)。 Next, the quantization matrix acquisition unit 110 acquires all the coefficients of the quantization matrix used by the quantization unit 1103 to quantize the encoding target block (S102).
 次に、スキャン順決定部120は、初期スキャン順で量子化マトリクスをスキャンし、量子化マトリクスの係数を、値の小さい順に並べ替える(S103)。そして、スキャン順決定部120は、ソート結果に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定する(S104)。具体的には、スキャン順決定部120は、量子化マトリクスの係数の値が小さい順を、そのまま、符号化対象ブロックに含まれる係数のスキャン順として決定する。このとき、量子化マトリクスの係数の値が同じである場合は、初期スキャン順の順序に従ってスキャン順が決定される。 Next, the scan order determination unit 120 scans the quantization matrix in the initial scan order, and rearranges the coefficients of the quantization matrix in ascending order of values (S103). Then, the scan order determination unit 120 determines the scan order of the coefficients included in the encoding target block based on the sorting result (S104). Specifically, the scan order determination unit 120 determines the order in which the coefficient value of the quantization matrix is small as it is as the scan order of the coefficients included in the encoding target block. At this time, if the values of the coefficients of the quantization matrix are the same, the scan order is determined according to the order of the initial scan order.
 これにより、量子化マトリクスの係数を必ず小さい順に並べることができるので、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができる。したがって、符号化効率をさらに向上させることができる。 This allows the coefficients of the quantization matrix to be arranged in ascending order, so that it is possible to increase the probability that non-zero coefficients are concentrated on the front side and zero coefficients are concentrated on the back side in the scan order. Therefore, the encoding efficiency can be further improved.
 以上のように、本発明の実施の形態1に係る画像符号化装置1000は、量子化マトリクスに基づいてスキャン順を決定し、決定したスキャン順で符号化対象ブロックを符号化する。量子化マトリクスの値によって符号化対象ブロックの係数位置毎に、非ゼロ係数及びゼロ係数となる確率は変わるので、スキャン順を量子化マトリクスに基づいて決定することで、符号化効率をさらに向上させることができる。 As described above, the image encoding apparatus 1000 according to Embodiment 1 of the present invention determines the scan order based on the quantization matrix and encodes the encoding target block in the determined scan order. Since the probability of non-zero coefficient and zero coefficient varies for each coefficient position of the encoding target block depending on the value of the quantization matrix, the encoding efficiency is further improved by determining the scan order based on the quantization matrix. be able to.
 具体的には、本発明の実施の形態1に係る画像符号化装置1000では、量子化マトリクスの係数を小さい順に並べた順序を、符号化対象ブロックに含まれる係数のスキャン順として決定する。このため、量子化マトリクスの係数を必ず小さい順に並べることができるので、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を向上させることができる。符号化対象ブロックを符号化する際に、非ゼロ係数がスキャン順で前の方に集中していれば、シグニフィカントフラグ及びラストフラグを少なくすることができるので、符号化効率を向上させることができる。 Specifically, in image coding apparatus 1000 according to Embodiment 1 of the present invention, the order in which the coefficients of the quantization matrix are arranged in ascending order is determined as the scan order of the coefficients included in the encoding target block. For this reason, since the coefficients of the quantization matrix can always be arranged in ascending order, it is possible to improve the probability that the non-zero coefficients are concentrated on the front side and the zero coefficients are concentrated on the back side in the scan order. When encoding a block to be encoded, if non-zero coefficients are concentrated toward the front in the scan order, the significant flag and the last flag can be reduced, so that the encoding efficiency can be improved. .
 続いて、本発明の実施の形態1に係る画像復号装置2000の一例について説明する。 Subsequently, an example of the image decoding apparatus 2000 according to Embodiment 1 of the present invention will be described.
 図7は、本発明の実施の形態1に係る画像復号装置2000の構成の一例を示すブロック図である。 FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
 画像復号装置2000は、復号処理部2100と、復号制御部2200とを備える。 The image decoding apparatus 2000 includes a decoding processing unit 2100 and a decoding control unit 2200.
 復号処理部2100は、符号化ストリームをブロック毎に復号することによって復号画像を生成する。このような復号処理部2100は、エントロピー復号部2101と、逆量子化部2102と、逆直交変換部2103と、加算器2104と、デブロッキングフィルタ2105と、メモリ2106と、面内予測部2107と、動き補償部2108と、スイッチ2109とを備える。 The decoding processing unit 2100 generates a decoded image by decoding the encoded stream for each block. Such a decoding processing unit 2100 includes an entropy decoding unit 2101, an inverse quantization unit 2102, an inverse orthogonal transform unit 2103, an adder 2104, a deblocking filter 2105, a memory 2106, and an in-plane prediction unit 2107. A motion compensation unit 2108 and a switch 2109.
 エントロピー復号部2101は、符号化ストリームを取得し、その符号化ストリームをエントロピー復号(可変長復号)する。 The entropy decoding unit 2101 acquires an encoded stream and performs entropy decoding (variable length decoding) on the encoded stream.
 逆量子化部2102は、エントロピー復号部2101によるエントロピー復号によって生成された、量子化された係数ブロックを逆量子化する。逆直交変換部2103は、その逆量子化された係数ブロックに含まれる各周波数係数に対して逆離散コサイン変換などの逆直交変換を行うことによって、復号差分画像を生成する。 The inverse quantization unit 2102 inversely quantizes the quantized coefficient block generated by entropy decoding by the entropy decoding unit 2101. The inverse orthogonal transform unit 2103 generates a decoded difference image by performing inverse orthogonal transform such as inverse discrete cosine transform on each frequency coefficient included in the inverse quantized coefficient block.
 加算器2104は、スイッチ2109から予測画像を取得し、その予測画像と、逆直交変換部2103によって生成された復号差分画像とを加算することによって復号画像を生成する。 The adder 2104 obtains a predicted image from the switch 2109, and generates a decoded image by adding the predicted image and the decoded difference image generated by the inverse orthogonal transform unit 2103.
 デブロッキングフィルタ2105は、加算器2104によって生成された復号画像のブロック歪みを除去し、その復号画像をメモリ2106に格納するとともに、その復号画像を出力する。 The deblocking filter 2105 removes block distortion of the decoded image generated by the adder 2104, stores the decoded image in the memory 2106, and outputs the decoded image.
 面内予測部2107は、加算器2104によって生成された復号画像を用いて復号対象ブロックに対して面内予測を行うことによって予測画像(イントラ予測画像)を生成する。 The intra prediction unit 2107 generates a prediction image (intra prediction image) by performing intra prediction on the decoding target block using the decoded image generated by the adder 2104.
 動き補償部2108は、メモリ2106に格納されている画像を参照画像として参照するとともに、エントロピー復号部2101によるエントロピー復号によって生成された動きベクトルを用いることによって、復号対象ブロックに対して動き補償を行う。動き補償部2108は、このような動き補償によって復号対象ブロックに対する予測画像(インター予測画像)を生成する。 The motion compensation unit 2108 refers to the image stored in the memory 2106 as a reference image, and performs motion compensation on the decoding target block by using a motion vector generated by entropy decoding by the entropy decoding unit 2101. . The motion compensation unit 2108 generates a prediction image (inter prediction image) for the decoding target block through such motion compensation.
 スイッチ2109は、復号対象ブロックが面内予測符号化されている場合には、面内予測部2107によって生成された予測画像(イントラ予測画像)を加算器2104に出力する。一方、スイッチ2109は、復号対象ブロックが画面間予測符号化されている場合には、動き補償部2108によって生成された予測画像(インター予測画像)を加算器2104に出力する。 The switch 2109 outputs the prediction image (intra prediction image) generated by the intra prediction unit 2107 to the adder 2104 when the decoding target block is subjected to intra prediction encoding. On the other hand, the switch 2109 outputs the prediction image (inter prediction image) generated by the motion compensation unit 2108 to the adder 2104 when the decoding target block is subjected to inter-frame prediction encoding.
 復号制御部2200は、復号処理部2100を制御する。具体的には、復号制御部2200は、復号対象ブロックの逆量子化に用いる量子化マトリクスに基づいて、復号対象ブロックに含まれる係数のスキャン順を決定する。 The decoding control unit 2200 controls the decoding processing unit 2100. Specifically, the decoding control unit 2200 determines the scan order of the coefficients included in the decoding target block based on the quantization matrix used for the inverse quantization of the decoding target block.
 図8は、本発明の実施の形態2に係る復号制御部2200の構成の一例を示すブロック図である。 FIG. 8 is a block diagram showing an example of the configuration of the decoding control unit 2200 according to Embodiment 2 of the present invention.
 復号制御部2200は、量子化マトリクス取得部110と、スキャン順決定部120とを備える。 The decoding control unit 2200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 120.
 量子化マトリクス取得部110は、符号化制御部1200が備える量子化マトリクス取得部110と同様の動作を行う。例えば、復号制御部2200が、1つ以上の量子化マトリクスを保持するメモリを有し、量子化マトリクス取得部110は、当該メモリから、逆量子化部2102が用いる量子化マトリクスを取得する。具体的には、符号化ストリームに量子化マトリクスを示すインデックス情報が含まれている場合、量子化マトリクス取得部110は、エントロピー復号部2101から当該インデックス情報を取得し、取得したインデックス情報に対応する量子化マトリクスをメモリから取得する。 The quantization matrix acquisition unit 110 performs the same operation as the quantization matrix acquisition unit 110 included in the encoding control unit 1200. For example, the decoding control unit 2200 includes a memory that holds one or more quantization matrices, and the quantization matrix acquisition unit 110 acquires a quantization matrix used by the inverse quantization unit 2102 from the memory. Specifically, when index information indicating a quantization matrix is included in the encoded stream, the quantization matrix acquisition unit 110 acquires the index information from the entropy decoding unit 2101 and corresponds to the acquired index information. The quantization matrix is acquired from the memory.
 あるいは、符号化ストリームに量子化マトリクスの係数値が含まれている場合、エントロピー復号部2101は、符号化ストリームを復号することで、量子化マトリクスを生成し、量子化マトリクス取得部110に出力する。これにより、量子化マトリクス取得部110は、エントロピー復号部2101から量子化マトリクスを取得する。 Alternatively, when the coefficient value of the quantization matrix is included in the encoded stream, the entropy decoding unit 2101 generates a quantization matrix by decoding the encoded stream, and outputs the quantization matrix to the quantization matrix acquisition unit 110. . As a result, the quantization matrix acquisition unit 110 acquires the quantization matrix from the entropy decoding unit 2101.
 スキャン順決定部120は、符号化制御部1200が備えるスキャン順決定部120と同様の動作を行う。このため、以下では、スキャン順決定部120の詳細な説明を省略する。 The scan order determination unit 120 performs the same operation as the scan order determination unit 120 included in the encoding control unit 1200. Therefore, in the following, detailed description of the scan order determination unit 120 is omitted.
 なお、スキャン順決定部120が決定したスキャン順を示すスキャン順序情報は、エントロピー復号部2101に出力される。エントロピー復号部2101は、スキャン順序情報に基づいて、符号化ストリームの復号対象ブロックを復号することで、復元された量子化係数(量子化された係数ブロック)を生成する。 Note that the scan order information indicating the scan order determined by the scan order determining unit 120 is output to the entropy decoding unit 2101. The entropy decoding unit 2101 generates a restored quantized coefficient (quantized coefficient block) by decoding the decoding target block of the encoded stream based on the scan order information.
 これにより、本発明の実施の形態1に係る画像復号装置は、量子化マトリクスに基づいて決定されたスキャン順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。 Thereby, the image decoding apparatus according to Embodiment 1 of the present invention correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to.
 続いて、本発明の実施の形態1に係る画像復号装置2000の動作の一例について説明する。 Subsequently, an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention will be described.
 図9は、本発明の実施の形態1に係る画像復号装置2000の動作の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of the operation of the image decoding apparatus 2000 according to Embodiment 1 of the present invention.
