WO2012074022A1 - イリジウムカチオン錯体および発光組成物 - Google Patents

イリジウムカチオン錯体および発光組成物 Download PDF

Info

Publication number
WO2012074022A1
WO2012074022A1 PCT/JP2011/077702 JP2011077702W WO2012074022A1 WO 2012074022 A1 WO2012074022 A1 WO 2012074022A1 JP 2011077702 W JP2011077702 W JP 2011077702W WO 2012074022 A1 WO2012074022 A1 WO 2012074022A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
atom
heteroaromatic
group
ring
Prior art date
Application number
PCT/JP2011/077702
Other languages
English (en)
French (fr)
Inventor
室谷 英介
祐介 ▲高▼平
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012546921A priority Critical patent/JPWO2012074022A1/ja
Publication of WO2012074022A1 publication Critical patent/WO2012074022A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an iridium cation complex and a luminescent composition using the iridium cation complex.
  • an organic electroluminescence (EL) element has attracted attention as a promising display element in recent years because it can emit light with high luminance at a low voltage.
  • EL organic electroluminescence
  • application of an organic EL element to a color display or a white light source has been studied.
  • R (red) and B (blue) are used.
  • ⁇ G (green) It is indispensable to improve the characteristics of each color light emitting element.
  • blue light-emitting materials are based on, for example, iridium (III) (bis (4,6-difluorophenyl) -pyridinate-N, C 2 ′) picolinate or a fluorinated phenyl-pyridine ligand structure.
  • Iridium complexes have been developed. However, in the case of these iridium complexes, the emission color is in the sky blue region, the shoulder peak is particularly large, and the y value in the CIE color coordinate is large.
  • Non-Patent Document 1 shows that an iridium cation complex obtained by combining difluorophenyl-pyridine and 2- (1H-pyrazol-1-yl) pyridine as a ligand is a good blue light-emitting material.
  • Non-Patent Document 2 describes that when an iridium cation complex is used as a light-emitting material, the driving voltage is low and the element is highly efficient.
  • Patent Document 2 describes an invention related to an organic EL device that uses an iridium complex or a platinum complex having a specific alkyl group as a light-emitting material and has high efficiency, high durability, and little color shift after device deterioration. ing.
  • a cationic complex having a difluorophenyl-pyridine ligand and a bipyridine ligand is exemplified, but these ligands are all substituted. Illustrated as having a group.
  • Patent Document 3 describes the following invention relating to an iridium (III) complex.
  • the bipyridine ligand in the iridium (III) complex is involved in the LUMO (Lowest Unoccupied Molecular Orbital) orbital, and the complex having it tends to cause a red shift in the emission wavelength. Therefore, for example, by changing to a structure that further increases the electron density on the bipyridine ligand, the LUMO orbit can be destabilized and blue shifted.
  • LUMO Large Unoccupied Molecular Orbital
  • Patent Document 3 as an example of an iridium (III) complex, an iridium (III) complex having a phenyl-pyridine ligand further contains an N atom or an O atom as a ring constituent atom in a pyridine ring or a pyrazole ring. Complexes combining pyridine-pyrazole ligands and bipyrazole ligands are described.
  • An object of the present invention is to provide a luminescent composition capable of producing a light-emitting element capable of efficiently emitting a deep blue color of high color purity and containing an iridium complex that efficiently emits a dark blue color of high color purity as an active ingredient. Is to provide.
  • the iridium cation complex of the present invention has the following configuration.
  • X represents a linking site.
  • the neutral bidentate ligand represented by the general formula (2) is linked to two individually selected from the heteroaromatic rings represented by the following formulas (3-1) to (3-36)
  • the iridium cation complex according to [2] which is a neutral bidentate ligand having a structure.
  • R 1 to R 4 each represent an atom or a substituent bonded to an atom constituting the heteroaromatic ring, and each independently represents a hydrogen atom, a halogen atom, a hydroxyl group (—OH), a thiol, Group (—SH), amino group (—NH 2 ), alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 20 carbon atoms, 1 to carbon atoms 20 represents a thioalkyl group having 20 carbon atoms, a silyl group substituted with an alkyl group having 1 to 20 carbon atoms, or an amino group substituted with an alkyl group having 1 to 20 carbon atoms, and R 1 adjacent to each other in each heteroaromatic ring.
  • R 4 may be combined as an independent combination to form a ring structure, wherein Ir represents an Ir atom to which two selected heteroaromatic rings are coordinated and A Is selected One of a divalent linking group single bond or a 1 to 3 carbon atoms shared for connecting a heteroaromatic ring.
  • Ir represents an Ir atom to which two selected heteroaromatic rings are coordinated
  • A Is selected One of a divalent linking group single bond or a 1 to 3 carbon atoms shared for connecting a heteroaromatic ring.
  • the other Any of R 1 to R 4 may be linked to form a ring structure together with the sites linked by A.
  • the neutral bidentate ligand represented by the general formula (2) is connected to the heteroaromatic ring represented by the formula (3-4) and the heteroaromatic ring represented by the formula (3-26).
  • R 1 and R 3 in the formula (3-4) are methyl groups
  • R 2 is a hydrogen atom
  • A is a single bond
  • the luminescent composition of this invention has the following structures.
  • [7] A luminescent composition comprising the iridium cation complex according to any one of [1] to [6] as an active ingredient.
  • the iridium cation complex of the present invention is a compound useful as a light emitting material that efficiently emits a deep blue color with high color purity, and if a light emitting composition containing this as an active ingredient is used, the dark blue color with a high color purity is efficiently produced.
  • a light-emitting element including a light-emitting layer that emits light well can be manufactured.
  • the iridium cation complex of the present invention is a compound represented by the above general formula (1).
  • the iridium cation complex represented by the general formula (1) has three bidentate ligands, specifically, two difluoropyridine-pyridine ligands, one -N ... Z ... N- It is a cation complex having a configuration in which a ligand is coordinated to iridium (Ir).
  • the two difluoropyridine-pyridine ligands are two bidentate ligands having exactly the same structure as shown in the general formula (1), and two pyridines in each ligand are One of them is linked by a single bond with the second position as the bonding position and the other as the bonding position as the third position, and has a molecular structure in which fluorine atoms are bonded to the 2nd and 6th positions of the pyridine linked at the 3rd position.
  • this difluoropyridine-pyridine ligand is referred to as “dfpy-py luminescent ligand” as necessary.
  • the coordination mode of the dfpy-py luminescent ligand is not particularly limited.
  • the N atom of the pyridine ring of one dfpy-py ligand and the N atom of the pyridine ring of the other dfpy-py ligand are It may be in the position of the transformer.
  • C atoms at the 4-position of the difluoropyridine ring may be in a trans position with respect to iridium.
  • the N atom of the pyridine ring of one dfpy-py ligand and the C atom at the 4-position of the difluoropyridine ring of the other dfpy-py ligand are trans positions. May be.
  • dfpy-py light-emitting ligand In the dfpy-py light-emitting ligand, better blue light-emitting characteristics can be obtained by introducing an electron-donating substituent into the pyridine skeleton that is not fluorine-substituted. Furthermore, since this also increases the solubility, conventionally, many Ir complexes having a dfpy-substituted py luminescent ligand in which a substituent is introduced into a pyridine skeleton not substituted with fluorine have been used.
  • the above-mentioned two dfpy-py light-emitting ligands are coordinated to Ir in an unsubstituted state, and in combination therewith, a -N ... Z ... N-ligand described below is converted to Ir.
  • a -N ... Z ... N-ligand described below is converted to Ir.
  • the above -N ... Z ... N-ligand is a neutral bidentate ligand containing a heteroaromatic ring having a high electron density coordinated to Ir by a lone pair of electrons on each N atom.
  • the -N ... Z ... N-ligand having such a structure destabilizes the LUMO orbit due to the high electron density, as described in Patent Document 3, and shifts the emission of the iridium complex to a blue color. It is known that it can be done.
  • the high electron density means that the electron density is higher than the electron density on the carbon atom of the reference benzene ring.
  • this -N ... Z ... N-ligand will be referred to as "NN auxiliary ligand" as necessary.
  • the structure of the iridium cation complex represented by the general formula (1) is obtained by combining the unsubstituted dfpy-py luminescent ligand and the NN auxiliary ligand.
  • the LUMO level is appropriately raised while lowering the HOMO level of the orbital involved in light emission, and the resulting light emission is made into a deep blue with high color purity not found in conventional iridium complexes.
  • the combination of the unsubstituted dfpy-py luminescent ligand and the NN auxiliary ligand contributes to the improvement of the luminous efficiency.
  • it is a cation complex, the effect of lowering the driving voltage of an organic EL device using this as a luminescent material can be expected.
  • the NN auxiliary ligand that can obtain the effects of the present invention by combining with the unsubstituted dfpy-py light-emitting ligand includes a heteroaromatic ring having the above structure and a high electron density.
  • a heteroaromatic ring having the above structure and a high electron density.
  • the ring-constituting atoms may be bonded to a substituent, but from the viewpoint of increasing the electron density of the heteroaromatic ring, the substituent is preferably an electron-donating group.
  • a bidentate ligand having a structure in which two heteroaromatic rings each having one ring N as a ring-constituting atom connected to each other is exemplified.
  • a bidentate ligand represented by the following general formula (2) is preferably used as the NN auxiliary ligand.
  • the NN auxiliary ligand represented by the formula (2) is referred to as a bidentate ligand (L2).
  • At least one of Z 1 or Z 2 is selected from N atoms other than the N atoms, O atoms and S atoms having 5 to 7 members together with N atoms coordinated to Ir.
  • a substituted or unsubstituted heteroaromatic ring containing a heteroatom as a ring-constituting atom, and a lone electron pair of the heteroatom other than the N atom coordinated to Ir is involved in the conjugated structure of the heteroaromatic ring, (It has an electron-excess structure.
  • X represents a linking site.
  • a heteroaromatic ring composed of Z 1 and an N atom coordinated to Ir is represented by —NZ 1
  • the two heteroaromatic rings possessed by the bidentate ligand (L1) are also represented as -NZ 1 and -NZ 2 . This is because, as described above, the bidentate ligand (L2) is a preferred embodiment of the bidentate ligand (L1), and at least one of —NZ 1 and —NZ 2 is substituted with 5 to 7 members.
  • a heteroatom selected from the group consisting of N atom other than N atom coordinated to Ir, O atom and S atom as a ring constituent atom (other than N atom coordinated to Ir)
  • the bidentate ligand (L1) and the bidentate ligand (L2) except that the lone electron pair of the heteroatom of the NZ 1 and -NZ 2 can be treated similarly.
  • -NZ 1 and -NZ 2 related to the bidentate ligand (L1) and the bidentate ligand (L2) will be described.
  • the number of members of —NZ 1 and —NZ 2 is preferably 5 to 7 independently of each other. Furthermore, the number of members of these heteroaromatic rings is 5 or 6, which facilitates the synthesis of the compound.
  • the iridium cation complex is more preferable in terms of the light emission characteristics, the solubility in other components when this is used as a composition, and the like.
  • the heteroaromatic rings represented by —NZ 1 and —NZ 2 may have a substituent independently of each other, and when having a substituent, the substituent is preferably an electron donating group. .
  • —NZ 1 and —NZ 2 further contain a heteroatom selected from the group consisting of an N atom, an O atom, and an S atom other than the N atom coordinated independently of the above Ir as a ring constituent atom. Also good.
  • the ring is preferably a 5-membered ring.
  • either one of —NZ 1 and —NZ 2 is heterogeneous selected from the group consisting of N atoms other than N atoms coordinated to Ir, O atoms, and S atoms.
  • Heteroaromatic ring of 5 to 7 members having atoms as ring constituent atoms (having a ⁇ -electron excess structure in which the lone pair of the heteroatom other than the N atom coordinated to Ir participates in the conjugated structure of the heteroaromatic ring) is there.
  • Preferred combinations of —NZ 1 and —NZ 2 in such a bidentate ligand (L1) include the following (a) to (c) wherein the members of —NZ 1 and —NZ 2 are 5 or 6, respectively. ).
  • —NZ 1 and —NZ 2 have no steric difference in coordination to Ir.
  • a ligand in which —NZ 1 is pyrazole and —NZ 2 is pyridine and a ligand in which —NZ 1 is pyridine and —NZ 2 is pyrazole are the same NN Auxiliary ligand.
  • (a) a combination of heteroaromatic 5-membered rings or (c) a combination of a heteroaromatic 5-membered ring and a heteroaromatic 6-membered ring is more preferable.
  • -NZ 1 and -NZ 2 are a combination of heteroaromatic 5-membered rings
  • -NZ 1 and -NZ 2 may be symmetric via X or asymmetric.
  • both of —NZ 1 and —NZ 2 which are aromatic five-membered rings are heterogeneous selected from the group consisting of at least one N atom, O atom and S atom in addition to the N atom coordinated to Ir.
  • a ⁇ -electron excess structure in which an atom is included as a ring-constituting atom and the lone pair of the heteroatom is involved in the conjugated structure of the heteroaromatic ring is preferable.
  • heteroaromatic 5-membered ring having two or more heteroatoms examples include pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, triazole, tetrazole and the like. Furthermore, it is also possible to use a heteroaromatic 5-membered ring in which an O atom or an S atom is introduced as a ring constituent atom into pyrazole, imidazole, or triazole.
