WO2012075824A1 - 汽化装置以及汽化方法 - Google Patents

汽化装置以及汽化方法 Download PDF

Info

Publication number
WO2012075824A1
WO2012075824A1 PCT/CN2011/078065 CN2011078065W WO2012075824A1 WO 2012075824 A1 WO2012075824 A1 WO 2012075824A1 CN 2011078065 W CN2011078065 W CN 2011078065W WO 2012075824 A1 WO2012075824 A1 WO 2012075824A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaporization
groove
heating chamber
liquid
vaporization apparatus
Prior art date
Application number
PCT/CN2011/078065
Other languages
English (en)
French (fr)
Inventor
汪宇澄
李一成
许国青
陈亮
Original Assignee
理想能源设备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理想能源设备(上海)有限公司 filed Critical 理想能源设备(上海)有限公司
Publication of WO2012075824A1 publication Critical patent/WO2012075824A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Definitions

  • Vaporization device and vaporization method The present application claims the priority of the Chinese patent application filed on December 6, 2010, the Chinese National Intellectual Property Office, the application number is 201010575296.1, and the invention name is "vaporization device and vaporization method". The citations are incorporated herein by reference.
  • the present invention relates to a vaporization apparatus and a method of vaporizing using the vaporization apparatus.
  • thin film solar cells are widely used in aviation, aerospace, and people's daily lives because of their non-polluting, low energy consumption, low cost, and large-scale production.
  • Common thin film solar cells include: amorphous silicon thin film solar cells, copper indium gallium selenide thin film batteries and cadmium telluride thin film batteries. Further formation methods of the above-described solar thin film batteries can be found in the Chinese invention patent documents of the publications Nos. 101,027,749 and 101,226,967.
  • the deposition of a transparent conductive oxide film is an important process ring for producing an electrode of a thin film solar cell, and generally the transparent conductive oxide is zinc oxide.
  • the zinc oxide thin film deposition process gaseous diethyl zinc (DEZ) participates in the reaction as a key gas.
  • DEZ diethyl zinc
  • the reaction is in a liquid state, so it is necessary to first heat the liquid DEZ into a gaseous state in the vaporizer, and use the vapor pressure generated during vaporization to press the gaseous DEZ into the reaction chamber through the gas pipeline.
  • the DEZ is heated to 70. C will decompose and release a large amount of heat, so in the DEZ vaporization, it is necessary to strictly control its vaporization temperature to prevent an explosion accident. However, too low vaporization temperature will reduce the vaporization efficiency of DEZ, and it will not be able to ensure sufficient vapor pressure, which will cause the DEZ flow rate to slow down, which will lead to a decrease in the deposition rate of zinc oxide, which will greatly affect the production efficiency.
  • the object of the present invention is to provide a vaporization device and a vaporization method for improving the efficiency of vaporization, and reducing Reduce energy loss during vaporization and reduce hazards during vaporization.
  • the vaporization apparatus provided by the present invention comprises a heating chamber, the inner surface of the heating chamber having a microstructure, which is used to increase the heating area of the liquid to be vaporized and to promote the generation of the vaporization core.
  • the inner surface of the heating cavity comprises a side surface and a bottom surface, the side surface having the microstructure.
  • the bottom surface has the microstructure.
  • the microstructure is a groove, a hole or a protrusion.
  • the groove has a triangular, semicircular, trapezoidal or rectangular cross section.
  • the cross section of the groove may also be V-shaped, B-shaped, M-shaped or W-shaped.
  • the V-shaped groove has an angle of not more than 90. .
  • the V-shaped groove has an angle of not more than 60. .
  • the V-shaped groove has an angle of not more than 30. .
  • the groove is formed on the side surface, and the triangle is a right triangle, and the corner is parallel to the bottom surface. The other corner is parallel to the side. Further, the right-angled triangle is an isosceles right triangle.
  • the groove is formed on the side surface, and an angle of the side of the triangle near the bottom surface and the side surface is less than or equal to 90 degrees.
  • the opening of the groove has a maximum dimension of no more than 3 mm and not less than 0.5 mm. Further preferably, the opening of the groove has a maximum dimension of not more than 2 mm and not less than 1 mm. Preferably, the depth of the groove is no more than 3 mm and not less than 0.5 mm.
  • the groove is formed on the side surface, and the groove may be a thread groove.
  • the extending direction of the groove is parallel to the bottom surface or perpendicular to the bottom surface, and may also have an angle with the bottom surface.
  • the included angle is greater than or equal to 3. And less than or equal to 60. Further preferably, the angle is greater than or equal to 20. And less than or equal to 50. .
  • a heating resistor wire is disposed in a cavity wall of the heating cavity.
  • a silicone rubber heater is disposed outside the cavity wall of the heating chamber.
  • the top surface of the heating chamber has an inlet valve and an outlet valve, and the inlet valve is connected to a liquid supply source, and the outlet valve is connected to a supply line of a reaction chamber of the production facility.
  • the top surface of the heating chamber has a barometer.
  • the heating chamber also has a liquid level detector.
  • the present invention also provides a vaporization method using the above vaporization apparatus, comprising: injecting a liquid to be vaporized into a heating chamber, detecting a liquid level of the liquid; and stopping the injection of the liquid when the liquid surface reaches a pre-injection position; ; Heat the heating chamber to the initial target temperature.
  • the pre-injection position is a position lower than 1/2 of the total height of the heating chamber.
  • the liquid to be vaporized is a liquid DEZ, and the initial target temperature is less than 70 °C. The heating is raised to the initial target temperature and the temperature is sequentially increased step by step.
  • the vaporization method further includes setting a target pressure, detecting a vapor pressure in the heating chamber, and adjusting a temperature in the heating chamber such that the vapor pressure is equal to a target pressure.
  • the adjusting the temperature in the heating chamber includes: maintaining the vapor pressure not less than the target pressure, and reducing the temperature in the heating chamber.
  • the adjusting the temperature in the heating chamber further includes: if the vapor pressure is less than the target pressure, the temperature in the heating chamber is less than 70. Under the premise of C, increase the temperature inside the heating chamber.
  • the vaporization device of the present invention has the following advantages:
  • the inner surface of the heating chamber of the vaporization device has a microstructure. Further, the side surface and the bottom surface of the inner surface have a microstructure, which can maximize the area of the inner surface. When the liquid is heated, the microstructure can increase the heat receiving area of the liquid, and promote the generation of the vaporized core, and improve the heat transfer efficiency.
  • the microstructure can be a groove, and the cross section of the groove can be triangular or V-shaped. And the V-shaped groove has an angle of not more than 90. Further, no more than 60. More preferably, no more than 30. . The smaller the angle, the better the capillary action of the groove.
  • the side groove has a triangular cross section, and an angle of the side of the triangle close to the bottom surface and the side surface is less than or equal to 90. It can avoid the overflow of liquid in the groove and help to enhance the capillary action.
  • the groove has an opening size of not more than 3 mm and not less than 0.5 mm, further preferably not more than 2 mm and not less than 1 mm; and the groove has a depth of not more than 3 mm and not less than 0.5 mm.
  • the effect of the capillary action of the groove is ensured, and on the other hand, the liquid is allowed to enter the groove to avoid voids.
  • the extending direction of the groove on the side surface forms an angle with the bottom surface, and the angle is greater than or equal to 3. And less than or equal to 60. Further preferably, the included angle is greater than or equal to 20. And less than or equal to 50. .
