WO2012075727A1 - 循环流化床锅炉气固分离器及含有该气固分离器的锅炉 - Google Patents

循环流化床锅炉气固分离器及含有该气固分离器的锅炉 Download PDF

Info

Publication number
WO2012075727A1
WO2012075727A1 PCT/CN2011/070956 CN2011070956W WO2012075727A1 WO 2012075727 A1 WO2012075727 A1 WO 2012075727A1 CN 2011070956 W CN2011070956 W CN 2011070956W WO 2012075727 A1 WO2012075727 A1 WO 2012075727A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube bundle
gas
flue
flue gas
silo
Prior art date
Application number
PCT/CN2011/070956
Other languages
English (en)
French (fr)
Inventor
王森
Original Assignee
Wang Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Sen filed Critical Wang Sen
Publication of WO2012075727A1 publication Critical patent/WO2012075727A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/20Intercepting solids by baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15025Cyclone walls forming heat exchangers

Definitions

  • the invention relates to a core component of a circulating fluidized bed boiler, a gas-solid separator and a boiler containing the gas-solid separator.
  • the gas-solid separation of the circulating fluidized bed boiler does not require any special device and separation component, and the lower upstream flue
  • the large expansion turning passage and the silo are inertial gravity separators naturally formed by the heating surface space integrated with the boiler body.
  • it relates to the design of new products for gas-solid separators for circulating fluidized bed boilers and the energy-saving and emission reduction of various circulating fluidized bed boilers and layer-fired chain boilers. Background technique
  • the circulating fluidized bed boiler combustion technology is recognized as one of the most promising "clean" combustion technologies in the world due to its wide fuel adaptability, high combustion efficiency, low nitrogen oxide emissions, high efficiency desulfurization and good load regulation.
  • the circulating fluidized bed gas-solids separator is the core component of the circulating fluidized bed boiler. It is called the heart of the boiler. Its main function is to separate a large amount of high-temperature solid particles from the gas stream and return it to the furnace to maintain the combustion chamber.
  • the fluidized state ensures multiple cycles of fuel and desulfurizer, repeated combustion and reaction to achieve the desired combustion efficiency and desulfurization efficiency. Therefore, for a circulating fluidized bed boiler, the performance of the gas-solid separator directly affects the advantages and disadvantages of the boiler operation.
  • the form, operating effect and length of life of the separator are often used as a sign for circulating fluidized bed boilers. In a sense, the performance of a circulating fluidized bed boiler depends on the performance of the separator.
  • the development of circulating fluidized bed technology also depends on the development of gas-solid separation technology.
  • the most popular circulating fluidized bed separator in the international and domestic markets is a cyclone separator. Its typical structure is a high-temperature cyclone separator made of refractory material. Its main advantage is high separation efficiency, and the main disadvantage is its large volume.
  • the tangential inlet of the separator has high wind speed and high resistance, and the electric power consumption of the induced draft fan is high.
  • the gas-solid two-phase gas flow in the opposite direction of the silo is accompanied by a large amount of serious fly ash.
  • the original emission concentration of the soot is high, and the separator needs to be lined.
  • the gas-solid separation in the circulating fluidized bed boiler disclosed in the invention patent No. 200910308160.1 has many advantages compared with the gas-solid separation of the circulating fluidized bed boiler popular in the market, such as low flow resistance and saving of the induced draft fan. Consumption, membrane water wall structure saves high temperature and wear resistant materials, but its structure still has many defects, such as the entrance and exit of the turning channel are all unimpeded, first, the inertial separation performance of the gas-solid two-phase after entering and exiting is poor. Influencing the inertial separation efficiency, the second is that the gas-solid two-phase entering the turning channel has a small diffusion area that affects the gravity settlement efficiency.
  • the water-free cold wall of the front and rear walls of the silo needs a non-heated surface steel structure, which not only affects the quality life of the furnace wall but also increases the non-heating
  • the surface steel consumption is unfavorable to prevent coking
  • the fourth is that the application range of the structure is small, and it is suitable for the low-rate circulating fluidized bed and the fluidized bed boiler, which is not conducive to the development of large-scale.
  • the invention provides a gas-solid separator for a circulating fluidized bed boiler with energy saving, reduced consumption, remarkable emission reduction, wide application range, advanced technology, simple manufacturing and installation, and greatly reduced cost, in order to solve the technical problems existing in the prior art.
  • the boiler of the gas-solid separator is a gas-solid separator for a circulating fluidized bed boiler with energy saving, reduced consumption, remarkable emission reduction, wide application range, advanced technology, simple manufacturing and installation, and greatly reduced cost, in order to solve the technical problems existing in the prior art.
  • the inventive concept of the invention is: forming a tube bundle for facilitating soot flow collision and inertia separation on the turning passage of the gas-solid separator, improving the efficiency of gas-solid separation, increasing the differential speed of expansion and deceleration, and improving the efficiency of gravity settlement.
  • a gas-solid separator of a circulating fluidized bed boiler which comprises a film that is guided to the bottom of the flue gas and is separated from the front to the rear.
  • a descending flue and an ascending flue wherein the descending flue and the ascending flue are connected by a turning passage and a silo sealed to be installed under them
  • the gas-solid separator is provided with a flue gas inlet at a front upper portion thereof
  • the rear upper portion is provided with a flue gas outlet
  • the four walls of the gas-solid separator are all heated hot water walls integrated with the boiler
  • the gas-solid separator further comprises a current sharing separation tube bundle on the turning passage, the turning
  • the upper end of the equalizing separation tube bundle on the channel communicates with the guiding flue gas on the upper folding film screen, and the lower end of the current sharing separation tube bundle on the turning channel communicates with the lower cross box.
  • the advantages and positive effects of the invention are as follows:
  • the gas-solid separation does not require any special device and separation element, and the inertia space formed by the lower ascending flue, the one-to-multiple expansion of the turning passage and the silo, that is, integrated with the boiler body
  • the gravity separator realizes the dual functions of gas-solid separation and heat transfer.
  • the technological breakthrough of the invention brings a series of revolutionary changes in all directions, which not only has advanced technology, simple manufacturing and installation, but also can greatly save energy and greatly reduce Dust emissions, and breakthroughs in a number of performance details such as improved overall energy efficiency and extended boiler life.
  • the gas-solid separator has a low average circulation flow rate of ⁇ 5m / s and a low flow resistance.
  • the gas-solid separator has a water-cooling wall structure, which realizes the dual functions of gas-solid separation and heat transfer. Compared with the high-temperature cyclone separator made of refractory material, it can save 100% of the heat-resistant steel skeleton of the non-heating surface of the separator, and is cooled by hot water.
  • the wall, low rate cycle can save 90% of the separator wear resistant high temperature resistant material, which is the second advantage of the present invention.
  • the large expansion of the lower and upper flue and the turning passage is equivalent to the whole burnout chamber, and the burning time of the combustible in the furnace is increased, and the carbon content of the fly ash can be reduced, which is the fourth advantage of the present invention.
  • the invention has the advantages of advanced technology, simple structure and no complicated special-shaped parts, which greatly reduces the workload of the steel frame and the wear-resistant material, and can save the manufacturing and installation cost of the separator by 30%.
  • the separators are all water-cooled walls, and the boiler starts and stops quickly, not Coking, good load regulation performance, etc., are the fifth advantage of the present invention.
  • the gas-solid separator of the invention is perfectly combined with the boiler body, and the lower flue gas, that is, the burnout chamber, not only adapts to the burning of inferior quality coal, but also has the unique advantage of burning biomass or incinerating municipal solid waste.
  • the overall structure of the invention not only has the advantages of a circulating fluidized bed boiler, but also has the advantages of a fluidized bed boiler.
  • the invention contemplates a circulating fluidized bed boiler with a circulating volume of a low-magnification ratio greater than that of a medium-rate cycle. This is not the case because the large diameter of the cyclone separator is thickened and wear-resistant high-temperature resistant material, and the separator is tangentially imported.
  • the length of the pipe section substantially satisfies the space of the upstream flue below the separator of the present invention. Since the downstream flue and the rear wall of the furnace are common walls, the downstream flue and the front wall of the vertical shaft or the front convection tube bundle are common walls, and the upper flue and the turning passage are added to efficiently heat transfer to greatly extend the combustibles in the furnace.
  • the advantage of internal combustion time can reduce the height of the boiler.
  • the invention has the advantages of saving electricity, saving high-temperature materials, and reducing the carbon content of the fly ash.
  • the quantity, the original emission concentration of the soot is reduced, the wear is reduced, the service life of the boiler is prolonged, the separation efficiency is high, the separator is not coked, the boiler starts and stops quickly, etc., obviously the energy saving, the consumption reduction, the emission reduction benefit, etc. brought by the excellent performance
  • the advantage is not only better than the difference in size, but also the ultimate goal.
  • the heating surface can be reduced according to the flue gas flow rate of 5m / s.
  • the principle of wear, the invention not only fully reflects the above principles, but also fully reflects the flow, expansion, flow rate, and scientific process of the flue gas (the key technology is here).
  • the flow direction refers to the high concentration of flue gas from the furnace outlet.
  • the gas-solid two straight flow straight flushing bins; the expansion refers to the gas-solid two-phase entering the turning channel with a large expansion capacity of one to many times, from ⁇ 5m / s to ⁇ 7m / s and then suddenly to ⁇ 2m / s expansion to decelerate the gravity settlement
  • the silo; the flow rate refers to both reducing the wear on the heated surface and facilitating the natural settling of the soot;
  • the process refers to the distance of the flue gas from the turning passage to the outlet of the separator (upstream flue outlet), and the time of soot deposition is beneficial to reduce Air entrainment.
  • the present invention is not limited to the above data, and can be flexibly adjusted in practice to select different optimal data according to different situations.