  • bonded with N atom may be substituted.
  • the substituent include a halogen atom, a hydroxyl group (—OH), a thiol group (—SH), an amino group (—NH 2 ), an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, An unsubstituted aryl group having 6 to 20 carbon atoms, a thioalkyl group having 1 to 20 carbon atoms, a silyl group substituted with an alkyl group having 1 to 20 carbon atoms, or an amino group substituted with an alkyl group having 1 to 20 carbon atoms Groups and the like are preferred.
  • the amino group substituted by the said alkyl group, alkoxy group, or alkyl group of the said carbon number is more preferable at the point which raises the electron density of a hetero aromatic ring more.
  • the number of substituents is not limited, but at least one is preferably introduced in order to increase the electron density of the heterocyclic ring and improve the solubility of the complex.
  • the adjacent substituents may be bonded to each other as an independent combination to form a ring structure.
  • the substituent on the heteroaromatic ring of —NZ 1 and the substituent on the heteroaromatic ring of —NZ 2 may be linked.
  • a structure for linking —NZ 1 and —NZ 2 in the bidentate ligand (L1) for example, by a single bond or a divalent linking group
  • Examples include a structure in which both —NZ 1 and —NZ 2 are linked at one place.
  • the divalent linking group include C 1 A divalent linking group of ⁇ 3 is preferred.
  • this linking structure is preferably a single bond or an alkylene group such as a methylene group or an ethylene group, more preferably a single bond. is there.
  • the heteroaromatic 6-membered ring includes pyridine in which the heteroatom is only the N atom coordinated to Ir.
  • a pyridine ring having a relatively high electron density is preferable.
  • —NZ 1 and —NZ 2 are a combination of heteroaromatic 6-membered rings, N atom other than N atom coordinated to Ir, O atom and S atom
  • An unshared electron pair of a heteroatom selected from the group consisting of is not involved in the conjugated structure of the heteroaromatic ring, and the effect of increasing the electron density as in the heteroaromatic 5-membered ring cannot be obtained.
  • the electron-donating substituent include a halogen atom, a hydroxyl group (—OH), a thiol group (—SH), an amino group (—NH 2 ), an alkyl group having 1 to 20 carbon atoms, and a carbon number of 1
  • an alkyl group having the above carbon number, an alkoxy group, an amino group substituted with an alkyl group, and the like are preferable.
  • the number of substituents is not limited, the substituents may be bonded to each other to form a cyclic structure, and the substituents on the heteroaromatic ring of —NZ 1 And a substituent on the heteroaromatic ring of —NZ 2 may be linked.
  • —NZ 1 and —NZ 2 are a combination of a heteroaromatic 6-membered ring and a heteroaromatic 5-membered ring
  • the heteroaromatic 5-membered ring includes the same heteroaromatic as in (a) above.
  • 5-membered ring of a group is mentioned
  • the heteroaromatic 6-membered ring similar to said (b) is mentioned.
  • —NZ 1 and —NZ 2 are a combination of a heteroaromatic 6-membered ring and a heteroaromatic 5-membered ring, at least 1 other than the N atom in which the heteroaromatic 5-membered ring coordinates to Ir. It is preferable to have a configuration having a single hetero atom as a ring constituent atom, and it is more preferable that the heteroaromatic 6-membered ring is pyridine.
  • heteroaromatic 6-membered ring In the combination of a heteroaromatic 6-membered ring and a heteroaromatic 5-membered ring, it is not particularly necessary to introduce an electron-donating substituent into either aromatic ring, but the heteroaromatic 5-membered ring has an electron-donating group. Having a substituent is preferable because the electron density of the NN auxiliary ligand can be further increased. Examples of the electron-donating substituent include the same substituents as those which can be introduced into the heteroaromatic 6-membered ring in (b) above, and preferred embodiments are also the same.
  • -NZ 1 and -NZ 2 of the bidentate ligand (L2) more preferably used as the NN auxiliary ligand are represented by the above formulas (3-1) to (3-36).
  • a combination of a heteroaromatic 5-membered ring and a heteroaromatic 6-membered ring in order to satisfy the condition of the above formula (2), at least one of them is represented by formula (3-1) to formula (3-25).
  • the heteroaromatic 5-membered ring will be selected.
  • the bidentate ligand (L2) is a divalent ligand belonging to the following classification (a) or (c): Only bidentate ligands.
  • (A) a ligand in which —NZ 1 and —NZ 2 are heteroaromatic 5-membered rings (hereinafter referred to as bidentate ligand (L1-a))
  • Examples of the 5-membered heteroaromatic ring structure representing —NZ 1 or —NZ 2 include structures classified into (a-1) to (a-5) shown below.
  • -NZ 1 and -NZ 2 constituting the bidentate ligand (L1-a) are each classified into the following (a-1) to (a-5), specifically, the formula (3- 1) to a heteroaromatic 5-membered ring represented by any one of formulas (3-25), which may be the same or different.
  • A-1) Heteroaromatic ring having one N atom in addition to the N atom coordinated to Ir by a 5-membered ring (a-1) is a heteroaromatic ring having a pyrazole skeleton or an imidazole skeleton.
  • Specific examples of the ring include heteroaromatic 5-membered rings represented by any one of the following formulas (3-1) to (3-4).
  • a heteroaromatic ring classified as (a-2) is a heteroaromatic ring having a triazole skeleton, in addition to the N atom in which the 5-membered ring is coordinated to Ir.
  • Specific examples include a heteroaromatic 5-membered ring represented by any of the following formulas (3-5) to (3-10).
  • a heteroaromatic ring having three N atoms in addition to the N atom coordinated to Ir by a 5-membered ring is a heteroaromatic ring having a tetrazole skeleton.
  • Specific examples include 5-membered heteroaromatic rings represented by any of the following formulas (3-11) to (3-16).
  • (A-4) Heteroaromatic ring having one O atom or S atom in addition to the N atom in which the 5-membered ring is coordinated to Ir, the heteroaromatic ring classified as (a-4) includes an oxazole skeleton and an isoxazole skeleton , A heteroaromatic ring having a thiazole skeleton or an isothiazole skeleton, and specific examples include a heteroaromatic 5-membered ring represented by any of the following formulas (3-17) to (3-22).
  • a heteroaromatic ring classified as (a-5) a heteroaromatic ring having one N atom and one O atom or S atom in addition to the N atom coordinated to Ir by the 5-membered ring,
  • the combination of —NZ 1 and —NZ 2 is, for example, a heteroaromatic 5-membered ring in which —NZ 1 is represented by the formula (3-1) even if they are interchanged.
  • the heteroaromatic 5-membered ring represented by the formula (3-1) may be simply referred to as (3-1).
  • the ligand in which 2 is (3-2) and the ligand in which -NZ 1 is (3-2) and -NZ 2 is (3-1) are the same bidentate ligand (L1- a).
  • (B) a ligand in which —NZ 1 and —NZ 2 are aromatic 6-membered rings (hereinafter referred to as bidentate ligand (L1-b))
  • 6-membered heteroaromatic ring structure representing —NZ 1 or —NZ 2 include structures classified into (b-1) to (b-3) shown below.
  • -NZ 1 and -NZ 2 constituting the bidentate ligand (L1-b) are each classified into the following (b-1) to (b-3).
  • the heteroaromatic 6-membered ring represented by any one of formulas (3-26) to (3-36) can be selected.
  • -NZ 1 and -NZ 2 may be the same or different as long as the above conditions are satisfied.
  • a heteroaromatic ring classified as (b-1) is a heteroaromatic ring having a pyridine skeleton, specifically, A heteroaromatic 6-membered ring represented by the following formula (3-26) can be mentioned.
  • (B-2) Heteroaromatic ring having one N atom in addition to the N atom in which the 6-membered ring is coordinated to Ir, the heteroaromatic ring classified as (b-2) is a pyrimidine skeleton, pyrazine skeleton, or pyridazine
  • the skeleton heteroaromatic ring include heteroaromatic 6-membered rings represented by any of the following formulas (3-27) to (3-30).
  • a heteroaromatic ring having two N atoms in addition to the N atom coordinated to Ir by a 6-membered ring is a heteroaromatic ring having a triazine skeleton.
  • a heteroaromatic 6-membered ring represented by any of the following formulas (3-31) to (3-36) can be given.
  • the combination of —NZ 1 and —NZ 2 is, for example, that -NZ 1 is represented by the formula (3-26) and -NZ 2 is (3- 27) and the ligand in which —NZ 1 is (3-27) and —NZ 2 is (3-26) are the same bidentate ligand (L1-b).
  • (C) A ligand in which one of —NZ 1 and —NZ 2 is an aromatic 5-membered ring and the other is an aromatic 6-membered ring (hereinafter referred to as bidentate ligand (L1-c)).
  • Examples of the 5-membered heteroaromatic structure representing —NZ 1 or —NZ 2 include the above (a-1) to (a-5), and the 6-membered heteroaromatic structure represents the above (b-1 ) To (b-3).
  • One of —NZ 1 and —NZ 2 constituting the NN auxiliary ligand (c) is classified into the above (a-1) to (a-5).
  • the heteroaromatic 5-membered ring represented by any one of formulas (3-1) to (3-25) is classified into the above (b-1) to (b-3) .
  • the heteroaromatic 6-membered ring represented by any one of formulas (3-26) to (3-36) can be selected.
  • R 1 to R 4 each represents an atom or a substituent bonded to an atom constituting the heteroaromatic ring, and each independently represents a hydrogen atom, a halogen atom, a hydroxyl group (—OH), a thiol Group (—SH), amino group (—NH 2 ), alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 20 carbon atoms, 1 to carbon atoms A thioalkyl group having 20 carbon atoms, a silyl group substituted with an alkyl group having 1 to 20 carbon atoms, or an amino group substituted with an alkyl group having 1 to 20 carbon atoms.
  • R 1 to R 4 adjacent to each other of each heteroaromatic ring may be combined as an independent combination to form a ring structure.
  • Ir represents an Ir atom to which two selected heteroaromatic rings are coordinated and A represents a shared single bond connecting two selected heteroaromatic rings or 2 having 1 to 3 carbon atoms.
  • a valent linking group is shown.
  • the heteroaromatic 5-membered ring and the heteroaromatic 6-membered ring constituting -NZ 1 and -NZ 2 preferably have a substituent, Street.
  • the heteroaromatic ring represented by the above formulas (3-1) to (3-36) has a substituent
  • examples of the substituent include the above substituent, and among these, the alkyl having the above carbon number A group, an alkoxy group, an amino group substituted with an alkyl group, and the like are preferable.
  • A is preferably a single bond.
  • a bidentate ligand (L1) in Table 1 a bidentate ligand (L1) represented by the following chemical formula can be specifically mentioned.
  • Each of the chemical formulas shown below is labeled with a ligand symbol, and the first alphabet and numbers of the ligand symbols are the formulas (3-3- 1 and -NZ 2 shown in Table 1 above.
  • the bidentate ligands (L2) preferably used in the present invention include ligand symbols a1 to a55 and ligand symbols c1 to c25.
  • the bidentate ligand represented by the ligand symbol c4 which is a combination of the heteroaromatic rings of the formulas (3-4) and (3-26), is particularly preferable.
  • the bidentate ligand represented by the ligand symbol c4 includes more specifically the bidentate ligands represented by (c4-1) to (c4-9).
  • the bidentate ligand represented by (c4-4) is preferred.
  • the iridium cation complex represented by the general formula (1) of the present invention is a monovalent iridium in which two dfpy-py luminescent ligands and one NN auxiliary ligand are coordinated to iridium (III).
  • Anions which are cationic complexes and usually exist in pairs are described by the following.
  • the counter anion, the type, but the valence is not particularly limited, for example, a halogen ion, perchlorate ion, BF 4 -, PF 6 chromatography, substituted or unsubstituted tetrakis (1-pyrazolyl) borate ion, a substituted or unsubstituted Alkylcarboxylate ions (specifically, acetate ions (CH 3 COO ⁇ ) and the like), substituted or unsubstituted alkyl sulfonate ions (specifically, methane sulfonate ions (CH 3 SO 3 ⁇ , MsO - and also shown are) or trifluoromethanesulfonate ion (CF 3 SO 3 -, TfO - and include also shown are) etc.), a substituted or unsubstituted alkyl phosphonate ion, a substituted or unsubstituted aryl carboxylate ion
  • the iridium cation complex represented by the general formula (1) of the present invention has a blue emission property of the dfpy-py emission ligand coordinated to Ir due to the adjustment effect such as the wavelength by the NN auxiliary ligand. Furthermore, it is an iridium cation complex designed to efficiently emit light of high color purity and deep blue (deep blue whose x value and y value in CIE color coordinates are both less than 0.20), and a luminescent material Useful as.
  • the NN auxiliary ligand also contributes to solubility, which is advantageous when a composition described below is produced using this as a luminescent material. Further, the iridium cation complex can be expected to have an effect of lowering the driving voltage of an organic EL device using the iridium cation complex as a light emitting material.