  • the liquid in the groove can be prevented from being subjected to excessive gravity to affect the extension height while increasing the liquid wetting groove and the speed along the groove, which is advantageous for increasing the heating area of the liquid as much as possible.
  • the vaporization method of the present invention has the following advantages: When the liquid is injected, the liquid level of the injected liquid is lower than 1/2 of the total height of the heating chamber, and the storage space of the vaporized gas is reserved, which can serve the vaporized gas. Buffering effect; During the vaporization process, the temperature in the heating chamber and the vapor pressure are monitored in real time, the temperature is adjusted according to the vapor pressure, and the safety of the liquid vaporization process is ensured.
  • DRAWINGS 1 is a schematic structural view of a vaporization apparatus according to the present invention.
  • Figure 2 is a top plan view of the C-C section shown in Figure 1;
  • FIG. 3 is a schematic cross-sectional view showing a microstructure of a specific embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a microstructure of another embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view showing a microstructure of still another embodiment of the present invention.
  • FIG. 6 is a schematic view showing an extension trend of a side groove according to an embodiment of the present invention.
  • Figure 7 is a schematic flow chart of the vaporization method of the present invention.
  • Figure 8 is a schematic illustration of the low pressure chemical vapor deposition system of the present invention.
  • the present invention provides a vaporization device which is provided with a microstructure on the surface of the heating chamber to increase the heating area of the liquid, promote the generation of the vaporization core, reduce the energy loss during heating, and improve the heat transfer efficiency.
  • FIG. 1 is a schematic structural view of a vaporization apparatus according to the present invention
  • FIG. 2 is a schematic plan view of a CC section shown in FIG. 1.
  • the vaporization apparatus of the present invention comprises: a heating chamber 10 disposed at the The heater 20 that heats the outer wall of the chamber 10 is described.
  • the inner surface of the heating chamber 10 has a microstructure.
  • the heater 20 is a silicone rubber heater which is in close contact with the outer surface of the cavity wall of the heating chamber 10.
  • the microstructure can increase the contact area of the liquid with the inner surface of the heating chamber 10 after the liquid is injected into the heating chamber 10. Since the heater 20 indirectly heats the liquid through the side walls of the heating chamber 10 and the bottom portion, the wall of the chamber functions as a heat transfer, so that the above microstructure equivalently increases the heat receiving area of the liquid.
  • the microstructure of the inner surface of the heating chamber can increase the contact area between the liquid and the inner wall of the heating chamber, and improve the heat transfer efficiency. It also has the following characteristics: Numerous fine and dense microstructures can greatly promote the generation of vaporized nuclei. Therefore, the liquid generates a large number of bubbles when vaporized, and the overflow of the bubbles can cause the liquid to be disturbed, so that the internal heat of the liquid is more uniform, thereby greatly increasing the heat transfer coefficient, increasing the vaporization rate, and stabilizing the temperature, and reducing the local overheating. Possibility, with strong security.
  • the microstructure is disposed at least on the side surface 10a of the inner surface of the heating chamber 10.
  • the microstructure on the side surface 10a has a capillary action, which is injected into the heating chamber 10. After the liquid is allowed to stand for a certain period of time, the liquid and the microstructure are sufficiently wetted, and the liquid extends along the microstructure on the side surface 10a, thereby further increasing the contact area of the liquid with the inner surface of the heating chamber 10. In turn, the heated area is increased and the vaporization rate is increased.
  • the microstructure may also be disposed on the bottom surface 10b of the inner surface to maximize the utilization of the inner surface area of the heating chamber 10.
  • a heating resistor wire or other heating device may be disposed in the cavity wall of the heating cavity 10 to heat the heating cavity 10; or the heating may be disposed outside the heating cavity 10.
  • a heating resistor wire or other heating means may be disposed in the cavity wall of the heating chamber 10 to further enhance the heating effect of the cavity.
  • the vaporization device further includes: an inlet valve 101, an outlet valve 102, and a barometer 103 disposed at the top of the heating chamber 10, and a liquid level detector 104 disposed in the heating chamber 10.
  • the liquid inlet valve 101 is connected to a liquid supply line of a liquid supply source for injecting a liquid to be vaporized into the heating chamber 10, and the outlet valve 102 is connected to a gas supply line of the reaction chamber for output vaporization.
  • the barometer 103 is used to measure the vapor pressure in the heating chamber 10.
  • the level detector 104 is for detecting the level of the liquid in the heating chamber 10.
  • the injected liquid does not fill the entire heating chamber, and a certain space needs to be reserved to accommodate the gas.
  • the above space can serve as a buffer.
  • the liquid level of the liquid carried by the vaporizer does not exceed 1/2 of the total height of the heating chamber, i.e., more than half of the volume retains the vaporized gas.
  • the vaporization device of the present invention has a more uniform heating of the liquid due to the relative increase in the inner surface area of the liquid contact surface compared to the smooth inner wall vaporization device.
  • the microstructure of the inner surface of the heating chamber of the vaporization device according to the present invention will be further described below.
  • the microstructure of the present invention may be a groove, a hole or a protrusion.
  • the cross section of the groove may be rectangular, triangular, semi-circular, trapezoidal, or may be V-shaped, B-shaped, M-shaped or W-shaped or the like.
  • the cross-sectional shape and size of the trenches need to be comprehensively considered in terms of the physical, chemical, and vaporization temperatures of the liquid.
  • the groove has an opening size of not more than 3 mm and not less than 0.5 mm, further preferably not more than 2 mm and not less than 1 mm; and the groove has a depth of not more than 3 mm and not less than 0.5 mm.
  • Figure 3 is a schematic cross-sectional view of a microstructure of a specific embodiment of the present invention showing the cross-sectional shape of the structure of the side 10a and the bottom surface 10b of the heating chamber.
  • the microstructures of the side surface 10a and the bottom surface 10b are grooves, and the grooves have a V-shaped cross section.
  • the V-shaped groove angle ⁇ is not more than 90. Further preferably, it is not more than 60. More preferably, it is not more than 30. .
  • the grooves of the side surface 10a and the bottom surface 10b have an opening size dl of 2 mm and a V-shaped groove angle ⁇ of 30°.
  • the microstructures of the side surface 10a and the bottom surface 10b are grooves, and the grooves have a triangular cross section.
  • the angle of the side of the triangle near the bottom surface 10b and the side surface 10a is equal to or less than 90. It can avoid the overflow of liquid in the groove and help to enhance the capillary action.
  • the opening size d2 of the groove on the side surface 10a is 3 mm, and the angle ⁇ between the side close to the bottom surface 10b and the side surface 10a is 75. .
  • the triangle On the groove of the bottom surface 10b, the triangle is an isosceles triangle, and the apex angle ⁇ may take zero. To 90. A certain angle in the middle. Preferably, the apex angle ⁇ is 60.
  • the cross section of the groove on the bottom surface 10b is an equilateral triangle, and the maximum contact area with the liquid can be obtained in a limited range of the bottom surface 10b, and the opening size d3 of the groove on the bottom surface 10b is 2 mm.
  • Figure 5 is a schematic cross-sectional view of a microstructure of another embodiment of the present invention.
  • the microstructures of the side surface 10a and the bottom surface 10b are grooves, and the grooves have a triangular cross section.