  • the present invention is also advantageous for large boilers having a high cycle rate. Because the large boiler body is high, the height space available for the turning channel is large, which is beneficial to increase the multiple of the expansion and deceleration. There is enough space to drop to the required flow rate, and the following flue enters the turning channel at a flow rate of 8 meters. Below 3 meters, the efficiency of the expansion and deceleration gravity settlement is very obvious. The inertial separation efficiency of the solid particles is also obvious after 4-6 times of collision with the tube bundle, because the upstream flue gas flow rate is 8 meters. It is nearly three times lower than the flow rate of the cyclone separator, which greatly reduces the entrainment rate of the fly ash, which is not negligible for improving the separation efficiency.
  • the time that the flue gas stays in the large expansion space of the upper flue and the turning passage is beneficial to the burning of combustibles to reduce the carbon content of the fly ash. Even if the fly ash discharged through the ascending flue has almost no value of recirculating combustion.
  • the invention can fully utilize the idle space in the boiler body, not only has good gas-solid separation performance, but also has good heat exchange performance, and the multi-row tube bundle in the separator is equivalent to the exposure tube in the furnace, and can replace the external heat exchange. Compared with the external heat exchanger, the power consumption of the high-pressure fan is eliminated, and the drawbacks of maintenance difficulty are eliminated.
  • Figure 1 is a front elevational view of a first embodiment of the present invention applied to a transverse single-drum boiler;
  • Figure 2 is a front elevational view of the first embodiment of the present invention applied to a transverse double drum boiler;
  • Figure 3 is a front elevational view of a second embodiment of the present invention applied to a horizontal single-drum boiler
  • Figure 4 is a front elevational view of a second embodiment of the present invention applied to a transverse double drum boiler
  • Figure 5 is a front elevational view of a third embodiment of the present invention applied to a transverse single and double drum boiler;
  • Figure 6 is a front elevational view showing the fourth aspect of the present invention applied to a horizontal single-double drum boiler
  • Figure 7 is a front elevational view of a fifth embodiment of the present invention applied to a transverse single and double drum boiler;
  • Figure 8 is a front view of a sixth embodiment of the present invention applied to a horizontal single-drum boiler
  • Figure 9 is a front elevational view of a seventh embodiment of the present invention applied to a transverse double drum boiler
  • Figure 10 is a front elevational view showing the eighth aspect of the present invention applied to a horizontal single-drum boiler.
  • 1 is the furnace
  • 2 is the back wall of the furnace
  • 3 is the lower horizontal box of the silo
  • 4 is the side symmetrical longitudinal middle box
  • 5 is the front wall of the silo
  • 6 is the flue gas inlet of the turning passage
  • 7 is the membrane
  • the lower end of the screen is bifurcated
  • 8 is the downwind flue
  • 9 is the guide film under the flue gas
  • 10 is the flue gas outlet
  • 11 is the flue gas outlet on the horizontal cross box
  • 12 is the upper cross box
  • 13 is a side symmetrical upper vertical box
  • 14 is a side symmetrical water wall
  • 15 is an upstream flue gas outlet
  • 16 is an upwind flue
  • 17 is a shaft
  • 18 is a shaft front wall
  • 19 is a turning channel flue gas outlet
  • 20 is a turn Channel
  • 21 is the silo
  • 22 is the silo wall
  • 23 is the silo
  • 24 is the material leg
  • 42 is the flue gas outlet of the furnace
  • 43 is the membrane type screen cross box
  • 44 is the downstream flue inlet flow separation tube bundle
  • 45 is the membrane type screen horizontal cross box
  • 46 is the upstream flue outlet flow separation tube bundle
  • 47 It is a silo pallet
  • 48 is the front wall of the furnace
  • 49 is the longitudinal flue of the top of the furnace
  • 50 is the bundle of ceiling tubes.
  • a gas-solid separator for a circulating fluidized bed boiler is characterized in that a flue gas inlet and outlet at a turning passage 20 constitutes a countercurrent separation tube bundle which facilitates inertial separation of soot flow collision.
  • the gas-solid separator is disposed at the rear of the furnace 1 and includes a downstream flue 8 and an upstream flue 16 which are separated from the front to the rear by a film-guided screen 9 directed to the flue gas.
  • the deflecting film screen 9 is guided in the middle or front of the furnace rear wall 2 and the shaft flue front wall 18, and in Fig. 2, the guiding flue gas is turned up and down.
  • the upper end of the deflecting film screen 9 for guiding the flue gas is eccentrically and radially connected to the cross box 11 on the furnace flue gas outlet.
  • the upper end of the upper deflecting film screen 9 for guiding the flue gas is in radial radial communication with the lower center or eccentric of the upper cross box 12.
  • the lower end of the flue gas upper folding film screen 9 is a film type screen lower end fork 7, which is branched from the bifurcation 7 into a front and rear two rows of light pipe bundles.
  • the front outer tube bundle 30 and the front inner tube bundle 31 constitute a flow dividing separation tube bundle of the flue gas inlet of the turning passage 20, and the lateral spacing and the longitudinal spacing of the front outer tube bundle 30 and the front inner tube bundle 31 form a turning passage flue gas inlet 6
  • the front end of the front outer tube bundle 30 and the front inner tube bundle 31 and the rear wall 2 of the furnace are arranged in a row to form a front vertical tube bundle, and the lower end of the front vertical tube bundle is bent backward to form a material.
  • the inclined tube bundle of the front wall tube 5, the lower end of the front wall tube 5 of the silo is in communication with the lower cross box 3 of the silo.
  • the front wall tube 5 of the silo is sealed by a refractory material to form a silo front wall 29;
  • the rear inner tube bundle 32 and the rear outer tube bundle 33 constitute a flow separation tube bundle of the flue gas outlet of the turning passage 20, and the rear inner tube bundle 32 and
  • the lateral spacing and longitudinal spacing of the rear outer tube bundle 33 constitute the flue gas outlet 19 of the turning passage 20, and in Fig. 1, the rear end of the rear inner tube bundle 32 and the rear outer tube bundle 33 abut the rear rear wall 18 in two rows
  • the synthetic row extends downward to form a rear vertical tube bundle.
  • the rear end of the rear inner tube bundle 32 and the rear outer tube bundle 33 abuts the front row of convection tube bundles 35, and the two rows are formed in a row and downwardly formed.
  • the vertical section tube bundle, the lower end of the rear vertical section tube bundle is bent forward to form an inclined tube bundle as the silo rear wall tube 22, and the lower end of the rear wall tube 22 is in communication with the silo rear lower header box 23.
  • the inside and outside of the silo wall 22 is sealed by a refractory insulating material to form a silo rear wall 34.
  • the length of the above vertical section tube bundle should meet the flow rate requirement of the turning channel expansion and deceleration.
  • the inclination angle of the front wall pipe 5 of the silo and the rear wall pipe 22 of the silo should meet the requirements of blanking.
  • the space between the lower end of the upper deflecting film screen and the lower end of the vertical section tube bundle is formed by the guiding flue gas to form the turning passage 20, and the space between the lower end of the vertical section tube bundle and the upper end of the material leg 24 is formed.
  • the silo 21 is composed of 1 to a plurality of conical shapes having a rectangular cross section, the front upper end of which is abutted against the furnace rear wall 2, the rear upper end is tightly sealed with the shaft front wall 18 or the front convection tube bundle 35, and the lower end is at least one end
  • the upper ends of the legs are in sealing communication, and the inside thereof is divided into 1 to a plurality of chambers by a trapezoidal partition, and the lower ends thereof are in sealing communication with the upper ends of the one to the plurality of legs 24.
  • the front wall of the gas-solid separator is the same wall as the furnace rear wall 2, that is, the furnace rear wall 2 is a common wall, and the upper and lower ends of the water-cooling wall tube bundle are respectively connected with the upper cross box 1 1 and the lower horizontal box 26, the gas
  • the rear wall of the solid separator is the same wall as the shaft front wall 18 or the front row convection tube bundle 35, that is, the shaft front wall 18 or the front row convection tube bundle 35 is a common wall, and the upper and lower ends of the water wall tube bundle are respectively connected to the upper cross box 12 and
  • the lower cross box 27 is connected, and the two side walls of the gas-solid separator are side symmetrical water-cooling walls 14, and the upper and lower ends thereof are respectively connected to the side symmetrical vertical upper header 13 and the lateral symmetrical longitudinal intermediate box 4.
  • a second-stage gas-solid separation may be provided behind the first-stage gas-solid separation, and the front upper portion of the second-stage gas-solid separation is separated from the first-stage gas-solid separation, and the rear upper portion is connected to the flue, and the second-stage gas-solid separation may be The same as the first-stage gas-solid separation, or different, the separated materials can be returned to the furnace for circulation combustion or can be separately eliminated.
  • the hot water cold wall can be a full membrane wall structure, a half membrane wall structure, a partial membrane wall structure or a full light pipe refractory structure.
  • the deflecting film screen under the guiding flue gas may be a full film wall structure, a semi-membrane wall structure, a full-light tube cast refractory structure or a dry refractory wall structure.
  • the upper end of the upper folding film screen 9 of the guiding flue gas can be vertically connected to the bottom center or the eccentric radial direction of the upper cross box 12, or can be bent and lengthened by a straight distance and a horizontal distance from the furnace flue gas outlet 1 1
  • the side walls are radially connected.
  • Fluidized bed combustion is a kind of combustion of bed material in a fluidized state, and the fuel may be fossil fuel, industrial and agricultural waste and various inferior fuels, biomass burning or biomass and coal.
  • Mixed combustion Generally, coarse particles are burned in the lower portion of the furnace 1, and fine particles are burned in the upper portion of the furnace 1 and are blown out of the fine particles of the furnace flue gas outlet 10.
  • the deflecting film screen 9 Under the action of the deflecting film screen 9 under the guiding flue gas, the forced gas-solid two-phase 180 degree down-flow is flowed in the same direction through the descending flue.
  • the large particles are directly inertially separated and dropped into the silo 21, and the soot is then imported through the flue gas.
  • the solid particles all fall into the silo 21, and are returned to the furnace 1 through the returning device legs 24 and the return valve 25 for multiple cycles, and the particles are fully combusted and transferred during the circulation.
  • Example 1 The separator is wear-resistant using the mature technology.
  • the medium-high-rate cyclic turning passage 20 and the silo 21 should be increased by a certain height.
  • the first embodiment not only achieves a breakthrough in the gas-solid separation technology of various circulating fluidized bed boilers which are popular in the market, but also solves the application range of the circulating fluidized bed boiler disclosed in the invention patent application No. 200910308160.