 まず、復号制御部2200は、逆量子化に用いる量子化マトリクスに基づいて、復号対象ブロックに含まれる係数のスキャン順を決定する(S20)。スキャン順の決定方法の詳細については、図6と同様であるため、ここでは説明を省略する。 First, the decoding control unit 2200 determines the scan order of the coefficients included in the decoding target block based on the quantization matrix used for inverse quantization (S20). Details of the method for determining the scan order are the same as those in FIG.
 次に、エントロピー復号部2101は、決定されたスキャン順に従って復号対象ブロックを復号する(S40)。例えば、エントロピー復号部2101は、符号化ストリームに含まれる復号対象ブロックをエントロピー復号することで、量子化された係数値、シグニフィカントフラグ及びラストフラグを取得する。そして、エントロピー復号部2101は、決定されたスキャン順に従ってシグニフィカントフラグ及びラストフラグを参照して、取得した係数値を適切な係数位置に配置することで、復号対象ブロックを復号する。復号された復号対象ブロックは、図1に示す量子化部1103が生成した量子化後の符号化対象ブロックに相当する。 Next, the entropy decoding unit 2101 decodes the decoding target block according to the determined scan order (S40). For example, the entropy decoding unit 2101 acquires a quantized coefficient value, a significant flag, and a last flag by entropy decoding a decoding target block included in the encoded stream. Then, the entropy decoding unit 2101 refers to the significant flag and the last flag according to the determined scan order, and arranges the obtained coefficient values at appropriate coefficient positions, thereby decoding the decoding target block. The decoded block to be decoded corresponds to the block to be encoded after quantization generated by the quantization unit 1103 shown in FIG.
 次に、逆量子化部2102は、スキャン順の決定に用いた量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する(S50)。つまり、逆量子化部2102は、符号化時の量子化で用いた量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する。逆量子化により生成された係数ブロックは、逆直交変換部2103によって逆直交変換され、復号差分画像に変換される。 Next, the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used to determine the scan order (S50). That is, the inverse quantization unit 2102 inversely quantizes the decoded block to be decoded using the quantization matrix used in the quantization at the time of encoding. The coefficient block generated by the inverse quantization is subjected to inverse orthogonal transform by the inverse orthogonal transform unit 2103 and converted into a decoded difference image.
 なお、符号化時に予測符号化が行われていない場合、逆直交変換部2103は、係数ブロックを逆直交変換することで、復号画像を生成する。すなわち、本発明の実施の形態1に係る画像復号装置2000は、予測復号を行わなくてもよい。 In addition, when predictive encoding is not performed at the time of encoding, the inverse orthogonal transform unit 2103 generates a decoded image by performing inverse orthogonal transform on the coefficient block. That is, the image decoding apparatus 2000 according to Embodiment 1 of the present invention may not perform predictive decoding.
 以上のように、本発明の実施の形態1に係る画像復号装置2000は、量子化マトリクスに基づいてスキャン順を決定し、決定したスキャン順で復号対象ブロックを復号する。これにより、本発明の実施の形態1に係る画像復号装置は、量子化マトリクスに基づいて決定されたスキャン順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。符号化の際には、量子化マトリクスの値によって符号化対象ブロックの係数位置毎に、非ゼロ係数及びゼロ係数となる確率は変わるので、スキャン順を量子化マトリクスに基づいて決定することで、符号化効率をさらに向上させることができる。 As described above, the image decoding apparatus 2000 according to Embodiment 1 of the present invention determines the scan order based on the quantization matrix, and decodes the decoding target block in the determined scan order. Thereby, the image decoding apparatus according to Embodiment 1 of the present invention correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to. At the time of encoding, since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
 (実施の形態2)
 本発明の実施の形態2に係る画像符号化方法では、符号化対象ブロック毎に、量子化マトリクスに基づいて符号化対象ブロックに含まれる係数のスキャン順を決定する。具体的には、初期スキャン順に基づいて量子化マトリクスをスキャンし、対象の係数値が直前の係数値より小さい場合は、スキャン順を変更することを特徴とする。
(Embodiment 2)
In the image encoding method according to Embodiment 2 of the present invention, the scan order of the coefficients included in the encoding target block is determined for each encoding target block based on the quantization matrix. Specifically, the quantization matrix is scanned based on the initial scan order, and when the target coefficient value is smaller than the immediately preceding coefficient value, the scan order is changed.
 また、本発明の実施の形態2に係る画像復号方法では、復号対象ブロック毎に、量子化マトリクスに基づいて復号対象ブロックに含まれる係数のスキャン順を決定する。具体的には、初期スキャン順に基づいて量子化マトリクスをスキャンし、対象の係数値が直前の係数値より小さい場合は、スキャン順を変更することを特徴とする。 In the image decoding method according to Embodiment 2 of the present invention, the scan order of the coefficients included in the decoding target block is determined for each decoding target block based on the quantization matrix. Specifically, the quantization matrix is scanned based on the initial scan order, and when the target coefficient value is smaller than the immediately preceding coefficient value, the scan order is changed.
 本発明の実施の形態2に係る画像符号化装置の構成は、実施の形態1に係る図1の画像符号化装置1000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態2に係る画像符号化装置は、実施の形態1に係る画像符号化装置1000と比較して、符号化制御部1200の代わりに、図10に示す符号化制御部200を備える点が異なっている。 The configuration of the image coding apparatus according to the second embodiment of the present invention is almost the same as that of the image coding apparatus 1000 of FIG. 1 according to the first embodiment. The explanation is centered. The image coding apparatus according to Embodiment 2 of the present invention is different from the image coding apparatus 1000 according to Embodiment 1 in that the coding control unit 200 shown in FIG. 10 is used instead of the coding control unit 1200. The point to prepare is different.
 図10は、本発明の実施の形態2に係る符号化制御部200の構成の一例を示すブロック図である。 FIG. 10 is a block diagram showing an example of the configuration of the encoding control unit 200 according to Embodiment 2 of the present invention.
 符号化制御部200は、量子化マトリクス取得部110と、スキャン順決定部220とを備える。なお、量子化マトリクス取得部110は、実施の形態1と同様である。 The encoding control unit 200 includes a quantization matrix acquisition unit 110 and a scan order determination unit 220. The quantization matrix acquisition unit 110 is the same as that in the first embodiment.
 スキャン順決定部220は、図10に示すように、比較部221と、設定部222と、順序決定部223とを備える。 The scan order determination unit 220 includes a comparison unit 221, a setting unit 222, and an order determination unit 223, as shown in FIG.
 比較部221は、量子化マトリクス取得部110によって取得された量子化マトリクスの係数の値を比較する。具体的には、比較部221は、設定部222によって設定された現在値と、量子化マトリクスの係数値とを比較する。比較結果は、設定部222及び順序決定部223に出力される。 The comparison unit 221 compares the coefficient values of the quantization matrix acquired by the quantization matrix acquisition unit 110. Specifically, the comparison unit 221 compares the current value set by the setting unit 222 with the coefficient value of the quantization matrix. The comparison result is output to the setting unit 222 and the order determination unit 223.
 設定部222は、量子化マトリクスの初期スキャン順を設定する。初期スキャン順は、符号化対象ブロックの初期スキャン順と同じであり、例えば、ジグザグスキャン、横方向優先スキャン及び縦方向優先スキャンなどである。 The setting unit 222 sets the initial scan order of the quantization matrix. The initial scan order is the same as the initial scan order of the encoding target block, for example, zigzag scan, horizontal direction priority scan, and vertical direction priority scan.
 また、設定部222は、量子化マトリクス取得部110によって取得された量子化マトリクスの初期スキャン順で最初の係数値を現在値として設定する。設定された現在値は、比較部221による比較結果に基づいて更新される。具体的には、設定部222は、現在値が係数値より小さいことを示す比較結果を受け取った場合、当該係数値を現在値に設定する。 Also, the setting unit 222 sets the first coefficient value as the current value in the initial scan order of the quantization matrix acquired by the quantization matrix acquisition unit 110. The set current value is updated based on the comparison result by the comparison unit 221. Specifically, when receiving a comparison result indicating that the current value is smaller than the coefficient value, the setting unit 222 sets the coefficient value to the current value.
 順序決定部223は、比較結果に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定する。具体的には、順序決定部223は、現在値が係数値より大きいことを示す比較結果を受け取った場合、スキャン順を入れ替える。 The order determination unit 223 determines the scan order of the coefficients included in the encoding target block based on the comparison result. Specifically, when the order determination unit 223 receives a comparison result indicating that the current value is larger than the coefficient value, the order determination unit 223 switches the scan order.
 続いて、符号化制御部200の具体的な動作について、図11を用いて説明する。図11は、本発明の実施の形態2に係るスキャン順の決定方法の一例を示すフローチャートである。 Subsequently, a specific operation of the encoding control unit 200 will be described with reference to FIG. FIG. 11 is a flowchart showing an example of a scan order determination method according to the second embodiment of the present invention.
 まず、設定部222は、量子化マトリクスの初期スキャン順を設定する(S201)。このとき、設定部222は、符号化対象ブロックに応じて初期スキャン順を決定してもよい。ここでは、一例として、初期スキャン順としてジグザグスキャンが選択された場合について説明する。 First, the setting unit 222 sets the initial scan order of the quantization matrix (S201). At this time, the setting unit 222 may determine the initial scan order according to the encoding target block. Here, as an example, a case where a zigzag scan is selected as the initial scan order will be described.
 次に、設定部222は、初期スキャン順で最初の量子化マトリクスの係数値(p)を取得し、現在値(c)として設定する(S202)。 Next, the setting unit 222 acquires the coefficient value (p) of the first quantization matrix in the initial scan order and sets it as the current value (c) (S202).
 次に、比較部221は、初期スキャン順で量子化マトリクスの係数値(p+1)を取得する(S203)。そして、比較部221は、設定された現在値(c)と、取得した係数値(p+1)とを比較する(S204)。 Next, the comparison unit 221 acquires the coefficient value (p + 1) of the quantization matrix in the initial scan order (S203). Then, the comparing unit 221 compares the set current value (c) with the acquired coefficient value (p + 1) (S204).
 現在値(c)が係数値(p+1)より大きい場合(S204でYes)、順序決定部223は、現在値(c)と係数値(p+1)とのスキャン順序を入れ替える(S205)。具体的には、順序決定部223は、スキャン順序を「係数値(p+1)→現在値(c)(具体的には、現在値(c)として設定された係数値)」の順序に入れ替える。 When the current value (c) is larger than the coefficient value (p + 1) (Yes in S204), the order determining unit 223 switches the scan order between the current value (c) and the coefficient value (p + 1) (S205). Specifically, the order determination unit 223 changes the scan order to the order of “coefficient value (p + 1) → current value (c) (specifically, coefficient value set as the current value (c))”.
 現在値(c)が係数値(p+1)より小さい、又は、等しい場合(S204でNo)、順序決定部223は、スキャン順序を入れ替えない(S206)。すなわち、スキャン順序は、「現在値(c)(具体的には、現在値(c)として設定された係数値)→係数値(p+1)」のままである。さらに、この場合、設定部222は、現在値(c)に係数値(p+1)を設定することで、現在値(c)を更新する。 When the current value (c) is smaller than or equal to the coefficient value (p + 1) (No in S204), the order determining unit 223 does not change the scan order (S206). That is, the scan order remains “current value (c) (specifically, coefficient value set as current value (c)) → coefficient value (p + 1)”. Further, in this case, the setting unit 222 updates the current value (c) by setting the coefficient value (p + 1) to the current value (c).
 以上の処理(S203~S206)が、量子化マトリクスの全係数をスキャンするまで繰り返される(S207)。 The above processing (S203 to S206) is repeated until all the coefficients of the quantization matrix are scanned (S207).
 以下では、具体的な量子化マトリクスの例を挙げて、図11に示すスキャン順の決定方法について説明する。 Hereinafter, a method for determining the scan order shown in FIG. 11 will be described with a specific example of a quantization matrix.
 図12は、本発明の実施の形態2に係る変更後のスキャン順の一例を示す図である。なお、図12の例では、初期スキャン順としてジグザグスキャンが設定されている。 FIG. 12 is a diagram showing an example of the changed scan order according to the second embodiment of the present invention. In the example of FIG. 12, zigzag scanning is set as the initial scanning order.