  • the triangle is a right-angled triangle, wherein one right-angled edge is parallel to the bottom surface 10b to carry a liquid; the other right-angled edge is parallel to the side surface 10a; and the bottom angle ⁇ is The angle between the right-angled side and the oblique side of the right-angled triangle parallel to the bottom surface 10b may be 0. To 90. A certain angle in the middle. Under the premise that the opening size is fixed, when the bottom angle ⁇ is taken as 45.
  • the right triangle is an isosceles right triangle, which enables the groove to obtain the largest cross-sectional area, that is, the groove can accommodate the largest volume of liquid.
  • the cross section of the groove on the side surface 10a is an isosceles right triangle, and the opening size of the groove, that is, the side length of the right side parallel to the side surface 10a Ll is 2 mm; the cross section of the groove on the bottom surface 10b is also an equilateral triangle, and the opening size L2 of the groove on the bottom surface 10b is 2 mm.
  • the above embodiment discloses the cross-sectional shape of the microstructure of the present invention. Specifically, the cross-sectional shape of the groove is disclosed. The direction in which the groove formed on the side of the vaporization device is further described below.
  • the groove is formed on the side surface, and the groove may extend in a direction parallel or perpendicular to the bottom surface or may form an angle with the bottom surface.
  • FIG. 6 is a schematic view showing the extending tendency of the groove on the side surface 10a according to an embodiment of the present invention. As shown in FIG. 6, the groove may be a thread groove, and the extending direction thereof forms an angle with the bottom surface. .
  • the angle ⁇ is greater than or equal to 3. And less than or equal to 60. Further preferably, the angle ⁇ is greater than or equal to 20. And less than or equal to 50. .
  • the present invention also provides a vaporization method using the vaporization apparatus. Specifically, as shown in FIG. 7, the basic flow of the vaporization method of the present invention includes:
  • Step S101 injecting a liquid to be vaporized into the heating chamber, detecting a liquid level of the liquid; and stopping the injection of the liquid when the liquid surface reaches the pre-injection position;
  • the liquid is injected into the heating chamber by heating the inlet valve at the top of the chamber, and a predetermined volume is maintained, for example, such that the pre-injection position is lower than 1/2 of the total height of the heating chamber.
  • the heating chamber may be evacuated through an air outlet valve to avoid mixing impurity gases.
  • Step S102 standing so that the liquid infiltrates the microstructure of the inner surface of the heating chamber, waiting for the liquid surface to be stable;
  • the liquid level may increase after the liquid is stopped. It is therefore possible to stand for a certain period of time so that the liquid sufficiently wets the microstructure of the inner surface of the heating chamber until the liquid level is stabilized.
  • Step S103 heating the heating chamber to an initial target temperature.
  • an initial target temperature is set according to the chemical property of the liquid to be vaporized.
  • the initial target temperature should be lower than the decomposition temperature of the liquid DEZ;
  • the cavity is heated, and the heating process should not be too fast, so as to avoid uneven heating of the liquid and local overheating. It can be heated slowly and slowly to the initial target temperature, or it can be stepwise step by step. Heating to the initial target temperature.
  • the vapor pressure in the heating chamber is changing. status.
  • the vapor pressure directly determines the gas flow rate of the gas of the outlet valve.
  • the temperature in the heating chamber can be finely adjusted in real time during vaporization.
  • a low pressure chemical vapor deposition system to which the vaporization apparatus of the present invention is applied is provided below, and its apparatus structure and process flow are described in detail.
  • the low-pressure chemical vapor deposition system is used to fabricate an electrode of a thin film solar cell; further, the low-pressure chemical vapor deposition system is used to deposit a zinc oxide film on a glass substrate of a thin film solar cell, and the vaporization device is used for Vaporize liquid DEZ.
  • Figure 8 is a schematic illustration of the low pressure chemical vapor deposition system of the present invention, the low pressure chemical vapor deposition system comprising:
  • the DEZ liquid supply unit 201 is configured to store the liquid DEZ and transport the liquid DEZ through the pump tube; the DEZ vaporization unit 202, that is, the vaporization device of the present invention, the inlet valve and the DEZ liquid supply unit
  • the pump tube of 201 is connected, receives the liquid DEZ, and then vaporizes the liquid DEZ, and the outlet valve outputs DEZ gas;
  • the low pressure chemical vapor deposition reaction chamber 203 is connected to the outlet valve of the DEZ vaporization unit 202 through a gas pipe to receive the DEZ gas and participate in the deposition reaction of the zinc oxide film.
  • the equipment pipeline is first vacuum-treated to ensure the vacuum degree of each transport pipeline and the reaction chamber to avoid mixing impurity gases and affect DEZ vaporization or Zinc oxide film deposition process. It is also possible to use a chemically inert gas such as helium to conduct airflow to the equipment piping to discharge residual reaction gases.
  • a chemically inert gas such as helium to conduct airflow to the equipment piping to discharge residual reaction gases.
  • the outlet valve of the DEZ vaporization unit 202 is closed, the inlet valve is opened, and the liquid DEZ is injected into the heating chamber of the DEZ vaporization unit 202 using the DEZ liquid supply unit 201.
  • the liquid level of the liquid DEZ does not exceed 1/2 of the total height of the heating chamber, and at least half of the remaining cavity volume is used to accommodate the DEZ gas.
  • the liquid level detector is used to detect the height of the liquid surface.
  • the liquid inlet valve is closed and allowed to stand for a certain period of time until the liquid level of the liquid DEZ is stable, so that the liquid state The DEZ sufficiently wets the microstructure of the inner surface of the heating chamber.
  • the liquid DEZ in the heating chamber is heated by a heater of the DEZ vaporization unit 202, for example, from normal temperature.
  • C is a temperature step, and stepwise heating is performed to avoid large temperature fluctuations, and finally the temperature in the heating chamber is slowly and steadily raised to the initial target temperature ⁇ .
  • the initial target temperature TO is less than 70. C , for example 58. C, 60. C, 62. C, 65. C and so on.
  • the vapor pressure in the heating chamber is also gradually increased.
  • the outlet valve of the DEZ vaporization unit 202 is opened, driven by the vapor pressure in the heating chamber, in a gaseous state.
  • the DEZ is introduced into the low pressure chemical vapor deposition reaction chamber 203 along the gas pipeline.
  • the low pressure chemical vapor deposition reaction chamber 203 is filled with DEZ gas and water vapor, and then reacted to form a zinc oxide film.
  • the barometer in the heating chamber of the DEZ vaporization unit 202 measures the vapor pressure of the DEZ gas in real time, and can compare the vapor pressure with the target pressure during the vaporization process, and finely adjust the temperature in the heating chamber, specifically including :
  • the heater can be turned off or the heat transferred can be reduced, causing the temperature in the heating chamber to decrease.
  • the temperature in the heating chamber should be reduced as much as possible while maintaining the vapor pressure not less than the target pressure.
  • the vapor pressure in the heating chamber is less than the target pressure, it is necessary to increase the amount of heat transferred by the heater so that the temperature inside the heating chamber rises. For safety reasons, more than 70 should be avoided when raising the temperature in the heating chamber. C, and should be slowly warmed up to avoid local temperature overheating exceeding the decomposition temperature of DEZ, which is dangerous.
  • the vaporization apparatus of the present invention can also be used to vaporize other liquids and be assembled in corresponding equipment systems, such as metal oxide vapor deposition systems. Any changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention should be determined by the scope of the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