  • the problem of low solid separation efficiency can be less than 5m / S or more than 5m / s, and the inlet and outlet of the turning passage are respectively formed by the inner and outer tube bundles of the lower end of the guiding film under the flue gas and the thinning and spacing of the screen.
  • the gas-solid two-phase enters the turning channel and is covered as if it is in the cage.
  • the deceleration differential speed increases, which increases the efficiency of the expansion and deceleration gravity settlement; the front and rear wall water wall bundles formed by the tube bundles that are guided by the flue gas and the lower end of the membrane screen are bifurcated and thinned, which not only helps to increase the material.
  • the inside of the warehouse absorbs heat and prevents coking and helps to protect the front and back walls of the silo and prolong its service life. Its application range is not only suitable for small boilers, but also has the disadvantages of uneconomical operation of the 35-ton boiler. It is also suitable for medium and large boilers. It is not only suitable for low-rate circulation, but also suitable for medium and high-rate circulation, which not only greatly expands the application. The scope, but also energy saving and emission reduction is significant.
  • the difference from Embodiment 1 is that, in the lower portion of the film screen fork 7, two front and rear tube bundles 36, 37 are formed on the turning passage.
  • the specific structure is as follows: the lower part of the diaphragm screen fork 7 has two rows of diametrically spaced tube bundles, the lower end of the front tube bundle 36 communicates with the upper center of the tube bundle lower cross box 38, and the rear tube bundle 37 is separated from the front tube bundle 36-segment distance The lower end thereof is in radial communication with the rear wall of the cross box 38 under the tube bundle.
  • the front row of tube bundles 36 and the rear row of tube bundles 37 form a uniform flow separation tube bundle on the turning passage.
  • the upper end of the front wall tray 39 of the silo is tightly sealed with the rear wall of the furnace, the lower end of which is tightly sealed with the outer side of the upper end of the material leg 24, and the inner side is sealed with a refractory thermal insulation wall; in Fig. 3, the rear wall of the silo 40 is The upper end abuts the shaft front wall 18, and in Fig. 4, the upper end of the silo rear wall plate 40 abuts against the front row convection tube bundle 35.
  • the lower end of the wall pallet 40 abuts the outer side of the upper end of the material leg 24, and the lateral distance thereof is determined according to the number of the silo 21 and the material leg 24.
  • the tube bundle lower header 38 is communicated with the side symmetrical longitudinal header 4 of the boiler through the communication tube 28.
  • Embodiment 2 The solid particles blown out of the flue gas outlet 10 of the furnace, under the action of the film screen under the guiding flue gas, force the gas-solid two-phase 180 degrees to turn sharply downwards through the downward flue 8 straight flushing silo to separate a large number of solid particles from inertia.
  • the soot is collided twice by the front tube bundle 36 and the rear tube bundle 37, so that the solid particles are again inertially separated and dropped into the silo 21, and the soot passes through the flue gas inlet 41 into the ascending flue 16 to expand and decelerate and 180 degrees to turn upward.
  • the particles are again gravity-separated and inertially separated into the silo 21, and the low-rate circulating soot continues to settle naturally through the ascending flue low-speed ascending solid particles, and the solid particles in the silo are returned to the furnace 1 through the returning device legs 24 and the return valve 25 Multiple cycles, combustibles undergo full combustion and heat transfer during the cycle.
  • Embodiment 2 According to the boiler model and actual needs, it can be separated into single stage or double stage, or combined with a low temperature cyclone, and the cyclone is installed in the shaft.
  • the difference from Embodiment 1 is that: the lower end of the deflecting film screen 9 for guiding the flue gas is provided with a membrane type under-screen cross box 43 connected thereto, and the film is guided to the bottom of the flue gas.
  • the screen 9 is in communication with the front outer tube bundle 30, the front inner tube bundle 31, the rear inner tube bundle 32, and the rear outer tube bundle 33 through the membrane type lower cross box 43.
  • the difference from Embodiment 3 is that: the upper portion of the guide film 9 on the lower side of the guide flue gas is provided with a membrane type horizontal cross box 45 connecting the upper and lower portions thereof, and the film type screen is horizontally disposed.
  • the header tank 45 is connected with a flow dividing separation tube bundle 44, 46 disposed at the downstream flue inlet and the upstream flue outlet, and the downstream flue inlet equalizing separation tube bundle 44 extends obliquely downward to abut or leave the furnace rear wall 2
  • the gap is bent downward to form a vertically downwardly extending front vertical section tube bundle, which is forked into the front outer vertical section tube bundle formed by the front outer tube bundle 30, and continues to extend downward to meet the flow rate requirement of the turning passage 20 for expansion and deceleration.
  • the inner and rear bends together with the inclined tube bundle formed by the front outer tube bundle 30 constitute a slanted tube bundle as the front wall tube 5 of the silo, and the lower end of the front wall tube of the silo communicates with the lower cross box 3 of the silo.
  • the lower end of the front inner tube bundle 31 extends downward to form a front inner vertical tube bundle parallel to the front outer vertical tube bundle formed by the front outer tube bundle 30, and the lower end of the front inner vertical tube bundle is bent backward to form a front wall of the silo
  • the inclined tube bundle of the tube, the lower end of the front wall tube of the silo is connected with the front cross box 3 of the silo.
  • the upstream flue outlet equalizing separation tube bundle 46 extends obliquely downward to abut against or away from the vertical front wall 18 to form a vertically downwardly extending rear vertical tube bundle which is forked into the rear outer tube bundle 33.
  • the rear outer vertical section of the tube bundle continues to extend downward to meet the requirements of the turning passage 20, and the inclined tube bundle formed by the rear outer tube bundle 33 constitutes a slanted tube bundle as a silo rear wall tube 22, the silo
  • the lower end of the rear wall pipe 22 is in communication with the lower rear cross box 23 of the silo.
  • the lower end of the inner inner tube bundle 32 extends downward to form a rear inner vertical tube bundle parallel to the rear outer vertical tube bundle formed by the rear outer tube bundle 33, and the length of the rear inner vertical tube bundle should satisfy the requirement of the turning passage 20, and the rear inner vertical
  • the lower end of the tube bundle is bent forward to form a slanted tube bundle as a rear wall tube of the silo, and the lower end of the rear wall tube of the silo is in communication with the lower cross box 23 of the silo.
  • Example 6 Referring to FIG. 8, the difference between this embodiment and the embodiment 3 is as follows: 1) the flue gas inlet 6 of the turning passage and the flue gas outlet 19 of the turning passage are asymmetric, and in the embodiment 3, the flue gas inlet 6 and the turning of the turning passage are turned.
  • the channel flue gas outlet 19 is symmetrical.
  • a flue gas inlet 6 of a turning passage is formed at a lower end of the upper revolving film screen 9 under the guiding flue gas, and a turning passage is formed at an upper end of the folding film screen 9 under the guiding flue gas. Flue gas outlet 19.
  • the inclination angles of the front inner and outer tube bundles 31, 30 are greatly increased compared with the third embodiment to meet the requirement of the flue gas flow rate at the flue gas inlet 6 of the turning passage, and the flue gas flow rate at the flue gas inlet 6 of the turning passage is smaller than
  • the flow velocity in the downflow flue is optimal, and the flue gas flow rate at the flue gas inlet 6 of the turning passage is preferably equal to the flow velocity in the downfluent flue, and the flue gas flow velocity at the flue gas inlet 6 of the turning passage is slightly larger than The flow rate in the downdraft is also ok.
  • the choice of the angle of inclination is to reduce dust accumulation, reduce wear and not to increase the reasonable flow rate of flue gas into the flue gas inlet of the turning passage due to the increase of the front and outer tube bundles 31, 30. 3)
  • the lower end of the rear inner and outer tube bundles 32, 33 of the present embodiment abuts the lower end of the upstream flue outlet 15, where the flow rate of the flue gas is preferably less than 5 m/s.
  • the outstanding advantages of this embodiment are as follows:
  • the differential speed of the expansion and deceleration can be maximized, which is beneficial to improve the gravity sedimentation efficiency of the soot and reduce the entrainment entrainment rate of the fine solid particles in the upstream flue outlet airflow.
  • This embodiment can be a preferred embodiment.
  • a new integrated optimization combination can be performed according to the structural form in the above embodiments 1-5 to create a new best preferred solution.
  • the difference between the embodiment and the embodiment 1 is as follows: 1) the flue gas inlet 6 of the turning passage and the flue gas outlet 19 of the turning passage are asymmetrical.
  • the flue gas inlet 6 and the turning of the turning passage are turned.
  • the channel flue gas outlet 19 is symmetrical.
  • the flue gas inlet 6 of the turning passage is formed at the lower end of the upper revolving film screen 9 under the guiding flue gas, and the turning passage is formed at the upper end of the folding film screen 9 under the guiding flue gas. Flue gas outlet 19.
  • the inclination angles of the front inner and outer tube bundles 31, 30 are greatly increased as compared with the third embodiment, and the inclination angle is selected to reduce dust accumulation, reduce wear, and not affect the flue gas due to the increase of the front inner and outer tube bundles 31, 30.
  • the reasonable flow rate of the flue gas inlet into the turning channel is the principle.
  • the lower end of the rear inner and outer tube bundles 32, 33 of the present embodiment abuts the lower end of the upstream flue outlet 15.
  • a new integrated optimization combination can be performed according to the structural form in the above embodiments 1-6 to create a new best preferred solution.
  • a circulating fluidized bed boiler having the same gas-solid separator as in Embodiment 6, except that a set of gas symmetrical with the gas-solid separator after the furnace rear wall is added in front of the furnace front wall 48.
  • the solid separator adds a longitudinal flue 49 to the shaft 17 at the top of the boiler.
  • This embodiment is suitable for use in large boilers where the furnace depth is too large.
  • the gas-solid separator in this embodiment may adopt any one of the embodiments 1-7, and an integrated combination of a part of the embodiment 1-5 and a certain structural form may also be employed.
  • the working process of this embodiment is different from that of the first embodiment in that the soot enters the downcomer flue 8 from the flue gas outlets 10 and 42 at the same time, and the soot passes through the gas-solid separator in front of the front wall 48 of the furnace, and enters the top of the boiler through the ascending flue 16 Vertical smoke Road 49, retreating into the shaft 17 backwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