  • the iridium cation complex represented by the general formula (1) of the present invention includes, for example, step (A): synthesis of an NN auxiliary ligand and step (B): synthesis of a dfpy-py luminescent ligand, Step (C): After the dfpy-py luminescent ligand obtained in Step (B) is coordinated to iridium (III) to form an iridium binuclear complex, this is added to the presence of a counter anion in Step (A). Can be produced by coordinating the NN auxiliary ligand obtained in (1).
  • each step will be described.
  • the synthesis method of the target product in each step is not limited to the synthesis method described below.
  • the production method is not limited at all.
  • the structure of the reaction product in each process can be confirmed by 1 H NMR, 19 F NMR, and the like.
  • (A) Process Synthesis
  • category is demonstrated to an example for every classification
  • the synthesis method is not limited to the method illustrated below, You may use the general coupling reaction by a transition metal catalyst (for example, palladium, nickel, rhodium, etc.).
  • the synthesis method is not limited, but it can be produced by the same synthesis method as the exemplified ligand.
  • R 1 , R 2 and R 3 are the same as the ligands R 1 , R 2 and R 3 in (3-4) above.
  • R 1 in (A-2) is the same as R 1 of the ligand in (3-11) above.
  • the synthesis of a ligand by combining a 5-membered ring of a tetrazole skeleton and a 6-membered ring of a pyridine skeleton obtained by the combination of the above (3-16) and (3-26) is (3-26)
  • the NN auxiliary ligand in which the pyridine skeleton represented is unsubstituted it can be carried out according to the following reaction formula (A-3) by a conventionally known method, for example, the method described in the following document d.
  • Literature d Tetrahedron Lett. 2005, 46, 4851-4854.
  • R 1 in (A-3) is the same as R 1 of the ligand in (3-16) above.
  • the synthesis of the ligand by combining the 5-membered ring of the isoxazole skeleton and the 6-membered ring of the pyridine skeleton obtained by the combination of (3-19) and (3-26) is represented by (3-26).
  • an NN auxiliary ligand in which the pyridine skeleton is unsubstituted it can be carried out according to the following reaction formula (A-4) by a conventionally known method, for example, the method described in the following document e. E. Org. Chem. 2009, 74, 9328-9336.
  • R 1 is the same as R 1 of the ligand in (3-19) above.
  • the atom or group represented by R 2 in (3-19) above is (A-4) is a hydrogen atom.
  • the synthesis of dfpy-py luminescent ligand is carried out according to the following reaction formula (B) by a conventionally known method, for example, the method described in the following document g. It can be carried out.
  • the iridium cation complex can be synthesized, for example, according to the following reaction formulas (C-1) and (C-2). That is, iridium trichloride trihydrate and the dfpy-py luminescent ligand (iii) obtained in the step (B) are dissolved in an appropriate solvent (for example, a mixed solvent of 2-ethoxyethanol and water), and nitrogen is added. Inert gas such as for 5 to 30 minutes. This solution is heated at 100 to 180 ° C. under an inert gas atmosphere such as nitrogen for 1 to 48 hours. After allowing to cool to room temperature, water is added and the insoluble matter produced is collected by filtration, washed thoroughly with water, and dried under reduced pressure to obtain crude iridium binuclear complex (iv).
  • an appropriate solvent for example, a mixed solvent of 2-ethoxyethanol and water
  • a solution of a halogen-based solvent such as methylene chloride of the crude iridium dinuclear complex (iv) obtained in the above step under an inert gas atmosphere such as nitrogen a solution such as a metal salt for a counter anion, formula (C-2)
  • a methanol solution of silver trifluoromethanesulfonate is added and reacted at room temperature for 0.5 to 12 hours.
  • the resulting insoluble material is removed by Celite filtration, and the solvent is removed.
  • the NN auxiliary ligand (i) obtained in the step (A) is added to a halogen-based solvent such as a dichloroethane solution of the residue, and the mixture is heated to reflux for 1 to 24 hours in an inert gas atmosphere such as nitrogen.
  • a halogen-based solvent such as a dichloroethane solution of the residue
  • the insoluble matter produced by cooling with ice is filtered off, and then the solvent is removed to obtain a crude product.
  • the crude product is purified by silica gel or alumina column chromatography (chloroform: methanol and a mixed solvent thereof).
  • the powder produced by adding chloroform and n-hexane in this order is collected by filtration to obtain an iridium cation complex represented by the general formula (1). Thereafter, it can be exchanged with various anions by anion exchange reaction.
  • the luminescent composition containing the iridium cation complex of the present invention as an active ingredient will be described.
  • the light-emitting composition of the present invention is used when producing a light-emitting element utilizing the light emission of the iridium cation complex of the present invention.
  • the light-emitting element to be applied is not particularly limited as long as it is an element that can use the light emission of the iridium cation complex, and is suitable for forming a light-emitting layer in an organic EL element, for example. Used for.
  • the light-emitting composition of the present invention will be described using an organic EL element as an example.
  • a method of forming a light emitting element, for example, a light emitting layer of an organic EL element, using the composition containing the iridium cation complex of the present invention is not particularly limited, but vacuum thermal evaporation, vacuum thermal co-evaporation, Methods such as resistance heating vapor deposition, electron beam, sputtering, molecular lamination method, coating method, ink jet method, printing method, and transfer method are used, and vacuum thermal vapor deposition and coating methods are preferable in terms of characteristics and production.
  • a luminescent composition adjusts compositions, such as the kind of component to contain and the compounding quantity, by these formation methods.
  • the organic EL device to which the light emitting composition of the present invention is applied is, for example, a device in which a plurality of organic compound layers including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode.
  • a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like may be included, and each of these layers may have other functions.
  • the layer structure of the organic compound layer disposed between a pair of electrodes of the organic EL element specifically, at least two layers of a light emitting layer and an electron transport layer, or a hole transport layer, a light emitting layer, and an electron transport layer Examples thereof include an organic compound layer composed of at least three layers. Furthermore, you may have a positive hole injection layer, a positive hole transport layer, an electron injection layer, a protective layer, etc. as needed.
  • the light-emitting layer formed in the light-emitting element has different performance required depending on the design of the light-emitting element, and a light-emitting composition is prepared accordingly.
  • the light-emitting layer contains at least a host compound and a light-emitting material.
  • other components such as a polymer binder appropriately selected as necessary are contained.
  • the light-emitting composition of the present invention contains the iridium cation complex represented by the general formula (1) of the present invention, and further contains the above-mentioned components that the light-emitting layer usually contains.
  • one type of iridium cation complex represented by the general formula (1) may be used alone, or two or more types may be used in combination.
  • the content of the iridium cation complex is not 0.1 to 70% by mass, the content effect may not be sufficiently exhibited.
  • the content is 0.1 to 70% by mass, the content effect is sufficiently exhibited.
  • the host compound contained in the luminescent composition of the present invention is an energy transfer from its excited state to a phosphorescent compound such as the iridium cation complex represented by the general formula (1) of the present invention. It is a compound having a function of causing a phosphorescent compound to emit light.
  • the host compound is not particularly limited as long as it is a compound capable of transferring energy to the light emitting material, and to the iridium cation complex represented by the general formula (1) in the present invention, and can be appropriately selected according to the purpose.
  • a compound in which the energy level difference between HOMO and LUMO is wider than that of the iridium cation complex represented by the general formula (1) of the present invention is preferred as the host compound.
  • carbazole triazole, oxazole, oxadiazole, imidazole, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, anthraquino Dimethane, anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, phthalocyanine, and derivatives thereof;
  • Conductive polymer oligomers such as poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, polythiophenes; polymer compounds such as polythiophene, polyphenylene, polyphenylene vinylene, polyfluorene, and derivatives thereof; Can be illustrated.
  • the host compound may be used alone or in combination of two or more.
  • FPD / DSSC / Optical memory and functional dye latest technology and material development (edited by Hiroyuki Nakasumi, published by Technical Education Publisher, released by NT C), CBP, CDBP, mCP, SimCP, DCP, 4CZPBP, CBZ1-F2, CzSi, PO6, UGH1, UGH2, UGH3, UGH4 and the like represented by the following chemical formulas described in S). It is not limited.
  • the host compound contains 0.1 to 70 parts by mass of the iridium cation complex with respect to 100 parts by mass of the total weight of the host compound and the iridium cation complex represented by the general formula (1). It is preferable to be blended in
  • the content of the host compound in the light emitting composition is appropriately determined in the above range according to the characteristics of the host compound used and the required performance of the light emitting layer in the same manner as in the light emitting material.
  • the content of the host compound in the light emitting layer is not within the above range, the content of the iridium cation complex is too low and the light emission efficiency is decreased, or on the contrary, the light emission efficiency is decreased due to self-quenching. You may be invited.
  • the luminescent composition of the present invention may contain a polymer binder, if necessary, for example, when the luminescent layer is formed by a wet film forming method such as a coating method or an inkjet method.
  • the polymer binder include conductive polymer oligomers such as poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, polythiophenes; polythiophenes, polyphenylenes, polyphenylene vinylenes, polyfluorenes, and derivatives thereof
  • the polymer host compound may be used as it is, or electrically inactive polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone Resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyure
  • the content of the polymer binder in the luminescent composition is preferably 0.1 to 95% by mass with respect to the total solid content of the luminescent composition. 1 to 90% by mass is more preferable.
  • the light emitting layer can be easily applied and formed in a large area.
  • a polymer binder is not normally mix
  • a material for forming the light emitting layer that is, a solid component of the light emitting composition is dissolved to prepare a coating solution to obtain a light emitting composition for wet film formation.
  • a coating solution to obtain a light emitting composition for wet film formation.
  • light emitting material Iridium cation complex represented by General formula (1) of this invention, a host compound, a polymer binder.
  • solvents include halogen solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, and chlorobenzene; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, n-propyl methyl ketone, and cyclohexanone; benzene Aromatic solvents such as toluene and xylene; ester solvents such as ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, and diethyl carbonate; ethers such as tetrahydrofuran and dioxane Amide solvents such as dimethylformamide and dimethylacetamide; dimethyl sulfoxide; water and the like.
  • halogen solvents such as chloroform, carbon tetrachlor
  • a light-emitting element can be obtained by forming a light-emitting layer between a pair of electrodes together with the other organic compound layers using such a light-emitting composition by a conventionally known method.
  • NN auxiliary ligand 1 was synthesized according to the following reaction formula (A-11). That is, in a nitrogen atmosphere, a solution of 2-hydrazinopyridine (10 mmol, 1.09 g) in ethanol (1.25 mL) and concentrated sulfuric acid (0.25 mL) in a solution of acetylacetone (10 mmol, 1.00 g) in ethanol (12.5 mL). ) And heated to reflux for 18 hours. The reaction was quenched with saturated aqueous sodium hydrogen carbonate solution under ice cooling, and the organic matter was extracted with chloroform.
  • reaction formula (A-11) That is, in a nitrogen atmosphere, a solution of 2-hydrazinopyridine (10 mmol, 1.09 g) in ethanol (1.25 mL) and concentrated sulfuric acid (0.25 mL) in a solution of acetylacetone (10 mmol, 1.00 g) in ethanol (12.5 mL). ) And heated to reflux for 18 hours. The reaction was quenched with
  • dfpy-py luminescent ligand 3 was synthesized. That is, n-butyllithium (1.67 M n-hexane solution, 24 mmol, 14.4 mL) was slowly added to a solution of diisopropylamine (3.4 mL, 24 mmol) in THF (20 mL) at 0 ° C. under a nitrogen atmosphere, and then 20 Reaction was performed to prepare a lithium diisopropylamide (LDA) solution.
  • LDA lithium diisopropylamide
  • the iridium cation complex 5 of the present invention was synthesized according to the following reaction formula (C-12). That is, silver trifluoromethanesulfonate (0.430 mmol, 110.6 mg) was added to a methylene chloride (12.5 mL) solution of the crude iridium binuclear complex 4 (0.25 g, 0.205 mmol) obtained in the above step under a nitrogen atmosphere. Of methanol (12.5 mL) was added and reacted at room temperature for 2 hours. The resulting insoluble material was removed by Celite filtration, and the solvent was removed.
  • C-12 reaction formula
  • the iridium cation complex 5 obtained in the above Example was dissolved in dichloroethane to prepare a 0.01 mM solution. After passing an inert gas for 30 minutes, an emission spectrum (excitation wavelength: 337 nm) was measured using an absolute PL quantum yield measuring device C9920-02 manufactured by Hamamatsu Photonics. The emission maximum wavelengths at this time were 433 nm and 464 nm, the emission quantum efficiency was 0.83, and (x, y) in the CIE color coordinates was (0.165, 0.175), indicating very strong blue emission.
  • the emission maximum wavelengths were 451 nm and 483 nm
  • the emission quantum efficiency was 0.04
  • (x , Y) was (0.215, 0.247), indicating weak blue-green light emission.
  • FIG. 2 shows an emission spectrum obtained by normalizing the maximum emission intensity of each spectrum shown in FIG. 1 as the same intensity.
  • FIG. 1 it is clear that the emission intensity of the iridium cation complex 5 of the present invention is much higher than that of the iridium cation complex 7 of the comparative example.
  • FIG. 2 it turns out that the emission spectrum of the iridium cation complex 5 of the present invention is greatly shifted by a shorter wavelength (blue shift) than the iridium cation complex 7 of the comparative example.