汽化装置以及汽化方法 本申请要求于 2010年 12 月 6 日提交中国国家知识产权局、 申请号为 201010575296.1、 发明名称为"汽化装置以及汽化方法,,的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种汽化装置以及使用所述汽化装置进行汽化的方法。
背景技术
在诸多的太阳能电池应用技术中, 薄膜太阳能电池因无污染, 能耗少, 成 本低廉, 可以大规模生产等一系列优点, 被广泛应用于航空、 航天以及人们的 日常生活中。 常见的薄膜太阳能电池包括: 非晶硅薄膜太阳电池, 铜铟镓硒薄 膜电池和碲化镉薄膜电池。在公开号为 101027749和 101226967的中国发明专 利文件中, 可以发现更多上述的太阳能薄膜电池的形成方法。
在薄膜太阳能电池的制造中,透明导电氧化物薄膜的沉积是重要的工艺环 节, 所述透明导电氧化物薄膜用于制作薄膜太阳能电池的电极, 通常所述透明 导电氧化物为氧化锌。 在氧化锌薄膜沉积工艺中, 气态的二乙基锌(DEZ )会 作为一种关键的气体参与反应。 然而在常温下 DEZ呈液态, 因此需要先在汽 化装置内将液态 DEZ加热成气态, 并利用其汽化时产生的蒸汽压, 将所述气 态 DEZ通过输气管道压入反应腔中。
DEZ在加热至 70。C时将会分解并释放出大量热量, 因此在进行 DEZ汽 化时, 需要严格控制其汽化温度以防止发生爆炸事故。 然而过低的汽化温度, 将降低 DEZ的汽化效率, 且无法保证足够的蒸汽压, 会导致 DEZ流速减慢, 进而导致氧化锌沉积速率降低, 大大影响生产效率。
因此, 如何提高汽化装置的热传递效率, 在满足蒸汽压要求的前提下, 以 尽可能低的温度快速安全地将液态 DEZ汽化,成为 DEZ汽化工艺的亟需解决 的问题。
发明内容
本发明的目的是提供一种汽化装置以及汽化方法, 以提高汽化的效率, 减 少汽化过程中的能量损耗, 并降低汽化过程中的危险。
本发明提供的汽化装置, 包括加热腔体, 所述加热腔体的内表面具有微结 构, 所述微结构用于增大待汽化液体的受热面积, 并促进汽化核的产生。
优选的, 所述加热腔体的内表面包括侧面以及底面, 所述侧面具有所述微 结构。 所述底面具有所述微结构。
可选的, 所述微结构为沟槽、 孔或者凸起。 所述沟槽的横截面为三角形、 半圆形、 梯形或矩形。 所述沟槽的横截面也可以为 V字形、 B字形、 M形或 W形。
优选的, 所述 V字形的沟槽夹角不大于 90。。
优选的, 所述 V字形的沟槽夹角不大于 60。。
优选的, 所述 V字形的沟槽夹角不大于 30。。
可选的, 所述沟槽形成于所述侧面上, 所述三角形为直角三角形, 其一直 角边与所述底面平行. 另一直角边与所述侧面平行。 进一步的, 所述直角三角 形为等腰直角三角形。
可选的, 所述沟槽形成于所述侧面上, 所述三角形靠近所述底面的边与所 述侧面的夹角小于等于 90度。
优选的, 所述沟槽的开口最大尺寸不大于 3mm且不小于 0.5mm。 进一步 优选的, 所述沟槽的开口最大尺寸不大于 2mm且不小于 lmm。 优选的, 所述 沟槽的深度不大于 3mm且不小于 0.5mm。
可选的, 所述沟槽形成于所述侧面上, 所述沟槽可以为螺纹沟槽。
可选的, 所述沟槽的延伸方向与所述底面平行, 或与所述底面垂直, 还可 以与所述底面具有夹角。所述夹角大于等于 3。且小于等于 60。;进一步优选的, 所述夹角大于等于 20。且小于等于 50。。
可选的, 所述加热腔体的腔壁内设置有加热电阻丝。所述加热腔体的腔壁 外设置有硅橡胶加热器。 所述加热腔体的顶面具有进液阀以及出气阀, 所述进 液阀与液体供应源相连, 所述出气阀与生产设备反应腔体的供应管路相连。所 述加热腔体的顶面具有气压计。 所述加热腔体内还具有液面检测器。
本发明还提供了一种使用上述汽化装置的汽化方法, 包括: 向加热腔体中 注入待汽化的液体, 检测所述液体的液面; 当所述液面到达预注入位置时, 停 止注入液体; 将加热腔体加热升温至初始目标温度。 优选的, 所述预注入位置为低于加热腔体总高度的 1/2的位置。 所述待汽化的液体为液态 DEZ, 所述初始目标温度小于 70°C。 所述加热 升温至初始目标温度采用分步逐次升温。
所述汽化方法还包括设置目标压强,检测加热腔体内的蒸汽压,调整加热 腔体内的温度,使得所述蒸汽压等于目标压强。所述调整加热腔体内的温度包 括: 保持蒸汽压不小于目标压强, 降低加热腔体内的温度。 所述调整加热腔体 内的温度还包括:若蒸汽压小于目标压强,在保持加热腔体内的温度小于 70。C 的前提下, 提高加热腔体内的温度。
与现有技术相比, 本发明汽化装置具有如下优点:
所述汽化装置的加热腔体的内表面具有微结构, 进一步的, 所述内表面的 侧面以及底面均具有微结构, 可以最大化利用内表面的面积。 在加热液体时, 所述微结构能够增加液体的受热面积, 并促进汽化核的产生,提高了热传递效 所述微结构可以为沟槽, 所述沟槽的横截面可以为三角形、 V字形等; 所 述 V字形的沟槽夹角不大于 90。; 进一步的, 不大于 60。; 更为优选的, 不大 于 30。。 夹角越小所述沟槽的毛细作用效果越好。