循环流化床锅炉气固分离器及含有该气固分离器的锅炉 技术领域
本发明涉及一种循环流化床锅炉的核心部件一一气固分离器及含有该气固分离器的 锅炉, 循环流化床锅炉气固分离不用任何专门装置和分离元件, 由下上行烟道、 大扩容转 弯通道和料仓即与锅炉本体于一体的受热面空间自然构成的惯性重力分离器。 尤其涉及对 循环流化床锅炉气固分离器的新产品设计和在用各种循环流化床锅炉和层燃链条锅炉的 节能减排改造。 背景技术
循环流化床锅炉燃烧技术以其燃料适应性广, 燃烧效率高、 氮氧化物排放低、 高效脱 硫、 负荷调节性能好等优点被世界公认为一种最具发展前景的 "洁净"燃烧技术。
循环流化床气固分离器是循环流化床锅炉的核心部件, 被称作锅炉的心脏, 其主要作 用是将大量高温固体颗粒从气流中分离出来, 送回炉膛, 以维持燃烧室的快速流化状态, 保证燃料和脱硫剂多次循环、 反复燃烧和反应, 达到理想的燃烧效率和脱硫效率。 因此, 对循环流化床锅炉而言, 气固分离器的性能直接影响到锅炉运行的优劣。 通常把分离器的 形式、 运行效果与寿命长短作为循环流化床锅炉的标志。 从某种意义上讲, 循环流化床锅 炉的性能取决于分离器的性能, 循环流化床技术的发展也取决于气固分离技术的发展。
目前国际国内市场上最盛行占有率最高的循环流化床分离器是旋风分离器, 其典型结 构是用耐火材料制成的高温旋风分离器,其主要优点是分离效率高,主要缺点是体积庞大, 分离器切向进口风速高、 阻力大, 引风机电耗高, 气固两相朝料仓气流反向高速流动气流 夹带严重飞灰量大, 烟尘的原始排放浓度高, 分离器需内衬和外保温隔热, 使用耐磨耐高 温材料用量大, 不仅使分离器的原材料成本和制造安装成本增大, 而且热惯性大, 容易高 温结焦, 锅炉启停慢。 有的锅炉采用水冷或汽冷式旋风分离器, 虽然减少了耐磨耐高温材 料, 解决了热惯性大的问题, 使锅炉不结焦、 启停快, 但是同样存在风速高、 阻力大、 引 风机电耗高, 并且分离效率和稳定性低于高温旋风分离器, 再加其制造工艺复杂, 致使售 价高, 客户不易接受市场占有率很低。
尽管在申请号为 200910308160.1 的发明专利中所公开的循环流化床锅炉中的气固分 离与市场上流行的循环流化床锅炉气固分离相比有许多优点, 如流阻低节省引风机电耗, 膜式水冷壁结构节省耐高温耐磨材料等, 但其结构仍存有许多缺陷, 如转弯通道进口和出 口全畅通无阻, 一是气固两相经进、 出口后的惯性分离性能差影响惯性分离效率, 二是气 固两相进入转弯通道扩散面积小影响重力沉降效率, 三是料仓前后墙无水冷壁需非受热面 钢结构, 不仅影响炉墙的质量寿命而且增大非受热面钢耗不利防结焦; 四是该结构的应用 范围小, 较适用低倍率的循环流化床和流化床锅炉, 不利于向大型化发展。 发明内容
本发明为解决公知技术中存在的技术问题提供一种节能、 降耗、 减排显著、 应用范围 广、 工艺先进、 制造安装简单、 大幅度降低成本的循环流化床锅炉气固分离器及含有该气 固分离器的锅炉。
本发明的发明构思是: 在该气固分离器的转弯通道上构成利于烟尘均流碰撞惯性分离 的管束, 提高气固分离的效率, 加大扩容减速的差速, 提高重力沉降的效率。
本发明为解决公知技术中存在的技术问题所采取的一个技术方案是: 一种循环流化床 锅炉的气固分离器, 包括被导向烟气下上折转膜式屏从前向后分隔成的下行烟道和上行烟 道, 所述下行烟道和上行烟道通过转弯通道和密封安装在它们下面的料仓连通, 该气固分 离器的前上部设有烟气入口, 该气固分离器的后上部设有烟气出口, 该气固分离器的四壁 均为与锅炉于一体的受热水冷壁, 该气固分离器还包括位于所述转弯通道上的均流分离管 束, 所述转弯通道上的均流分离管束的上端与所述导向烟气下上折转膜式屏连通, 所述转 弯通道上的均流分离管束的下端与下横集箱连通。
本发明具有的优点和积极效果是: 气固分离不用任何专门装置和分离元件, 由下上行 烟道、 可扩容一至多倍的转弯通道和料仓即与锅炉本体于一体的受热面空间构成惯性重力 分离器, 实现气固分离与传热双功能, 本发明的技术突破, 带来全方位一系列革命性变化, 不仅工艺先进、 制造安装简单, 而且可大幅度地节约能源、 大幅度地减少烟尘排放, 并且 在提高综合能效、 延长锅炉使用寿命等多项性能细节上实现突破。 该气固分离器低倍率循 环平均流速〈5m / s流阻低, 同各种旋风分离器相比流速低 4倍之多, 可节省引风机电耗 30%以上, 使锅炉长期运行节约电能是本发明的第一优势。 该气固分离器全水冷壁结构, 实现气固分离与传热双功能, 同耐火材料制成的高温旋风分离器相比, 可节省分离器非受 热面耐热钢骨架 100%,采用受热水冷壁,低倍率循环,可节省分离器耐磨耐高温材料 90%, 是本发明的第二优势。 导向烟气下上折转膜式屏强制烟气从炉膛出口后气固两相同向流动 直冲料仓, 烟尘经 2次 180度下上折转惯性分离, 4至 6次与前后内外排管束碰撞惯性分 离, 烟气从烟气进口进入可扩容一至多倍的转弯通道使烟尘大扩容减速重力沉降, 烟气从 烟气出口进入上行烟道再次小扩容减速重力沉降, 使强制烟气下行、 转弯、 上行的全流程 不仅是气固分离的全过程, 而且是高效传热的全过程, 不仅气固分离效率高、 气流夹带率 低, 而且与横管屏和转弯通道同高的炉膛前后壁全部双面受热, 气固分离器内除料仓外的 所有管束都是曝光管,使受热面和空间利用率高。经国家权威部门对试验样机的环保测试, 57%灰分的煤种烟尘的原始排放浓度最高值 3149mg/m3, 低于国标近 5倍, 显然分离效率 高于各种旋风分离器, 是本发明的第三优势。 其下、 上行烟道和转弯通道大扩容相当于全 程燃尽室, 增加了可燃物在炉内的燃尽时间, 可降低飞灰含碳量, 是本发明的第四优势。 本发明工艺先进、 结构简单、 无复杂的异形件, 大幅度减少钢架和耐磨材料的工作量, 可 节省分离器制造安装成本 30%, 分离器全部是水冷壁, 锅炉启停快、 不结焦、 负荷调节性 能好等, 是本发明的第五优势。 大幅度降低飞灰量, 减少锅炉尾部受热面积灰和磨损, 利 于降低清灰强度、 稳定传热效率, 延长锅炉使用寿命, 从多方面节省能源, 利于提高综合 能效, 是本发明的第六优势。
本发明气固分离器与锅炉本体的完美结合, 其下上行烟道即燃尽室不仅适应燃劣质 煤, 而且燃生物质或焚烧处理城市生活垃圾更具独特优势。 本发明整体结构, 不仅具有循 环流化床锅炉优势, 更具有流化床锅炉优势。
本发明按常规想象低倍率循环体积要大于中倍率循环的循环流化床锅炉,经初略测算 并非如此, 因为旋风分离器的大筒径加厚耐磨耐高温材料,再加分离器切向进口管段长度, 基本满足本发明分离器下上行烟道的空间。 因本发明的下行烟道与炉膛后壁是公用壁, 下 行烟道和竖井前壁或前排对流管束是公用壁, 再加下上行烟道和转弯通道高效传热大幅度 延长可燃物在炉内燃尽时间的优势可降低锅炉高度, 如此看来总体积有可能差别很小, 即 使体积大于中倍率循环也具显著优势, 因本发明具有省电, 省耐磨高温材料, 降低飞灰含 碳量, 降低烟尘原始排放浓度, 降低磨损, 延长锅炉使用寿命, 分离效率高, 分离器不结 焦, 锅炉启停快等优点, 显然其优良性能所带来的节能、 降耗、 减排效益等诸多优势不仅 胜于体积的大小差别, 而且应是最终追求的目标。
根据烟气流向急剧变化惯性分离的原理, 根据烟气流速在 3-5m / s内烟尘自然沉降的 原理, 根据烟尘经突然扩容减速重力沉降的原理, 根据烟气流速 5m / s可降低受热面磨 损的原理, 本发明不仅全面体现了以上原理, 而且全面体现了烟气的流向、 扩容、 流速、 流程的科学性 (关键技术在此) , 这里, 流向是指烟气从炉膛出口后高浓度的气固两相同 向流动直冲料仓; 扩容是指气固两相进入转弯通道大扩容一至多倍, 由〈5m / s 到〈7m / s 再突然到〈2m / s扩容减速重力沉降于料仓;流速是指既利于降低对受热面的磨损,又利于 烟尘自然沉降; 流程是指烟气从转弯通道到分离器出口 (上行烟道出口) 的距离, 有烟尘 沉降的时间, 利于降低气流夹带。 本发明并不局限以上数据, 可在实践中灵活调整, 根据 不同情况选取不同最佳数据。