 図12(a)に示す量子化マトリクスの場合、設定部222は、最初の係数値(p)である“6”を、現在値(c)として設定する(S202)。そして、比較部221は、次の係数値(p+1)として“13”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。 In the case of the quantization matrix shown in FIG. 12A, the setting unit 222 sets “6” that is the first coefficient value (p) as the current value (c) (S202). Then, the comparison unit 221 acquires “13” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204).
 ここでは、「現在値(c)=6<係数値(p+1)=13」であるので(S204でNo)、スキャン順は変更されず、C00→C10となる(S206)。このとき、設定部222は、現在値(c)に“13”を設定する。 Here, since “current value (c) = 6 <coefficient value (p + 1) = 13” (No in S204), the scan order is not changed, and C 00 → C 10 (S206). At this time, the setting unit 222 sets “13” to the current value (c).
 そして、比較部221は、次の係数値(p+1)として“13”を取得し、処理を繰り返す。図12(a)の例では、スキャン順が変更されることなく、初期スキャン順がそのまま符号化対象ブロック(量子化係数)のスキャン順として決定される。 Then, the comparison unit 221 acquires “13” as the next coefficient value (p + 1) and repeats the process. In the example of FIG. 12A, the initial scan order is determined as it is as the scan order of the encoding target block (quantization coefficient) without changing the scan order.
 図12(b)に示す量子化マトリクスの場合、初期スキャン順で4つ目の係数までは、スキャン順の変更は行われない。4つ目の係数の処理が行われた時点で、現在値(c)には、4つ目の係数の値“20”が設定されている。 In the case of the quantization matrix shown in FIG. 12B, the scan order is not changed up to the fourth coefficient in the initial scan order. At the time when the fourth coefficient is processed, the current coefficient (c) is set to the value “20” of the fourth coefficient.
 比較部221は、次の係数値(p+1)として“15”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=20>係数値(p+1)=15」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、C11→C02となる(S205)。このとき、現在値(c)は“20”のままである。 The comparison unit 221 acquires “15” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 20> coefficient value (p + 1) = 15” (Yes in S204), the order determining unit 223 changes the scan order to be C 11 → C 02 (S205). . At this time, the current value (c) remains “20”.
 続いて、比較部221は、次の係数値(p+1)として“20”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=20=係数値(p+1)=20」であるので(S204でNo)、スキャン順は変更されず、C02→C20となる(S206)。このとき、設定部222は、現在値(c)に“20”を設定する。 Subsequently, the comparison unit 221 acquires “20” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 20 = coefficient value (p + 1) = 20” (No in S204), the scan order is not changed, and C 02 → C 20 (S206). At this time, the setting unit 222 sets “20” to the current value (c).
 そして、比較部221は、次の係数値(p+1)として“28”を取得し、処理を繰り返す。これにより、初期スキャン順からC02とC11とが入れ替わったスキャン順が、変更後のスキャン順として決定される。 Then, the comparison unit 221 acquires “28” as the next coefficient value (p + 1) and repeats the process. Thus, the scan order in which C 02 and C 11 are switched from the initial scan order is determined as the changed scan order.
 なお、現在値(c)と係数値(p+1)とが等しい場合、設定部222は、現在値(c)を更新しなくてもよい。 If the current value (c) is equal to the coefficient value (p + 1), the setting unit 222 does not have to update the current value (c).
 図12(c)に示す量子化マトリクスの場合、初期スキャン順で7つ目の係数までは、スキャン順の変更は行われない。7つ目の係数の処理が行われた時点で、現在値(c)には、7つ目の係数の値“32”が設定されている。 In the case of the quantization matrix shown in FIG. 12C, the scan order is not changed up to the seventh coefficient in the initial scan order. At the time when the seventh coefficient is processed, the value “32” of the seventh coefficient is set as the current value (c).
 比較部221は、次の係数値(p+1)として“28”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32>係数値(p+1)=28」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、C21→C30となる(S205)。このとき、現在値(c)は、“32”のままである。 The comparison unit 221 acquires “28” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32> coefficient value (p + 1) = 28” (Yes in S204), the order determining unit 223 changes the scan order to become C 21 → C 30 (S205). . At this time, the current value (c) remains “32”.
 続いて、比較部221は、次の係数値(p+1)として“28”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32>係数値(p+1)=28」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、(C21→)C12→C30となる(S205)。このとき、現在値(c)は、“32”のままである。 Subsequently, the comparison unit 221 acquires “28” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32> coefficient value (p + 1) = 28” (Yes in S204), the order determination unit 223 changes the scan order to (C 21 →) C 12 → C 30. (S205). At this time, the current value (c) remains “32”.
 続いて、比較部221は、次の係数値(p+1)として“32”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32=係数値(p+1)=32」であるので(S204でNo)、スキャン順は変更されず、C30→C03となる(S206)。このとき、設定部222は、現在値(c)に“32”を設定する。 Subsequently, the comparison unit 221 acquires “32” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32 = coefficient value (p + 1) = 32” (No in S204), the scan order is not changed, and C 30 → C 03 (S206). At this time, the setting unit 222 sets “32” to the current value (c).
 そして、比較部221は、次の係数値(p+1)として“64”を取得し、処理を繰り返す。これにより、初期スキャン順からC30とC21とC12とが入れ替わったスキャン順が、変更後のスキャン順として決定される。 Then, the comparison unit 221 acquires “64” as the next coefficient value (p + 1) and repeats the processing. Thus, the initial scan order from C 30 and C 21 and C 12 and are swapped scan order is determined as the scan order after the change.
 図12(d)に示す量子化マトリクスの場合、初期スキャン順で4つ目の係数までは、スキャン順の変更は行われない。4つ目の係数の処理が行われた時点で、現在値(c)には、4つ目の係数の値“32”が設定されている。 In the case of the quantization matrix shown in FIG. 12D, the scan order is not changed up to the fourth coefficient in the initial scan order. At the time when the fourth coefficient is processed, the current coefficient (c) is set to the value “32” of the fourth coefficient.
 比較部221は、次の係数値(p+1)として“20”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32>係数値(p+1)=20」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、C11→C02となる(S205)。このとき、現在値(c)は、“32”のままである。 The comparison unit 221 acquires “20” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32> coefficient value (p + 1) = 20” (Yes in S204), the order determination unit 223 changes the scan order to be C 11 → C 02 (S205). . At this time, the current value (c) remains “32”.
 続いて、比較部221は、次の係数値(p+1)として“26”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32>係数値(p+1)=26」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、(C11→)C20→C02となる(S205)。このとき、現在値(c)は、“32”のままである。 Subsequently, the comparison unit 221 acquires “26” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32> coefficient value (p + 1) = 26” (Yes in S204), the order determining unit 223 changes the scan order to (C 11 →) C 20 → C 02. (S205). At this time, the current value (c) remains “32”.
 続いて、比較部221は、次の係数値(p+1)として“64”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=32<係数値(p+1)=64」であるので(S204でNo)、スキャン順序は変更されず、C02→C30となる(S206)。このとき、設定部222は、現在値(c)に“64”を設定する。 Subsequently, the comparison unit 221 acquires “64” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 32 <coefficient value (p + 1) = 64” (No in S204), the scan order is not changed, and C 02 → C 30 (S206). At this time, the setting unit 222 sets “64” to the current value (c).
 続いて、比較部221は、次の係数値(p+1)として“48”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=64>係数値(p+1)=48」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、(C02→)C21→C30となる(S205)。このとき、現在値(c)は、“64”のままである。 Subsequently, the comparison unit 221 acquires “48” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since it is the "current value (c) = 64> coefficient values (p + 1) = 48" (Yes in S204), the order determination unit 223 replaces the scan order, (C 02 →) C 21 → C 30 (S205). At this time, the current value (c) remains “64”.
 続いて、比較部221は、次の係数値(p+1)として“52”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=64>係数値(p+1)=52」であるので(S204でYes)、順序決定部223は、スキャン順序を入れ替え、(C21→)C12→C30となる(S205)。このとき、現在値(c)は、“64”のままである。 Subsequently, the comparison unit 221 acquires “52” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 64> coefficient value (p + 1) = 52” (Yes in S204), the order determination unit 223 changes the scan order to (C 21 →) C 12 → C 30. (S205). At this time, the current value (c) remains “64”.
 続いて、比較部221は、次の係数値(p+1)として“64”を取得し(S203)、現在値(c)と係数値(p+1)とを比較する(S204)。この場合、「現在値(c)=64=係数値(p+1)=64」であるので(S204でNo)、スキャン順は変更されず、C30→C03となる(S206)。このとき、設定部222は、現在値(c)に“64”を設定する。 Subsequently, the comparison unit 221 acquires “64” as the next coefficient value (p + 1) (S203), and compares the current value (c) with the coefficient value (p + 1) (S204). In this case, since “current value (c) = 64 = coefficient value (p + 1) = 64” (No in S204), the scan order is not changed, and C 30 → C 03 (S206). At this time, the setting unit 222 sets “64” to the current value (c).
 そして、比較部221は、次の係数値(p+1)として“64”を取得し、処理を繰り返す。これにより、初期スキャン順からC11とC20とC02とC21とC12とC30とが入れ替わったスキャン順が、変更後のスキャン順として決定される。 Then, the comparison unit 221 acquires “64” as the next coefficient value (p + 1) and repeats the processing. Thus, the initial scan order from C 11 and C 20 and C 02 and C 21 and C 12 and C 30 and are swapped scan order is determined as the scan order after the change.
 以上のように、本発明の実施の形態2に係る画像符号化装置では、初期スキャン順に基づいて量子化マトリクスをスキャンし、対象の係数値が直前の係数値より小さい場合は、スキャン順を変更する。これにより、実施の形態1と同様に、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができ、符号化効率を向上させることができる。 As described above, the image coding apparatus according to Embodiment 2 of the present invention scans the quantization matrix based on the initial scan order, and changes the scan order when the target coefficient value is smaller than the immediately preceding coefficient value. To do. As in the first embodiment, this makes it possible to increase the probability that non-zero coefficients are concentrated toward the front and the zero coefficients are concentrated toward the rear in the scan order, and the coding efficiency can be improved. .
 また、本発明の実施の形態2に係る画像符号化装置では、量子化マトリクスのスキャンを行うのと同時に、符号化マトリクスのスキャン順を決定することができる。したがって、実施の形態1のように一度、量子化マトリクスの全係数をスキャンしてからスキャン順を決定する場合に比べて、処理量を削減することができる。 Also, the image coding apparatus according to Embodiment 2 of the present invention can determine the scan order of the encoding matrix simultaneously with the scanning of the quantization matrix. Therefore, the processing amount can be reduced as compared with the case where the scan order is determined after all the coefficients of the quantization matrix are scanned once as in the first embodiment.
 なお、本実施の形態では、図11に示すように、量子化マトリクスの全係数をスキャンするまで処理を繰り返す例について説明したが、量子化マトリクスを構成する係数の一部について処理を行い、残りの係数のスキャン順は初期スキャン順として決定してもよい。例えば、量子化マトリクスの係数のうち、高周波成分の係数は、低周波成分に比べて係数値が大きい場合が多いので、符号化対象ブロックの対応する量子化後の係数は、ゼロ係数となる確率が高い。 In the present embodiment, as shown in FIG. 11, an example in which the process is repeated until all the coefficients of the quantization matrix are scanned has been described. However, a part of the coefficients constituting the quantization matrix is processed, and the rest The scan order of these coefficients may be determined as the initial scan order. For example, among the coefficients of the quantization matrix, the coefficient of the high frequency component often has a larger coefficient value than the low frequency component, and therefore the probability that the corresponding quantized coefficient of the block to be encoded is a zero coefficient. Is expensive.