  • the iridium cation complex of the present invention efficiently emits a deep blue color with high color purity, and a light-emitting composition containing the iridium cation complex is useful for forming a light-emitting layer such as an organic EL device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 高色純度で濃い青色が効率よく発光されるイリジウム錯体およびこれを有効成分として含有する高色純度の濃い青色が効率よく発光される発光素子が作製可能な発光組成物を提供する。 下記一般式(1)で表されるイリジウムカチオン錯体。(ただし、式(1)中、-N…Z…N-配位子は、それぞれのN原子上の孤立電子対でIrに配位した、ヘテロ芳香環を含む中性二座配位子を示す。)

Description

イリジウムカチオン錯体および発光組成物
 本発明は、イリジウムカチオン錯体およびそれを用いた発光組成物に関する。
 種々の表示素子の中でも有機電界発光(Electro Luminescence:EL)素子は、低電圧で高輝度の発光を得ることができるため、近年、有望な表示素子として注目されてきている。例えば、有機EL素子をカラーディスプレイや白色光源へと適用することが検討されているが、高性能なカラーディスプレイや白色光源を開発するためには、これに用いる、R(赤)・B(青)・G(緑)の各色の発光素子の特性を向上させることが必要不可欠となっている。
 これらの中でも青色発光材料については、例えば、イリジウム(III)(ビス(4,6-ジフルオロフェニル)-ピリジネート-N,C’)ピコリネートや、フッ素化されたフェニル-ピリジンリガンド構造を基本とするイリジウム錯体が開発されている。しかし、これらのイリジウム錯体の場合、発光色がスカイブルー領域であり、特にショルダーピークが非常に大きく、CIE色座標におけるy値が大きくなることが問題であった。
 そこで、CIE色座標におけるx値およびy値がいずれも0.20未満であるような、より濃い青色の発光特性を持ち、かつ発光効率の高い青色発光材料の開発が求められている。例えば、特許文献1においては、上記イリジウム錯体の配位子として、ジフルオロピリジン-ピリジン配位子を用いることで、発光配位子のHOMO(Highest Occupied Molecular Orbital)レベルを下げ、より青味の強い発光が可能なイリジウム(III)錯体を得ている。
 また、非特許文献1には、配位子としてジフルオロフェニル-ピリジンと2-(1H-ピラゾール-1-イル)ピリジンを組み合わせたイリジウムカチオン錯体が、よい青色発光材料であることが示されている。
 非特許文献2には、イリジウムカチオン錯体を発光材料とした場合、駆動電圧が低く、高効率な素子になると記載されている。
 さらに、特許文献2には、特定のアルキル基を有するイリジウム錯体または白金錯体を発光材料として用いた高効率、高耐久性、かつ素子劣化後の色ズレの少ない有機EL素子に係る発明が記載されている。また、上記特定のアルキル基を有するイリジウム錯体の例示の一つとしてジフルオロフェニル-ピリジン配位子とビピリジン配位子を持つカチオン性錯体が例示されているが、これらの配位子はいずれも置換基を有するものとして例示されている。
 一方、特許文献3には、イリジウム(III)錯体に係る以下の発明が記載されている。イリジウム(III)錯体におけるビピリジン配位子はLUMO(Lowest Unoccupied Molecular Orbital)軌道に関与し、それを持つ錯体は、発光波長がレッドシフトする傾向がある。そのため、例えば、ビピリジン配位子上の電子密度をより上げるような構造に変化させることで、LUMO軌道を不安定化させ、ブルーシフトできる。
 また、特許文献3には、イリジウム(III)錯体の例示として、フェニル-ピリジン配位子を有するイリジウム(III)錯体に、ピリジン環、ピラゾール環に環構成原子としてさらにN原子またはO原子を含むピリジン-ピラゾール配位子やビピラゾール配位子を組合せた錯体が記載されている。
 このように、有機EL素子等に用いる青色発光材料として、様々なイリジウム錯体が研究されているが、さらに、より高色純度で濃い青色が効率よく発光される発光材料が求められている。
特許第4323439号公報 特許第4551480号公報 中国特許公開第101186624号公報
Adv.Funct.Mater.2008,18,2123-2131. Org.Electron.2009,10,152-157.
 本発明の目的は、高色純度で濃い青色が効率よく発光されるイリジウム錯体およびこれを有効成分として含有する高色純度の濃い青色が効率よく発光される発光素子が作製可能な発光組成物を提供することである。
 本発明のイリジウムカチオン錯体は、以下の構成を有する。
[1]下記一般式(1)で表されるイリジウムカチオン錯体。
Figure JPOXMLDOC01-appb-C000004
(ただし、式(1)中、-N…Z…N-配位子は、それぞれのN原子上の孤立電子対でIrに配位した、ヘテロ芳香環を含む中性二座配位子を示す。)
[2]前記一般式(1)において、-N…Z…N-配位子が、下記一般式(2)で示される中性二座配位子である、[1]に記載のイリジウムカチオン錯体。
Figure JPOXMLDOC01-appb-C000005
(ただし、式(2)中、ZあるいはZの少なくとも一方が、Irに配位するN原子とともに、員数が5~7の、前記N原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として含む、置換または非置換のヘテロ芳香環を示し、Irに配位するN原子以外の、該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与した構造をとる。また、Xは連結部位を示す。)
[3]前記一般式(2)で示される中性二座配位子が、下記式(3-1)~式(3-36)で示されるヘテロ芳香環から個々に選ばれる2つが連結した構造を有する中性二座配位子である、[2]に記載のイリジウムカチオン錯体。
Figure JPOXMLDOC01-appb-C000006
(ただし、上記各式においてR~Rは、ヘテロ芳香環を構成する原子に結合する原子または置換基を示し、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシル基(-OH)、チオール基(-SH)、アミノ基(-NH)、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換または非置換の炭素数6~20のアリール基、炭素数1~20のチオアルキル基、炭素数1~20のアルキル基で置換されたシリル基、または炭素数1~20のアルキル基で置換されたアミノ基を示す。また、各ヘテロ芳香環の互いに隣り合うR~Rは、それぞれ独立した組合せとして、結合して環構造を形成していてもよい。式中Irは、選択される2つのヘテロ芳香環が共有して配位するIr原子を示し、Aは選択される2つのヘテロ芳香環を連結する共有の単結合あるいは炭素数1~3の2価連結基を示す。さらに、選択される2つのヘテロ芳香環の一方が有するR~Rのいずれかと、他方が有するR~Rのいずれかが連結し、Aで連結された部位とともに環構造を形成していてもよい。)
[4]前記一般式(2)で示される中性二座配位子が、前記式(3-4)で示されるヘテロ芳香環と式(3-26)で示されるヘテロ芳香環が連結した構造を有する中性二座配位子である、[2]または[3]に記載のイリジウムカチオン錯体。
[5]前記式(3-4)におけるRおよびRがメチル基であり、Rが水素原子であり、Aが単結合であり、かつ前記式(3-26)のR~Rが水素原子であり、Aが単結合である、[4]に記載のイリジウムカチオン錯体。
[6]発光スペクトルのCIE色座標におけるx値およびy値が0.20未満である、[1]~[5]のいずれかに記載のイリジウムカチオン錯体。
 また、本発明の発光組成物は以下の構成を有する。
[7][1]~[6]のいずれかに記載のイリジウムカチオン錯体を有効成分として含有する発光組成物。
 本発明のイリジウムカチオン錯体は、高色純度で濃い青色を効率よく発光する発光材料として有用な化合物であり、これを有効成分として含有する発光組成物を用いれば、高色純度の濃い青色を効率よく発光する発光層等を有する発光素子の作製が可能となる。
実施例で得られた本発明のイリジウムカチオン錯体および比較例で得られたイリジウムカチオン錯体の発光スペクトルを示す図である。 実施例で得られた本発明のイリジウムカチオン錯体および比較例で得られたイリジウムカチオン錯体の発光スペクトルを、それぞれのスペクトルにおける最大の発光強度を同一強度として規格化して示した図である。
 以下に本発明の実施の形態を説明する。
 本発明のイリジウムカチオン錯体は、上記一般式(1)で表される化合物である。
 一般式(1)で表されるイリジウムカチオン錯体は、3個の二座配位子、具体的には、2個のジフルオロピリジン-ピリジン配位子と、1個の-N…Z…N-配位子が、イリジウム(Ir)に配位した構成のカチオン錯体である。
 上記2個のジフルオロピリジン-ピリジン配位子は一般式(1)に示されるように、全く同じ構造の2個の二座配位子であって、各配位子において2個のピリジンが、その一方が2位を、もう一方が3位を結合位置として単結合で連結し、3位で連結したピリジンの2位と6位にフッ素原子が結合した分子構造を有し、一般式(1)に示される位置でIrに配位することで、得られるIr錯体に青色に優れた発光特性を付与する発光配位子として知られている。以下、このジフルオロピリジン-ピリジン配位子を、必要に応じて「dfpy-py発光配位子」という。
 このdfpy-py発光配位子の配位様式は特に限定されない。例えば、以下の式(1-1)に示すように一方のdfpy-py配位子のピリジン環のN原子と、もう一方のdfpy-py配位子のピリジン環のN原子がイリジウムに対してトランスの位置にあってもよい。同様に式(1-2)に示すようにジフルオロピリジン環の4位のC原子同士がイリジウムに対してトランスの位置にあってもよい。また式(1-3)に示すように一方のdfpy-py配位子のピリジン環のN原子と、もう一方のdfpy-py配位子のジフルオロピリジン環の4位のC原子がトランスの位置にあってもよい。
Figure JPOXMLDOC01-appb-C000007
 なお、上記dfpy-py発光配位子においては、フッ素置換されていないピリジン骨格側に電子供与性の置換基を導入することでより優れた青色発光特性が得られる。さらに、これにより溶解性も増すことから、従来、フッ素置換されていないピリジン骨格に置換基が導入されたdfpy-置換py発光配位子を有するIr錯体が多く用いられている。
 本発明においては、上記2個のdfpy-py発光配位子を無置換の状態でIrに配位させ、さらにこれと組合せて、以下に説明する-N…Z…N-配位子をIrに1個配位させることで、得られるIrカチオン錯体に特徴的な、高色純度で濃い青色を効率よく発光する性能を見出したものである。
 上記-N…Z…N-配位子は、それぞれのN原子上の孤立電子対でIrに配位した、電子密度の高いヘテロ芳香環を含む中性の二座配位子である。このような構成の-N…Z…N-配位子は、上記特許文献3に記載されているように、電子密度が高いことでLUMO軌道を不安定化させ、イリジウム錯体の発光を青色シフトできることが知られている。ここで、電子密度が高いとは、基準となるベンゼン環の炭素原子上の電子密度に比べて、電子の存在密度が高いことを意味する。以下、この-N…Z…N-配位子を、必要に応じて「NN補助配位子」という。
 本発明においては、上記無置換のdfpy-py発光配位子とこのNN補助配位子を組合せて一般式(1)で示されるイリジウムカチオン錯体の構造としたものである。これにより、発光に関与する軌道のHOMOレベルを下げながらLUMOレベルを適度に上げ、得られる発光を従来のイリジウム錯体にはない高色純度で濃い青色としたものである。また、この無置換dfpy-py発光配位子とNN補助配位子の組合せは発光効率の向上にも寄与している。さらにカチオン錯体となっているので、これを発光材料として用いた有機EL素子の駆動電圧を下げる効果も期待できる。
 本発明において、上記無置換のdfpy-py発光配位子と組合せることで上記本発明の効果が得られるNN補助配位子としては、上記構造を有する電子密度の高いヘテロ芳香環を含む中性の二座配位子であれば特に制限されない。該ヘテロ芳香環において、環構成原子は置換基と結合していてもよいが、ヘテロ芳香環の電子密度をより高くする観点から、上記置換基は電子供与性基であることが好ましい。
 また、上記NN補助配位子の好ましい態様として、Irに配位するNの1個ずつをそれぞれの環構成原子とする2個のヘテロ芳香環が連結した構造の二座配位子が挙げられる。以下、このようなNN補助配位子を二座配位子(L1)という。さらに、ヘテロ芳香環の電子密度をより高くする観点から、上記NN補助配位子として好ましくは、下記一般式(2)で示される二座配位子が用いられる。以下、式(2)で示されるNN補助配位子を二座配位子(L2)という。
Figure JPOXMLDOC01-appb-C000008
(ただし、式(2)中、ZあるいはZの少なくとも一方が、Irに配位するN原子とともに、員数が5~7の、前記N原子以外のN原子、O原子およびS原子から選ばれるヘテロ原子を環構成原子として含む、置換または非置換のヘテロ芳香環を示し、Irに配位するN原子以外の、該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与した、π電子過剰構造をとる。また、Xは連結部位を示す。)