本发明用于高循环倍率的大型锅炉, 优势同样显著。 因大型锅炉炉体较高, 可用于转 弯通道的高度空间很大, 有利于提高扩容减速的倍数, 有足够的空间降到所需要的流速, 假如下行烟道以 8米的流速进入转弯通道降到 3米以下, 其扩容减速重力沉降的效率是很 明显的, 再加烟尘经过 4-6次与管束碰撞对固体颗粒的惯性分离效率也是很明显的, 因下 上行烟道烟气流速 8米低于旋风分离器的流速近 3倍, 使飞灰的扬析夹带率大大降低, 对 利于分离效率的提高也是不可小视的。 烟气经下上行烟道和转弯通道大扩容空间所停留的 时间, 利于可燃物的燃尽降低飞灰含炭量, 即使经上行烟道排出的飞灰已几乎没有再循环 燃烧的价值。
本发明可充分利用锅炉本体中的闲置空间, 不仅具有良好的气固分离性能, 而且具有 良好的换热性能, 分离器内的多排管束相当于炉内的曝光管, 可替代外置式换热器, 同外 置式换热器相比省去高压风机的电耗, 消除了维修困难的弊端。 附图说明
图 1是本发明的第一方案应用于横置单锅筒锅炉的主视图;
图 2是本发明的第一方案应用于横置双锅筒锅炉的主视图;
图 3是本发明的第二方案应用于横置单锅筒锅炉的主视图;
图 4是本发明的第二方案应用于横置双锅筒锅炉的主视图;
图 5是本发明的第三方案应用于横置单双锅筒锅炉的主视图;
图 6是本发明的第四方案应用于横置单双锅筒锅炉的主视图;
图 7是本发明的第五方案应用于横置单双锅筒锅炉的主视图;
图 8是本发明的第六方案应用于横置单锅筒锅炉的主视图;
图 9是本发明的第七方案应用于横置双锅筒锅炉的主视图;
图 10是本发明的第八方案应用于横置单锅筒锅炉的主视图。
图中 1是炉膛、 2是炉膛后壁、 3是料仓前下横集箱、 4是侧对称纵中集箱、 5是料仓 前墙管、 6是转弯通道烟气进口、 7是膜式屏下端分叉、 8是下行烟道、 9是导向烟气下上 折转膜式屏、 10是炉膛烟气出口、 11是炉膛烟气出口上横集箱、 12是上横集箱、 13是侧 对称上纵集箱、 14是侧对称水冷壁、 15是上行烟气出口、 16是上行烟道、 17是竖井、 18 是竖井前壁、 19是转弯通道烟气出口、 20是转弯通道、 21是料仓、 22是料仓后墙管、 23 是料仓后下横集箱、 24是料腿、 25是返料阀、 26是下横集箱、 27是竖井前水冷壁下横集 箱、 28是连通管、 29是料仓前墙、 30是前外排管束、 31是前内排管束、 32是后内排管束、 33是后外排管束、 34是料仓后墙、 35是前排对流管束、 36是前排管束、 37是后排管束、 38是管束下横集箱、 39是前墙托板、 40是后墙托板、 41是烟气进口。 42是炉膛烟气出口, 43是膜式屏下横集箱, 44是下行烟道进口均流分离管束, 45是膜式屏上横集箱, 46是上 行烟道出口均流分离管束, 47是料仓托板, 48是炉膛前壁, 49是炉顶部纵向烟道, 50是 顶棚管束。 具体实施方式
为能进一步了解本发明的发明内容、 特点及功效、 兹例举以下实施例, 并配合附图详 细说明如下:
实施例 1 :
请参阅图 1和图 2, 一种循环流化床锅炉气固分离器, 其特点是在转弯通道 20的烟气 进出口构成利于烟尘均流碰撞惯性分离的均流分离管束。 该气固分离器设置在炉膛 1的后 部, 包括被导向烟气下上折转膜式屏 9从前向后分隔成的下行烟道 8和上行烟道 16。在图 1中, 导向烟气下上折转膜式屏 9在炉膛后壁 2和竖井烟道前壁 18的中间或偏前, 在图 2 中, 导向烟气下上折转膜式屏 9在炉膛后壁 2和前排对流管束 35的中间或偏前, 在图 1 中, 导向烟气下上折转膜式屏 9的上端与炉膛烟气出口上横集箱 11偏心径向连通, 在图 2 中, 导向烟气下上折转膜式屏 9的上端与上横集箱 12的下部中心或偏心径向连通。 导向 烟气下上折转膜式屏 9的下端是膜式屏下端分叉 7, 从分叉 7处开始由单排膜式屏分叉成 前后各两排光管管束。 前外排管束 30和前内排管束 31构成转弯通道 20的烟气进口的均 流分离管束, 前外排管束 30和前内排管束 3 1的横向间距和纵向间距形成转弯通道烟气进 口 6, 前外排管束 30和前内排管束 31的前端与炉膛后壁 2紧靠后两排合成一排向下延伸 形成前垂直段管束, 前垂直段管束的下端向后内弯折形成作为料仓前墙管 5的倾斜管束, 料仓前墙管 5的下端与料仓前下横集箱 3连通。 料仓前墙管 5内外由耐火材料构筑密封形 成料仓前墙 29; 后内排管束 32和后外排管束 33构成转弯通道 20的烟气出口的均流分离 管束, 后内排管束 32和后外排管束 33的横向间距和纵向间距构成转弯通道 20的烟气出 口 19, 在图 1中, 后内排管束 32和后外排管束 33的后端与竖井前壁 18紧靠后两排合成 一排向下延伸形成后垂直段管束, 在图 2中, 后内排管束 32和后外排管束 33的后端与前 排对流管束 35 紧靠后两排合成一排向下延伸形成后垂直段管束, 上述后垂直段管束的下 端向前内弯折形成作为料仓后墙管 22的倾斜管束,后墙管 22的下端与料仓后下横集箱 23 连通。 料仓后墙管 22内外由耐火保温材料构筑密封形成料仓后墙 34。 上述垂直段管束的 长度应当满足转弯通道扩容减速的流速要求。 料仓前墙管 5和料仓后墙管 22的倾斜角度 应当满足落料的要求。 导向烟气下上折转膜式屏下端分叉 7处至上述垂直段管束的下端之 间的空间形成上述转弯通道 20, 上述垂直段管束的下端至料腿 24的上端之间的空间形成 料仓 21。
料仓 21 由 1至多个横截面为矩形的锥形体组成, 其前上端与炉膛后壁 2紧靠密封、 后上端与竖井前壁 18或前排对流管束 35紧靠密封,其下端与一至多个料腿上端密封连通, 其内部用梯形隔板分隔成 1至多个仓室, 其下端与 1至多个料腿 24上端密封连通。 该气 固分离器的前壁与炉膛后壁 2是同一壁, 即炉膛后壁 2是公用壁, 其水冷壁管束上下端分 别与上横集箱 1 1和下横集箱 26连通, 该气固分离器的后壁与竖井前壁 18或前排对流管 束 35是同一壁, 即竖井前壁 18或前排对流管束 35是公用壁, 其水冷壁管束上下端分别 与上横集箱 12和下横集箱 27连通, 该气固分离器的两侧壁是侧对称水冷壁 14、其上下端 分别与侧对称纵上集箱 13和侧对称纵中集箱 4连通。 第一级气固分离的后面可设置第二 级气固分离, 第二级气固分离的前上部与第一级气固分离连通, 其后上部连通烟道, 第二 级气固分离既可与第一级气固分离相同,也可不相同,分离的物料既可送回炉内循环燃烧, 也可单独排除。 受热水冷壁均可为全膜式壁结构、 半膜式屏壁结构、 局部膜式壁结构或全 光管耐火材料结构。 导向烟气下上折转膜式屏可为全膜式壁结构、 半膜式壁结构、 全光管 浇注耐火材料结构或干耐火墙结构。 导向烟气下上折转膜式屏 9的上端可垂直与上横集箱 12 底部中心或偏心径向连通, 也可弯折加长直段偏心一定距离与炉膛烟气出口上横集箱 1 1侧壁径向连通。
实施例 1 的工作过程: 流化床燃烧是床料在流化状态下进行的一种燃烧, 其燃料可以 是化石燃料、 工农业废弃物和各种劣质燃料, 生物质燃烧或生物质与煤混合燃烧。 一般粗 重的粒子在炉膛 1下部燃烧, 细粒子在炉膛 1上部燃烧, 被吹出炉膛烟气出口 10的细粒 子在导向烟气下上折转膜式屏 9的作用下强制气固两相 180度下转同向流动经下行烟道 8 大颗粒直接惯性分离落入料仓 21, 烟尘再经烟气进口 6与前外排管束 30和前内排管束 31 两次碰撞惯性分离落入料仓 21, 从烟气进口 6进入扩容一倍以上的转弯通道 20使大量固 体颗粒又突然扩容减速重力沉降于料仓 21, 烟气通过转弯通道烟气出口 19时又分别与后 内排管束 32和后外排管束 33两次碰撞惯性分离于料仓 21、一次 180度急转惯性分离于料 仓 21、 一次从转弯通道烟气出口 19到后上行烟道 16的小扩容减速重力沉降于料仓 21, 烟气经上行烟道 16低速上行至烟气出口 15大大降低气流对固体颗粒的夹带, 被分离出的 固体颗粒全部落入料仓 21, 通过返料装置料腿 24、 返料阀 25返回炉膛 1 进行多次循环, 颗粒在循环过程中进行充分燃烧和传热。
实施例 1分离器防磨采用现成熟技术即可。 中高倍率循环转弯通道 20和料仓 21应分 别增加一定高度。