 したがって、量子化後の係数が非ゼロ係数になる可能性が高い低周波成分のみ、量子化マトリクスの係数の分布に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定してもよい。これにより、処理量を削減することができ、短期間で符号化対象ブロックに含まれる係数のスキャン順を決定することができる。 Therefore, the scan order of the coefficients included in the block to be encoded may be determined based on the coefficient distribution of the quantization matrix only for low-frequency components that are likely to be non-zero coefficients after quantization. . Thereby, the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
 続いて、本発明の実施の形態2に係る画像復号装置の一例について説明する。 Subsequently, an example of an image decoding apparatus according to Embodiment 2 of the present invention will be described.
 本発明の実施の形態2に係る画像復号装置の構成は、実施の形態1に係る図7の画像復号装置2000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態2に係る画像復号装置は、実施の形態1に係る画像復号装置2000と比較して、復号制御部2200の代わりに、図13に示す復号制御部201を備える点が異なっている。 The configuration of the image decoding apparatus according to the second embodiment of the present invention is substantially the same as that of the image decoding apparatus 2000 of FIG. 7 according to the first embodiment. explain. The image decoding apparatus according to the second embodiment of the present invention is different from the image decoding apparatus 2000 according to the first embodiment in that a decoding control unit 201 illustrated in FIG. 13 is provided instead of the decoding control unit 2200. ing.
 図13に示すように、復号制御部201の構成は、図10に示す符号化制御部200と同じであるので、以下では説明を省略する。 As shown in FIG. 13, the configuration of the decoding control unit 201 is the same as that of the coding control unit 200 shown in FIG.
 以上のように、本発明の実施の形態2に係る画像復号装置は、初期スキャン順に基づいて量子化マトリクスをスキャンし、対象の係数値が直前の係数値より小さい場合は、スキャン順を変更する。 As described above, the image decoding apparatus according to Embodiment 2 of the present invention scans the quantization matrix based on the initial scan order, and changes the scan order when the target coefficient value is smaller than the immediately preceding coefficient value. .
 これにより、本発明の実施の形態2に係る画像復号装置は、量子化マトリクスに基づいて決定されたスキャン順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。符号化の際には、量子化マトリクスの値によって符号化対象ブロックの係数位置毎に、非ゼロ係数及びゼロ係数となる確率は変わるので、スキャン順を量子化マトリクスに基づいて決定することで、符号化効率をさらに向上させることができる。 Thereby, the image decoding apparatus according to Embodiment 2 of the present invention correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to. At the time of encoding, since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
 (実施の形態3)
 本発明の実施の形態3に係る画像符号化方法では、予め定められた少なくとも1つのスキャン順から、量子化に用いた量子化マトリクスに対応するスキャン順を選択することで、スキャン順を決定することを特徴とする。
(Embodiment 3)
In the image coding method according to Embodiment 3 of the present invention, the scan order is determined by selecting a scan order corresponding to the quantization matrix used for quantization from at least one predetermined scan order. It is characterized by that.
 また、本発明の実施の形態3に係る画像復号方法では、予め定められた少なくとも1つのスキャン順から、逆量子化に用いる量子化マトリクスに対応するスキャン順を選択することで、スキャン順を決定することを特徴とする。 In the image decoding method according to Embodiment 3 of the present invention, the scan order is determined by selecting a scan order corresponding to a quantization matrix used for inverse quantization from at least one predetermined scan order. It is characterized by doing.
 本発明の実施の形態3に係る画像符号化装置の構成は、実施の形態1に係る図1の画像符号化装置1000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態3に係る画像符号化装置は、実施の形態1に係る画像符号化装置1000と比較して、符号化制御部1200の代わりに、図14に示す符号化制御部300を備える点が異なっている。 The configuration of the image encoding apparatus according to the third embodiment of the present invention is substantially the same as that of the image encoding apparatus 1000 of FIG. 1 according to the first embodiment. The explanation will be centered. Compared with the image coding apparatus 1000 according to the first embodiment, the image coding apparatus according to the third embodiment of the present invention includes a coding control unit 300 illustrated in FIG. 14 instead of the coding control unit 1200. The point to prepare is different.
 図14は、本発明の実施の形態3に係る符号化制御部300の構成の一例を示すブロック図である。 FIG. 14 is a block diagram showing an example of the configuration of the encoding control unit 300 according to Embodiment 3 of the present invention.
 符号化制御部300は、量子化マトリクス取得部110と、スキャン順決定部320と、変動値比較部330とを備える。なお、量子化マトリクス取得部110は、実施の形態1及び2と同様である。 The encoding control unit 300 includes a quantization matrix acquisition unit 110, a scan order determination unit 320, and a variation value comparison unit 330. The quantization matrix acquisition unit 110 is the same as in the first and second embodiments.
 スキャン順決定部320は、予め定められた少なくとも1つのスキャン順のそれぞれに対する評価値を求め、当該評価値が最も高いスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として決定する。スキャン順決定部320は、図14に示すように、比較部221と、設定部322と、カウンタ制御部323と、選択部324と、メモリ325とを備える。なお、比較部221は、実施の形態1と同様である。 The scan order determination unit 320 obtains an evaluation value for each of at least one predetermined scan order, and determines the scan order having the highest evaluation value as the scan order of the coefficients included in the encoding target block. As illustrated in FIG. 14, the scan order determination unit 320 includes a comparison unit 221, a setting unit 322, a counter control unit 323, a selection unit 324, and a memory 325. The comparison unit 221 is the same as that in the first embodiment.
 設定部322は、予め定められた少なくとも1つのスキャン順から1つのスキャン順を選択し、選択したスキャン順を設定する。このとき、設定部322は、予め定められた少なくとも1つのスキャン順のうち、まだ評価値が得られていないスキャン順を選択する。例えば、設定部322は、ジグザグスキャン、横方向優先スキャン及び縦方向優先スキャンの中から1つのスキャン順を選択する。 The setting unit 322 selects one scan order from at least one predetermined scan order, and sets the selected scan order. At this time, the setting unit 322 selects a scan order for which an evaluation value has not yet been obtained from at least one predetermined scan order. For example, the setting unit 322 selects one scan order from among zigzag scanning, horizontal priority scanning, and vertical priority scanning.
 また、設定部322は、量子化マトリクス取得部110によって取得された量子化マトリクスの係数値であって、設定したスキャン順で最初の係数値を現在値として設定する。設定された現在値は、比較部221による比較結果に基づいて更新される。具体的には、実施の形態2に係る設定部222と同様に、設定部322は、現在値が係数値より小さいことを示す比較結果を受け取った場合、当該係数値を現在値に設定する。 Also, the setting unit 322 sets the first coefficient value as the current value, which is the coefficient value of the quantization matrix acquired by the quantization matrix acquisition unit 110, in the set scan order. The set current value is updated based on the comparison result by the comparison unit 221. Specifically, similarly to the setting unit 222 according to the second embodiment, when the setting unit 322 receives a comparison result indicating that the current value is smaller than the coefficient value, the setting unit 322 sets the coefficient value to the current value.
 カウンタ制御部323は、カウンタを備え、比較部221による比較結果に基づいてカウンタを制御する。具体的には、カウンタ制御部323は、現在値が係数値より大きいことを示す比較結果を受け取った場合に、カウンタをインクリメントする。また、カウンタ制御部323は、量子化マトリクスに含まれる全ての係数のスキャンが完了した場合に、リセットされる、すなわち、カウント値を0に設定される。 The counter control unit 323 includes a counter and controls the counter based on the comparison result by the comparison unit 221. Specifically, the counter control unit 323 increments the counter when receiving a comparison result indicating that the current value is larger than the coefficient value. Further, the counter control unit 323 is reset when all the coefficients included in the quantization matrix are scanned, that is, the count value is set to 0.
 なお、カウント値は、スキャン順に対応する評価値の一例である。カウント値が高いほど、スキャン順に対する評価値は低くなる。したがって、カウント値の低いスキャン順が、符号化対象ブロックに含まれる係数のスキャン順として選択される。 Note that the count value is an example of an evaluation value corresponding to the scan order. The higher the count value, the lower the evaluation value for the scan order. Therefore, the scan order with the low count value is selected as the scan order of the coefficients included in the encoding target block.
 カウント値は、現在値が係数値より大きい場合に増加する。すなわち、カウント値は、設定されたスキャン順で量子化マトリクスをスキャンした際に、前の係数値より今回の係数値が小さい場合に増加する。したがって、設定されたスキャン順で、量子化マトリクスの係数値が小さい係数値から大きい係数値の順で並んでいる場合、カウント値は0となる。 The count value increases when the current value is larger than the coefficient value. That is, when the quantization matrix is scanned in the set scan order, the count value increases when the current coefficient value is smaller than the previous coefficient value. Therefore, the count value is 0 when the coefficient values of the quantization matrix are arranged in order from the small coefficient value to the large coefficient value in the set scan order.
 選択部324は、スキャン順毎に対応するカウント値を比較し、最もカウント値が小さいスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として決定する。カウント値が最小のスキャン順が複数存在する場合は、選択部324は、カウント値が最小の複数のスキャン順から任意のスキャン順を選択することができる。 The selection unit 324 compares the count values corresponding to each scan order, and determines the scan order with the smallest count value as the scan order of the coefficients included in the encoding target block. When there are a plurality of scan orders having the smallest count value, the selection unit 324 can select an arbitrary scan order from the plurality of scan orders having the smallest count value.
 また、選択部324は、量子化マトリクスの変動値が所定の閾値以下の場合、予め定められたデフォルトのスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として選択する。デフォルトのスキャン順は、例えば、ジグザグスキャンである。あるいは、デフォルトのスキャン順は、符号化対象ブロックに応じて変更されてもよい。具体的には、符号化対象ブロックがプログレッシブ画像である場合に、ジグザグスキャンをデフォルトのスキャン順として選択し、フィールドスキャン画像である場合に、縦方向優先スキャンをデフォルトのスキャン順として選択してもよい。 In addition, when the variation value of the quantization matrix is equal to or less than the predetermined threshold, the selection unit 324 selects a predetermined default scan order as the scan order of the coefficients included in the encoding target block. The default scan order is, for example, a zigzag scan. Alternatively, the default scan order may be changed according to the encoding target block. Specifically, when the encoding target block is a progressive image, zigzag scanning is selected as the default scanning order, and when it is a field scanning image, vertical priority scanning is selected as the default scanning order. Good.
 メモリ325は、予め定められた少なくとも1つのスキャン順を保持するためのメモリである。また、メモリ325は、スキャン順に対応するカウント値を保持してもよい。 The memory 325 is a memory for holding at least one predetermined scan order. The memory 325 may hold count values corresponding to the scan order.
 変動値比較部330は、量子化マトリクス取得部110によって取得された量子化マトリクスの変動値を算出する。そして、変動値比較部330は、算出した変動値と、予め定められた閾値とを比較し、比較結果を選択部324に出力する。 The fluctuation value comparison unit 330 calculates the fluctuation value of the quantization matrix acquired by the quantization matrix acquisition unit 110. Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value with a predetermined threshold value, and outputs the comparison result to the selection unit 324.
 変動値は、量子化マトリクスの係数のばらつき具合を示す値である。例えば、変動値は、量子化マトリクスを構成する係数の最大値と最小値との差分である。あるいは、変動値は、量子化マトリクスを構成する係数の分散値でもよい。 The fluctuation value is a value indicating the degree of variation of the coefficient of the quantization matrix. For example, the variation value is a difference between the maximum value and the minimum value of the coefficients constituting the quantization matrix. Alternatively, the variation value may be a variance value of coefficients constituting the quantization matrix.
 なお、カウンタ制御部323は、少なくとも1つのスキャン順のそれぞれに対応するカウンタを備えていてもよい。この場合、符号化対象ブロックに含まれる係数のスキャン順を決定する際に、カウンタをリセットしなくてもよい。また、メモリ325にスキャン順に対応するカウント値を保持させなくてもよいので、メモリ領域を有効に利用することができる。 Note that the counter control unit 323 may include a counter corresponding to each of at least one scan order. In this case, the counter need not be reset when determining the scan order of the coefficients included in the encoding target block. In addition, since the memory 325 does not have to hold the count values corresponding to the scan order, the memory area can be used effectively.