所述侧面的沟槽的截面为三角形,所述三角形靠近所述底面的边与所述侧 面的夹角小于等于 90。, 可以避免沟槽内的液体外溢, 有助于增强毛细作用。
所述沟槽的开口尺寸不大于 3mm且不小于 0.5mm, 进一步优选的, 不大 于 2mm且不小于 lmm; 所述沟槽的深度不大于 3mm且不小于 0.5mm。 一方 面保证沟槽的毛细作用的效果, 另一方面便于液体进入沟槽, 避免产生空隙。
所述侧面的沟槽的延伸方向与底面形成夹角, 所述夹角大于等于 3。且小 于等于 60。; 进一步优选的, 所述夹角大于等于 20。且小于等于 50。。 可以在提 高液体浸润沟槽以及沿沟槽延伸的速度的同时,能够避免沟槽内的液体受到过 大的重力作用而影响延伸高度, 有利于尽可能地增加液体的受热面积。
本发明的汽化方法, 具有如下优点: 在注液时, 注入液体的液面高度低于 加热腔体总高度的 1/2, 预留了汽化气体的容纳空间, 对所述汽化气体能够起 到緩冲作用; 在汽化过程中, 实时监控加热腔体内的温度以及蒸汽压, 根据所 述蒸汽压调整所述温度, 并保证液体汽化过程的安全性。
附图说明 图 1是本发明所述汽化装置的结构示意图;
图 2是图 1所示 C-C截面的俯视示意图;
图 3是本发明一个具体实施例的微结构剖面示意图;
图 4是本发明另一个具体实施例的微结构剖面示意图;
图 5是本发明又一个具体实施例的微结构剖面示意图;
图 6是本发明一个具体实施例的侧面沟槽的延伸趋势示意图;
图 7是本发明所述汽化方法的流程示意图;
图 8是本发明所述低压化学气相沉积系统的示意图。
具体实施方式
根据背景技术内容,由于 DEZ分解温度较低,因此在 DEZ的汽化过程中, 汽化效率以及安全性之间存在矛盾。如何提高汽化过程中的热传递效率, 成为 解决上述矛盾的关键。本发明则提供一种汽化装置,在加热腔体内表面上设置 微结构以增大液体的加热面积,并促进汽化核的产生,减少加热时的能量损耗, 提高热传递效率。
图 1为本发明所述汽化装置的结构示意图, 图 2是图 1所示 C-C截面的 俯视示意图, 结合图 1以及图 2所示, 本发明的汽化装置包括: 加热腔体 10, 设置于所述加热腔体 10外壁的加热器 20。 其中, 所述加热腔体 10的内表面 具有微结构。所述加热器 20为硅橡胶加热器,硅橡胶紧贴于加热腔体 10的腔 壁外表面。 当加热腔体 10内注入液体后, 所述微结构可以增大液体与加热腔 体 10的内表面的接触面积。 由于加热器 20间接通过加热腔体 10的侧壁以及 底部对液体进行加热,腔壁起到热传递的作用, 因此上述微结构等效增大了液 体的受热面积。
加热腔体内表面的微结构除前述指出的可以增大液体与加热腔体内壁的 接触面积, 提高热传递效率之外, 还具有如下特点: 无数细小密集的微结构可 以极大地促进汽化核的产生,使得液体在汽化时产生大量的气泡, 上述气泡的 溢出能够造成液体的扰流,使得液体内部受热更加均匀,从而大大增加了热传 递系数, 提高汽化速率, 并且升温稳定, 降低了局部过热的可能性, 具有较强 的安全性。
再如图 1所示, 所述微结构至少设置于所述加热腔体 10的内表面的侧面 10a上。 位于所述侧面 10a上的微结构具有毛细作用, 当加热腔体 10内注入 液体后静置一定时间, 所述液体与微结构充分浸润, 所述液体会沿着侧面 10a 上的微结构延伸, 从而进一步增加所述液体与所述加热腔体 10的内表面的接 触面积, 进而增大受热面积, 提高汽化速率。 如图 2所示, 所述微结构还可以 设置于所述内表面的底面 10b, 以便最大化地利用加热腔体 10的内表面面积。
作为可选的方案, 所述加热腔体 10的腔壁内可以设置有加热电阻丝或其 他加热器件,对所述加热腔体 10进行加热; 或在所述加热腔体 10外设置所述 加热器 20的同时,在所述加热腔体 10的腔壁内可以设置有加热电阻丝或其他 加热器件, 以进一步增强腔体的加热效果。
此外, 所述汽化装置还包括: 设置于加热腔体 10顶部的进液阀 101、 出 气阀 102以及气压计 103 ,设置于加热腔体 10内的液面检测器 104。所述进液 阀 101与供液源的液体供应管路相连,用于向加热腔体 10内注入待汽化液体, 所述出气阀 102与反应腔体的气体供应管路相连, 用于输出汽化后的气体, 所 述气压计 103用于测量加热腔体 10内的蒸汽压。 由于汽化过程中, 气体聚集 于加热腔体 10的顶部, 其蒸汽压直接决定气体排出的流速, 因此将所述气压 计 103与出气阀 102均设置于加热腔体 10的顶部,有助于根据蒸汽压的大小, 调整加热温度,精确控制气体的流速。 所述液面检测器 104用于检测加热腔体 10内液体的液面高度。
汽化装置工作时, 注入的液体并不是充满整个加热腔体的, 需要保留一定 空间容纳气体, 当汽化产生的气体通过出气阀 102排出时, 上述空间可以起到 緩冲作用。作为一个优选的方案, 汽化装置所承载液体的液面高度不超过加热 腔体总高度的 1/2, 即保留一半以上的容积容纳汽化后的气体。