实施例 1不仅对市场上流行的各种循环流化床锅炉的气固分离技术实现突破, 而且解 决了申请号为 200910308160. 1 的发明专利申请中所公开的循环流化床锅炉应用范围小和 气固分离效率低的难题。 如下、 上行烟道流速既可小于 5m / S也可大于 5m / s, 转弯通道 进出口分别由导向烟气下上折转膜式屏下端分叉、 拉稀间距的内、 外两排管束形成, 使气 固两相进入转弯通道像进入笼子里一样被罩住不易顺畅流出, 降低气流对固体颗粒的夹 带, 不仅使气固两相经下上行烟道两次 180度下上折转惯性分离, 而且使气固两相经烟气 进、 出口四次与管束碰撞固体颗粒惯性分离沉降于料仓, 内、 外两排管束占据的空间, 使 气固两相进入转弯通道和后上行烟道的扩容减速差速增大, 增大了扩容减速重力沉降的效 率; 由导向烟气下上折转膜式屏下端分叉拉稀间距的管束形成的料仓前、后墙水冷壁管束, 不仅利于增加料仓内吸热防结焦而且利于保护料仓前后墙, 延长使用寿命。 其应用范围不 仅适用于小型锅炉, 改善了〈35 吨锅炉运行不经济的弊端, 而且适用于中、 大型锅炉, 不 仅适用于低倍率循环、 而且适用于中、 高倍率循环, 不仅大大扩大了应用范围, 而且节能 降耗减排显著。
实施例 2:
请参阅图 3和图 4, 与实施例 1的不同之处在于: 在膜式屏分叉 7的下部, 在转弯通 道上形成前后两排管束 36、 37。 具体结构为: 膜式屏分叉 7的下部分出两排拉稀间距的管 束, 前排管束 36的下端与管束下横集箱 38上部中心连通, 后排管束 37离前排管束 36— 段距离, 其下端与管束下横集箱 38后壁径向连通。 前排管束 36和后排管束 37构成转弯 通道上的均流分离管束。 料仓前墙托板 39的上端与炉膛后壁紧靠密封, 其下端与料腿 24 上端外侧紧靠密封, 其内侧用耐火保温墙密封; 在图 3 中, 料仓后墙托板 40的上端与竖 井前壁 18紧靠, 在图 4中, 料仓后墙托板 40的上端与或前排对流管束 35紧靠。 料仓后 墙托板 40的下端与料腿 24上端外侧紧靠,其横向距离根据料仓 21和料腿 24的个数确定。 在图 4中, 管束下横集箱 38通过连通管 28与锅炉的侧对称纵中集箱 4连通。
实施例 2的工作过程: 被吹出炉膛烟气出口 10 的固体颗粒, 在导向烟气下上折转膜式屏的作用下, 强制气 固两相 180度急转直下经下行烟道 8直冲料仓使大量固体颗粒惯性分离于料仓 21,烟尘经 前排管束 36和后排管束 37两次碰撞使固体颗粒再次惯性分离落入料仓 21,烟尘经烟气进 口 41进入上行烟道 16扩容减速和 180度急转上行固体颗粒再次重力沉降和惯性分离于料 仓 21, 低倍率循环烟尘经上行烟道低速上行固体颗粒继续自然沉降, 料仓内的固体颗粒通 过返料装置料腿 24、 返料阀 25返回炉膛 1进行多次循环, 可燃物在循环过程中进行充分 燃烧和传热。
实施例 2根据锅炉型号和实际需要即可单级分离也可双级分离, 也可与低温旋风分离 器组合, 旋风分离器安装在竖井中。
实施例 3 :
请参阅图 5, 与实施例 1的不同之处在于: 导向烟气下上折转膜式屏 9的下端设有与 其连通的膜式屏下横集箱 43, 导向烟气下上折转膜式屏 9通过膜式屏下横集箱 43与前外 排管束 30、 前内排管束 31、 后内排管束 32和后外排管束 33连通。
实施例 4:
请参阅图 6, 与实施例 3的不同之处在于: 导向烟气下上折转膜式屏 9的上部设有连 通其上下两部分的膜式屏上横集箱 45, 膜式屏上横集箱 45上连通有设置在下行烟道进口 和上行烟道出口的均流分离管束 44、 46, 下行烟道进口均流分离管束 44倾斜向下延伸至 与炉膛后壁 2紧靠或离开一点缝隙时向下弯折形成垂直向下延伸的前垂直段管束, 叉入前 外排管束 30形成的前外垂直段管束内, 并继续向下延伸至满足转弯通道 20扩容减速的流 速要求时向内后弯折, 与前外排管束 30形成的倾斜管束共同构成作为料仓前墙管 5的倾 斜管束, 料仓前墙管的下端与料仓前下横集箱 3连通。 前内排管束 31 的下端向下延伸形 成与前外排管束 30 形成的前外垂直段管束平行的前内垂直段管束, 前内垂直段管束的下 端向后内弯折形成作为料仓前墙管的倾斜管束, 料仓前墙管的下端与料仓前下横集箱 3连 通。 上行烟道出口均流分离管束 46倾斜向下延伸至与竖井前壁 18紧靠或离开一点缝隙时 向下弯折形成垂直向下延伸的后垂直段管束, 叉入后外排管束 33 形成的后外垂直段管束 内, 并继续向下延伸至满足转弯通道 20要求时向前内弯折, 与后外排管束 33形成的倾斜 管束共同构成作为料仓后墙管 22的倾斜管束,料仓后墙管 22的下端与料仓后下横集箱 23 连通。 后内排管束 32的下端向下延伸形成与后外排管束 33形成的后外垂直段管束平行的 后内垂直段管束, 后内垂直段管束的长度应满足转弯通道 20 的要求, 后内垂直段管束的 下端向前内弯折形成作为料仓后墙管的倾斜管束,料仓后墙管的下端与料仓后下横集箱 23 连通。
实施例 5 :
请参阅图 7, 与实施例 4的不同之处在于: 取消下行烟道进口均流分离管束 44、 前外 排管束 30和前内排管束 31。
实施例 6: 请参阅图 8, 本实施例与实施例 3的不同之处: 1 ) 转弯通道烟气进口 6与转弯通道 烟气出口 19是不对称的, 在实施例 3中转弯通道烟气进口 6与转弯通道烟气出口 19是对 称的。 在本实施例中, 在导向烟气下上折转膜式屏 9的下端处形成有转弯通道的烟气进口 6, 在导向烟气下上折转膜式屏 9的上端处形成有转弯通道烟气出口 19。 2)前内外排管束 31、 30的倾斜角与实施例 3相比大幅度加大, 以满足转弯通道烟气进口 6处的烟气流速要 求, 转弯通道烟气进口 6处的烟气流速小于其在下行烟道内的流速时为最佳, 转弯通道烟 气进口 6处的烟气流速等于其在下行烟道内的流速时为较佳, 转弯通道烟气进口 6处的烟 气流速略大于其在下行烟道内的流速也可以。 倾斜角的选择以降低积灰、 降低磨损并且不 会因前内外排管束 31、 30的增加影响烟气进入转弯通道烟气进口的合理流速为原则。 3 ) 本实施例的后内外排管束 32、 33的下端紧靠上行烟道出口 15的下端, 此处的烟气流速以 小于 5m/s为最佳。本实施例的突出优势是: 能够最大限度地提高扩容减速的差速, 利于提 高烟尘重力沉降效率和降低上行烟道出口气流对细小固体颗粒的扬析夹带率。 本实施例可 作为优选方案。
本实施例在实践中, 可根据上述实施例 1-5中的结构形式进行新的集成优化组合, 创 造新的最佳优选方案。
实施例 7:
请参阅图 9, 本实施例与实施例 1的不同之处: 1 )转弯通道烟气进口 6与转弯通道烟 气出口 19是不对称的, 在实施例 3中转弯通道烟气进口 6与转弯通道烟气出口 19是对称 的。在本实施例中, 在导向烟气下上折转膜式屏 9的下端处形成有转弯通道的烟气进口 6, 在导向烟气下上折转膜式屏 9的上端处形成转弯通道的烟气出口 19。 2)前内外排管束 31、 30的倾斜角与实施例 3相比大幅度加大, 倾斜角的选择以降低积灰、 降低磨损并且不会因 前内外排管束 31、 30的增加影响烟气进入转弯通道烟气进口的合理流速为原则。 3 ) 本实 施例的后内外排管束 32、 33的下端紧靠上行烟道出口 15的下端,本实施例的突出优势是: 能够最大限度地提高扩容减速的差速, 利于提高烟尘重力沉降效率和降低上行烟道出口气 流对细小固体颗粒的扬析夹带率。 本实施例可作为优选方案。
本实施例在实践中, 可根据上述实施例 1-6中的结构形式进行新的集成优化组合, 创 造新的最佳优选方案。
实施例 8:
请参阅图 10, 一种循环流化床锅炉, 气固分离器与实施例 6相同, 所不同的是在炉 膛前壁 48 前面增加了一组与炉膛后壁之后的气固分离器对称的气固分离器, 在锅炉顶部 增加一个通向竖井 17的纵向烟道 49, 本实施例适合在大型锅炉中炉膛深度超大时采用。 本实施例中的气固分离器可采用实施例 1-7中的任意一种, 也可采用实施例 1-5中的某部 件和某结构形式的集成组合。
本实施例的工作过程与实施例 1不同的是烟尘同时从炉膛烟气出口 10、 42进入下行 烟道 8, 烟尘经过炉膛前壁 48前面的气固分离器, 经上行烟道 16进入锅炉顶部的纵向烟 道 49, 向后行汇入竖井 17。
尽管以上结合附图对本发明的优选实施例进行了描述, 但是本发明并不局限于上述的 具体实施方式, 上述的具体实施方式仅仅是示意性的, 并不是限制性的, 本领域的普通技 术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保护的范围情况下, 还可以 作出很多形式, 这些均属于本发明的保护范围之内。