 ここで、二座配位子(L2)における、ZとIrに配位するN原子とからなるヘテロ芳香環を-NZ、同様にZとIrに配位するN原子とからなるヘテロ芳香環を-NZと示す。また、以下同様に、二座配位子(L1)が有する2個のヘテロ芳香環についても-NZおよび-NZと示す。これは、上記の通り二座配位子(L2)は、二座配位子(L1)の好ましい態様であって、-NZおよび-NZの少なくとも一方を、員数が5~7の、上記Irに配位するN原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として含む、置換または非置換のヘテロ芳香環(Irに配位するN原子以外の該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与したπ電子過剰構造をとる)に規定した以外は、二座配位子(L1)と二座配位子(L2)の-NZおよび-NZは同様に扱うことができることによる。
 以下、二座配位子(L1)および二座配位子(L2)に係る-NZおよび-NZについて説明する。
 -NZおよび-NZの員数は、互いに独立して5~7であることが好ましく、さらに、これらのヘテロ芳香環の員数は5または6であることが、化合物を合成する容易さ、得られるイリジウムカチオン錯体の発光特性、これを組成物とする際の他の成分への溶解性等の点からより好ましい。また、-NZおよび-NZで示されるヘテロ芳香環は、互いに独立して置換基を有していてもよく、置換基を有する場合、該置換基は電子供与性基であることが好ましい。
 さらに、-NZおよび-NZはさらに、互いに独立して上記Irに配位するN原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として含んでいてもよい。この場合、Irに配位するN原子以外のN原子、O原子、S原子等のヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与したπ電子過剰構造をとりやすいことから、ヘテロ芳香環は5員環であることが好ましい。なお、二座配位子(L2)においては、-NZおよび-NZのいずれか一方は、Irに配位するN原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として有する員数5~7のヘテロ芳香環(Irに配位するN原子以外の該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与したπ電子過剰構造をとる)である。
 このような二座配位子(L1)における、好ましい-NZおよび-NZの組合せとしては、-NZおよび-NZの員数がそれぞれ5または6である次の(a)~(c)の組合せが挙げられる。
(a)-NZおよび-NZがともにヘテロ芳香族5員環である組合せ
(b)-NZおよび-NZがともにヘテロ芳香族6員環である組合せ
(c)-NZおよび-NZの一方がヘテロ芳香族5員環でもう一方がヘテロ芳香族6員環の組合せ
 なお、-NZと-NZはIrへの配位に立体的な違いはない。したがって、(c)の場合、例えば、-NZがピラゾールであり-NZがピリジンである配位子と-NZがピリジンであり-NZがピラゾールである配位子とは同一のNN補助配位子である。
 また、これらの組合せのうちでも本発明においては上記(a)ヘテロ芳香族5員環同士の組合せ、または(c)ヘテロ芳香族5員環とヘテロ芳香族6員環の組合せがより好ましい。
 上記(a)-NZおよび-NZがヘテロ芳香族5員環同士の組合せの場合は、-NZと-NZがXを介して対称であってもよく、非対称であってもよい。また、芳香族5員環である-NZおよび-NZのいずれもが、Irに配位するN原子以外に少なくも1個のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として有し、該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与した、π電子過剰構造であることが好ましい。
 このようなヘテロ原子を2個以上有するヘテロ芳香族5員環としては、ピラゾール、イミダゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、トリアゾール、テトラゾール等が挙げられる。さらに、ピラゾール、イミダゾール、またはトリアゾールに環構成原子としてO原子やS原子が導入されたヘテロ芳香族5員環を用いることも可能である。
 また、環を構成する炭素原子、N原子に結合する水素原子は、置換されていてもよい。置換基としては、ハロゲン原子、ヒドロキシル基(-OH)、チオール基(-SH)、アミノ基(-NH)、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換または非置換の炭素数6~20のアリール基、炭素数1~20のチオアルキル基、炭素数1~20のアルキル基で置換されたシリル基、または炭素数1~20のアルキル基で置換されたアミノ基などが好ましい。これらの中でも、ヘテロ芳香環の電子密度をより上げる点で、上記炭素数のアルキル基、アルコキシ基、またはアルキル基で置換されたアミノ基等がより好ましい。
 置換基の数は限定されないが、ヘテロ環の電子密度を上げ、錯体の溶解度を向上させる点で、少なくとも1個は導入されていることが好ましい。また、-NZおよび-NZにおいて、互いに隣り合う置換基同士は、それぞれ独立した組合せとして、互いに結合して環構造を形成していてもよい。さらに、-NZのヘテロ芳香環上の置換基と、-NZのヘテロ芳香環上の置換基とが連結していてもよい。
 ここで、二座配位子(L1)において-NZと-NZを連結する構造(上記式(2)においては、Xで示される)としては、例えば、単結合や二価連結基により1か所で-NZと-NZの両者を連結する構造が挙げられる。さらに、これに加えて上記のように-NZと-NZの両ヘテロ芳香環上の置換基同士が連結することで環を形成するように連結する構造をとることも可能である。-NZと-NZを連結する構造が単結合や二価連結基により1か所で-NZと-NZの両者を連結する構造の場合、二価連結基としては、炭素数1~3の二価連結基が好ましい。-NZおよび-NZがヘテロ芳香族5員環同士の組合せの場合、この連結構造は、好ましくは、単結合または、メチレン基、エチレン基等のアルキレン基であり、より好ましくは単結合である。
 次に、(b)-NZおよび-NZがヘテロ芳香族6員環同士の組合せとなる場合、ヘテロ芳香族6員環としては、ヘテロ原子がIrに配位するN原子のみであるピリジンや、Irに配位するN原子以外のヘテロ原子を有するピリミジン、ピラジン、ピリダジン、トリアジン等が挙げられるが、これらの中では電子密度が比較的高いピリジン環が好ましい。
 二座配位子(L1)において、-NZおよび-NZがヘテロ芳香族6員環同士の組合せとなる場合には、Irに配位するN原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子の非共有電子対が、ヘテロ芳香環の共役構造に関与することがなく、上記ヘテロ芳香族5員環のような電子密度を上げる効果は得られない。
 そこで、-NZおよび-NZの少なくとも一方を電子密度の高い状態とするために、少なくともいずれか一方が電子供与性の置換基を有することが好ましい。電子供与性の置換基として、具体的には、ハロゲン原子、ヒドロキシル基(-OH)、チオール基(-SH)、アミノ基(-NH)、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換または非置換の炭素数6~20のアリール基、炭素数1~20のチオアルキル基、炭素数1~20のアルキル基で置換されたシリル基、または炭素数1~20のアルキル基で置換されたアミノ基等が挙げられる。これらの中でも、上記炭素数のアルキル基、アルコキシ基、アルキル基で置換されたアミノ基等が好ましい。(a)の場合と同様に、置換基の数は限定されず、置換基がお互いに結合して、環状構造を形成してもよく、また、-NZのヘテロ芳香環上の置換基と、-NZのヘテロ芳香環上の置換基とが連結していてもよい。
 さらに、(c)-NZと-NZがヘテロ芳香族6員環とヘテロ芳香族5員環の組合せとなる場合、ヘテロ芳香族5員環としては、上記(a)と同様のヘテロ芳香族5員環が挙げられ、ヘテロ芳香族6員環としては、上記(b)と同様のヘテロ芳香族6員環が挙げられる。また、-NZと-NZがヘテロ芳香族6員環とヘテロ芳香族5員環の組合せとなる場合には、ヘテロ芳香族5員環がIrに配位するN原子以外に少なくも1個のヘテロ原子を環構成原子として有する構成をとることが好ましく、ヘテロ芳香族6員環がピリジンであることがより好ましい。
 ヘテロ芳香族6員環とヘテロ芳香族5員環の組合せにおいて、特にどちらかの芳香環に電子供与性の置換基を導入しなくてもよいが、ヘテロ芳香族5員環が電子供与性の置換基を有することが、よりNN補助配位子の電子密度を上げられる点で好ましい。電子供与性の置換基としては、上記(b)のヘテロ芳香族6員環に導入可能な置換基と同様な置換基が挙げられ、好ましい態様も同様である。
 上に、NN補助配位子が二座配位子(L1)である場合の好ましい態様として、上記(a)、(b)、(c)の分類について説明した。ここで、上記(a)~(c)において二座配位子(L1)を構成する-NZおよび-NZとして説明したヘテロ芳香族5員環およびヘテロ芳香族6員環の具体例として、上記式(3-1)~式(3-36)で示されるヘテロ芳香環が挙げられる。式(3-1)~式(3-25)は、それぞれヘテロ芳香族5員環の環構造を示し、式(3-26)~式(3-36)は、それぞれヘテロ芳香族6員環の環構造を示す。
 なお、本発明においてNN補助配位子としてより好ましく用いられる二座配位子(L2)の-NZおよび-NZを、上記式(3-1)~式(3-36)に示されるヘテロ芳香族5員環およびヘテロ芳香族6員環の組合せとする場合、上記式(2)の条件を満足させるために、少なくとも一方を式(3-1)~式(3-25)に示されるヘテロ芳香族5員環から選ぶことになる。すなわち、式(3-1)~式(3-36)に示されるヘテロ芳香環を用いる場合には、二座配位子(L2)は、下記(a)または(c)の分類に属する二座配位子のみとなる。
 本発明において二座配位子(L1)を構成する上記-NZと-NZの組合せについて、上記(a)、(b)、(c)に係る分類を、さらに具体的に、上記式(3-1)~式(3-36)に示されるヘテロ芳香族5員環およびヘテロ芳香族6員環の組合せとして以下に説明する。
(a)-NZおよび-NZがヘテロ芳香族5員環である配位子(以下、二座配位子(L1-a)という。)
 -NZあるいは-NZを示す5員環のヘテロ芳香環構造としては、以下に示す(a-1)~(a-5)に分類した構造が挙げられる。二座配位子(L1-a)を構成する-NZおよび-NZはそれぞれ、以下の(a-1)~(a-5)に分類される、具体的には、式(3-1)~式(3-25)のいずれかに示されるヘテロ芳香族5員環から選択することができ、これらは同一であってもよく、異なってもよい。
(a-1)5員環がIrに配位するN原子以外に、1つのN原子を有するヘテロ芳香環
 (a-1)に分類されるヘテロ芳香環は、ピラゾール骨格またはイミダゾール骨格のヘテロ芳香環であり、具体的には、下記式(3-1)~式(3-4)のいずれかで示されるヘテロ芳香族5員環が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(a-2)5員環がIrに配位するN原子以外に、2つのN原子を有するヘテロ芳香環
 (a-2)に分類されるヘテロ芳香環は、トリアゾール骨格のヘテロ芳香環であり、具体的には、下記式(3-5)~式(3-10)のいずれかで示されるヘテロ芳香族5員環が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(a-3)5員環がIrに配位するN原子以外に、3つのN原子を有するヘテロ芳香環
 (a-3)に分類されるヘテロ芳香環は、テトラゾール骨格のヘテロ芳香環であり、具体的には、下記式(3-11)~式(3-16)のいずれかで示されるヘテロ芳香族5員環が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(a-4)5員環がIrに配位するN原子以外に、1つのO原子あるいはS原子を有するヘテロ芳香環
 (a-4)に分類されるヘテロ芳香環は、オキサゾール骨格、イソキサゾール骨格、チアゾール骨格またはイソチアゾール骨格のヘテロ芳香環であり、具体的には、下記式(3-17)~式(3-22)のいずれかで示されるヘテロ芳香族5員環が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(a-5)5員環がIrに配位するN原子以外に、1つのN原子および1つのO原子あるいはS原子を有するヘテロ芳香環
 (a-5)に分類されるヘテロ芳香環は、オキサジアゾール骨格やチアジアゾール骨格のヘテロ芳香環であり、具体的には、下記式(3-23)~式(3-25)のいずれかで示されるヘテロ芳香族5員環が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 ここで、-NZおよび-NZの組合せは、上記(c)で説明した通り、これらが入れ替わっても、例えば、-NZが式(3-1)で示されるヘテロ芳香族5員環(以下、式(3-1)で示されるヘテロ芳香族5員環を単に(3-1)ということもある。他の式で示されるヘテロ芳香環についても同様である。)であり-NZが(3-2)である配位子と-NZが(3-2)であり-NZが(3-1)である配位子とは同一の二座配位子(L1-a)である。
(b)-NZおよび-NZが芳香族6員環である配位子(以下、二座配位子(L1-b)という。)
 -NZあるいは-NZを示す6員環のヘテロ芳香環構造としては、以下に示す(b-1)~(b-3)に分類した構造が挙げられる。二座配位子(L1-b)を構成する-NZおよび-NZはそれぞれ、以下の(b-1)~(b-3)に分類される。具体的には、式(3-26)~式(3-36)のいずれかに示されるヘテロ芳香族6員環から選択することができる。-NZおよび-NZは上記条件を満たせば同一であってもよく、異なってもよい。