综上所述, 在提供相同的加热量的前提下, 本发明所述的汽化装置相比于 光滑内壁的汽化装置, 由于与液体接触的内表面面积的相对提高, 液体受热更 为均匀, 具有更低的能量损耗, 更高的热传递效率, 以及较低的过热温度所带 来的安全性。适于进行诸如液态 DEZ等易于低温分解爆炸的液体的汽化工艺。
以下对本发明所述的设置于汽化装置加热腔体内表面的微结构作进一步 介绍。 本发明所述微结构可以为沟槽、 孔或凸起。 所述沟槽的横截面可以为矩 形、 三角形、 半圆形、 梯形, 还可以为 V字形、 B字形、 M形或 W形等。 沟 槽的截面形状以及尺寸的选择需要依据液体的物理、化学性质以及汽化温度进 行综合地考量。 如果沟槽的开口以及深度尺寸太大, 毛细作用的效果不明显; 而开口或深度尺寸太小, 则不利于液体进入沟槽, 需要的浸润时间较长, 且容 易在沟槽内产生空隙, 影响热传递效果, 进而降低汽化速率。 作为较佳选择, 所述沟槽的开口尺寸不大于 3mm且不小于 0.5mm,进一步优选的,不大于 2mm 且不小于 1mm; 所述沟槽的深度不大于 3mm且不小于 0.5mm。
图 3是本发明一个具体实施例的微结构剖面示意图,示出了加热腔体的侧 面 10a以及底面 10b的 结构的剖面形状。 如图 3所示, 所述侧面 10a以及底 面 10b的微结构为沟槽, 所述沟槽的截面均为 V字形。 在开口尺寸固定的前 提下, 所述 V字形的沟槽夹角 η越小, 其深度越深, 毛细作用的效果也越好, 但在制造时加工难度也越高。 作为较佳选择, 所述 V字形的沟槽夹角 η不大 于 90。; 进一步优选的, 不大于 60。; 更为优选的, 不大于 30。。 本实施例中, 所述侧面 10a以及底面 10b的沟槽, 开口尺寸 dl为 2mm , V字形的沟槽夹 角 η为 30°。
图 4是本发明另一个具体实施例的微结构剖面示意图。如图 4所示, 所述 侧面 10a以及底面 10b的微结构为沟槽,所述沟槽的截面均为三角形。具体的, 在侧面 10a的沟槽上,所述三角形靠近所述底面 10b的边与所述侧面 10a的夹 角小于等于 90。, 可以避免沟槽内的液体外溢, 有助于增强毛细作用。 本实施 例中, 侧面 10a上的沟槽的开口尺寸 d2为 3mm, 所述靠近底面 10b的边与侧 面 10a的夹角 Θ为 75。。 在底面 10b的沟槽上, 所述三角形为等腰三角形, 顶 角 β可以取 0。至 90。中的某一特定角度。 优选的, 所述顶角 β为 60。, 使得所 述底面 10b上的沟槽的截面为等边三角形,可以在有限范围的底面 10b获得与 液体的最大的接触面积, 所述底面 10b上的沟槽的开口尺寸 d3为 2mm。
图 5是本发明另一个具体实施例的微结构剖面示意图。如图 5所示, 所述 侧面 10a以及底面 10b的微结构为沟槽, 所述沟槽的截面也均为三角形。 具体 的, 在侧面 10a的沟槽上, 所述三角形为直角三角形, 其中一条直角边与底面 10b平行, 起到承载液体的作用; 另一条直角边则与侧面 10a平行; 而底角 α 也即所述直角三角形中与底面 10b平行的直角边与斜边的夹角, 可以取 0。至 90。中的某一特定角度。 在开口尺寸固定的前提下, 当所述底角 α取 45。时, 所 述直角三角形为等腰直角三角形, 能够使得所述沟槽获得最大的截面积,也即 所述沟槽能够容纳最大体积的液体。 本实施例中, 所述侧面 10a上的沟槽的截 面为等腰直角三角形, 沟槽的开口尺寸, 也即与侧面 10a平行的直角边的边长 Ll为 2mm; 所述底面 10b上的沟槽的截面也为等边三角形, 所述底面 10b上 的沟槽的开口尺寸 L2为 2mm。
上述实施例揭示了本发明所述微结构的剖面形状, 具体的,揭示了所述沟 槽的剖面形状, 以下对形成于汽化装置侧面的沟槽的延伸方向做进一步介绍。
所述沟槽形成于所述侧面上,所述沟槽的延伸方向可以与所述底面平行或 垂直, 也可以与底面形成夹角。 图 6为本发明一个具体实施例中所述侧面 10a 上的沟槽的延伸趋势示意图, 如图 6所示, 所述沟槽可以为螺纹沟槽, 其延伸 方向与底面形成的夹角为 λ。 通常为了提高静置时液体浸润沟槽以及沿沟槽延 伸的速度, 同时避免沟槽内的液体受重力作用过大而影响延伸高度,尽可能地 增加液体的受热面积; 上述夹角 λ不可过大也不宜过小。 作为较佳选择, 所述 夹角 λ大于等于 3。且小于等于 60。; 进一步优选的, 所述夹角 λ大于等于 20。 且小于等于 50。。
使用上述汽化装置, 本发明还提供了使用所述汽化装置的汽化方法, 具体 的, 如图 7所示, 本发明所述汽化方法的基本流程包括:
步骤 S101 : 向加热腔体中注入待汽化液体, 检测所述液体的液面; 当所 述液面到达预注入位置时, 停止注入液体;
具体的, 通过加热腔体顶部的进液阀, 向加热腔体中注入液体, 并保留一 定容积, 例如使得所述预注入位置低于加热腔体总高度的 1/2。 可选的, 在首 次注液操作前, 为了使得汽化的气体成分更为纯净, 可以通过出气阀, 先对加 热腔体抽真空, 以免混入杂质气体。
步骤 S102: 静置使得所述液体浸润加热腔体内表面的微结构, 等待液面 稳定;