 続いて、符号化制御部300の具体的な動作について、図15を用いて説明する。図15は、本発明の実施の形態3に係るスキャン順の決定方法の一例を示すフローチャートである。 Subsequently, a specific operation of the encoding control unit 300 will be described with reference to FIG. FIG. 15 is a flowchart showing an example of a scan order determination method according to the third embodiment of the present invention.
 まず、変動値比較部330は、量子化マトリクス取得部110によって取得された量子化マトリクスの変動値を算出する(S301)。そして、変動値比較部330は、算出した変動値と予め定められた閾値とを比較する(S302)。 First, the fluctuation value comparison unit 330 calculates the fluctuation value of the quantization matrix acquired by the quantization matrix acquisition unit 110 (S301). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value with a predetermined threshold value (S302).
 変動値が閾値より大きい場合(S302でYes)、カウンタ制御部323は、カウンタをリセットする(S303)。すなわち、カウンタ制御部323は、カウント値を0に設定する。 When the variation value is larger than the threshold value (Yes in S302), the counter control unit 323 resets the counter (S303). That is, the counter control unit 323 sets the count value to 0.
 次に、設定部322は、メモリ325に保持されている少なくとも1つのスキャン順の中から1つのスキャン順を選択し、選択したスキャン順を設定する(S304)。次に、設定部322は、設定したスキャン順で最初の量子化マトリクスの係数値(p)を取得し、現在値(c)として設定する(S305)。 Next, the setting unit 322 selects one scan order from at least one scan order held in the memory 325, and sets the selected scan order (S304). Next, the setting unit 322 acquires the coefficient value (p) of the first quantization matrix in the set scan order and sets it as the current value (c) (S305).
 次に、比較部221は、設定されたスキャン順で量子化マトリクスの係数値(p+1)を取得する(S306)。そして、比較部221は、設定された現在値(c)と、取得した係数値(p+1)とを比較する(S307)。 Next, the comparison unit 221 acquires the coefficient value (p + 1) of the quantization matrix in the set scan order (S306). Then, the comparing unit 221 compares the set current value (c) with the acquired coefficient value (p + 1) (S307).
 現在値(c)が係数値(p+1)より大きい場合(S307でYes)、カウンタ制御部323は、カウンタをインクリメントして、カウント値を1増加させる(S308)。現在値(c)が係数値(p+1)より小さい、又は、等しい場合(S307でNo)、設定部322は、現在値(c)に係数値(p+1)を設定することで、現在値(c)を更新する(S309)。 If the current value (c) is larger than the coefficient value (p + 1) (Yes in S307), the counter control unit 323 increments the counter and increments the count value by 1 (S308). When the current value (c) is smaller than or equal to the coefficient value (p + 1) (No in S307), the setting unit 322 sets the coefficient value (p + 1) to the current value (c), so that the current value (c ) Is updated (S309).
 以上の処理(S306~S309)が、量子化マトリクスの全係数をスキャンするまで繰り返される(S310)。 The above processing (S306 to S309) is repeated until all the coefficients of the quantization matrix are scanned (S310).
 量子化マトリクスの全係数をスキャンした場合(S310でYes)、設定部322は、メモリ325に保持されている少なくとも1つのスキャン順の全てに対してカウント値を取得したか否かを判定する(S311)。カウント値が取得されていないスキャン順が存在する場合(S311でNo)、カウンタがリセットされ、上記の処理(S303~S310)が繰り返される。 When all the coefficients of the quantization matrix have been scanned (Yes in S310), the setting unit 322 determines whether count values have been acquired for all of at least one scan order held in the memory 325 ( S311). If there is a scan order for which the count value has not been acquired (No in S311), the counter is reset and the above processing (S303 to S310) is repeated.
 全てのスキャン順に対してカウント値が取得されている場合(S311でYes)、選択部324は、最小のカウント値に対応するスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として選択する(S312)。 When the count values are acquired for all the scan orders (Yes in S311), the selection unit 324 selects the scan order corresponding to the minimum count value as the scan order of the coefficients included in the encoding target block. (S312).
 なお、カウント値が小さいほど、設定されたスキャン順は、係数値が小さい順でスキャンされる係数が多いスキャン順であることを示している。つまり、カウント値が小さいスキャン順で符号化対象ブロックをスキャンした場合、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができる。 Note that the smaller the count value, the more the scan order that is set is the scan order in which the coefficient is scanned in the order of the smaller coefficient value. That is, when the encoding target block is scanned in the scan order with a small count value, it is possible to increase the probability that the non-zero coefficients are concentrated in the front and the zero coefficients are concentrated in the rear in the scan order.
 変動値が閾値より小さい、又は、等しい場合(S302でNo)、選択部324は、デフォルトのスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として選択する(S313)。デフォルトのスキャン順は、例えば、量子化マトリクスを用いない場合のスキャン順である。具体的には、ジグザグスキャンなどが選択される。 When the variation value is smaller than or equal to the threshold (No in S302), the selection unit 324 selects the default scan order as the scan order of the coefficients included in the encoding target block (S313). The default scan order is, for example, the scan order when the quantization matrix is not used. Specifically, zigzag scanning or the like is selected.
 なお、変動値が閾値より小さい場合、量子化マトリクスを構成する係数は、ばらつきが小さいことを示している。したがって、量子化マトリクスの係数の分布に従ってスキャン順を決定したとしても、スキャン順の違いによる符号化効率の削減効果はあまり期待できない。このため、変動値が閾値より小さい場合、デフォルトのスキャン順を選択することで、スキャン順の決定処理に要する処理量を削減することができる。 Note that when the variation value is smaller than the threshold value, the coefficients constituting the quantization matrix indicate that the variation is small. Therefore, even if the scan order is determined according to the distribution of the coefficients of the quantization matrix, the effect of reducing the encoding efficiency due to the difference in the scan order cannot be expected. For this reason, when the variation value is smaller than the threshold value, it is possible to reduce the processing amount required for the scan order determination process by selecting the default scan order.
 以下では、具体的な量子化マトリクスの例を挙げて、図15に示すスキャン順の決定方法について説明する。 Hereinafter, a method for determining the scan order shown in FIG. 15 will be described with an example of a specific quantization matrix.
 図16は、本発明の実施の形態3に係るスキャン順の決定の一例を示す図である。なお、図16に示す例では、変動値比較部330は、量子化マトリクスを構成する係数の最大値と最小値との差分を変動値として算出する。また、メモリ325には、ジグザグスキャン、横方向優先スキャン及び縦方向優先スキャンの3つのスキャン順が保持されている場合を想定する。 FIG. 16 is a diagram showing an example of determining the scan order according to Embodiment 3 of the present invention. In the example illustrated in FIG. 16, the fluctuation value comparison unit 330 calculates the difference between the maximum value and the minimum value of the coefficients constituting the quantization matrix as the fluctuation value. Further, it is assumed that the memory 325 holds three scan orders: zigzag scan, horizontal priority scan, and vertical priority scan.
 図16(a)に示す量子化マトリクスの場合、変動値比較部330は、量子化マトリクスを構成する係数の最大値“18”と最小値“14”との差分を変動値として算出する(S301)。そして、変動値比較部330は、算出した変動値“4”と閾値とを比較する(S302)。閾値が、例えば、“20”であるとすると、「変動値“4”<閾値“20”」であるので(S302でNo)、選択部324は、デフォルトのスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として選択する(S313)。 In the case of the quantization matrix shown in FIG. 16A, the fluctuation value comparison unit 330 calculates the difference between the maximum value “18” and the minimum value “14” of the coefficients constituting the quantization matrix as a fluctuation value (S301). ). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value “4” with a threshold value (S302). If the threshold is “20”, for example, “variation value“ 4 ”<threshold“ 20 ”” (No in S302), the selection unit 324 sets the default scan order to the encoding target block. The scan order of the included coefficients is selected (S313).
 図16(b)に示す量子化マトリクスの場合、変動値比較部330は、量子化マトリクスを構成する係数の最大値“42”と最小値“6”との差分を変動値として算出する(S301)。そして、変動値比較部330は、算出した変動値“36”と閾値“20”とを比較する(S302)。「変動値“36”>閾値“20”」であるので(S302でYes)、カウンタ制御部323は、カウンタをリセットする(S303)。 In the case of the quantization matrix shown in FIG. 16B, the fluctuation value comparison unit 330 calculates the difference between the maximum value “42” and the minimum value “6” of the coefficients constituting the quantization matrix as a fluctuation value (S301). ). Then, the fluctuation value comparison unit 330 compares the calculated fluctuation value “36” with the threshold value “20” (S302). Since “variation value“ 36 ”> threshold value“ 20 ”” (Yes in S302), the counter control unit 323 resets the counter (S303).
 そして、設定部322は、例えば、ジグザグスキャンを設定する(S304)。次に、設定部322は、設定したスキャン順で、最初の量子化マトリクスの係数値(p)である“6”を取得し、現在値(c)として設定する(S305)。そして、比較部221は、次の係数値(p+1)として“13”を取得し(S306)、現在値(c)と係数値(p+1)とを比較する(S307)。ここでは、「現在値(c)=6<係数値(p+1)=13」であるので(S306でNo)、カウンタはインクリメントされず、設定部322は、現在値(c)に“13”を設定する(S309)。 Then, the setting unit 322 sets, for example, zigzag scanning (S304). Next, the setting unit 322 acquires “6” that is the coefficient value (p) of the first quantization matrix in the set scan order, and sets it as the current value (c) (S305). Then, the comparison unit 221 acquires “13” as the next coefficient value (p + 1) (S306), and compares the current value (c) with the coefficient value (p + 1) (S307). Here, since “current value (c) = 6 <coefficient value (p + 1) = 13” (No in S306), the counter is not incremented, and the setting unit 322 sets “13” to the current value (c). Setting is made (S309).
 以降、ジグザグスキャンで4つ目の係数値である“20”までは、カウンタはインクリメントされない。4つ目の係数の処理が行われた時点で、現在値(c)には“20”が設定されている。 Thereafter, the counter is not incremented until the fourth coefficient value “20” in the zigzag scan. At the time when the fourth coefficient is processed, the current value (c) is set to “20”.
 比較部221は、次の係数値(p+1)として“15”を取得し(S306)、現在値(c)と係数値(p+1)とを比較する(S307)。この場合、「現在値(c)=20>係数値(p+1)=15」であるので(S307でYes)、カウンタ制御部323は、カウント値を1増加させる(S308)。このとき、現在値(c)は“20”のまま更新されない。 The comparison unit 221 acquires “15” as the next coefficient value (p + 1) (S306), and compares the current value (c) with the coefficient value (p + 1) (S307). In this case, since “current value (c) = 20> coefficient value (p + 1) = 15” (Yes in S307), the counter control unit 323 increments the count value by 1 (S308). At this time, the current value (c) remains “20” and is not updated.
 以降、ジグザグスキャンで最後の係数値である“42”までは、カウンタはインクリメントされないので、最終的にカウント値は“1”となる。すなわち、ジグザグスキャンに対するカウント値は“1”である。このカウント値は、例えば、メモリ325に保持される。 Thereafter, the counter is not incremented until the last coefficient value “42” in the zigzag scan, so the count value finally becomes “1”. That is, the count value for the zigzag scan is “1”. This count value is held in the memory 325, for example.
 次に、設定部322は、例えば、横方向優先スキャンを設定する(S304)。横方向設定スキャンでは、4つ目の係数値である“28”までは、カウンタはインクリメントされない。4つ目の係数の処理が行われた時点で、現在値(c)には“28”が設定されている。 Next, the setting unit 322 sets, for example, a horizontal direction priority scan (S304). In the horizontal direction setting scan, the counter is not incremented up to the fourth coefficient value “28”. At the time when the fourth coefficient is processed, “28” is set in the current value (c).