(b-1)6員環がIrに配位するN原子だけを有するヘテロ芳香環
 (b-1)に分類されるヘテロ芳香環は、ピリジン骨格のヘテロ芳香環であり、具体的には、下記式(3-26)で示されるヘテロ芳香族6員環が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(b-2)6員環がIrに配位するN原子以外に、1つのN原子を有するヘテロ芳香環
 (b-2)に分類されるヘテロ芳香環は、ピリミジン骨格、ピラジン骨格、またはピリダジン骨格のヘテロ芳香環であり、具体的には、下記式(3-27)~式(3-30)のいずれかで示されるヘテロ芳香族6員環が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(b-3)6員環がIrに配位するN原子以外に、2つのN原子を有するヘテロ芳香環
 (b-3)に分類されるヘテロ芳香環は、トリアジン骨格のヘテロ芳香環であり、具体的には、下記式(3-31)~式(3-36)のいずれかで示されるヘテロ芳香族6員環が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 ここで、-NZおよび-NZの組合せは、上記(a)で説明した通り、これらが入れ替わっても、例えば、-NZが式(3-26)であり-NZが(3-27)である配位子と-NZが(3-27)であり-NZが(3-26)である配位子とは同一の二座配位子(L1-b)である。
(c)-NZおよび-NZの一方が芳香族5員環でもう一方が芳香族6員環である配位子(以下、二座配位子(L1-c)という。)
 -NZあるいは-NZを示す5員環のヘテロ芳香族構造は、上記(a-1)~(a-5)が挙げられ、6員環のヘテロ芳香環構造は、上記(b-1)~(b-3)が挙げられる。NN補助配位子(c)を構成する-NZおよび-NZは、一方が上記(a-1)~(a-5)に分類される。具体的には、式(3-1)~式(3-25)のいずれかに示されるヘテロ芳香族5員環から、他方を上記(b-1)~(b-3)に分類される。具体的には、式(3-26)~式(3-36)のいずれかに示されるヘテロ芳香族6員環から選択することができる。
 上に、二座配位子(L1)を構成する-NZおよび-NZの具体例として、上記式(3-1)~式(3-36)にヘテロ芳香族5員環およびヘテロ芳香族6員環を示した。ここで、上記各式においてR~Rは、ヘテロ芳香環を構成する原子に結合する原子または置換基を示し、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシル基(-OH)、チオール基(-SH)、アミノ基(-NH)、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換または非置換の炭素数6~20のアリール基、炭素数1~20のチオアルキル基、炭素数1~20のアルキル基で置換されたシリル基、または炭素数1~20のアルキル基で置換されたアミノ基を示す。
 また、各ヘテロ芳香環の互いに隣り合うR~Rは、それぞれ独立した組合せとして、結合して環構造を形成していてもよい。式中Irは、選択される2つのヘテロ芳香環が共有して配位するIr原子を示し、Aは選択される2つのヘテロ芳香環を連結する共有の単結合あるいは炭素数1~3の2価連結基を示す。さらに、選択される2つのヘテロ芳香環の一方が有するR~Rのいずれかと、他方が有するR~Rのいずれかが連結し、Aで連結された部位とともに環構造を形成していてもよい。
 なお、上記(a)~(c)の分類において、-NZおよび-NZを構成するヘテロ芳香族5員環およびヘテロ芳香族6員環が置換基を有することが好ましい場合については上記の通りである。上記式(3-1)~式(3-36)に示されるヘテロ芳香環が置換基を有する場合には、その置換基としては上記置換基が挙げられ、これらのなかでも上記炭素数のアルキル基、アルコキシ基、アルキル基で置換されたアミノ基等が好ましい。また、Aとしては、単結合が好ましい。
 また、上記二座配位子(L1)における(a)~(c)の分類において、-NZおよび-NZを構成する、式(3-1)~式(3-36)に示されるヘテロ芳香環の組合せとして、より具体的には、下記表1に示す組合せが挙げられる。なお、表1に示す通り、-NZおよび-NZを構成する式(3-1)~式(3-36)のヘテロ芳香環の組合せ毎に配位子記号を付した。なお、配位子記号の最初の文字は(a)~(c)の分類を示すが、数字は(a)~(c)の分類毎の単なる連番であり、数字自体に意味はない。表1において、例えば、式(3-1)と式(3-1)のヘテロ芳香環の組合せは配位子記号がa1であり、式(3-1)と式(3-2)のヘテロ芳香環の組合せは配位子記号がa2である。
Figure JPOXMLDOC01-appb-T000017
 さらに、表1のなかでもより好ましい二座配位子(L1)として、具体的には、以下の化学式で示される二座配位子(L1)が挙げられる。以下に示す化学式には、それぞれ配位子記号を付したが、その配位子記号の最初のアルファベットと数字は、上記表1に示す、-NZおよび-NZを構成する式(3-1)~式(3-36)のヘテロ芳香環の組合せ毎に付された配位子記号である。ハイフン以下の数字は、その配位子記号における連番である。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 なお、表1に示す二座配位子(L1)のうちでも、本発明に好ましく用いられる二座配位子(L2)としては、配位子記号a1~a55および配位子記号c1~c25の二座配位子が挙げられ、これらのうちでも、特に好ましくは式(3-4)と(3-26)のヘテロ芳香環の組合せである配位子記号c4の二座配位子が挙げられる。
 上記の通り配位子記号c4の二座配位子として、より具体的には(c4-1)~(c4-9)で示される二座配位子が挙げられるが、これらのなかでも特に(c4-4)で示される二座配位子が好ましい。
 本発明の一般式(1)で表されるイリジウムカチオン錯体は、イリジウム(III)に上記dfpy-py発光配位子の2個とNN補助配位子の1個が配位した1価のイリジウムカチオン錯体であり、通常、これと対をなして存在するアニオンは以下によって説明される。
 対アニオンについては、種類、価数は特に問わないが、例えば、ハロゲンイオン、パークロレートイオン、BF 、PF 、置換あるいは非置換のテトラキス(1-ピラゾリル)ボレートイオン、置換あるいは非置換のアルキルカルボキシレートイオン(具体的には、アセテートイオン(CHCOO)等が挙げられる)、置換あるいは非置換のアルキルスルホネートイオン(具体的には、メタンスルホネートイオン(CHSO 、MsOとも示される)やトリフルオロメタンスルホネートイオン(CFSO 、TfOとも示される)等が挙げられる)、置換あるいは非置換のアルキルホスホネートイオン、置換あるいは非置換のアリールカルボキシレートイオン(具体的には、ベンゾエートイオン(CCOO)等が挙げられる)、置換あるいは非置換のアリールスルホネートイオン(具体的には、トシレートイオン(p-CHSO 、TsOとも示される)等が挙げられる)、置換あるいは非置換のアリールホスホネートイオン、下記式(an1)~(an5)等で示される1価アニオン(ただし、式(an2)において、nは1以上の整数を示す)、炭酸イオン、硫酸イオン、リン酸イオン、置換あるいは非置換のアルキルジカルボキシレートイオン、置換あるいは非置換のアルキルジスルホネートイオン、置換あるいは非置換のアルキルジホスホネートイオン、置換あるいは非置換のアリールジカルボキシレートイオン、置換あるいは非置換のアリールジスルホネートイオン、置換あるいは非置換のアリールジホスホネートイオン等で示される多価アニオン、あるいはアニオン性ポリマーが挙げられる。
 これらのうちでも、化学的安定性、溶解度や合成の容易さの点でPF 、TfO、下記式(an1)~(an5)で示されるアニオン、アニオン性ポリマー等が好ましい。
Figure JPOXMLDOC01-appb-C000021
 本発明の一般式(1)で表されるイリジウムカチオン錯体は、Irに配位するdfpy-py発光配位子の青色に優れる発光特性が上記NN補助配位子による波長等の調整効果により、さらに高色純度で濃い青色(CIE色座標におけるx値およびy値がいずれも0.20未満であるような濃い青色)が効率よく発光されるように設計されたイリジウムカチオン錯体であり、発光材料として有用である。また、上記NN補助配位子は溶解性にも寄与し、これを発光材料として以下に説明する組成物を作製した場合に有利である。さらにイリジウムカチオン錯体は、これを発光材料として用いた有機EL素子の駆動電圧を下げる効果も期待できる。
[製造方法]
 本発明の一般式(1)で表されるイリジウムカチオン錯体は、例えば、(A)工程:NN補助配位子の合成および(B)工程:dfpy-py発光配位子の合成をそれぞれ行い、(C)工程:(B)工程で得られたdfpy-py発光配位子をイリジウム(III)に配位させイリジウム二核錯体とした後、対アニオンの存在下で、これに(A)工程で得られたNN補助配位子を配位させることで製造できる。以下、各工程について説明する。ただし、各工程における目的生成物の合成方法が以下に記載の合成方法に限定されるものではない。一般式(1)で表されるイリジウムカチオン錯体が得られる限りにおいて製造方法は何ら限定されるものではない。
 また、各工程における反応生成物は、H NMRおよび19F NMR等により構造の確認を行うことができる。
(A)工程:NN補助配位子の合成
 NN補助配位子の合成について、上記NN補助配位子の分類毎に各分類における代表的な配位子を例にして説明する。なお、合成方法は、以下に例示する方法に限定されず、遷移金属触媒(例えば、パラジウム、ニッケル、ロジウム等)による一般的なカップリング反応を用いてもよい。また、例示された配位子以外についても、合成方法は限定されないが、例示された配位子と同様の合成方法で製造することができる。
 例えば、上記(3-4)と(3-26)の組合せで得られるピラゾール骨格の5員環とピリジン骨格の6員環の組合せによる配位子の合成は、(3-26)で表されるピリジン骨格が無置換であるNN補助配位子の場合、従来公知の方法、例えば、下記文献aに記載の方法により、以下の反応式(A-1)にしたがって行うことができる。出発物質Aとしてアセチルアセトンを用いた場合には上記(c4-4)で示されるNN補助配位子が得られる。
 文献a:J.Fluorine Chem.2002,118,135-147.
Figure JPOXMLDOC01-appb-C000022
(ただし、(A-1)中、R、R、Rは上記(3-4)における配位子のR、R、Rと同様である。)
 また、下記文献bに記載の以下の反応式(A-1’)によっても、上記(3-4)と(3-26)の組合せで得られるピラゾール骨格の5員環とピリジン骨格の6員環の組合せ(以下は、いずれも無置換のヘテロ芳香環骨格)によるNN補助配位子が製造可能である。
 文献b:J.Org.Chem.2005,70,5164-5173.
Figure JPOXMLDOC01-appb-C000023
 次に、例えば、上記(3-11)と(3-26)の組合せで得られるトリアゾール骨格の5員環とピリジン骨格の6員環の組合せによる配位子の合成は、(3-26)で表されるピリジン骨格が無置換であるNN補助配位子の場合、従来公知の方法、例えば、下記文献cに記載の方法により、以下の反応式(A-2)にしたがって行うことができる。
 文献c:米国特許04474599号
Figure JPOXMLDOC01-appb-C000024
(ただし、(A-2)中Rは、上記(3-11)における配位子のRと同様である。)
 また、例えば、上記(3-16)と(3-26)の組合せで得られるテトラゾール骨格の5員環とピリジン骨格の6員環の組合せによる配位子の合成は、(3-26)で表されるピリジン骨格が無置換であるNN補助配位子の場合、従来公知の方法、例えば、下記文献dに記載の方法により、以下の反応式(A-3)にしたがって行うことができる。
 文献d:Tetrahedron Lett.2005,46,4851-4854.
Figure JPOXMLDOC01-appb-C000025
(ただし、(A-3)中Rは上記(3-16)における配位子のRと同様である。)
 例えば、上記(3-19)と(3-26)の組合せで得られるイソキサゾール骨格の5員環とピリジン骨格の6員環の組合せによる配位子の合成は、(3-26)で表されるピリジン骨格が無置換であるNN補助配位子の場合、従来公知の方法、例えば、下記文献eに記載の方法により、以下の反応式(A-4)にしたがって行うことができる。
 文献e:J.Org.Chem.2009,74,9328-9336.
Figure JPOXMLDOC01-appb-C000026
(ただし、(A-4)中、Rは上記(3-19)における配位子のRと同様である。また、上記(3-19)においてRで示される原子または基は、(A-4)においては水素原子である。)
 さらに、例えば、上記(3-23)と(3-26)の組合せで得られるオキサジアゾール骨格の5員環とピリジン骨格の6員環の組合せによる配位子の合成は、(3-26)で表されるピリジン骨格が無置換であるNN補助配位子の場合、従来公知の方法、例えば、下記文献fに記載の方法により、以下の反応式(A-5)にしたがって行うことができる。
 文献f:Chem.-Eur.J.2010,16,5794-5802.
Figure JPOXMLDOC01-appb-C000027
(ただし、(A-5)中Rは上記(3-23)における配位子のRと同様である。)
(B)工程:dfpy-py発光配位子の合成
 dfpy-py発光配位子の合成は、従来公知の方法、例えば、下記文献gに記載の方法により、以下の反応式(B)にしたがって行うことができる。
 文献g:Inorg.Chem.2009,48,1030-1037.