由于侧面微结构具有毛细作用,液体在停止注入后,其液面可能还会提升。 因此可以静置一定时间,使得液体充分浸润加热腔体的内表面的微结构, 直至 液面稳定。
步骤 S103: 将加热腔体加热升温至初始目标温度。
在汽化前, 先根据待汽化液体的化学性质, 设定一初始目标温度, 例如所 述待汽化液体为 DEZ时, 所述初始目标温度应当低于液态 DEZ的分解温度; 然后使用加热器对加热腔体进行加热, 升温过程不应当过快, 以免液体受热不 均, 而局部过热。 可以直接緩慢地加热升温至初始目标温度, 也可以分次逐步 加热至所述初始目标温度。
需要指出的是, 随着液体开始汽化并通过出气阀向外输送气体, 其液面高 度也会逐渐降低, 且加热过程中受热不均勾总是存在, 因此加热腔体内的蒸汽 压处于变化的状态。根据前述内容所指出的, 蒸汽压直接决定出气阀气体的气 体流速, 为了获得稳定的蒸汽压, 在汽化时还可以对加热腔体内的温度进行实 时的微调整。
为了进一步说明本发明汽化方法,以下提供了一个应用了本发明所述汽化 装置的低压化学气相沉积系统,对其装置结构以及工艺流程进行详细介绍。具 体的,所述低压化学气相沉积系统用于制作薄膜太阳能电池的电极;进一步的, 所述低压化学气相沉积系统用于在薄膜太阳能电池的玻璃基板上沉积氧化锌 薄膜, 所述汽化装置用于汽化液态 DEZ。
图 8是本发明所述低压化学气相沉积系统的示意图,所述低压化学气相沉 积系统包括:
DEZ供液单元 201 , 用于存储液态 DEZ, 并通过泵管输送液态 DEZ; DEZ汽化单元 202, 即本发明所述汽化装置, 其进液阀与 DEZ供液单元
201的泵管连接,接收液态 DEZ,然后汽化所述液态 DEZ,其出气阀输出 DEZ 气体;
低压化学气相沉积反应腔 203 , 用于进行化学气相沉积, 在所述玻璃基板 上沉积氧化锌薄膜。 所述低压化学气相沉积反应腔 203通过输气管与 DEZ汽 化单元 202的出气阀连接, 接收 DEZ气体, 参与氧化锌薄膜的沉积反应。
需要指出的是, 以上仅列出了低压化学气相沉积系统的部分设备, 以说明 本发明所述的汽化方法,而并非对本发明所述汽化装置的具体应用以及装配做 出限定。
结合图 7以及图 8所示, 在进行氧化锌薄膜沉积工艺前, 首先对设备管路 进行真空处理,保证各输送管路以及反应腔室内的真空度, 以避免混入杂质气 体, 影响 DEZ汽化或氧化锌薄膜沉积工艺。 还可以先使用氦气等化学性质不 活泼的气体, 对设备管路进行气流的疏导, 排出残留的反应气体。
保持 DEZ汽化单元 202的出气阀关闭, 开启所述进液阀, 使用 DEZ供液 单元 201向 DEZ汽化单元 202的加热腔体内注入液态 DEZ。 所述液态 DEZ 的液面不超过加热腔体总高度的 1/2, 至少剩余一半的腔体容积用于容纳 DEZ 气体。 在注液时, 使用液面检测器检测液面的高度, 当所述液态 DEZ的液面 到达预定的注入位置后, 关闭进液阀, 静置一定时间直至液态 DEZ的液面稳 定, 使得液态 DEZ充分浸润所述加热腔体内表面的微结构。
使用 DEZ汽化单元 202的加热器对加热腔体内的液态 DEZ进行加热,譬 如自常温起以 3。C为一温度阶,进行分步的加热,以避免出现较大的温度波动, 最终使得加热腔体内的温度緩慢稳定地升至初始目标温度 το。 所述初始目标 温度 TO小于 70。C , 例如 58。C、 60。C、 62。C、 65。C等。
随着液态 DEZ逐步汽化, 加热腔体内的蒸汽压也逐步升高, 当所述蒸汽 压升至目标压强后, 打开 DEZ汽化单元 202的出气阀, 在加热腔体内的蒸汽 压驱动下, 气态的 DEZ沿着输气管道, 输入低压化学气相沉积反应腔 203中。
低压化学气相沉积反应腔 203内充满 DEZ气体以及水蒸气后, 进行反应 以形成氧化锌薄膜。
在上述工艺流程中, 为了保证氧化锌薄膜的沉积反应稳定的进行, 需要保 持 DEZ气体流速稳定,也即保持 DEZ汽化单元 202的加热腔体内的蒸汽压稳 定。 DEZ汽化单元 202的加热腔体内的气压计实时测量所述 DEZ气体的蒸汽 压, 可以在汽化过程中, 将所述蒸汽压与目标压强进行比较, 对加热腔体内的 温度进行微调整, 具体包括:
如果加热腔体内的蒸汽压大于目标压强,则可以关闭加热器或者减小传递 的热量, 使得加热腔体内的温度降低。 为了保证 DEZ气体的流速, 通常在保 持蒸汽压不小于目标压强的前提下, 应当尽可能的降低加热腔体内的温度。
如果加热腔体内的蒸汽压小于目标压强, 则需要增大加热器所传递的热 量, 使得加热腔体内的温度升高。 出于安全性的考虑, 在升高加热腔体内的温 度时,应当避免超过 70。C,且应当緩慢的升温,以避免局部温度过热超过 DEZ 的分解温度, 而产生危险。
虽然本发明己以较佳实施例披露如上, 但本发明并非限定于此。 除液态
DEZ 外, 本发明所述的汽化装置还可以用于汽化其他液体, 并装配于相应的 设备系统中, 例如金属氧化物气相沉积系统等。 任何本领域技术人员, 在不脱 离本发明的精神和范围内, 均可作各种更动与修改, 因此本发明的保护范围应 当以权利要求所限定的范围为准。