 比較部221は、次の係数値(p+1)として“13”を取得し(S306)、現在値(c)と係数値(p+1)とを比較する(S307)。この場合、「現在値(c)=28>係数値(p+1)=13」であるので(S307でYes)、カウンタ制御部323は、カウント値を1増加させる(S308)。このとき、現在値(c)は“28”のまま更新されない。 The comparison unit 221 acquires “13” as the next coefficient value (p + 1) (S306), and compares the current value (c) with the coefficient value (p + 1) (S307). In this case, since “current value (c) = 28> coefficient value (p + 1) = 13” (Yes in S307), the counter control unit 323 increments the count value by 1 (S308). At this time, the current value (c) remains “28” and is not updated.
 以降、横方向優先スキャンでは、7つ目の係数値が処理されるまで、カウンタはインクリメントされる。7つ目の係数の処理が行われた時点で、現在値(c)には“28”が設定されたままであり、カウント値は“3”となっている。 Thereafter, in the horizontal priority scan, the counter is incremented until the seventh coefficient value is processed. At the time when the seventh coefficient is processed, “28” remains set in the current value (c), and the count value is “3”.
 比較部221は、次の係数値(p+1)として“32”を取得し(S306)、現在値(c)と係数値(p+1)とを比較する(S307)。この場合、「現在値(c)=28<係数値(p+1)=32」であるので(S307での)、カウンタはインクリメントされず、設定部322は、現在値(c)に“32”を設定する(S309)。 The comparison unit 221 acquires “32” as the next coefficient value (p + 1) (S306), and compares the current value (c) with the coefficient value (p + 1) (S307). In this case, since “current value (c) = 28 <coefficient value (p + 1) = 32” (in S307), the counter is not incremented, and the setting unit 322 sets “32” to the current value (c). Setting is made (S309).
 以降、同様に処理を進めることで、横方向優先スキャンで最後の係数値である“42”を処理した時点で、カウント値は“6”となる。すなわち、横方向優先スキャンに対するカウント値は“6”となる。 Thereafter, by proceeding in the same manner, the count value becomes “6” when the last coefficient value “42” is processed in the horizontal priority scan. That is, the count value for the horizontal direction priority scan is “6”.
 同様に、縦方向優先スキャンについても、図15に示すフローチャートに沿って処理を進めることで、縦方向優先スキャンに対するカウント値は“6”となる。 Similarly, with regard to the vertical direction priority scan, the count value for the vertical direction priority scan becomes “6” by proceeding along the flowchart shown in FIG.
 上記の処理により、全てのスキャン順について、カウント値が取得されたので(S311でYes)、選択部324は、最小のカウント値に対応するスキャン順を選択する(S312)。図16(b)の例では、ジグザグスキャンのカウント値は“1”、横方向優先スキャンのカウント値は“6”、縦方向優先スキャンのカウント値は“6”であるので、選択部324は、ジグザグスキャンを、符号化対象ブロックに含まれる係数のスキャン順として決定する。 Since the count values have been acquired for all scan orders by the above processing (Yes in S311), the selection unit 324 selects the scan order corresponding to the minimum count value (S312). In the example of FIG. 16B, the count value of the zigzag scan is “1”, the count value of the horizontal direction priority scan is “6”, and the count value of the vertical direction priority scan is “6”. The zigzag scan is determined as the scan order of the coefficients included in the encoding target block.
 図16(c)の例でも同様に処理を行うことで、ジグザグスキャンのカウント値は“5”、横方向優先スキャンのカウント値は“8”、縦方向優先スキャンのカウント値は“0”となる。したがって、選択部324は、縦方向優先スキャンを、符号化対象ブロックに含まれる係数のスキャン順として決定する。 By performing the same processing in the example of FIG. 16C, the count value of the zigzag scan is “5”, the count value of the horizontal priority scan is “8”, and the count value of the vertical priority scan is “0”. Become. Therefore, the selection unit 324 determines the vertical direction priority scan as the scan order of the coefficients included in the encoding target block.
 以上のように、本発明の実施の形態3に係る画像符号化装置では、予め定められた少なくとも1つのスキャン順から、量子化に用いた量子化マトリクスに対応するスキャン順を選択することで、スキャン順を決定する。これにより、実施の形態1及び2と同様に、スキャン順で前の方に非ゼロ係数が集中し、後の方にゼロ係数が集中する確率を高めることができ、符号化効率を高めることができる。 As described above, in the image encoding device according to Embodiment 3 of the present invention, by selecting a scan order corresponding to the quantization matrix used for quantization from at least one predetermined scan order, Determine the scan order. Thereby, as in the first and second embodiments, it is possible to increase the probability that non-zero coefficients are concentrated on the front side in the scanning order and zero coefficients are concentrated on the back side, thereby improving the coding efficiency. it can.
 なお、本実施の形態では、図15に示すように、全てのスキャン順についてカウント値を取得するまで、処理を行う例について示したが、取得したカウント値が所定の閾値以下であれば、当該カウント値に対応するスキャン順を、符号化対象ブロックに含まれる係数のスキャン順として決定してもよい。これにより、処理量を削減することができ、短期間で符号化対象ブロックに含まれる係数のスキャン順を決定することができる。 In the present embodiment, as shown in FIG. 15, an example is shown in which processing is performed until count values are acquired for all scan orders. However, if the acquired count value is equal to or less than a predetermined threshold value, The scan order corresponding to the count value may be determined as the scan order of the coefficients included in the encoding target block. Thereby, the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
 また、本実施の形態では、図15に示すように、量子化マトリクスの全係数をスキャンするまで処理を繰り返す例について説明したが、量子化マトリクスを構成する係数の一部について処理を行い、残りの係数のスキャン順は初期スキャン順として決定してもよい。例えば、量子化マトリクスの係数のうち、高周波成分の係数は、低周波成分に比べて係数値が大きい場合が多いので、符号化対象ブロックの対応する量子化後の係数は、ゼロ係数となる確率が高い。 Further, in the present embodiment, as illustrated in FIG. 15, the example in which the processing is repeated until all the coefficients of the quantization matrix are scanned has been described. However, the processing is performed on some of the coefficients constituting the quantization matrix, and the rest The scan order of these coefficients may be determined as the initial scan order. For example, among the coefficients of the quantization matrix, the coefficient of the high frequency component often has a larger coefficient value than the low frequency component, and therefore the probability that the corresponding quantized coefficient of the block to be encoded is a zero coefficient. Is expensive.
 したがって、量子化後の係数が非ゼロ係数になる可能性が高い低周波成分のみ、量子化マトリクスの係数の分布に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定してもよい。これにより、処理量を削減することができ、短期間で符号化対象ブロックに含まれる係数のスキャン順を決定することができる。 Therefore, the scan order of the coefficients included in the block to be encoded may be determined based on the coefficient distribution of the quantization matrix only for low-frequency components that are likely to be non-zero coefficients after quantization. . Thereby, the processing amount can be reduced, and the scan order of the coefficients included in the encoding target block can be determined in a short period of time.
 続いて、本発明の実施の形態3に係る画像復号装置の一例について説明する。 Subsequently, an example of an image decoding apparatus according to Embodiment 3 of the present invention will be described.
 本発明の実施の形態3に係る画像復号装置は、実施の形態1に係る画像復号装置の構成は、実施の形態1に係る図7の画像復号装置2000とほぼ同様であるので、同じ点については説明を省略し、異なる点を中心に説明する。本発明の実施の形態3に係る画像復号装置は、実施の形態1に係る画像復号装置2000と比較して、復号制御部2200の代わりに、図17に示す復号制御部301を備える点が異なっている。 Since the image decoding apparatus according to Embodiment 3 of the present invention has substantially the same configuration as the image decoding apparatus 2000 of FIG. 7 according to Embodiment 1, the configuration of the image decoding apparatus according to Embodiment 1 is the same. Will be omitted, and different points will be mainly described. The image decoding apparatus according to Embodiment 3 of the present invention is different from the image decoding apparatus 2000 according to Embodiment 1 in that a decoding control unit 301 shown in FIG. 17 is provided instead of the decoding control unit 2200. ing.
 図17に示すように、復号制御部301の構成は、図14に示す符号化制御部300と同じであるので、以下では説明を省略する。 17, the configuration of the decoding control unit 301 is the same as that of the coding control unit 300 illustrated in FIG. 14, and thus description thereof is omitted below.
 以上のように、本発明の実施の形態3に係る画像復号装置は、予め定められた少なくとも1つのスキャン順から、逆量子化に用いる量子化マトリクスに対応するスキャン順を選択することで、スキャン順を決定する。 As described above, the image decoding apparatus according to Embodiment 3 of the present invention selects a scan order corresponding to a quantization matrix used for inverse quantization from at least one predetermined scan order. Determine the order.
 これにより、本発明の実施の形態2に係る画像復号装置は、量子化マトリクスに基づいて決定されたスキャン順で符号化対象ブロックを符号化することで生成された符号化ストリームを、正しく復号することができる。符号化の際には、量子化マトリクスの値によって符号化対象ブロックの係数位置毎に、非ゼロ係数及びゼロ係数となる確率は変わるので、スキャン順を量子化マトリクスに基づいて決定することで、符号化効率をさらに向上させることができる。 Thereby, the image decoding apparatus according to Embodiment 2 of the present invention correctly decodes the encoded stream generated by encoding the encoding target block in the scan order determined based on the quantization matrix. be able to. At the time of encoding, since the probability of becoming a non-zero coefficient and a zero coefficient varies depending on the coefficient position of the encoding target block depending on the value of the quantization matrix, by determining the scan order based on the quantization matrix, Encoding efficiency can be further improved.
 以上、本発明に係る画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法について、実施の形態に基づいて説明したが、本発明は、上記及び後述する実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As described above, the image encoding device, the image decoding device, the image encoding method, and the image decoding method according to the present invention have been described based on the embodiments. However, the present invention is limited to the embodiments described above and below. It is not a thing. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to the said embodiment, and the form constructed | assembled combining the component in a different embodiment is also contained in the scope of the present invention. .
 例えば、上記の各実施の形態では、量子化マトリクスに基づいて符号化対象ブロックに含まれる係数のスキャン順を決定したが、他の量子化制御用のパラメータを用いてもよい。他の量子化制御用のパラメータには、例えば、量子化オフセット、量子化パラメータ、及び、量子化マトリクスインデックスがある。 For example, in the above embodiments, the scan order of the coefficients included in the block to be encoded is determined based on the quantization matrix, but other quantization control parameters may be used. Other quantization control parameters include, for example, a quantization offset, a quantization parameter, and a quantization matrix index.
 例えば、量子化制御用のパラメータに基づいて算出される量子化幅に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定してもよい。具体的には、量子化マトリクス及び量子化オフセットによって導出される量子化幅に基づいて、符号化対象ブロックに含まれる係数のスキャン順を決定してもよい。あるいは、量子化後の符号化対象ブロックの係数値(量子化値)に基づいてスキャン順を決定してもよい。 For example, the scan order of the coefficients included in the encoding target block may be determined based on the quantization width calculated based on the quantization control parameter. Specifically, the scan order of the coefficients included in the encoding target block may be determined based on the quantization width derived from the quantization matrix and the quantization offset. Alternatively, the scan order may be determined based on the coefficient value (quantization value) of the encoding target block after quantization.
 また、複数の量子化マトリクスが存在する場合、量子化マトリクスインデックスが各量子化マトリクスに対応付けられている。なお、量子化マトリクスインデックスは、ブロック毎にどの量子化マトリクスを用いるかを示す識別子である。 Also, when there are a plurality of quantization matrices, a quantization matrix index is associated with each quantization matrix. The quantization matrix index is an identifier indicating which quantization matrix is used for each block.
 このとき、量子化マトリクスに基づいたスキャン順を予め導出し、量子化マトリクスインデックスに対応付けて、導出したスキャン順をメモリなどに格納しておく。これにより、ブロック毎に量子化マトリクスインデックスを参照することで、スキャン順を取得することができる。 At this time, the scan order based on the quantization matrix is derived in advance, and the derived scan order is stored in a memory or the like in association with the quantization matrix index. Thus, the scan order can be acquired by referring to the quantization matrix index for each block.