Figure JPOXMLDOC01-appb-C000028
(C)工程:イリジウムカチオン錯体の合成
 イリジウムカチオン錯体の合成は、例えば、以下の反応式(C-1)および(C-2)にしたがって行うことができる。
 すなわち、三塩化イリジウム三水和物と上記(B)工程で得られたdfpy-py発光配位子(iii)を適当な溶媒(例えば、2-エトキシエタノールと水の混合溶媒)に溶かし、窒素等の不活性ガスを5~30分間程度通気する。この溶液を、窒素等の不活性ガス雰囲気下、100~180℃で、1~48時間加熱する。室温まで放冷後、水を加えて生じた不溶物をろ過で集め、これを水で十分に洗浄し、減圧下乾燥させて粗イリジウム二核錯体(iv)を得る。
Figure JPOXMLDOC01-appb-C000029
 窒素等の不活性ガス雰囲気下、上記工程で得た粗イリジウム二核錯体(iv)の塩化メチレン等のハロゲン系溶媒の溶液に、対アニオン用の金属塩等の溶液、式(C-2)においてはトリフルオロメタンスルホン酸銀のメタノール溶液を加え、室温で0.5~12時間反応させる。生じた不溶物をセライトろ過で除き、溶媒を除去する。残渣のジクロロエタン溶液等のハロゲン系溶媒に、上記(A)工程で得られたNN補助配位子(i)を加え、窒素等の不活性ガス雰囲気下で1~24時間加熱還流する。氷冷して生じた不溶物をろ別した後、溶媒を除去することで粗生成物を得る。この粗生成物をシリカゲルあるいはアルミナカラムクロマトグラフィー(クロロホルム:メタノール、およびその混合溶媒)で精製する。クロロホルム、n-ヘキサンの順に加えて生じた粉末をろ取して、一般式(1)に示されるイリジウムカチオン錯体を得る。またこのあとアニオン交換反応によって各種アニオンと交換することもできる。
Figure JPOXMLDOC01-appb-C000030
[発光組成物]
 本発明のイリジウムカチオン錯体を有効成分として含有する発光組成物について説明する。本発明の発光組成物は、具体的には、上記本発明のイリジウムカチオン錯体の発光を利用する発光素子を作製する際に用いられる。適用される発光素子としては、上記イリジウムカチオン錯体の発光が利用可能な素子であれば、システム、駆動方法、利用形態など特に問わないが、例えば、有機EL素子における発光層を形成するために好適に用いられる。以下、有機EL素子を例にして本発明の発光組成物について説明する。
 本発明のイリジウムカチオン錯体を含有する組成物を用いて、発光素子、例えば、有機EL素子の発光層を形成する方法は、特に限定されるものではないが、真空熱蒸着、真空熱共蒸着、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法、転写法などの方法が用いられ、特性面、製造面で真空熱蒸着、コーティング法が好ましい。発光組成物は、これらの形成方法により含有する成分の種類や配合量等の組成を調整する。
 本発明の発光組成物が適用される有機EL素子は、例えば、陽極、陰極の一対の電極間に発光層もしくは発光層を含む複数の有機化合物層を形成した素子であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。有機EL素子の一対の電極間に配設される有機化合物層の層構成として、具体的には、発光層と電子輸送層の少なくとも2層、または正孔輸送層、発光層、電子輸送層の少なくとも3層から構成された有機化合物層があげられる。さらに必要に応じて、正孔注入層、正孔輸送層、電子注入層、保護層等を有してもよい。
 このように発光素子に形成される発光層は発光素子の設計によって要求される性能が異なり、それに応じて発光組成物が作製されるが、通常、発光層は、少なくともホスト化合物および発光材料を含有し、また必要に応じて適宜選択したポリマーバインダー等その他の成分を含有してなる。本発明の発光組成物は、上記本発明の一般式(1)で表されるイリジウムカチオン錯体を含有し、さらに発光層が通常含有する上記成分を含有する。
 本発明の発光組成物には、上記一般式(1)で表されるイリジウムカチオン錯体の1種を単独で使用してもよいし、2種以上を併用してもよい。一般式(1)で表されるイリジウムカチオン錯体の発光組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、発光組成物の固形分全量に対して0.1~70質量%であり、1~20質量%が好ましい。上記イリジウムカチオン錯体の含有量が0.1~70質量%でない場合にはその含有効果が十分に発揮されないことがあり、0.1~70質量%であるとその含有効果が十分に発揮される。
 本発明の発光組成物が含有するホスト化合物とは、その励起状態から、上記本発明の一般式(1)で表されるイリジウムカチオン錯体のようなりん光発光性化合物へのエネルギー移動により、該りん光発光性化合物を発光させる機能を有する化合物である。ホスト化合物としては、励起子エネルギーを発光材料に、本発明においては一般式(1)で表されるイリジウムカチオン錯体に、エネルギー移動できる化合物ならば特に制限はなく、目的に応じ適宜選択できる。特にHOMO、LUMOのエネルギーレベル差が、上記本発明の一般式(1)で表されるイリジウムカチオン錯体のものより広い化合物がホスト化合物として好ましい。具体的には、以下のカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フタロシアニン、およびこれらの誘導体;
 芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物;
 ポリ(N-ビニルカルバゾ-ル)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー;ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン、ポリフルオレン、およびこれらの誘導体等の高分子化合物等;
が例示できる。ホスト化合物の使用は、1種単独使用、2種以上の併用のどちらでもよい。
 また、ホスト化合物として、特に好ましい化合物として、例えば「FPD・DSSC・光メモリーと機能性色素の最新技術と材料開発」(編集:中澄博行、発行:技術教育出版社、発売:エヌ・ティー・エス)に記載の下記化学式で示されるCBP、CDBP、mCP、SimCP、DCP、4CZPBP,CBZ1-F2、CzSi、PO6、UGH1、UGH2、UGH3、UGH4等の化合物が挙げられるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
 発光組成物においてホスト化合物は、ホスト化合物と一般式(1)で表されるイリジウムカチオン錯体の総重量100質量部に対して、該イリジウムカチオン錯体を0.1~70質量部の割合で含むように配合されることが好ましい。発光組成物におけるホスト化合物の含有量は、上記発光材料と同様、上記範囲のなかで、用いるホスト化合物の特性や発光層の要求性能に応じて適宜決定される。発光層におけるホスト化合物の含有量が、上記の範囲でない場合には、イリジウムカチオン錯体の含有量が少なすぎ、発光効率が低下するか、あるいは反対に多すぎて、自己消光による発光効率の低下を招くことがある。
 本発明の発光組成物は、必要に応じて、例えば、コーティング法、インクジェット法等の湿式製膜法によって発光層を形成する場合には、ポリマーバインダーを含有してもよい。ポリマーバインダーとしては、例えば、ポリ(N-ビニルカルバゾ-ル)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー;ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン、ポリフルオレン、およびこれらの誘導体等の高分子ホスト化合物をそのまま用いてもよく、また、電気的に不活性なポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル、アルキド樹脂、エポキシ樹脂、シリコン樹脂、ポリビニルブチラール、ポリビニルアセタール等でもよい。発光組成物がポリマーバインダーを含有していると、発光層を湿式製膜法により容易にかつ大面積に塗布形成することができる点で有利である。
 発光組成物におけるポリマーバインダーの含有量は、例えば、湿式製膜法により発光層を形成するための発光組成物の場合、発光組成物の固形分全量に対して0.1~95質量%が好ましく、1~90質量%がより好ましい。この含有量の範囲でポリマーバインダーを含有することで、発光層を容易にかつ大面積に塗布形成することが可能となる。また、真空熱蒸着により発光層を形成するための発光組成物の場合、通常ポリマーバインダーを配合することはない。
 発光層を湿式製膜法により塗布形成する場合、上記発光層を構成する材料、すなわち発光組成物の固形成分を溶解して塗布液を調製して湿式製膜用の発光組成物とする。用いられる溶剤には、特に制限はなく、発光材料:本発明の一般式(1)で表されるイリジウムカチオン錯体、ホスト化合物、ポリマーバインダー等の種類に応じて適宜選択できる。
 溶剤として、具体的には、クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン等のハロゲン系溶剤;アセトン、メチルエチルケトン、ジエチルケトン、n-プロピルメチルケトン、シクロヘキサノン等のケトン系溶剤;ベンゼン、トルエン、キシレン等の芳香族系溶剤;酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶剤;ジメチルスルホキシド;水等が挙げられる。
 なお、湿式製膜用の発光組成物における全固形分量に対する溶剤の量としては、特に制限はなく、その粘度も湿式製膜の方法に応じて任意に選択することができる。
 また、湿式製膜法により発光層を形成させる場合には、塗布後の乾燥工程等により最終的に得られる発光層には溶剤は含まれない。
 このような発光組成物を用いて、従来公知の方法で発光層を、上記その他の有機化合物層とともに一対の電極間に形成することで発光素子が得られるが、本発明においては、発光材料として一般式(1)で表されるイリジウムカチオン錯体を用いていることで、発光素子の駆動電圧を下げる効果も期待できる。
 以下に本発明の実施例および比較例を説明するが、本発明はこれらの例によってなんら限定されるものではない。
[実施例1]
(1)NN補助配位子1の合成
 下記反応式(A-11)にしたがってNN補助配位子1を合成した。すなわち、窒素雰囲気下、アセチルアセトン(10mmol,1.00g)のエタノール(12.5mL)溶液に2-ヒドラジノピリジン(10mmol,1.09g)のエタノール(1.25mL)溶液および濃硫酸(0.25mL)を加え、18時間加熱還流させた。氷冷下、飽和炭酸水素ナトリウム水溶液で反応を停止させ、有機物をクロロホルムで抽出した。集めた有機相を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥させ、溶媒を除去して粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製して、NN補助配位子1としての化合物1(1.63g,9.41mmol,94%)を得た。なお化合物1の構造はH NMRで確認した。
(NMR測定結果)
H NMR(CDCl,300MHz)δ(ppm)2.30(3H,s),2.63(3H,s),5.99(1H,s),7.14(1H,dd,J=6.0,5.1Hz),7.76-7.84(2H,m),8.41(1H,d,J=4.2Hz)
Figure JPOXMLDOC01-appb-C000032
(2)dfpy-py発光配位子3の合成
 下記反応式(B-11)にしたがってdfpy-py発光配位子3を合成した。すなわち、窒素雰囲気下、0℃においてジイソプロピルアミン(3.4mL,24mmol)のTHF(20mL)溶液にn-ブチルリチウム(1.67M n-ヘキサン溶液,24mmol,14.4mL)をゆっくり加えてから20分反応させ、リチウムジイソプロピルアミド(LDA)溶液を調製した。
 別のフラスコで窒素雰囲気下、2,6-ジフルオロピリジン(20mmol,1.82mL)のTHF(20mL)溶液を-78℃に冷却し、調製したLDA溶液をゆっくりと加えた。-70℃以下で30分反応させた後、ホウ酸トリメチル(24mmol,2.68mL)のTHF(10mL)溶液をゆっくりと加え、1時間以上かけて室温まで昇温させた。2M水酸化ナトリウム水溶液(40mL)を加えた後、分離した水相を4M塩酸でpH8とし、不要な有機物を酢酸エチルで抽出除去した(有機相A)。次に,水相に再度4M塩酸を加えてpH6.5とし、酢酸エチルで抽出した(有機相B)。最後に、水相に再度4M塩酸を加えてpH4として、酢酸エチルで抽出した(有機相C)。有機相BおよびCを集めて無水硫酸ナトリウムで乾燥後、溶媒を除去して化合物2(2.98g,18.8mmol,94%)を得た。
 窒素雰囲気下、2-ブロモピリジン(14.5mmol,2.29g)と前記方法で合成した化合物2(2.76g,17.4mmol)をTHF(75mL)に溶かし、テトラキス(トリフェニルホスフィン)パラジウム(6mol%,0.87mmol,1.01g)および5%炭酸カリウム水溶液(30mL)を加えて24時間加熱還流させた。水を加えた後、有機物を酢酸エチルで抽出した。集めた有機相を無水硫酸ナトリウムで乾燥させ、溶媒を除去して粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製して、dfpy-py発光配位子3(2.62g,13.6mmol,94%)を得た。なお化合物3の構造はH NMRおよび19F NMRで確認した。
(NMR測定結果)
H NMR(CDCl,300MHz)δ(ppm)6.97-7.00(1H,m),7.29-7.34(1H,m),7.80-7.85(2H,m),8.64-8.73(2H,m)
19F NMR(CDCl,283MHz)δ(ppm)-68.5(1F,s),-69.9(1F,s)
Figure JPOXMLDOC01-appb-C000033
(3)イリジウムカチオン錯体5の合成
 まず、下記反応式(C-11)にしたがって、dfpy-py発光配位子がイリジウムに配位したイリジウム二核錯体4を合成した。すなわち、三塩化イリジウム三水和物(1.00g,2.84mmol)、上記(2)で得られた化合物3(8.51mmol,1.63g)、2-エトキシエタノール(15mL)および水(5mL)を混合し、窒素ガスを10分間通気してから窒素雰囲気下150℃で18時間加熱した。室温まで放冷後、水を加えて生じた不溶物をろ過で集め、これを水で十分に洗浄した。減圧下乾燥させて粗イリジウム二核錯体4(1.94g)を得た。
Figure JPOXMLDOC01-appb-C000034
 次に、下記反応式(C-12)にしたがって、本発明のイリジウムカチオン錯体5を合成した。すなわち、窒素雰囲気下、前記工程で得た粗イリジウム二核錯体4(0.25g,0.205mmol)の塩化メチレン(12.5mL)溶液にトリフルオロメタンスルホン酸銀(0.430mmol,110.6mg)のメタノール(12.5mL)溶液を加え、室温で2時間反応させた。生じた不溶物をセライトろ過で除き、溶媒を除去した。残渣のジクロロエタン(5mL)溶液に、上記(1)で得られた化合物1(0.430mmol,74.5mg)を加え、窒素雰囲気下で18時間加熱還流した。氷冷して生じた不溶物をろ別した後、溶媒を除去することで粗生成物を得た。この粗生成物をシリカゲルおよびアルミナカラムクロマトグラフィー(クロロホルム:メタノール)で精製した。クロロホルム,n-ヘキサンの順に加えて生じた粉末をろ取して、本発明のイリジウムカチオン錯体5(129mg,0.144mmol,35%)を得た。なお、化合物5の構造はH NMRおよび19F NMRで確認した。
(NMR測定結果)
H NMR(acetone-d,300MHz)δ(ppm)1.91(3H,s),3.01(3H,s),5.78(1H,t,J=2.0Hz),5.87(1H,t,J=2.0Hz),6.62(1H,s),7.39-7.47(2H,m),7.49-7.53(1H,m),8.07-8.12(2H,m),8.12-8.27(3H,m),8.35-8.46(4H,m)
19F NMR(acetone-d,283MHz)δ(ppm)-67.8(1F,d,J=9.5Hz),-68.0(1F,d,J=9.5Hz),-69.2(1F,d,J=9.5Hz),-70.2(1F,d,J=9.5Hz),-77.7(3F,s)
Figure JPOXMLDOC01-appb-C000035
[比較例1]
 下記反応式(Cf-12)にしたがって、発光配位子としてdfpy-py発光配位子に替わってジフルオロフェニル-ピリジン発光配位子(dfp-py発光配位子)を用いた比較例のイリジウムカチオン錯体7を合成した。すなわち、窒素雰囲気下、公知の方法(例えば、J.Am.Chem.Soc.2001,123,4304-4312.)に従って合成したイリジウムにdfp-py発光配位子が配位したイリジウム二核錯体6(0.25g,0.206mmol)の塩化メチレン(12.5mL)溶液にトリフルオロメタンスルホン酸銀(0.430mmol,110.6mg)のメタノール(12.5mL)溶液を加え、室温で5時間反応させた。
 生じた不溶物をセライトろ過で除き、溶媒を除去した。残渣のジクロロエタン(5mL)溶液に上記(1)で得られた化合物1(0.430mmol,74.5mg)を加え、窒素雰囲気下で15時間加熱還流した。氷冷して生じた不溶物をろ別した後、溶媒を除去することで粗生成物を得た。この粗生成物に酢酸エチルを加えて生じた淡黄色粉末をろ取し、比較例のイリジウムカチオン錯体7(294mg,0.329mmol,80%)を得た。なお化合物7の構造はH NMRおよび19F NMRで確認した。
(NMR測定結果)