Claims

权 利 要 求
1 . 一种循环流化床锅炉的气固分离器, 包括被导向烟气下上折转膜式屏从前向后分 隔成的下行烟道和上行烟道, 所述下行烟道和上行烟道通过转弯通道和密封安装在它们下 面的料仓连通, 该气固分离器的前上部设有烟气入口, 该气固分离器的后上部设有烟气出 口, 该气固分离器的四壁均为与锅炉于一体的受热水冷壁, 其特征在于, 该气固分离器还 包括位于所述转弯通道上的均流分离管束, 所述转弯通道上的均流分离管束的上端与所述 导向烟气下上折转膜式屏连通, 所述转弯通道上的均流分离管束的下端与下横集箱连通。
2. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏的下端分叉成前后各两排光管管束, 所述前面两排光管管束和后面两排 光管管束均架接在所述料仓的上面, 形成所述转弯通道的烟气进口和烟气出口, 并构成所 述转弯通道的烟气进口均流分离管束和转弯通道的烟气出口均流分离管束, 所述前面两排 光管管束和后面两排光管管束的下端均弯折向下延伸形成垂直段管束, 所述垂直段管束向 内弯折延伸形成作为料仓墙管的倾斜管束, 所述料仓墙管与料仓下横集箱连通。
3. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏的下端分叉成前后两排管束, 所述前后两排管束的下端与管束下横集箱 连通, 所述前后两排管束构成所述转弯通道上均流分离管束。
4. 根据权利要求 2所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏的下端设有与其连通的膜式屏下横集箱, 所述导向烟气下上折转膜式屏 通过所述膜式屏下横集箱与所述前面两排光管管束和所述后面两排光管管束连通。
5. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏的下端设有与其连通的膜式屏下横集箱, 所述膜式屏下横集箱的前后各 连通有内外两排均流分离管束, 所述内外两排均流分离管束的下端均弯折向下延伸形成 内、 外垂直段管束, 所述内、 外垂直段管束向内弯折延伸形成作为料仓墙管的倾斜管束; 所述导向烟气下上折转膜式屏的上部设有连通其上下两部分的膜式屏上横集箱, 所述膜式 屏上横集箱上连通有设置在所述下行烟道进口和所述上行烟道出口的均流分离管束, 所述 下行烟道进口和所述上行烟道出口的均流分离管束向下弯折形成垂直向下延伸的垂直段 管束, 并叉入所述外垂直段管束, 所述垂直段管束的下端向内弯折构成作为料仓墙管的倾 斜管束, 所述料仓墙管的下端与料仓下横集箱连通。
6. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏的下端设有与其连通的膜式屏下横集箱, 所述膜式屏下横集箱的后面连 通有内外两排均流分离管束, 所述内外两排均流分离管束的下端均弯折向下延伸形成内、 外垂直段管束, 所述内、 外垂直段管束向内弯折延伸形成作为料仓后墙管的倾斜管束; 所 述导向烟气下上折转膜式屏的上部设有连通其上下两部分的膜式屏上横集箱, 所述膜式屏 上横集箱的后面连通有设置在所述上行烟道出口的均流分离管束, 所述上行烟道出口的均 流分离管束向下弯折形成垂直向下延伸的垂直段管束, 并叉入所述外垂直段管束, 所述垂 直段管束的下端向内弯折构成作为料仓后墙管的倾斜管束, 所述料仓后墙管的下端与料仓 后下横集箱连通。
7. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 所述导向烟 气下上折转膜式屏和该气固分离器的四壁为全膜式壁结构、 半膜式壁结构、 全光管浇注耐 火材料结构和干耐火墙结构中的任意一种。
8. 根据权利要求 1 所述的循环流化床锅炉的气固分离器, 其特征在于, 在所述导向 烟气下上折转膜式屏的下端处形成有所述转弯通道的烟气进口, 在所述导向烟气下上折转 膜式屏的上端处形成有所述转弯通道的烟气出口。
9. 一种循环流化床锅炉, 其特征在于, 该锅炉包括两组如权利要求 1-8中任意一项所 述的气固分离器, 所述两组气固分离器分别设置在锅炉炉膛的前面和后面。
PCT/CN2011/070956 2010-12-05 2011-02-12 循环流化床锅炉气固分离器及含有该气固分离器的锅炉 WO2012075727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010572936.3 2010-12-05
CN201010572936 2010-12-05

Publications (1)

Publication Number Publication Date
WO2012075727A1 true WO2012075727A1 (zh) 2012-06-14

Family

ID=43997789

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/070956 WO2012075727A1 (zh) 2010-12-05 2011-02-12 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
PCT/CN2011/083017 WO2012075892A1 (zh) 2010-12-05 2011-11-28 循环流化床锅炉气固分离器及含有该气固分离器的锅炉

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083017 WO2012075892A1 (zh) 2010-12-05 2011-11-28 循环流化床锅炉气固分离器及含有该气固分离器的锅炉

Country Status (3)

Country Link
US (1) US20120240870A1 (zh)
CN (2) CN102062395B (zh)
WO (2) WO2012075727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146452A1 (en) * 2014-02-19 2016-05-26 Sen Wang Fluidized-bed boiler integrating multifunctional inertia-gravity separator with multiple furnace profiles