 また、スキャン順を決定する符号化対象ブロック(復号対象ブロック)は、図18に示すように階層化されていてもよい。図18は、階層化された処理単位(多階層ブロック構造)を説明するための説明図である。 Also, the encoding target block (decoding target block) for determining the scan order may be hierarchized as shown in FIG. FIG. 18 is an explanatory diagram for explaining a hierarchized processing unit (multi-hierarchical block structure).
 符号化処理部1100は、動画像を処理単位毎に符号化し、復号処理部2100は、符号化ストリームを処理単位毎に復号する。この処理単位は、複数の小さな処理単位に分割され、その小さな処理単位がさらに複数のより小さな処理単位に分割されるように、階層化されている。なお、処理単位が小さいほど、その処理単位がある階層は深く、下位にあり、その階層を示す値は大きい。逆に、処理単位が大きいほど、その処理単位がある階層は浅く、上位にあり、その階層を示す値は小さい。 The encoding processing unit 1100 encodes a moving image for each processing unit, and the decoding processing unit 2100 decodes the encoded stream for each processing unit. This processing unit is divided into a plurality of small processing units, and the small processing unit is further hierarchized so as to be further divided into a plurality of smaller processing units. Note that the smaller the processing unit is, the deeper the hierarchy in which the processing unit is and the lower the value, and the larger the value indicating the hierarchy. Conversely, the larger the processing unit is, the shallower the hierarchy in which the processing unit is, the higher the hierarchy, and the smaller the value indicating the hierarchy.
 処理単位には、符号化単位(CU)と予測単位(PU)と変換単位(TU)とがある。CUは、最大128×128画素からなるブロックであり、従来のマクロブロックに相当する単位である。PUは、画面間予測の基本単位である。TUは、直交変換の基本単位であり、そのTUのサイズはPUと同じか、PUよりも一階層小さいサイズである。CUは、例えば4つのサブCUに分割され、そのうちの1つのサブCUは、そのサブCUと同じサイズのPU及びTUを含む(この場合、PUとTUは互いに重なった状態にある)。例えば、そのPUはさらに4つのサブPUに分割され、TUもさらに4つのサブTUに分割される。 The processing unit includes a coding unit (CU), a prediction unit (PU), and a transform unit (TU). A CU is a block composed of a maximum of 128 × 128 pixels, and is a unit corresponding to a conventional macroblock. PU is a basic unit of inter-screen prediction. The TU is a basic unit of orthogonal transformation, and the size of the TU is the same as the PU or a size smaller than the PU. The CU is divided into, for example, four sub CUs, and one of the sub CUs includes a PU and a TU having the same size as the sub CU (in this case, the PU and the TU overlap each other). For example, the PU is further divided into four sub-PUs, and the TU is further divided into four sub-TUs.
 具体的には、以下のとおりである。 Specifically, it is as follows.
 ピクチャはスライスに分割される。スライスは最大符号化単位のシーケンスである。最大符号化単位の位置は、最大符号化単位アドレスlcuAddrによって示される。 The picture is divided into slices. A slice is a sequence of maximum coding units. The position of the maximum coding unit is indicated by the maximum coding unit address lcuAddr.
 最大符号化単位を含むそれぞれの符号化単位は、4つの符号化単位に分割される。その結果、符号化単位の大きさの四分木分割が構成される。符号化単位の位置は、最大符号化単位の左上端のサンプル(画素または係数)を起点とした符号化単位インデックスcuIdxによって示される。 Each coding unit including the maximum coding unit is divided into four coding units. As a result, quadtree partitioning with the size of the coding unit is configured. The position of the coding unit is indicated by a coding unit index cuIdx starting from the sample (pixel or coefficient) at the upper left corner of the maximum coding unit.
 符号化単位の分割が許可されていない場合、その符号化単位は予測単位として扱われる。符号化単位と同様に、予測単位の位置は、最大符号化単位の左上端のサンプルを起点とした予測単位インデックスpuIdxによって示される。 If the coding unit is not allowed to be divided, the coding unit is treated as a prediction unit. Similar to the coding unit, the position of the prediction unit is indicated by a prediction unit index puIdx starting from the sample at the upper left end of the maximum coding unit.
 予測単位は複数のパーティション(予測単位パーティションまたはサブPU)を含んでいてもよい。予測単位パーティションは、予測単位の左上端のサンプルを起点とした予測単位パーティションインデックスpuPartIdxによって示される。 The prediction unit may include a plurality of partitions (prediction unit partition or sub PU). The prediction unit partition is indicated by a prediction unit partition index puPartIdx starting from the upper left sample of the prediction unit.
 予測単位は複数の変換単位を含んでいてもよい。符号化単位と同様に、変換単位は4つの小さいサイズの変換単位(サブ変換単位)に分割されてもよい。このことは、残差信号の四分木分割を許可する。変換単位の位置は、予測単位の左上端のサンプルを起点とした変換単位インデックスtuIdxによって示される。 The prediction unit may include a plurality of conversion units. Similar to the encoding unit, the conversion unit may be divided into four small size conversion units (sub-conversion units). This allows quadtree partitioning of the residual signal. The position of the conversion unit is indicated by a conversion unit index tuIdx starting from the upper left sample of the prediction unit.
 ここで、各処理単位の定義は以下のとおりである。 Here, the definition of each processing unit is as follows.
 CTB(coding tree block):正方形領域の四分木分割を特定するための基本単位。CTBは正方形の多様なサイズを有する。 CTB (coding tree block): A basic unit for specifying quadtree partitioning of a square area. CTB has various sizes of squares.
 LCTB(largest coding tree block):スライスにおいて許可される最も大きいサイズのCTB。スライスは重複しない複数のLCTBからなる。 LCTB (largest coding tree block): the largest size CTB allowed in a slice. A slice is composed of a plurality of LCTBs that do not overlap.
 SCTB(smallest coding tree block):スライスにおいて許可される最も小さいサイズのCTB。SCTBをより小さいCTBに分割することは許可されていない。 SCTB (smallest coding tree block): CTB of the smallest size allowed in a slice. Splitting SCTB into smaller CTBs is not allowed.
 PU(prediction unit):予測処理を特定するための基本単位。PUのサイズは、分割が許可されていないCUのサイズと同じである。CUでは、CUを4つの正方形領域に分割することが許可されているのに対して、PUでは、PUを任意の形状の複数のパーティションに分割することができる。 PU (prediction unit): A basic unit for specifying prediction processing. The size of the PU is the same as the size of the CU that is not allowed to be divided. In the CU, the CU is allowed to be divided into four square areas, whereas in the PU, the PU can be divided into a plurality of partitions having an arbitrary shape.
 TU(transform unit):変換および量子化を特定するための基本単位。 TU (transform unit): A basic unit for specifying transformation and quantization.
 CU(coding unit):CTBと同一。 CU (coding unit): Same as CTB.
 LCU(largest coding unit):最も大きいCTBと同一。 LCU (large coding unit): Same as the largest CTB.
 SCU(smallest coding unit):最も小さいCTBと同一。 SCU (Smallest Coding Unit): Same as the smallest CTB.
 このような階層化された処理単位(ブロック)毎に量子化マトリクスが対応付けられており、この量子化マトリクスに基づいて、対象ブロックに含まれる係数のスキャン順を決定してもよい。 A quantization matrix is associated with each hierarchical processing unit (block), and the scan order of the coefficients included in the target block may be determined based on this quantization matrix.
 なお、上記の及び後述する実施の形態で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 It should be noted that all the numbers used in the embodiments described above and below will be described in order to specifically describe the present invention, and the present invention is not limited to the illustrated numbers. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 さらに、上記の及び後述する実施の形態は、ハードウェア及び/又はソフトウェアを用いて構成されるが、ハードウェアを用いる構成は、ソフトウェアを用いても構成可能であり、ソフトウェアを用いる構成は、ハードウェアを用いても構成可能である。 Further, the embodiments described above and below will be configured using hardware and / or software, but the configuration using hardware can also be configured using software, and the configuration using software is hardware. It can also be configured using hardware.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 4)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図19は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 19 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. The communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 The content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図19のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 19 and may be connected by combining any of the elements. In addition, each device may be directly connected to the telephone network ex104 without going through the base stations ex106 to ex110 which are fixed wireless stations. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. In addition, the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) method, a CDMA (Code Division Multiple Access) method, a W-CDMA (Wideband-Code Division MultipleL), or a W-CDMA (Wideband-Code Division MultipleT method). It may be a system, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, content that is shot by the user using the camera ex113 (for example, music live video) is encoded as described in the above embodiments (that is, the image encoding of the present invention). Function as a device) and transmit to the streaming server ex103. On the other hand, the streaming server ex103 streams the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, a game machine ex115, and the like that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the encoded processing of the captured data may be performed by the camera ex113, the streaming server ex103 that performs the data transmission processing, or may be performed in a shared manner. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in a shared manner. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 These encoding / decoding processes are generally performed by the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording media (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding / decoding processing is performed using the software May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Also, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. In this way, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and even a user who does not have special rights or facilities can realize personal broadcasting.
 なお、コンテンツ供給システムex100の例に限らず、図20に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 20, the digital broadcasting system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcasting station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, encodes a video signal on the recording medium ex215, and in some cases multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus shown in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Further, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図21は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 21 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture coding method described in the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / separating unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes each of the audio data and the video data, or encodes the respective information. The audio signal processing unit ex304 and the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). A signal processing unit ex306 including a speaker ex307 that outputs a decoded audio signal, and an output unit ex309 including a display unit ex308 such as a display that displays the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that controls each unit in an integrated manner, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. The recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 or the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. When outputting, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or writes it to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and encodes an audio signal with the audio signal processing unit ex304 based on the control of the control unit ex310, and converts the video signal with the video signal processing unit ex305. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320 and ex321 so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration that can perform the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 When reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218. The reader / recorder ex218 may be shared with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図22に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 22 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to the optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disc to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary. To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot, but it may be configured to perform higher-density recording using near-field light.
 図23に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 23 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording the user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner circumference or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図21に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. For example, the configuration of the car navigation ex211 may include a configuration in which a GPS receiving unit is added to the configuration illustrated in FIG. 21, and the same may be applied to the computer ex111, the mobile phone ex114, and the like.
 図24Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 24A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of taking video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot portion ex364 is provided.
 さらに、携帯電話ex114の構成例について、図24Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 24B. The cellular phone ex114 has a power supply circuit ex361, an operation input control unit ex362, and a video signal processing unit ex355 for a main control unit ex360 that comprehensively controls each part of the main body including the display unit ex358 and the operation key unit ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The mobile phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. This is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350. Further, the mobile phone ex114 amplifies the received data received through the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing in the modulation / demodulation unit ex352, and performs voice signal processing unit After converting to an analog audio signal at ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . When receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still image, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in each of the above embodiments. Encode (that is, function as an image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and sends the encoded audio data to the multiplexing / demultiplexing unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted through the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio output unit ex357 outputs the audio.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmitting terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted. However, in addition to audio data, data in which character data or the like related to video is multiplexed It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 5)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図25は、多重化データの構成を示す図である。図25に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 25 is a diagram showing a structure of multiplexed data. As shown in FIG. 25, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図26は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 26 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図27は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図27における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図27の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 27 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 27 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 27, a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図28は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図28下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 28 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 28, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図29はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 29 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図30に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 The multiplexed data information file is management information of multiplexed data as shown in FIG. 30, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図30に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information is composed of a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図31に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 31, the attribute information for each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図32に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 32 shows the steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in each of the above embodiments, in step exS102, each of the above embodiments. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or the video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, VC-1, etc., in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図33に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 6)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 33 shows the configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 starts up to an operable state by supplying power to each unit when the power supply is in an on state.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 uses the AV I / O ex509 to perform the microphone ex117 and the camera ex113 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 has been described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態7)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 7)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図34は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding apparatuses such as the television ex300 and the LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency according to the standard. FIG. 34 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図33のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図33の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態5で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態5で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図36のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that conforms to the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for identification of video data, for example, the identification information described in the fifth embodiment may be used. The identification information is not limited to that described in the fifth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to this look-up table.