H NMR(CDCl,300MHz)δ(ppm)1.74(3H,s),3.01(3H,s),5.55-5.67(2H,m),6.24(1H,s),6.53(2H,m),6.45-6.62(2H,m),7.15-7.23(2H,m),7.66-7.76(2H,m),7.80-7.90(2H,m),8.21-8.38(2H,m)
19F NMR(CDCl,283MHz)δ(ppm)-78.7(3F,s),-105.4(1F,m),-106.6(1F,m),-108.7(1F,m),-109.2(1F,m)
Figure JPOXMLDOC01-appb-C000036
[発光スペクトル測定]
 上記実施例で得られたイリジウムカチオン錯体5をジクロロエタンに溶解させて0.01mM溶液を調製した。30分間不活性ガスを通気した後、浜松ホトニクス社製、絶対PL量子収率測定装置C9920-02を用いて発光スペクトル(励起波長:337nm)を測定した。このときの発光極大波長は433nmおよび464nm、発光量子効率は0.83、CIE色座標における(x,y)は(0.165,0.175)であり、非常に強い青色発光を示した。
 同様にして比較例で得られたイリジウムカチオン錯体7を用いて調製した測定試料の発光スペクトルを測定したところ、発光極大波長は451nmおよび483nm、発光量子効率は0.04、CIE色座標における(x,y)は(0.215,0.247)であり、弱い青緑色発光を示した。
 上記実施例で得られたイリジウムカチオン錯体5および比較例で得られたイリジウムカチオン錯体7の発光スペクトルを図1に示す。また図1に示したそれぞれのスペクトルの最大の発光強度を同一強度として規格化した発光スペクトルを図2に示す。図1によれば、本発明のイリジウムカチオン錯体5の発光強度が、比較例のイリジウムカチオン錯体7に比べて非常に高いことが明確である。また、図2によれば、本発明のイリジウムカチオン錯体5の発光スペクトルが、比較例のイリジウムカチオン錯体7に比べて大きく短波長シフト(青色シフト)していることが分かる。
 本発明のイリジウムカチオン錯体は、高色純度で濃い青色が効率よく発光され、これを含有する発光組成物は、有機EL素子等の発光層の形成に有用である。
 なお、2010年12月1日に出願された日本特許出願2010-268552号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (7)

  1.  下記一般式(1)で表されるイリジウムカチオン錯体。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式(1)中、-N…Z…N-配位子は、それぞれのN原子上の孤立電子対でIrに配位した、ヘテロ芳香環を含む中性二座配位子を示す。)
  2.  前記一般式(1)において、-N…Z…N-配位子が、下記一般式(2)で示される中性二座配位子である、請求項1に記載のイリジウムカチオン錯体。
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式(2)中、ZあるいはZの少なくとも一方が、Irに配位するN原子とともに、員数が5~7の、前記N原子以外のN原子、O原子およびS原子からなる群から選ばれるヘテロ原子を環構成原子として含む、置換または非置換のヘテロ芳香環を示し、Irに配位するN原子以外の、該ヘテロ原子の孤立電子対がヘテロ芳香環の共役構造に関与した構造をとる。また、Xは連結部位を示す。)
  3.  前記一般式(2)で示される中性二座配位子が、下記式(3-1)~式(3-36)で示されるヘテロ芳香環から個々に選ばれる2つが連結した構造を有する中性二座配位子である、請求項2に記載のイリジウムカチオン錯体。
    Figure JPOXMLDOC01-appb-C000003
    (ただし、上記各式においてR~Rは、ヘテロ芳香環を構成する原子に結合する原子または置換基を示し、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシル基(-OH)、チオール基(-SH)、アミノ基(-NH)、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換または非置換の炭素数6~20のアリール基、炭素数1~20のチオアルキル基、炭素数1~20のアルキル基で置換されたシリル基、または炭素数1~20のアルキル基で置換されたアミノ基を示す。また、各ヘテロ芳香環の互いに隣り合うR~Rは、それぞれ独立した組合せとして、結合して環構造を形成していてもよい。式中Irは、選択される2つのヘテロ芳香環が共有して配位するIr原子を示し、Aは選択される2つのヘテロ芳香環を連結する共有の単結合あるいは炭素数1~3の2価連結基を示す。さらに、選択される2つのヘテロ芳香環の一方が有するR~Rのいずれかと、他方が有するR~Rのいずれかが連結し、Aで連結された部位とともに環構造を形成していてもよい。)
  4.  前記一般式(2)で示される中性二座配位子が、前記式(3-4)で示されるヘテロ芳香環と式(3-26)で示されるヘテロ芳香環が連結した構造を有する中性二座配位子である、請求項2または3に記載のイリジウムカチオン錯体。
  5.  前記式(3-4)におけるRおよびRがメチル基であり、Rが水素原子であり、Aが単結合であり、かつ前記式(3-26)のR~Rが水素原子であり、Aが単結合である、請求項4に記載のイリジウムカチオン錯体。
  6.  発光スペクトルのCIE色座標におけるx値およびy値が0.20未満である、請求項1~5のいずれか1項に記載のイリジウムカチオン錯体。
  7.  請求項1~6のいずれか1項に記載のイリジウムカチオン錯体を有効成分として含有する発光組成物。
PCT/JP2011/077702 2010-12-01 2011-11-30 イリジウムカチオン錯体および発光組成物 WO2012074022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012546921A JPWO2012074022A1 (ja) 2010-12-01 2011-11-30 イリジウムカチオン錯体および発光組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268552 2010-12-01
JP2010268552 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012074022A1 true WO2012074022A1 (ja) 2012-06-07

Family

ID=46171948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077702 WO2012074022A1 (ja) 2010-12-01 2011-11-30 イリジウムカチオン錯体および発光組成物

Country Status (2)

Country Link
JP (1) JPWO2012074022A1 (ja)
WO (1) WO2012074022A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150322102A1 (en) * 2014-05-07 2015-11-12 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10011594B2 (en) 2015-06-03 2018-07-03 Bristol-Myers Squibb Company 4-hydroxy-3-(heteroaryl)pyridine-2-one APJ agonists
US10351532B2 (en) 2014-12-29 2019-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10683293B2 (en) 2014-08-04 2020-06-16 Nuevolution A/S Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases
US11447479B2 (en) 2019-12-20 2022-09-20 Nuevolution A/S Compounds active towards nuclear receptors
US11613532B2 (en) 2020-03-31 2023-03-28 Nuevolution A/S Compounds active towards nuclear receptors
US11780843B2 (en) 2020-03-31 2023-10-10 Nuevolution A/S Compounds active towards nuclear receptors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220136A (ja) * 2004-02-02 2005-08-18 Samsung Sdi Co Ltd イリジウム化合物及びそれを利用した有機電界発光素子
JP2007217364A (ja) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology 新規金属錯体およびこれを用いた発光材料
CN101186624A (zh) * 2007-08-16 2008-05-28 清华大学 一种铱金属配合物及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220136A (ja) * 2004-02-02 2005-08-18 Samsung Sdi Co Ltd イリジウム化合物及びそれを利用した有機電界発光素子
JP2007217364A (ja) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology 新規金属錯体およびこれを用いた発光材料
CN101186624A (zh) * 2007-08-16 2008-05-28 清华大学 一种铱金属配合物及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGELIS ET AL., INORG. CHEM., vol. 46, 2007, pages 5989 - 6001 *
HE ET AL., ORGANIC ELECTRONICS, vol. 10, 2009, pages 152 - 157 *
LEE ET AL., INORG. CHEM., vol. 48, 2009, pages 1030 - 1037 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043986B2 (en) 2014-05-07 2018-08-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US20150322102A1 (en) * 2014-05-07 2015-11-12 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11254681B2 (en) 2014-08-04 2022-02-22 Nuevolution A/S Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases
US10683293B2 (en) 2014-08-04 2020-06-16 Nuevolution A/S Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases
US10689383B2 (en) 2014-08-04 2020-06-23 Nuevolution A/S Optionally fused heterocyclyl-substituted derivatives of pyrimidine useful for the treatment of inflammatory, metabolic, oncologic and autoimmune diseases
US10351532B2 (en) 2014-12-29 2019-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10961200B2 (en) 2014-12-29 2021-03-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US11247971B2 (en) 2014-12-29 2022-02-15 The Trustees Of The University Of Pennsylvania Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10336739B2 (en) 2015-06-03 2019-07-02 Bristol-Myers Squibb Company 4-hydroxy-3-(heteroaryl)pyridine-2-one APJ agonists
US10011594B2 (en) 2015-06-03 2018-07-03 Bristol-Myers Squibb Company 4-hydroxy-3-(heteroaryl)pyridine-2-one APJ agonists
US11447479B2 (en) 2019-12-20 2022-09-20 Nuevolution A/S Compounds active towards nuclear receptors
US11613532B2 (en) 2020-03-31 2023-03-28 Nuevolution A/S Compounds active towards nuclear receptors
US11780843B2 (en) 2020-03-31 2023-10-10 Nuevolution A/S Compounds active towards nuclear receptors

Also Published As

Publication number Publication date
JPWO2012074022A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
TWI642758B (zh) 新穎有機發光材料
KR20240051905A (ko) 유기 전계발광 물질 및 디바이스
CN106831846B (zh) 用于有机发光装置的主体材料
TWI429650B (zh) Organic electroluminescent elements
US8247086B2 (en) Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
TWI734557B (zh) 磷光物質
EP2521196B1 (en) Organic electroluminescent element
WO2012074022A1 (ja) イリジウムカチオン錯体および発光組成物
KR20230153341A (ko) 유기 전계발광 물질 및 소자
WO2015027060A1 (en) Phosphorescent tetradentate metal complexes having modified emission spectra
KR101631079B1 (ko) 유기 전계 발광 소자
JP5266203B2 (ja) 発光物質
WO2007018067A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2011143563A2 (en) Azaborine compounds as host materials and dopants for pholeds
JP2012517492A (ja) Oledの発光層中のホストドーパントとして使用される発光材料
JP2005139185A (ja) 有機金属錯体及びこれを用いた有機電界発光素子
WO2007086505A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP7409428B2 (ja) イリジウム錯体化合物の製造方法
Giridhar et al. A systematic identification of efficiency enrichment between thiazole and benzothiazole based yellow iridium (III) complexes
US8545996B2 (en) Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes
US9412955B2 (en) Fluorescent isoindoline dyes
TWI611004B (zh) 鉑錯合物及使用其的有機發光二極體
Liu et al. A strategy to increase phosphorescent efficiency without perturbing emission color for benzothiazole-containing iridium phosphors
US9269912B2 (en) Metal complex comprising a ligand having a combination of donor-acceptor substituents
Cho et al. Highly soluble green‐emitting Ir (III) complexes with 9‐(6‐phenyl‐pyridin‐3‐ylmethyl)‐9H‐carbazole ligands and their application to polymer light‐emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844240

Country of ref document: EP

Kind code of ref document: A1