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075727A1 (zh) * 2010-12-05 2012-06-14 Wang Sen 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
CN102748742A (zh) * 2012-07-31 2012-10-24 太原锅炉集团有限公司 一种立式、单锅筒垃圾焚烧余热锅炉
CN103047638B (zh) * 2012-12-12 2014-10-29 杭州燃油锅炉有限公司 一种卧式双通道煤粉锅炉
CN103363518B (zh) * 2013-08-07 2015-11-11 东方电气集团东方锅炉股份有限公司 一种循环流化床锅炉
CN104548920B (zh) * 2014-12-03 2017-02-22 河南神马尼龙化工有限责任公司 一种脱硫装置及脱硫方法
CN105805735B (zh) * 2014-12-31 2018-06-08 中国科学院工程热物理研究所 带尾部扩展受热面的超临界循环流化床锅炉和尾部烟道
CN105042578B (zh) * 2015-08-15 2017-10-24 湖南博茂节能环保科技有限公司 煤与烟梗混烧锅炉及其污染物控制方法
CN106979516A (zh) * 2017-05-27 2017-07-25 贵州新能源开发投资股份有限公司 一种适用于循环流化床燃烧的u型复合式分离器
CN107949202A (zh) * 2017-10-30 2018-04-20 深圳市科华恒盛科技有限公司 一种电子设备箱
CN107940449A (zh) * 2017-12-20 2018-04-20 眉山市鸿宇纸业有限公司 一种锅炉折烟角分离器
CN107990331A (zh) * 2017-12-28 2018-05-04 华西能源工业股份有限公司 一种两级气固分离装置先后布置的垃圾焚烧cfb锅炉
CN108131958B (zh) * 2018-01-29 2023-09-26 山东伟基炭科技有限公司 一种用于超高温真空烧结炉的多级捕尘装置
CN109663447B (zh) * 2019-02-21 2024-03-08 唐山神州机械集团有限公司 一种井下基于循环气流的干选系统及干选方法
CN112648617A (zh) * 2020-12-25 2021-04-13 北京巴布科克·威尔科克斯有限公司 单炉膛垃圾焚烧锅炉
CN114440221A (zh) * 2022-01-19 2022-05-06 北京一亚高科能源科技有限公司 具有两级分离的tfb气化焚烧炉和气化焚烧方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687657A (en) * 1995-06-12 1997-11-18 Asea Brown Boveri Ag Method of and device for reducing the dust content of the exhaust gases of a steam generator
CN2413173Y (zh) * 2000-02-08 2001-01-03 郑向阳 锅壳式内循环流化床锅炉
CN101725966A (zh) * 2008-11-26 2010-06-09 王森 一种物料分离与传热于一体循环流化床锅炉
CN101963350A (zh) * 2010-10-12 2011-02-02 王森 一种循环流化床锅炉物料分离器
CN102062395A (zh) * 2010-12-05 2011-05-18 王森 循环流化床锅炉气固分离器及含有该气固分离器的锅炉

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB662721A (en) * 1948-10-25 1951-12-12 Comb Eng Superheater Inc Improvements in or relating to a steam generator
US2758574A (en) * 1953-02-24 1956-08-14 Riley Stoker Corp Steam generating unit
US4253425A (en) * 1979-01-31 1981-03-03 Foster Wheeler Energy Corporation Internal dust recirculation system for a fluidized bed heat exchanger
US4301771A (en) * 1980-07-02 1981-11-24 Dorr-Oliver Incorporated Fluidized bed heat exchanger with water cooled air distributor and dust hopper
US4424434A (en) * 1980-11-17 1984-01-03 Omark Industries, Inc. Boiler tube wearbar, stud and arc shield
US4449482A (en) * 1982-04-28 1984-05-22 Dorr-Oliver Incorporated Fluidized bed boilers
FI66297C (fi) * 1982-11-15 1984-10-10 Ahlstroem Oy Anordning foer avlaegsnande av fasta komponenter ur roekgaser
US4746337A (en) * 1987-07-06 1988-05-24 Foster Wheeler Energy Corporation Cyclone separator having water-steam cooled walls
US5275788A (en) * 1988-11-11 1994-01-04 Peter Stoholm Circulating fluidized bed reactor
US5091156A (en) * 1989-02-13 1992-02-25 A. Ahlstrom Corporation Waterwalls in a fluidized bed reactor
US4951611A (en) * 1989-06-09 1990-08-28 Foster Wheeler Energy Corporation Fluidized bed reactor utilizing an internal solids separator
FR2668815B1 (fr) * 1990-11-02 1993-04-09 Chauffe Cie Gle Procede d'incineration de dechets urbains dans une unite comportant un foyer a lit fluidise et une chaudiere, avec epuration intrinseque des fumees.
JPH06114226A (ja) * 1992-10-02 1994-04-26 Electric Power Dev Co Ltd 高温ガス用脱塵装置
US5630368A (en) * 1993-05-24 1997-05-20 The University Of Tennessee Research Corporation Coal feed and injection system for a coal-fired firetube boiler
US5393315A (en) * 1994-07-28 1995-02-28 Tampella Power Corporation Immersed heat exchanger in an integral cylindrical cyclone and loopseal
US5645620A (en) * 1995-05-25 1997-07-08 Foster Wheeler Development Corp. System for separating particulates and condensable species from a gas stream
DK0745807T3 (da) * 1995-05-31 2000-02-21 Asea Brown Boveri Dampgenerator
EP0903536A1 (de) * 1997-09-23 1999-03-24 Asea Brown Boveri AG Dampferzeuger mit integriertem Staubabscheider
PT981015E (pt) * 1998-08-20 2004-09-30 Martin Umwelt & Energietech Gerador de vapor superaquecido para instalacoes de incineracao com gases de combustao corrosivos
US6305330B1 (en) * 2000-03-03 2001-10-23 Foster Wheeler Corporation Circulating fluidized bed combustion system including a heat exchange chamber between a separating section and a furnace section
CN2505704Y (zh) * 2001-10-21 2002-08-14 广西绿洲热能设备有限公司 燃烧酒精废液浓缩液锅炉
CN1367344A (zh) * 2002-02-05 2002-09-04 广西绿洲热能设备有限公司 热管式有机废液处理装置
US6451091B1 (en) * 2002-02-05 2002-09-17 AVIñA DAVID CHRISTOPHER Apparatus and method for emissions control through continuous filtration system
US6863703B2 (en) * 2002-04-30 2005-03-08 The Babcock & Wilcox Company Compact footprint CFB with mechanical dust collector
SE531722C2 (sv) * 2007-08-28 2009-07-21 Alfa Laval Tumba Ab Centrifugalseparator och förfarande för rening av en gas
US7854792B2 (en) * 2008-09-17 2010-12-21 Airgard, Inc. Reactive gas control
CN201344522Y (zh) * 2008-11-27 2009-11-11 武汉凯迪电力工程有限公司 燃用生物质多通道循环流化床锅炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687657A (en) * 1995-06-12 1997-11-18 Asea Brown Boveri Ag Method of and device for reducing the dust content of the exhaust gases of a steam generator
CN2413173Y (zh) * 2000-02-08 2001-01-03 郑向阳 锅壳式内循环流化床锅炉
CN101725966A (zh) * 2008-11-26 2010-06-09 王森 一种物料分离与传热于一体循环流化床锅炉
CN101963350A (zh) * 2010-10-12 2011-02-02 王森 一种循环流化床锅炉物料分离器
CN102062395A (zh) * 2010-12-05 2011-05-18 王森 循环流化床锅炉气固分离器及含有该气固分离器的锅炉

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146452A1 (en) * 2014-02-19 2016-05-26 Sen Wang Fluidized-bed boiler integrating multifunctional inertia-gravity separator with multiple furnace profiles
US10125974B2 (en) * 2014-02-19 2018-11-13 Ling Wang Fluidized-bed boiler integrating multifunctional inertia-gravity separator with multiple furnace profiles

Also Published As

Publication number Publication date
CN102588959A (zh) 2012-07-18
US20120240870A1 (en) 2012-09-27
CN102062395B (zh) 2012-09-05
WO2012075892A1 (zh) 2012-06-14
CN102062395A (zh) 2011-05-18
CN102588959B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2012075727A1 (zh) 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
US10125974B2 (en) Fluidized-bed boiler integrating multifunctional inertia-gravity separator with multiple furnace profiles
CN102537943B (zh) 一种带有水平旋风分离器的卧式循环流化床锅炉
CN101725966B (zh) 一种物料分离与传热于一体循环流化床锅炉
CN101749696B (zh) 一种多流程循环流化床锅炉
CN101949535A (zh) 低倍率生物质循环流化床锅炉及其燃烧方法
CN101387403A (zh) 流化床焚烧炉、循环流化床焚烧炉以及焚烧系统
CN101963350A (zh) 一种循环流化床锅炉物料分离器
CN202692721U (zh) 一种水泥窑窑头一体化余热锅炉
CN2807014Y (zh) 立式水冷旋涡内分离循环流化床锅炉
CN201916893U (zh) 内分型混燃炉
CN201521950U (zh) 带内置式旋风上排气高温分离器的循环流化床锅炉
CN112856396A (zh) 具有水冷气固分离器与四、七回程水冷烟道的流化床锅炉
CN2434604Y (zh) 立式三回程消烟除尘多用锅炉
CN201281345Y (zh) 流化床焚烧炉、循环流化床焚烧炉以及焚烧系统
CN202123010U (zh) 生物质烟气旋风分离器
CN111720810B (zh) 流化床焚烧炉分级降温模块
CN220793096U (zh) 一种立式方炉膛锅炉
CN116772197B (zh) 一种水冷包墙夹水冷屏纯燃准东煤循环流化床锅炉
CN114413255B (zh) 一种水冷气固分离器与四、七回程水冷烟道的流化床锅炉
CN202915328U (zh) 立式无烟燃烧蒸汽锅炉
CN211204034U (zh) 一种低速流化床式角管锅炉
CN217356853U (zh) 低阻高效省煤器
CN219510763U (zh) 一种立式水管蒸汽发生装置
CN201335374Y (zh) 水冷旋涡内分离循环流化床锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846867

Country of ref document: EP

Kind code of ref document: A1