Claims

权 利 要 求
1、 一种汽化装置, 包括加热腔体, 其特征在于, 所述加热腔体的内表面 具有微结构, 所述微结构用于增大待汽化液体的受热面积, 并促进汽化核的产 生。
2、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体的内表面 包括侧面以及底面, 所述侧面具有所述微结构。
3、 如权利要求 2所述的汽化装置, 其特征在于, 所述底面具有所述微结 构。
4、 如权利要求 2或 3任一项所述的汽化装置, 其特征在于, 所述微结构 为沟槽、 孔或者凸起。
5、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽的横截面为三 角形、 半圆形、 梯形或矩形。
6、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽的横截面为 V 字形、 B字形、 M形或 W形。
7、 如权利要求 6所述的汽化装置, 其特征在于, 所述 V字形的沟槽夹角 不大于 90°。
8、 如权利要求 6所述的汽化装置, 其特征在于, 所述 V字形的沟槽夹角 不大于 60°。
9、 如权利要求 6所述的汽化装置, 其特征在于, 所述 V字形的沟槽夹角 不大于 30°。
10、 如权利要求 5所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述三角形为直角三角形, 其一直角边与所述底面平行. 另一直角边与 所述侧面平行。
11、 如权利要求 10所述的汽化装置, 其特征在于, 所述直角三角形为等 腰直角三角形。
12、 如权利要求 5所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述三角形靠近所述底面的边与所述侧面的夹角小于等于 90度。
13、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽的开口尺寸不 大于 3mm且不小于 0.5mm。
14、 如权利要求 13所述的汽化装置, 其特征在于, 所述沟槽的开口尺寸 不大于 2mm且不小于 lmm。
15、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽的深度不大于 3mm且不小于 0.5mm。
16、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述沟槽为螺纹沟槽。
17、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述沟槽的延伸方向与所述底面平行。
18、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述沟槽的延伸方向与所述底面垂直。
19、 如权利要求 4所述的汽化装置, 其特征在于, 所述沟槽形成于所述侧 面上, 所述沟槽的延伸方向与所述底面具有夹角, 所述夹角大于等于 3。且小 于等于 60。。
20、如权利要求 19所述的汽化装置, 其特征在于, 所述夹角大于等于 20。 且小于等于 50。。
21、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体的腔壁内 设置有加热电阻丝。
22、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体的腔壁外 设置有硅橡胶加热器。
23、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体的顶面具 有进液阀以及出气阀, 所述进液阀与液体供应源相连, 所述出气阀与生产设备 反应腔体的供应管路相连。
24、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体的顶面具 有气压计。
25、 如权利要求 1所述的汽化装置, 其特征在于, 所述加热腔体内还具有 液面检测器。
26、 一种使用权利要求 1所述汽化装置的汽化方法, 其特征在于, 包括: 向加热腔体中注入待汽化的液体,检测所述液体的液面; 当所述液面到达预注 入位置时, 停止注入液体; 将加热腔体加热升温至初始目标温度。
27、 如权利要求 26所述的汽化方法, 其特征在于, 所述预注入位置为低 于加热腔体总高度的 1/2的位置。
28、 如权利要求 26所述的汽化方法, 其特征在于, 所述待汽化的液体为 液态 DEZ, 所述初始目标温度小于 70°C。
29、 如权利要求 28所述的汽化方法, 其特征在于, 所述加热升温至初始 目标温度采用分步逐次升温。
30、 如权利要求 28所述的汽化方法, 其特征在于, 还包括设置目标压强, 检测加热腔体内的蒸汽压,调整加热腔体内的温度,使得所述蒸汽压等于目标 压强。
31、 如权利要求 30所述的汽化方法, 其特征在于, 所述调整加热腔体内 的温度包括: 保持蒸汽压不小于目标压强, 降低加热腔体内的温度。
32、 如权利要求 30所述的汽化方法, 其特征在于, 所述调整加热腔体内 的温度包括: 若蒸汽压小于目标压强, 在保持加热腔体内的温度小于 70。C的 前提下, 提高加热腔体内的温度。
PCT/CN2011/078065 2010-12-06 2011-08-05 汽化装置以及汽化方法 WO2012075824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010575296.1A CN102485952B (zh) 2010-12-06 2010-12-06 汽化装置以及汽化方法
CN201010575296.1 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012075824A1 true WO2012075824A1 (zh) 2012-06-14

Family

ID=46151526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078065 WO2012075824A1 (zh) 2010-12-06 2011-08-05 汽化装置以及汽化方法

Country Status (2)

Country Link
CN (1) CN102485952B (zh)
WO (1) WO2012075824A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305803B (zh) * 2013-05-23 2015-05-20 四川虹视显示技术有限公司 基于温度控制系统的oled有机层蒸镀温度控制方法
CN113930738B (zh) * 2020-06-29 2023-09-12 宝山钢铁股份有限公司 一种真空镀膜用的金属蒸汽调制装置及其调制方法
CN114786451B (zh) * 2022-06-20 2022-09-20 浙江大华技术股份有限公司 液冷散热装置及散热循环系统
CN115323360B (zh) * 2022-10-17 2023-03-24 上海星原驰半导体有限公司 前驱体输出系统及前驱体输出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421542A (zh) * 2001-11-29 2003-06-04 电子科技大学 有机材料蒸发源
EP1560468A1 (en) * 2002-07-19 2005-08-03 Lg Electronics Inc. Source for thermal physical vapor deposition of organic electroluminescent layers
CN1958836A (zh) * 2005-11-04 2007-05-09 通用电气公司 用于蒸发金属的容器以及制造该容器的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013645B2 (ja) * 1993-03-03 2000-02-28 住友電気工業株式会社 原料供給装置
CN2795784Y (zh) * 2005-06-15 2006-07-12 江苏中圣高科技产业有限公司 内凹槽结构高效换热管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421542A (zh) * 2001-11-29 2003-06-04 电子科技大学 有机材料蒸发源
EP1560468A1 (en) * 2002-07-19 2005-08-03 Lg Electronics Inc. Source for thermal physical vapor deposition of organic electroluminescent layers
CN1958836A (zh) * 2005-11-04 2007-05-09 通用电气公司 用于蒸发金属的容器以及制造该容器的方法

Also Published As

Publication number Publication date
CN102485952B (zh) 2015-09-23
CN102485952A (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
Chen et al. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles
WO2012075824A1 (zh) 汽化装置以及汽化方法
CN107171004B (zh) 一种燃料电池低温启动分级预热控制方法
Aznam et al. Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water
JP5670262B2 (ja) 薄膜リチウム二次電池の製造方法、及び薄膜リチウム二次電池
KR20240060875A (ko) 박막 증착을 위한 직접 액체 주입 시스템
US20120264072A1 (en) Method and apparatus for performing reactive thermal treatment of thin film pv material
Huang et al. Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells
Niu et al. Quantitative analysis on cold start process of a PEMFC stack with intake manifold
JP5340103B2 (ja) 太陽電池
JP5300681B2 (ja) 太陽電池の製造方法
CN206148571U (zh) 一种动力锂电池的温度控制系统
CN105428610A (zh) 一种锂离子电池复合负极材料的制备方法
CN105405924B (zh) 一种晶体硅基太阳电池用的高方阻掺杂晶硅层的制备方法
TWM496236U (zh) 用於太陽能電池片鈍化的晶體矽氧化處理設備
TW201044624A (en) Apparatus for manufacture of solar cells
JP2013008753A (ja) 球状光電変換素子の製造方法。
CN102797040B (zh) 一种硼(b)扩散掺杂的方法
CN102644064B (zh) 基于导热油蒸发机制的蒸发器
Jin et al. Heat Dissipation Performance Research of Power Lithium Battery Based on High Thermal Conductivity Graphite Film
Zhang et al. High performance ultra-thin vapor chamber by reducing liquid film and enhancing capillary wicking
CN104993020B (zh) 可提高硒化质量的硒化反应装置及进行硒化反应的方法
CN204809244U (zh) 可提高硒化质量的硒化反应装置
FR3003867A1 (fr) Composition destinee au stockage et a la production d'energie thermochimique, procede de stockage et de production d'energie thermochimique et dispositif de production d'energie thermochimique
CN201545910U (zh) 一种能自行降温的等离子体化学气相沉积仓室

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847746

Country of ref document: EP

Kind code of ref document: A1