 図35は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 35 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives a signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set to be low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving picture encoding method or apparatus described in the above embodiments, the voltage applied to the LSI ex500 or the apparatus including the LSI ex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it may be considered to set the voltage applied to the LSI ex500 or the device including the LSI ex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is enough processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is enough processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when a battery is used to drive the LSI ex500 or the device including the LSI ex500, the life of the battery can be extended along with power saving.
 (実施の形態8)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 8)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図37Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、スキャン順の決定に特徴を有していることから、例えば、スキャン順の決定については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 37A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing contents, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents unique to the present invention that do not correspond to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention has a feature in determining the scan order, for example, a dedicated decoding processing unit ex901 is used for determination of the scan order, and other entropy coding, inverse quantization, deblocking, and the like. -It is conceivable to share the decoding processing unit for any of the filtering, motion compensation, or all processing. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図37Bのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 37B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content specific to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Further, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 本発明は、符号化効率を十分に向上させることができるという効果を奏し、例えば、蓄積、伝送、通信など様々な用途に利用可能である。例えば、本発明は、テレビ、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ等の高解像度の情報表示機器や撮像機器に利用可能であり、利用価値が高い。 The present invention has an effect that the encoding efficiency can be sufficiently improved, and can be used for various purposes such as storage, transmission, and communication. For example, the present invention can be used for high-resolution information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, mobile phones, digital cameras, and digital video cameras, and has high utility value.
 110 量子化マトリクス取得部
 120、220、320 スキャン順決定部
 200、300、1200 符号化制御部
 201、301、2200 復号制御部
 221 比較部
 222、322 設定部
 223 順序決定部
 323 カウンタ制御部
 324 選択部
 325、1109、2106 メモリ
 330 変動値比較部
 1000 画像符号化装置
 1101 減算器
 1102 直交変換部
 1103 量子化部
 1104 エントロピー符号化部
 1105、2102 逆量子化部
 1106、2103 逆直交変換部
 1107、2104 加算器
 1108、2105 デブロッキングフィルタ
 1110、2107 面内予測部
 1111、2108 動き補償部
 1112 動き検出部
 1113、2109 スイッチ
 2000 画像復号装置
 2101 エントロピー復号部
 2100 復号処理部
110 Quantization matrix acquisition unit 120, 220, 320 Scan order determination unit 200, 300, 1200 Coding control unit 201, 301, 2200 Decoding control unit 221 Comparison unit 222, 322 Setting unit 223 Order determination unit 323 Counter control unit 324 Selection Units 325, 1109, 2106 Memory 330 Fluctuation value comparison unit 1000 Image coding device 1101 Subtractor 1102 Orthogonal transformation unit 1103 Quantization unit 1104 Entropy coding unit 1105, 2102 Inverse quantization unit 1106, 2103 Inverse orthogonal transformation unit 1107, 2104 Adder 1108, 2105 Deblocking filter 1110, 2107 In- plane prediction unit 1111, 2108 Motion compensation unit 1112, Motion detection unit 1113, 2109 Switch 2000 Image decoding device 2101 Entropy decoding unit 2100 Decoding processing unit

Claims (12)

  1.  画像データを符号化する画像符号化方法であって、
     量子化マトリクスを用いて前記画像データの符号化対象ブロックを量子化し、
     前記量子化マトリクスに基づいて、量子化された符号化対象ブロックに含まれる係数のスキャン順を決定し、
     決定したスキャン順で、前記量子化された符号化対象ブロックを符号化する
     画像符号化方法。
    An image encoding method for encoding image data, comprising:
    Quantize the encoding target block of the image data using a quantization matrix,
    Based on the quantization matrix, determine the scan order of the coefficients included in the quantized encoding target block,
    An image encoding method for encoding the quantized block to be encoded in the determined scan order.
  2.  前記スキャン順の決定では、予め定められた少なくとも1つのスキャン順から、前記符号化対象ブロックの量子化に用いた量子化マトリクスに対応するスキャン順を選択する
     請求項1記載の画像符号化方法。
    The image encoding method according to claim 1, wherein in determining the scan order, a scan order corresponding to a quantization matrix used for quantization of the encoding target block is selected from at least one predetermined scan order.
  3.  前記スキャン順の決定では、前記量子化マトリクスに含まれる係数の値が小さい係数位置から値が大きい係数位置の順、すなわち細かく量子化される位置から、粗く量子化される位置の順でスキャンする順序を、前記符号化対象ブロックに含まれる係数のスキャン順として決定する
     請求項1記載の画像符号化方法。
    In the determination of the scan order, scanning is performed in the order of the coefficient position in which the value of the coefficient included in the quantization matrix is small to the coefficient position in which the value is large, that is, in the order of coarse quantization from the finely quantized position. The image encoding method according to claim 1, wherein the order is determined as a scan order of coefficients included in the encoding target block.
  4.  前記スキャン順の決定では、さらに、決定したスキャン順をメモリに格納する
     請求項3記載の画像符号化方法。
    The image encoding method according to claim 3, wherein the determination of the scan order further stores the determined scan order in a memory.
  5.  前記スキャン順の決定では、前記量子化マトリクスに基づいて算出される量子化幅に基づいて、前記符号化対象ブロックに含まれる係数のスキャン順を決定する
     請求項1記載の画像符号化方法。
    The image encoding method according to claim 1, wherein in determining the scan order, a scan order of coefficients included in the encoding target block is determined based on a quantization width calculated based on the quantization matrix.
  6.  符号化ストリームを復号する画像復号方法であって、
     量子化マトリクスに基づいて、前記符号化ストリームの復号対象ブロックに含まれる係数のスキャン順を決定し、
     決定したスキャン順で前記復号対象ブロックを復号し、
     前記量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する
     画像復号方法。
    An image decoding method for decoding an encoded stream,
    Based on the quantization matrix, determine the scan order of the coefficients included in the decoding target block of the encoded stream,
    Decoding the decoding target block in the determined scan order;
    An image decoding method, wherein the decoded block to be decoded is inversely quantized using the quantization matrix.
  7.  前記スキャン順の決定では、予め定められた少なくとも1つのスキャン順から、前記復号対象ブロックの量子化に用いる量子化マトリクスに対応するスキャン順を選択する
     請求項6記載の画像復号方法。
    The image decoding method according to claim 6, wherein in determining the scan order, a scan order corresponding to a quantization matrix used for quantization of the decoding target block is selected from at least one predetermined scan order.
  8.  前記スキャン順の決定では、前記量子化マトリクスを構成する係数の値が小さい係数位置から値が大きい係数位置の順、すなわち細かく量子化される位置から、粗く量子化される位置の順でスキャンする順序を、前記復号対象ブロックに含まれる係数のスキャン順として決定する
     請求項6記載の画像復号方法。
    In the determination of the scan order, scanning is performed in the order of the coefficient position having the smallest value from the coefficient position constituting the quantization matrix to the coefficient position having the largest value, that is, from the finely quantized position to the coarsely quantized position. The image decoding method according to claim 6, wherein the order is determined as a scan order of coefficients included in the decoding target block.
  9.  前記スキャン順の決定では、さらに、決定したスキャン順をメモリに格納する
     請求項8記載の画像復号方法。
    The image decoding method according to claim 8, wherein the determination of the scan order further stores the determined scan order in a memory.
  10.  前記スキャン順の決定では、前記量子化マトリクスに基づいて算出される量子化幅に基づいて、前記復号対象ブロックに含まれる係数のスキャン順を決定する
     請求項6記載の画像復号方法。
    The image decoding method according to claim 6, wherein in determining the scan order, a scan order of coefficients included in the decoding target block is determined based on a quantization width calculated based on the quantization matrix.
  11.  画像データを符号化する画像符号化装置であって、
     量子化マトリクスを用いて前記画像データの符号化対象ブロックを量子化する量子化部と、
     前記量子化マトリクスに基づいて、量子化された符号化対象ブロックに含まれる係数のスキャン順を決定する符号化制御部と、
     決定したスキャン順で、前記量子化された符号化対象ブロックを符号化する符号化部とを備える
     画像符号化装置。
    An image encoding device for encoding image data,
    A quantization unit that quantizes the encoding target block of the image data using a quantization matrix;
    An encoding control unit that determines a scan order of coefficients included in the quantized encoding target block based on the quantization matrix;
    An image encoding apparatus comprising: an encoding unit that encodes the quantized block to be encoded in the determined scan order.
  12.  符号化ストリームを復号する画像復号装置であって、
     量子化マトリクスに基づいて、前記符号化ストリームの復号対象ブロックに含まれる係数のスキャン順を決定する復号制御部と、
     決定したスキャン順で前記復号対象ブロックを復号する復号部と、
     前記量子化マトリクスを用いて、復号された復号対象ブロックを逆量子化する逆量子化部とを備える
     画像復号装置。
    An image decoding device for decoding an encoded stream,
    A decoding control unit that determines a scan order of coefficients included in a decoding target block of the encoded stream based on a quantization matrix;
    A decoding unit for decoding the decoding target block in the determined scan order;
    An image decoding apparatus comprising: an inverse quantization unit that inversely quantizes a decoded block to be decoded using the quantization matrix.
PCT/JP2011/007137 2011-01-12 2011-12-20 Image encoding method, image decoding method, image encoding device, and image decoding device WO2012095930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161431922P 2011-01-12 2011-01-12
US61/431,922 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012095930A1 true WO2012095930A1 (en) 2012-07-19

Family

ID=46506857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007137 WO2012095930A1 (en) 2011-01-12 2011-12-20 Image encoding method, image decoding method, image encoding device, and image decoding device

Country Status (1)

Country Link
WO (1) WO2012095930A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219421A (en) * 2002-01-23 2003-07-31 Sony Corp Device and method for encoding/decoding image information, and program thereof
JP2006100993A (en) * 2004-09-28 2006-04-13 Mitsubishi Electric Corp Image coding device and coding parameter calculation program
WO2010146772A1 (en) * 2009-06-19 2010-12-23 三菱電機株式会社 Image encoding device, image decoding device, image encoding method, and image decoding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219421A (en) * 2002-01-23 2003-07-31 Sony Corp Device and method for encoding/decoding image information, and program thereof
JP2006100993A (en) * 2004-09-28 2006-04-13 Mitsubishi Electric Corp Image coding device and coding parameter calculation program
WO2010146772A1 (en) * 2009-06-19 2010-12-23 三菱電機株式会社 Image encoding device, image decoding device, image encoding method, and image decoding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG LI ET AL.: "Predictive Adaptive Transform Coefficients Scan Ordering for Inter-Frame Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-A020(RL), 1ST MEETING, April 2010 (2010-04-01), DRESDEN, DE, pages 1 - 4 *

Similar Documents

Publication Publication Date Title
JP6222589B2 (en) Decoding method and decoding apparatus
WO2012042893A1 (en) Image decoding method, image encoding method, image decoding device, image encoding device, programme, and integrated circuit
JP5559918B2 (en) Image decoding apparatus, system, and image viewing method
CA2825767C (en) Image coding method, image decoding method, image coding apparatus and image decoding apparatus
JP6327435B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP2017060179A (en) Decoding method, decoder and program
WO2013114860A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image encoding/decoding device
JP2018011332A (en) Encoding/decoding device
JP6004375B2 (en) Image encoding method and image decoding method
JP6273580B2 (en) Encoding / decoding device
JP6489337B2 (en) Arithmetic decoding method and arithmetic coding method
WO2012090504A1 (en) Methods and apparatuses for coding and decoding video stream
EP2884747B1 (en) Image decoding method,image decoding device
WO2015177966A1 (en) Image encoding method and image encoding device
JP5873029B2 (en) Video encoding method and video decoding method
WO2011132400A1 (en) Image coding method and image decoding method
WO2013014884A1 (en) Moving image encoding method, moving image encoding device, moving image decoding method, and moving image decoding device
WO2012096156A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2012095930A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012077349A1 (en) Image encoding method and image decoding method
WO2012120876A1 (en) Image decoding method, image coding method, image decoder, and image encoder
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method
WO2012086166A1 (en) Image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP