WO2012073746A1 - Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof - Google Patents

Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof Download PDF

Info

Publication number
WO2012073746A1
WO2012073746A1 PCT/JP2011/076841 JP2011076841W WO2012073746A1 WO 2012073746 A1 WO2012073746 A1 WO 2012073746A1 JP 2011076841 W JP2011076841 W JP 2011076841W WO 2012073746 A1 WO2012073746 A1 WO 2012073746A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outside air
heat exchanger
unit
air unit
Prior art date
Application number
PCT/JP2011/076841
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 正樹
裕一郎 峰岸
大賀 俊輔
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to US13/879,024 priority Critical patent/US20130213071A1/en
Priority to JP2012546786A priority patent/JPWO2012073746A1/en
Priority to CN2011800477814A priority patent/CN103140718A/en
Publication of WO2012073746A1 publication Critical patent/WO2012073746A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/2079Liquid cooling without phase change within rooms for removing heat from cabinets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to an air conditioning system.
  • a large number of servers and the like are installed in a data center or a server room of a company.
  • the room temperature rises due to the heat generated by a large number of servers.
  • an air conditioning system that keeps the temperature of the entire room constant is adopted for the server room.
  • such an air conditioning system is almost always operated, and is operated even in winter.
  • Patent Documents 1, 2, 3 and the like are known.
  • the inventions described in these Patent Documents 1, 2, 3 and the like all relate to an air conditioner for a high heat generating device that needs to be cooled even when the outside air temperature is low, and in particular, the outside air temperature is used to cool the room. It relates to air conditioners.
  • the air conditioners of Patent Documents 1, 2, and 3 have substantially the same basic configuration, and include a refrigerant circuit in which a refrigerant pump, an expansion valve, an evaporator, a compressor, and a condenser are connected in order.
  • this refrigerant circuit it is possible to realize a compression cycle in which the compressor is operated to cool the room, and a refrigerant pump cycle in which the refrigerant pump is operated to cool the room without operating the compressor.
  • the compressor and the refrigerant pump are not operated simultaneously. Basically, when the outside air temperature is low, the refrigerant pump cycle is used, and when the outside temperature is high, the compressor cycle is used.
  • the compression cycle is a general compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator ⁇ compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator”.
  • the gas refrigerant exiting the evaporator is sent to the condenser as it is, cooled in the condenser with low-temperature outside air, liquefied, and sent to the refrigerant pump.
  • the liquid refrigerant is pressurized by the refrigerant pump and guided to the evaporator. Cooling the refrigerant with such outside air and cooling the room with the cooled refrigerant is called indirect outside air cooling or the like.
  • the above two cycles are switched by comparing the outside air temperature with set values T1, T2, T3 (T3> T2> T1). Thereby, the switching operation of both cycles can be performed so that the energy consumption is reduced as a whole.
  • FIG. 4 shows an example of a conventional indirect outdoor air cooling system.
  • the indirect outside air cooling system is a cooling system that cools an arbitrary indoor space, and is a system that uses outside air for cooling without flowing the outside air into the indoor space.
  • This indoor space is, for example, a server room in which a large number of server racks 102 mounted with heating elements 101 such as server devices (computer devices) are installed.
  • Such an indoor space has a large amount of heat generated by the large number of heating elements 101 and needs to be cooled even in winter.
  • the indoor space is divided into a server installation space, an underfloor space, and a ceiling space.
  • the server installation space is a space in which the server rack 102 on which the heating element 101 is mounted is installed.
  • the upper side of the server installation space has a ceiling and the lower side has a floor.
  • the space above the ceiling is the above-described ceiling space, and the space below the floor is the below-floor space.
  • holes are opened in the floor and ceiling, and cold air and warm air flow into and out of the server installation space through the holes.
  • the indirect outside air cooling system shown in the figure cools the return air (warm air) from, for example, a server room with a general air conditioner, but energy is saved by lowering the temperature of the return air using the outside air at the preceding stage. Is intended.
  • the air conditioner 110 including the illustrated refrigerator 111, air handling unit 112, expansion valve 113, refrigerant pipe 114 and the like is an existing general air conditioner. That is, this air conditioner 110 performs cooling with a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator ⁇ compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator” using a refrigerant. Air conditioner (air conditioner etc.).
  • the refrigerant circulates through the refrigerant pipe 114, the refrigerator 111, the air handling unit 112, the expansion valve 113, and the like.
  • the refrigerator 111 has a compressor, a condenser, a fan (blower), and the like.
  • the air handling unit 112 includes an evaporator, a fan (blower), and the like.
  • the air handling unit 112 sends cool air to the under floor space in the room and supplies the cool air to the server installation space through the under floor space.
  • This cool air becomes warm air by cooling the heating element 101, and this warm air flows from the server installation space into the ceiling space. In the case of a normal cooling system, this warm air flows from the ceiling space into the air handling unit 112 through a duct or the like.
  • the air handling unit 112 generates the cold air by cooling the incoming warm air with the evaporator.
  • the air handling unit 112 cools the inflowing warm air so that the temperature of the cool air becomes a predetermined value (set value).
  • a predetermined value set value
  • the illustrated indirect outside air cooler 120 is provided in order to lower the temperature of the warm air flowing into the air handling unit 112.
  • the wall 1 shown in the figure is a wall of an arbitrary building, and the wall 1 is divided into the inside and outside of the building with the wall 1 as a boundary.
  • the air handling unit 112 or the like in the illustrated example, the space adjacent to the indoor space, for example, sometimes called a machine room
  • the air (inside air) in the building circulates in the building while repeating the cold and warm air states. If the temperature of the air outside the building (outside air) is a season other than summer, for example, it may be considered that it is lower than the temperature of the warm air inside air.
  • the indirect outside air cooler 120 includes a heat exchanger 121, a blower 122, a blower 123, an inside air duct 124, an outside air duct 125, and the like.
  • One end of the inside air duct 124 is provided on the ceiling space side and the other end is provided on the air handling unit 112 side, and is connected to the heat exchanger 121 on the way.
  • the warm air on the ceiling space side is caused to flow into the inside air duct 124 and discharged to the air handling unit 112 side by the blower 122, but passes through the heat exchanger 121 on the way.
  • holes are made in two arbitrary locations on the wall 1 (one is referred to as the outside air inflow hole 126 and the other is referred to as the outside air discharge hole 127), and one end of the outside air duct 125 is connected to the outside air inflow hole 126, The other end is connected to the outside air discharge hole 127.
  • the outside air duct 125 is connected to the heat exchanger 121 on the way. The outside air is passed through the outside air duct 125 by the blower 123. That is, outside air flows in from the outside air inflow hole 126 and is discharged from the outside air discharge hole 127, but the outside air passes through the heat exchanger 121 on the way.
  • the inside air (warm air) and the outside air pass through the heat exchanger 121, and heat exchange between the inside air (warm air) and the outside air is performed in the heat exchanger 121.
  • this heat exchanger 121 since the outside air is shut off from the inside air to perform heat exchange, the outside air humidity, dust, and corrosive gas contained in the outside air are not taken into the room. Sex is maintained.
  • such a heat exchanger 121 is an existing one, and a detailed configuration is not particularly shown.
  • the temperature of the inside air decreases due to heat exchange in the heat exchanger 121, the temperature of the warm air flowing into the air handling unit 112 decreases, and the power consumption of the air conditioner 110 is reduced (the energy saving effect is reduced). can get). In addition, you may consider that the electric power consumption by the air blower 122 and the air blower 123 is comparatively small.
  • the indirect outside air cooler 120 is newly added to the existing general air conditioner 110, and the installation space increases accordingly. Furthermore, although simplified in the drawing, the ducts (the inside air duct 124 and the outside air duct 125) actually take a large installation space. Moreover, as mentioned above, although it is comparatively small, the power consumption by the air blower 122 and the air blower 123 is added. In addition, the indirect outside air cooler 120 as shown in FIG. 4 takes time and costs for installation work.
  • the main subject of the present invention is to provide a compact integrated air conditioning system.
  • the integrated air conditioning system of the present invention has the following configuration.
  • the integrated air conditioning system of the present invention includes an inside air unit through which inside air passes and an outside air unit through which outside air passes.
  • the inside air unit includes a first heat exchanger, an evaporator, and a first blower for allowing the inside air to pass through the first heat exchanger and the evaporator.
  • the outside air unit includes a second heat exchanger, a condenser, and a second blower for allowing the outside air to pass through the second heat exchanger and the condenser.
  • an air conditioner using a compression refrigeration cycle is configured by circulating refrigerant through the refrigerant pipe to the evaporator, the condenser, the expansion valve, and the compressor.
  • a liquid pipe connected to the first heat exchanger and the second heat exchanger is provided, and an arbitrary fluid is supplied to the first heat exchanger and the second heat exchanger via the liquid pipe.
  • the fluid is circulated and heat is exchanged between the fluid and the outside air in the second heat exchanger to cool the fluid with the outside air, and the cooled fluid and the inside air are cooled with the first heat exchanger.
  • An indirect outside air cooler that cools the inside air with the fluid by heat exchange is configured.
  • the integrated air conditioning system is configured to include both an indirect outside air cooling function for lowering the inside air temperature using outside air and a general air conditioning function using a compression refrigeration cycle by the inside air unit and the outside air unit.
  • the first heat exchanger, the evaporator, and the first blower are stacked and integrated to form a first stacked body. It may be.
  • the second heat exchanger, the condenser, and the second blower are stacked and integrated to form a second stacked body. It may be.
  • FIG. 1 It is a block diagram of the air conditioning system (indirect external air cooling system) of Example 1.
  • FIG. 2 It is a block diagram of the air conditioning system (integrated air conditioning system) of Example 2.
  • FIG. 3 is an enlarged view of a part of the configuration of FIG. 2.
  • FIG. 1 is a configuration diagram of an air conditioning system (indirect outside air cooling system) according to a first embodiment.
  • the space to be cooled by the indirect outside air cooling system is assumed to be the same as the conventional example shown in FIG. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed.
  • the indoor space is divided into a server installation space, an underfloor space, and a ceiling space as shown in FIG.
  • the cooling target can be regarded as a server installation space in a narrow sense.
  • the wall 1 separates the inside of the building from the outside of the building, and the air inside the building (inside air) circulates while repeating a cold air state and a warm air state.
  • the temperature of the air outside the building (outside air) is assumed to be lower than the temperature of the warm air inside air.
  • the machine room is a space adjacent to the indoor space, for example, and is connected to the under-floor space and the ceiling space.
  • an air handling unit 12 and an inside air unit 30 which will be described later are installed.
  • a general air conditioner 10 or the like supplies cool air to the indoor space, cools return air (warm air) from the indoor space, and generates cool air again.
  • the temperature of the return air (warm air) is lowered using the outside air.
  • the general air conditioner 10 sends cold air to the underfloor space, supplies cold air to the server installation space via the underfloor space, and cools each heating element 101 by this cold air. As a result, the cool air becomes warm air, and after this warm air flows into the ceiling space, it is returned to the air conditioner 10 as return air. In the preceding stage, the indirect outdoor air cooler 20 uses the outside air to lower the temperature.
  • the air conditioner 10 may be the same as the conventional general air conditioner 110 described above.
  • the temperature of the outside air is low.
  • “the temperature of the outside air is low” does not specifically mean what temperature or lower or the like, but depends on the temperature of the inside air (warm air) or the like. This is the same as before.
  • indirect outside air cooling is intended to lower the temperature of the inside air (warm air) using outside air, and as a result, the temperature of the return air (warm air) can be lowered. It can be said that when the temperature of is low.
  • the present invention is not limited to this example.
  • the configuration for sending the cold air to the underfloor space is the general air conditioner 10 shown in the figure.
  • the general air conditioner 10 includes a refrigerator 11, an air handling unit 12, an expansion valve 13, a refrigerant pipe 14, and the like.
  • the refrigerator 11, the air handling unit 12, the expansion valve 13, and the refrigerant pipe 14 may be the same as the conventional refrigerator 111, the air handling unit 112, the expansion valve 113, and the refrigerant pipe 114 shown in FIG.
  • the general air conditioner 10 may be the same as an existing general air conditioner (such as an air conditioner) such as the conventional air conditioner 110 described above. Therefore, although not shown or described in detail, the air handling unit 12 includes an evaporator 12a and a blower (fan) 12b as shown.
  • the refrigerator 11 has not only a blower (fan) 11a shown but also a compressor and a condenser (not shown).
  • the general air conditioner 10 includes the evaporator 12a, which is a general air conditioner configuration, a compressor and a condenser (not shown), an expansion valve 13, and the like.
  • the refrigerant circulates through. That is, the refrigerant circulates in a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator ⁇ compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator”.
  • a general compression refrigeration cycle vapor compression refrigeration cycle or the like
  • the refrigerant evaporates in the evaporator 12a, the surrounding heat is taken away, thereby cooling the surrounding air (inflowing warm air). The deprived heat is radiated to the outside air or the like in the condenser.
  • the wall 1 shown in the figure is a wall of an arbitrary building, and the indoor space and a space adjacent to the indoor space (machine room) exist in the building.
  • the air handling unit 12, the inside air unit 30 and the like which will be described later are installed in the machine room, and the refrigerator 11 and the outside air unit 40 and the like which will be described later are installed outside the building.
  • Inside air (indoor space and machine room) circulates while the inside air repeats a warm and cold state, and outside air exists outside the building.
  • the general air conditioner 10 is only described above, but as with the conventional air conditioner 110, the temperature of the return air (warm air) that flows into the air handling unit 12 of the general air conditioner 10 is reduced. It is desired to reduce the power consumption of the general air conditioner 10. However, naturally, even if the power consumption of the general air conditioner 10 is reduced, it does not make sense if the overall power consumption increases. Thus, it is conceivable to reduce the temperature of the inside air (warm air) using outside air, and the indirect outside air cooler 120 is conventionally provided.
  • the illustrated indirect outside air cooler 20 is provided.
  • the indirect outside air cooler 20 includes an inside air unit 30 and an outside air unit 40.
  • the inside air unit 30 and the outside air unit 40 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall 1 (inner wall and outer wall, respectively) as illustrated.
  • the outside air unit 40 is installed outside the building, and the inside air unit 30 is installed inside the building. That is, the outside air unit 40 is installed in close contact with the wall surface of the wall 1 outside the building.
  • the inside air unit 30 is installed so as to be in close contact with the inner wall of the wall 1.
  • the inside air unit 30 includes, for example, the illustrated liquid-gas heat exchanger 31, a blower (fan) 32, a pipe 21 (part thereof: about half), and a circulation pump 22.
  • the outdoor air unit 40 includes, for example, the illustrated liquid-gas heat exchanger 41, a blower (fan) 42, and a pipe 21 (part thereof: about half).
  • a liquid-gas heat exchanger 31 and a blower shown in a box-shaped housing whose one surface is open (open; no state). (Fan) 32 etc. are provided.
  • two holes (inner air inlet 33 and inner air outlet 34) shown in the figure are opened in the casing.
  • the illustrated pipe 21 pipe 21 to which the circulation pump 22 is connected in the middle
  • the illustrated pipe 21 may already be connected to the liquid-gas heat exchanger 31 at the time of manufacture in a factory or the like, or the liquid-gas heat at the time of installation. You may connect to the exchanger 31.
  • only the pipe 21 may be connected in the factory, and the circulation pump 22 may be connected to the pipe 21 at the time of installation.
  • both the inside air unit 30 and the outside air unit 40 are installed so that the open surface matches the wall surface of the wall 1.
  • the housing of the outside air unit 40 has two holes (the outside air inlet 43 and the outside air outlet 44) shown in the figure.
  • the illustrated pipe 21 may be already connected to the liquid-gas heat exchanger 41 at the time of manufacture in a factory or the like, or may be connected to the liquid-gas heat exchanger 41 at the time of installation.
  • the indirect outside air cooler 20 is configured by installing the inside air unit 30 and the outside air unit 40 as described above.
  • the outside air and the inside air are mutually blocked and heat exchange is performed, so the outside humidity, dust, and corrosive gas contained in the outside air are taken into the room. Therefore, the reliability of electronic devices such as servers is maintained.
  • the blower (fan) 32 causes the warm air in the ceiling space to flow from the inside air inlet 33 and pass through the inside air unit 30 (particularly, the liquid-gas heat exchanger 31). After that, a flow of air that is discharged from the inside air discharge port 34 (shown by a one-dot chain line arrow in the figure) is created. Basically, the temperature of the warm air discharged from the inside air discharge port 34 is set lower than the temperature of the warm air flowing from the inside air flow inlet 33.
  • the warm air discharged from the inside air discharge port 34 flows into the air handling unit 12 and is cooled by the evaporator 12a or the like in the air handling unit 12 to become cool air, and this cool air is sent to the underfloor space by the blower (fan) 12b. Will be.
  • the power consumption of the general air conditioner 10 is reduced as compared with the case where the warm air in the ceiling space flows into the air handling unit 12 as it is.
  • the blower (fan) 42 allows the outside air to flow in from the outside air flow inlet 43 and passes through the outside air unit 40 (particularly in the liquid-gas heat exchanger 41), and then the outside air discharge port.
  • An air flow (indicated by a dotted arrow in the figure) is generated so as to be discharged from 44.
  • the piping 21 is connected to the circulation pump 22 at an arbitrary position, and a liquid (for example, water) is sealed in the piping. Accordingly, by operating the circulation pump 22, this liquid (for example, water) circulates through the liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 via the pipe 21.
  • the liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 may be the same.
  • the liquid-gas heat exchangers 31 and 41 have an existing configuration and will be described briefly, although they will not be described in detail.
  • the conventional heat exchanger 121 has two types of gas (both air, indoor warm air and outside air) passed through the heat exchanger 121 and heat exchange between the two types of gases, so that the outside air temperature is particularly high. When the temperature is low, the indoor warm air is cooled by the outside air.
  • the liquid-gas heat exchangers 31 and 41 allow liquid (for example, water) and gas (in this case, air) to pass therethrough and exchange heat between the liquid and gas to cool the higher temperature. Is.
  • the gas is indoor warm air in the liquid-gas heat exchanger 31 and outside air in the liquid-gas heat exchanger 41.
  • the liquid is water or the like circulated by the pipe 21 and the circulation pump 22.
  • the temperature of the liquid (such as water) decreases and the temperature of the outside air increases due to heat exchange between the liquid (such as water) and the outside air.
  • a relatively cooler liquid (such as water) flows into the liquid-gas heat exchanger 31 via the pipe 21. Therefore, in the liquid-gas heat exchanger 31, heat exchange between the relatively low-temperature liquid (such as water) and the indoor warm air is performed. As a result, the temperature of the indoor warm air decreases and the temperature of the liquid (water, etc.) increases. As a result, the liquid (water or the like) having a relatively high temperature flows into the liquid-gas heat exchanger 41 via the pipe 21 and is cooled again by the outside air as described above. The outside air whose temperature has risen due to this is discharged from the outside air outlet 44.
  • the air flow in the inside air unit 30 is directed downward (in the direction from the top to the bottom) in FIG. You can also.
  • the air flow in the outside air unit 40 is directed upward in FIG. 1 by the blower 42, but may be downward.
  • the air flow in the inside air unit 30 be downward as shown in FIG.
  • the warm air warmed by the heating element 101 is on the upper side, and the air cooled by the liquid-gas heat exchanger 31 flows downward, so that the air flow in the inside air unit 30 is natural. It will be in line with natural phenomena without countering convection.
  • the manufacture and installation work of the indirect outside air cooler 20 will be described.
  • the outside air unit 40 and the inside air unit 30 have substantially the same shape and size of the casing (and therefore the mounting area on the wall is also substantially the same), and the wall 1 is the center. Therefore, the indirect outside air cooler 20 is formed by arranging and integrating them so as to be substantially symmetrical.
  • the left and right are the stories on the figure.
  • each of the outside air unit 40 and the inside air unit 30 is placed at a position where the frame of the casing is symmetrical with respect to the wall 1 (that is, approximately the same position with the wall 1 interposed therebetween as shown in FIG. 1).
  • the outside air unit 40 and the inside air unit 30 are fixed with bolts / nuts or the like at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1.
  • the pipe 21 is connected through another through hole.
  • the outside air unit 40 and the inside air unit 30 are not only the housing but also the internal configuration is substantially the same (substantially symmetrical as shown), and the difference is the presence or absence of the circulation pump 22. Etc. Therefore, for example, in a factory or the like, a unit is manufactured without the circulation pump 22 without distinguishing between outside air and inside air, and this unit can be used as both the outside air unit 40 and the inside air unit 30 during installation. However, when the inside air unit 30 is used, it is necessary to connect the circulation pump 22 at the time of installation. However, the manufacturing efficiency in the factory is improved, so that the effect of cost reduction can be expected.
  • the indirect outside air cooler 20 has a pair of liquid-gas heat exchangers 31 and 41, in which the internal fluid is liquid and the external fluid is gas, arranged via the wall 1 separating the inside and outside of the building, and one liquid-gas External air is passed through the external fluid of the heat exchanger 41, internal air is passed through the external fluid of the other liquid-gas heat exchanger 31, and the internal fluid (liquid) of both liquid-gas heat exchangers is pipe 21. Circulate through. Thereby, heat exchange between the outside air and the inside air is performed.
  • the indirect outside air cooler 20 has the following effects due to the characteristics described above.
  • (1) The outside air unit 40 having the liquid-gas heat exchanger 41 for allowing the outside air to flow and the inside air unit 30 having the liquid-gas heat exchanger 31 for allowing the inside air to flow are symmetrical about the wall 1. Since these units 30 and 40 can be integrated with each other, it is possible to use a skeleton housing having almost the same structure, thereby reducing the manufacturing cost.
  • the outside air unit 40 and the inside air unit 30 are connected with bolts and nuts at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1. Since it is fixed, the construction cost can be reduced and the installation work can be facilitated.
  • the duct portion can be reduced, and the pressure loss due to the duct resistance can be reduced.
  • Example 2 the air conditioning system (integrated air conditioning system) of Example 2 will be described.
  • the air conditioning system of Example 2 can also be said to be a kind of indirect outside air cooling system, it is integrated and has a compact configuration.
  • the indirect outside air cooling system of the first embodiment has proposed a ductless, compact and easy installation configuration for the indirect outside air cooling device 20, but the general air conditioner 10 is substantially the same as the conventional one.
  • Example 2 proposes an integrated indirect outdoor air cooling system in which the functions of an indirect outdoor air cooler and the functions of a general air conditioner are integrated.
  • FIG. 2 is a configuration diagram of the air conditioning system (integrated air conditioning system) of the second embodiment.
  • FIG. 3 is an enlarged view of a part of the configuration of FIG.
  • the space to be cooled by the integrated indirect outdoor air cooling system is the same as the example shown in FIGS. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling space.
  • the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling
  • the configuration for sending the cool air to the underfloor space is the integrated indirect outdoor air cooling system 50 shown in the figure.
  • the integrated indirect outside air cooling system 50 has a configuration in which the function of the indirect outside air cooler 20 and the function of the general air conditioner 10 are integrated.
  • the integrated indirect outside air cooling system 50 allows the warm air in the ceiling space to flow in, first lowers the temperature of the warm air by the function of the indirect outside air cooler, and then generates cool air at a predetermined temperature by the function of the general air conditioner. .
  • the integrated indirect outside air cooling system 50 includes an inside air unit 60 and an outside air unit 70 shown in FIGS.
  • the outside air and the inside air are mutually cut off and heat exchange is performed as in the conventional example shown in FIG. 4 and the configuration shown in FIG. Therefore, the reliability of electronic devices such as servers is maintained because the outside air humidity, dust, and corrosive gas contained in are not taken into the room.
  • the inside air unit 60 and the outside air unit 70 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall surface of the wall 1 as illustrated.
  • the integrated indirect outside air cooling system 50 is configured by installing the illustrated pipe 51, the refrigerant pipe 52, etc. (or connecting (welding, etc.) one that has been made approximately half by two).
  • tube 52 this through-hole becomes four places similarly to the structure of FIG.1 and FIG.4.
  • the production and installation of the inside air unit 60 and the outside air unit 70 may be substantially the same as the inside air unit 30 and the outside air unit 40 of the first embodiment, and will not be described in detail here.
  • the wall 1 is divided into a building outside and a building inside.
  • the outside air unit 70 is installed outside the building, and the inside air unit 60 is installed inside the building. That is, the outside air unit 70 is installed in close contact with the wall surface of the wall 1 outside the building.
  • the inside air unit 60 is installed so as to be in close contact with the inner wall surface of the wall 1.
  • the outside air unit 70 and the inside air unit 60 are provided at positions corresponding to each other across the wall 1.
  • the positions corresponding to each other across the wall 1 are positions as illustrated in FIGS. 2 and 3, for example.
  • the inside air unit 60 exists on the back side of the wall 1. It is such a position.
  • the casing of the outside air unit 70 and the casing of the inside air unit 60 are substantially the same shape and size as shown in the figure, these two casings are as shown in the figure. They are arranged so as to have a substantially symmetrical relationship (almost symmetrical in the drawing) on the wall 1.
  • the present invention is not limited to such an example, but basically, it is desirable to install so that the piping is shortened so as to facilitate installation.
  • the inside air unit 60 has a laminated body 61 and the like.
  • the laminated body 61 has an evaporator 61a, a liquid-gas heat exchanger 61b, a blower (fan) 61c, etc., and these are laminated and integrated as shown in the figure.
  • the configuration in which the evaporator, the liquid-gas heat exchanger, and the air blower (fan) are integrated as a laminated body has a number of advantages, but is not limited to this configuration example.
  • the inside air unit 60 needs to be provided with an evaporator, a liquid-gas heat exchanger, and a blower (fan).
  • the housing of the inside air unit 60 (for example, a box shape with one open surface) has holes such as the inside air inlet 62 and the inside air outlet 63 shown in the figure.
  • the blower (fan) 61 c allows the warm air in the ceiling space to flow into the unit 60 from the internal air flow inlet 62 and pass through the inside air unit 60 (particularly, the laminated body 61), and then from the inside air discharge port 63. Create a flow of air that can be discharged (indicated by the dashed-dotted arrows in the figure).
  • the laminate 61 is configured such that the liquid-gas heat exchanger 61b is provided on the upstream side of such an air flow and the evaporator 61a is provided on the downstream side. Accordingly, the present invention is not limited to the illustrated configuration example, and any configuration that satisfies this condition may be used.
  • a liquid-gas heat exchanger is provided on the upstream side of the air flow and an evaporator is provided on the downstream side even when the laminate (integrated type) is not used. That is, it is necessary to adjust the internal air (warm air) to a predetermined temperature (set temperature) in the evaporator after the temperature is lowered by the liquid-gas heat exchanger.
  • the above is a description of the relative positional relationship between the liquid-gas heat exchanger 61b and the evaporator 61a, and the position of the blower (fan) 61c (arrangement order with respect to the air flow) in the laminate 61.
  • the outside air unit 70 has a laminated body 71 and the like.
  • the laminated body 71 includes a condenser 71a, a liquid-gas heat exchanger 71b, a blower (fan) 71c, etc., and these are laminated and integrated as shown in the figure.
  • the inside air unit 60 it is not necessarily limited to the example of the laminated body.
  • the outside air unit 70 needs to be provided with a condenser, a liquid-gas heat exchanger, and a blower (fan).
  • the outside air unit 70 is provided with holes such as the outside air inlet 72 and the outside air outlet 73 shown in the figure.
  • the blower (fan) 71c allows the outside air to flow into the unit 70 from the outside air flow inlet 72, passes through the inside of the outside air unit 70 (particularly within the laminated body 71), and then is discharged from the outside air discharge port 73. Create a flow (indicated by dotted arrows on the diagram).
  • the laminate 71 is configured such that the liquid-gas heat exchanger 71b is provided on the upstream side of such an air flow, and the condenser 71a is provided on the downstream side. Further, as already described, the position of the blower (fan) 71c (arrangement order with respect to the air flow) may be anywhere with respect to the layered body 71 as well, as in the case of the layered body 61 (therefore limited to the illustrated configuration example). Any configuration that satisfies the above conditions is acceptable. This is the same even when the laminate is not used.
  • both the inside air unit 60 and the outside air unit 70 are examples of the configurations shown in FIGS. 2 and 3, and are not limited to this example.
  • the configuration and manufacturing method of the laminates 61 and 71 may be various. Although not described in detail here, the configuration and the manufacturing method are as easy to manufacture and / or as compact as possible. Is desirable. For example, taking the laminated body 61 as an example, the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are all housed (unitized) in an arbitrary housing, and the size of the housing is also described. It is conceivable that the shapes are substantially the same. Further, as an example, the shape of the casing may be a substantially rectangular parallelepiped, for example, and the shape of the stacked body 61 may be a substantially rectangular parallelepiped by stacking these three rectangular parallelepipeds.
  • the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are stacked and integrated (formation of the stacked body 61). This is done by connecting each other.
  • the connection between the housings may be a general method, for example, fixing a nut or the like through a rod or a bolt in a hole provided in a corner of each housing.
  • the casing is provided with a number of holes for allowing the inside air to pass therethrough and holes for passing various pipes.
  • liquid-gas heat exchangers 61 b and 71 b are connected to each other via a pipe 51 in substantially the same manner as the liquid-gas heat exchangers 31 and 41 of the first embodiment.
  • the liquid (such as water) in the liquid circulates in the liquid-gas heat exchangers 61 b and 71 b and the pipe 51.
  • the liquid-gas heat exchangers 61b and 71b may have the same configuration as the liquid-gas heat exchangers 31 and 41, and are existing configurations and will not be described in detail.
  • the liquid (such as water) passes and the inside air (warm air) passes.
  • heat exchange between the liquid (such as water) and the warm air is performed in the liquid-gas heat exchanger 61b, and the warm air is basically cooled (the heat of the warm air moves to the liquid).
  • the temperature will drop. However, this depends on the temperature of the outside air and the warm air, and it is not guaranteed that the temperature of the warm air decreases. However, when the temperature of the outside air is high, it can be considered that the circulation pump 53 is stopped.
  • a refrigerant pipe 52, an expansion valve 54, and a compressor 55 are provided for the evaporator 61a and the condenser 71a.
  • Each of these components is substantially the same as each component of the general air conditioner 10. That is, in the general air conditioner 10, the air handling unit 12 includes the evaporator 12a and the fan 12b, and the evaporator 61a has a configuration corresponding to the evaporator 12a. Further, as described above, the refrigerator 11 is provided with a compressor and a condenser (not shown). The compressor 55 and the condenser 71a correspond to these components.
  • the expansion valve 54 has a configuration corresponding to the expansion valve 13.
  • the evaporator 61a, the condenser 71a, the expansion valve 54, and the compressor 55 are connected to the refrigerant pipe 52.
  • the refrigerant circulates through the evaporator 61 a, the condenser 71 a, the expansion valve 54, and the compressor 55 through the refrigerant pipe 52. That is, the refrigerant circulates in a general compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator 61a ⁇ compressor 55 ⁇ condenser 71a ⁇ expansion valve 54 ⁇ evaporator 61a”.
  • a general compression refrigeration cycle such as a vapor compression refrigeration cycle
  • the expansion valve 54 is provided in the inside air unit 60, but may be provided in the outside air unit 70.
  • the compressor 55 is provided in the outside air unit 70, but may be provided in the inside air unit 60. That is, the configuration in which the expansion valve 54 is provided in the inside air unit 60 and the compressor 55 is provided in the outside air unit 70, and the expansion valve 54 is provided in the outside air unit 70, and the compressor 55 is provided in the inside air unit 60. There may be a configuration in which both the expansion valve 54 and the compressor 55 are provided in the inside air unit 60, and a configuration in which both the expansion valve 54 and the compressor 55 are provided in the outside air unit 70.
  • the circulation pump 53 is provided in the inside air unit 60 in the illustrated example, but may be provided in the outside air unit 70.
  • the liquid-gas heat exchanger 61b and the liquid-gas heat exchanger 71b are heat exchangers that perform heat exchange between the liquid and the gas, but are not limited to this example. Instead of these liquid-gas heat exchangers, a heat exchanger (referred to as a gas-gas heat exchanger) that performs heat exchange between gases may be provided. Of course, in this case, some gas is used instead of the liquid.
  • a heat exchanger referred to as a gas-gas heat exchanger
  • some gas is used instead of the liquid.
  • the liquid-gas heat exchanger or gas-gas heat exchanger is generically called a fluid-gas heat exchanger or It may be called a fluid-fluid heat exchanger. In this case, it can be said that some “fluid” flows through the pipe 51.
  • the operation of the integrated indirect outdoor air cooling system 50 having the above-described configurations will be described. That is, when the inside air (warm air) in the ceiling space flows into the inside air unit 60 through the inside air flow inlet 62, first, the warm air passes through the liquid-gas heat exchanger 61b, so that the warm air and Heat exchange is performed with a liquid (such as water), and the temperature of the warm air decreases. The degree of the reduction depends on the outside air temperature (liquid temperature) and the warm air temperature.
  • the warm air whose temperature has been lowered passes through the evaporator 61a.
  • the warm air whose temperature has been lowered is cooled by the evaporator 61a, and the temperature is further lowered to become cold air.
  • This cold air is controlled to be a predetermined temperature (set temperature).
  • the controller 80 controls the entire integrated indirect outdoor air cooling system 50, and performs various controls such as control of the rotational speed of each fan and control of the circulation pump 53, but is not particularly described here.
  • the controller 80 has an arithmetic device such as a CPU and a storage device such as a memory.
  • the controller 80 executes programs stored in advance in the memory and inputs measurement values from various sensors (not shown) as needed. By doing so, the integrated indirect outdoor air cooling system is controlled.
  • the controller 80 may be provided in the case of the inside air unit 60 or the case of the outside air unit 70, or may be provided outside these units (in the vicinity of the unit, etc.).
  • various signal lines and the like related to the controller 80 are not shown, but actually exist, and the controller 80 transmits various signals such as the integrated indirect outdoor air cooling system 50 and the like via these signal lines.
  • a temperature sensor (not shown) is provided in the vicinity of the air outlet of the blower 61c, and the controller 80 obtains a temperature measured by the temperature sensor via a signal line (not shown).
  • the controller 80 controls each structure which concerns on the said general compression-type refrigerating cycle via a signal line not shown so that this measured temperature may become preset temperature.
  • the liquid-gas heat exchanger 61b is disposed upstream of the warm air flow, and the evaporator 61a is disposed downstream.
  • the cold air generated by the evaporator 61a is discharged from the inside air outlet 63 (passes through the blower 61c).
  • the inside air outlet 63 is disposed so as to be connected to the underfloor space.
  • the integrated indirect outdoor air cooling system 50 is installed so that a part thereof enters under the floor as shown in FIG.
  • the cold air discharged from the inside air discharge port 63 flows into the underfloor space, flows into the server installation space via the underfloor space, and cools the heating element 101.
  • the cool air becomes warm air by cooling the heating element 101, and this warm air flows into the space behind the ceiling and again flows into the internal air unit 60 from the internal air flow inlet 62.
  • outside air that has flowed into the outside air unit 70 through the outside air inlet 72 first passes through the liquid-gas heat exchanger 71b, so that the outside air and liquid (such as water) are exchanged.
  • Heat exchange between the two The temperature of the liquid (water or the like) is increased by exchanging heat with warm air in the liquid-gas heat exchanger 61b. In this way, heat exchange is performed between the liquid (water or the like) whose temperature is high and the outside air, so that the temperature of the liquid (water or the like) decreases.
  • the liquid (such as water) whose temperature has decreased is supplied again to the liquid-gas heat exchanger 61b side by the circulation pump 53 and the pipe 51.
  • the temperature of the outside air rises due to heat exchange with the liquid (such as water) when passing through the liquid-gas heat exchanger 71b.
  • the outside air whose temperature has risen continues to pass through the condenser 71a, and the condenser 71a is further radiating heat as described above, so that the temperature rises further, and is then discharged from the outside air outlet 73. It will be.
  • the “indoor side” includes not only “indoor space to be cooled” but also a machine room and the like. In other words, the “indoor side” can be said to be a space in which the “inside air” (air in the building) exists. Similarly, “outside of building” in the above description may be referred to as “outdoor”. In other words, the “outdoor” can be said to be a space where the “outside air” (air outside the building) exists.
  • the “indoor space” has a slightly different meaning from the “indoor side”, and means “the space to be cooled by the indirect outside air cooling system (the room space to be cooled)”. Therefore, the “indoor space” does not include a machine room or the like.
  • Example 1 Downsizing In the past and in Example 1, there were two devices, a general air conditioner and an indirect outside air cooler. However, by integrating these two devices, the size can be reduced. Thus, the installation space can be reduced. For example, even when the machine room is small, it is easy to install (or it is possible to install a machine room that is too narrow to be installed in the past).
  • Example 1 Downsizing and improvement of manufacturability by the laminated body
  • Example 1 for example, regarding the configuration in the building, there are various evaporators, liquid-gas heat exchangers, fans, etc. Manufacturing was done individually).
  • miniaturization can be achieved by forming a laminated body in which an evaporator, a liquid-gas heat exchanger, and a fan are laminated and integrated.
  • FIGS. 2 and 3 it can be expected that the manufacturability is further improved by aligning the shapes and sizes so as to be substantially the same.
  • the effect of being easy to carry and easy to install can be expected.
  • the number of fans can be reduced as compared with the prior art and the first embodiment. Lower prices can be achieved.
  • the fans are provided with four fans: a fan 11 a, a fan 12 b, a fan 32, and a fan 42.
  • the configuration of Embodiment 2 shown in FIGS. 2 and 3 only two fans 61c and 71c are required. That is, the number of fans can be halved.
  • the cost of purchasing a fan can be halved.
  • power is required to operate the fan, but this power can be less for two compared to four.
  • the integrated air conditioning system of the present invention there are conventionally two devices, a general air conditioner and an indirect outside air cooler.
  • the size can be reduced.
  • evaporators, compressors, heat exchangers, fans, etc. existed separately, but by making these laminates integrated into one, further downsizing can be achieved, Easy to manufacture.
  • the number of fans can be reduced, thereby reducing the blowing power and reducing the price.

Abstract

An integrated air-conditioning system (50) in which an internal air unit (60) and an external air unit (70) are connected with a wall (1) therebetween, has an integrated structure comprising both: a structure as an indirect external air cooling machine (liquid-gas heat exchangers (61b, 71b), pipes (51), etc.); and a structure as a general air-conditioning machine (evaporator (61a), expansion valve (54), compressor (55), condenser (71b), etc.).

Description

一体型空調システム、その内気ユニット、外気ユニット、積層体Integrated air conditioning system, its inside air unit, outside air unit, laminate
 本発明は、空調システムに関する。 The present invention relates to an air conditioning system.
 従来、例えば、データセンターや企業のサーバ室等には、多数のサーバ等が設置されている。このようなサーバ室等は多数のサーバの発熱によって室温が上昇し、この室温上昇によってサーバが暴走または故障する可能性がある。このため、サーバ室には部屋全体の温度を一定に維持しておく空調システムが採用されている。また、このような空調システムは、ほぼ常時稼動され、冬季であっても稼動される。 Conventionally, for example, a large number of servers and the like are installed in a data center or a server room of a company. In such a server room or the like, the room temperature rises due to the heat generated by a large number of servers. For this reason, an air conditioning system that keeps the temperature of the entire room constant is adopted for the server room. In addition, such an air conditioning system is almost always operated, and is operated even in winter.
 このようなサーバ室等に対する従来の空調システムは、サーバ室の室温の安定を図るために、空調装置から吹き出されてサーバ室内に供給された低温空気(冷気)が、サーバラック内のサーバに接触しながら流れて該サーバを冷却する。それによってサーバの熱で温められた空気(暖気)は、該サーバ室から上記空調装置内に戻され、該空調装置で冷却されて再び上記冷気となって吹出されてサーバ室内に再び冷気が供給される、等という循環方式が取られている。 In such a conventional air conditioning system for server rooms, etc., in order to stabilize the room temperature of the server room, low temperature air (cold air) blown out from the air conditioner and supplied into the server room contacts the servers in the server rack. While flowing, cool the server. The air (warm air) heated by the heat of the server is returned from the server room into the air conditioner, cooled by the air conditioner, blown out as the cold air, and supplied again to the server room. The circulation method is taken.
 また、例えば特許文献1,2,3等に記載の空調機が知られている。
 これら特許文献1,2,3等に記載の発明は、何れも、外気温度が低いときも冷房が必要な高発熱機器用の空調機に係わり、特に外気温度を利用して室内の冷房を行う空調機に関するものである。
Further, for example, air conditioners described in Patent Documents 1, 2, 3 and the like are known.
The inventions described in these Patent Documents 1, 2, 3 and the like all relate to an air conditioner for a high heat generating device that needs to be cooled even when the outside air temperature is low, and in particular, the outside air temperature is used to cool the room. It relates to air conditioners.
 特許文献1,2,3の空調機は何れも、基本的な構成は略同様であり、冷媒ポンプ、膨張弁、蒸発器、圧縮機、凝縮器が順に接続された冷媒回路を備えている。そして、この冷媒回路において、圧縮機を稼動して室内の冷房を行う圧縮サイクルと、圧縮機は運転せずに冷媒ポンプを稼動して室内の冷房を行う冷媒ポンプサイクルとを実現可能としている。通常、圧縮機と冷媒ポンプが同時に稼動することはない。基本的には、外気温度が低いときには冷媒ポンプサイクルで運転し、外気温度が高いときには圧縮サイクルで運転する。 The air conditioners of Patent Documents 1, 2, and 3 have substantially the same basic configuration, and include a refrigerant circuit in which a refrigerant pump, an expansion valve, an evaporator, a compressor, and a condenser are connected in order. In this refrigerant circuit, it is possible to realize a compression cycle in which the compressor is operated to cool the room, and a refrigerant pump cycle in which the refrigerant pump is operated to cool the room without operating the compressor. Usually, the compressor and the refrigerant pump are not operated simultaneously. Basically, when the outside air temperature is low, the refrigerant pump cycle is used, and when the outside temperature is high, the compressor cycle is used.
 圧縮サイクルは、「蒸発器→圧縮機→凝縮器→膨張弁→蒸発器」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)である。冷媒ポンプサイクルでは、蒸発器を出たガス冷媒はそのまま凝縮器に送られて、凝縮器にて低温外気で冷やされて液化し、冷媒ポンプに送られる。冷媒ポンプで液冷媒が加圧されて蒸発器に導かれる。この様な外気で冷媒を冷やし、冷えた冷媒で室内の冷房を行うことは、間接外気冷房等と呼ばれている。 The compression cycle is a general compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator → compressor → condenser → expansion valve → evaporator”. In the refrigerant pump cycle, the gas refrigerant exiting the evaporator is sent to the condenser as it is, cooled in the condenser with low-temperature outside air, liquefied, and sent to the refrigerant pump. The liquid refrigerant is pressurized by the refrigerant pump and guided to the evaporator. Cooling the refrigerant with such outside air and cooling the room with the cooled refrigerant is called indirect outside air cooling or the like.
 そして、特許文献1の発明では、例えば外気温度を設定値T1,T2,T3(T3>T2>T1)と比較することで、上記2つのサイクルの切り替えを行っている。これによって、全体としてよりエネルギー消費が少なくなるような、両サイクルの切り替え運転を行える。 In the invention of Patent Document 1, for example, the above two cycles are switched by comparing the outside air temperature with set values T1, T2, T3 (T3> T2> T1). Thereby, the switching operation of both cycles can be performed so that the energy consumption is reduced as a whole.
 また、特許文献2の発明では、室外側送風機における送風量が最大で、且つ、室内温度が所定値以上の場合には、冷媒ポンプサイクルから圧縮サイクルに運転切り替えする。 Further, in the invention of Patent Document 2, when the amount of air blown from the outdoor blower is maximum and the room temperature is equal to or higher than a predetermined value, the operation is switched from the refrigerant pump cycle to the compression cycle.
 また、特許文献3の発明では、間接外気冷房サイクルによる運転中に、液冷媒の流量が一定値以下になったとき、冷媒圧送手段の入力量、室内側送風機の風量、室外側送風機の風量、膨張弁の弁開度の少なくとも1つを制御する制御手段を有している。そして、この制御手段は、上記液冷媒の流量が一定値以下になった回数が、所定時間内に所定回数を越えたとき、冷房サイクルを、間接外気冷房サイクルから蒸気圧縮式冷房サイクルに変更する。 Further, in the invention of Patent Document 3, when the flow rate of the liquid refrigerant becomes equal to or less than a certain value during the operation by the indirect outside air cooling cycle, the input amount of the refrigerant pumping means, the air volume of the indoor fan, the air volume of the outdoor fan, Control means for controlling at least one of the valve openings of the expansion valve is provided. Then, the control means changes the cooling cycle from the indirect outside air cooling cycle to the vapor compression cooling cycle when the number of times that the flow rate of the liquid refrigerant has become a predetermined value or less exceeds the predetermined number of times within a predetermined time. .
特許第3967033号公報Japanese Patent No. 3996733 特許第3995825号公報Japanese Patent No. 399825 特許第4145632号公報Japanese Patent No. 4145632
 ここで、図4に従来の間接外気冷房システムの一例を示す。
 図4において、間接外気冷房システムは、任意の室内空間を冷却する冷房システムであり、外気を室内空間に流入させることなく外気を冷房に利用するシステムである。この室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。この様な室内空間は、多数の発熱体101による発熱量が多く、冬季であっても冷房が必要である。
Here, FIG. 4 shows an example of a conventional indirect outdoor air cooling system.
In FIG. 4, the indirect outside air cooling system is a cooling system that cools an arbitrary indoor space, and is a system that uses outside air for cooling without flowing the outside air into the indoor space. This indoor space is, for example, a server room in which a large number of server racks 102 mounted with heating elements 101 such as server devices (computer devices) are installed. Such an indoor space has a large amount of heat generated by the large number of heating elements 101 and needs to be cooled even in winter.
 尚、上記室内空間は、本例では図示のサーバ設置空間と床下空間と天井裏空間に分けられている。このうち、サーバ設置空間が、上記発熱体101を搭載したサーバラック102が設置されている空間である。サーバ設置空間の上側には天井、下側には床があり、天井の上の空間が上記天井裏空間、床の下側の空間が上記床下空間である。尚、当然、床や天井には孔が開いており、この孔を介して冷気や暖気がサーバ設置空間に流入/流出する。 In this example, the indoor space is divided into a server installation space, an underfloor space, and a ceiling space. Among these, the server installation space is a space in which the server rack 102 on which the heating element 101 is mounted is installed. The upper side of the server installation space has a ceiling and the lower side has a floor. The space above the ceiling is the above-described ceiling space, and the space below the floor is the below-floor space. Naturally, holes are opened in the floor and ceiling, and cold air and warm air flow into and out of the server installation space through the holes.
 図示の間接外気冷房システムは、例えばサーバルーム等からのリターン空気(暖気)を、一般的な空調装置で冷却するが、その前段で外気を利用してリターン空気の温度を下げることで、省エネ化を図るものである。 The indirect outside air cooling system shown in the figure cools the return air (warm air) from, for example, a server room with a general air conditioner, but energy is saved by lowering the temperature of the return air using the outside air at the preceding stage. Is intended.
 ここで、図示の冷凍機111、エアハンドリングユニット112、膨張弁113、冷媒管114等から成る空調機110は、既存の一般的な空調機である。つまり、この空調機110は、冷媒を用いて「蒸発器→圧縮機→凝縮器→膨張弁→蒸発器」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で冷房を行う、一般的な空調機(エアコン等)である。 Here, the air conditioner 110 including the illustrated refrigerator 111, air handling unit 112, expansion valve 113, refrigerant pipe 114 and the like is an existing general air conditioner. That is, this air conditioner 110 performs cooling with a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator → compressor → condenser → expansion valve → evaporator” using a refrigerant. Air conditioner (air conditioner etc.).
 冷媒が、冷媒管114を介して冷凍機111、エアハンドリングユニット112、膨張弁113等を循環する。冷凍機111は、圧縮機、凝縮器、ファン(送風機)等を有している。エアハンドリングユニット112は蒸発器、ファン(送風機)等を有している。 The refrigerant circulates through the refrigerant pipe 114, the refrigerator 111, the air handling unit 112, the expansion valve 113, and the like. The refrigerator 111 has a compressor, a condenser, a fan (blower), and the like. The air handling unit 112 includes an evaporator, a fan (blower), and the like.
 エアハンドリングユニット112は、上記室内における床下空間に冷気を送出し、床下空間を介して冷気をサーバ設置空間に供給する。この冷気は上記発熱体101を冷却することで暖気となり、この暖気はサーバ設置空間から天井裏空間へと流入する。そして、通常の冷房システムであれば、この暖気は天井裏空間からダクト等を介してエアハンドリングユニット112に流入させる。エアハンドリングユニット112は、この流入暖気を上記蒸発器で冷却して上記冷気を生成する。 The air handling unit 112 sends cool air to the under floor space in the room and supplies the cool air to the server installation space through the under floor space. This cool air becomes warm air by cooling the heating element 101, and this warm air flows from the server installation space into the ceiling space. In the case of a normal cooling system, this warm air flows from the ceiling space into the air handling unit 112 through a duct or the like. The air handling unit 112 generates the cold air by cooling the incoming warm air with the evaporator.
 ここで、エアハンドリングユニット112は、冷気の温度が所定値(設定値)となるように流入暖気の冷却を行うが、当然、流入暖気の温度が高ければ高いほど、冷却に要する負荷が増大し、消費電力が増大することになる。そこで、省エネの目的で、上記エアハンドリングユニット112への流入暖気の温度を下げる為に、図示の間接外気冷房機120を設けている。 Here, the air handling unit 112 cools the inflowing warm air so that the temperature of the cool air becomes a predetermined value (set value). Naturally, the higher the temperature of the inflowing warm air, the higher the load required for cooling. As a result, power consumption increases. Therefore, for the purpose of energy saving, the illustrated indirect outside air cooler 120 is provided in order to lower the temperature of the warm air flowing into the air handling unit 112.
 尚、図示の壁1は、任意の建物の壁であり、この壁1を境にして建物内と建物外とに分けられる。建物内には、上記サーバ等が設置される室内空間だけでなく上記エアハンドリングユニット112等が設けられる空間(図示の例では、室内空間の隣接空間であり、例えば機械室等と呼ばれる場合もある)がある。建物内の空気(内気)が、上記冷気と暖気の状態を繰り返しながら、建物内を循環している。建物外の空気(外気)の温度は、例えば夏季以外の季節であれば、暖気状態の内気の温度よりも低いと考えてもよい。 The wall 1 shown in the figure is a wall of an arbitrary building, and the wall 1 is divided into the inside and outside of the building with the wall 1 as a boundary. In the building, not only the indoor space in which the server or the like is installed but also the air handling unit 112 or the like (in the illustrated example, the space adjacent to the indoor space, for example, sometimes called a machine room) ) The air (inside air) in the building circulates in the building while repeating the cold and warm air states. If the temperature of the air outside the building (outside air) is a season other than summer, for example, it may be considered that it is lower than the temperature of the warm air inside air.
 間接外気冷房機120は、熱交換器121、送風機122、送風機123、内気ダクト124、外気ダクト125等を有する。内気ダクト124は、その一端が上記天井裏空間側、その他端が上記エアハンドリングユニット112側に設けられると共に、途中で熱交換器121に接続している。上記天井裏空間側の暖気は、送風機122によって内気ダクト124内に流入させると共にエアハンドリングユニット112側へ排出させるが、途中で熱交換器121内を通過することになる。 The indirect outside air cooler 120 includes a heat exchanger 121, a blower 122, a blower 123, an inside air duct 124, an outside air duct 125, and the like. One end of the inside air duct 124 is provided on the ceiling space side and the other end is provided on the air handling unit 112 side, and is connected to the heat exchanger 121 on the way. The warm air on the ceiling space side is caused to flow into the inside air duct 124 and discharged to the air handling unit 112 side by the blower 122, but passes through the heat exchanger 121 on the way.
 また、壁1の任意の2箇所に孔を空けて(一方を外気流入孔126、他方を外気排出孔127と言うものとする)、上記外気ダクト125の一端を外気流入孔126に接続し、他端を外気排出孔127に接続している。また、外気ダクト125は途中で熱交換器121に接続している。送風機123によって外気ダクト125に外気を通過させる。すなわち、外気を外気流入孔126から流入させると共に外気排出孔127から排出させるが、外気は途中で熱交換器121内を通過することになる。 Further, holes are made in two arbitrary locations on the wall 1 (one is referred to as the outside air inflow hole 126 and the other is referred to as the outside air discharge hole 127), and one end of the outside air duct 125 is connected to the outside air inflow hole 126, The other end is connected to the outside air discharge hole 127. The outside air duct 125 is connected to the heat exchanger 121 on the way. The outside air is passed through the outside air duct 125 by the blower 123. That is, outside air flows in from the outside air inflow hole 126 and is discharged from the outside air discharge hole 127, but the outside air passes through the heat exchanger 121 on the way.
 上述したように、熱交換器121内を内気(暖気)と外気が通過することになり、熱交換器121内において内気(暖気)と外気との熱交換が行われることになる。なお、この熱交換器121によれば、外気を内気と遮断して熱交換を行うので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内に取り入れないため、サーバ等の電子機器の信頼性が維持される。尚、この様な熱交換器121は、既存のものであり、詳細な構成は特に示さない。 As described above, the inside air (warm air) and the outside air pass through the heat exchanger 121, and heat exchange between the inside air (warm air) and the outside air is performed in the heat exchanger 121. In addition, according to this heat exchanger 121, since the outside air is shut off from the inside air to perform heat exchange, the outside air humidity, dust, and corrosive gas contained in the outside air are not taken into the room. Sex is maintained. In addition, such a heat exchanger 121 is an existing one, and a detailed configuration is not particularly shown.
 上記熱交換器121における熱交換によって内気の温度が下がれば、上記エアハンドリングユニット112への流入暖気の温度が下がることになり、空調機110の電力消費量が低減することになる(省エネ効果が得られる)。尚、送風機122と送風機123による電力消費量は、比較的小さいものと考えてよい。 If the temperature of the inside air decreases due to heat exchange in the heat exchanger 121, the temperature of the warm air flowing into the air handling unit 112 decreases, and the power consumption of the air conditioner 110 is reduced (the energy saving effect is reduced). can get). In addition, you may consider that the electric power consumption by the air blower 122 and the air blower 123 is comparatively small.
 基本的には「内気(暖気)の温度>外気の温度」の場合のみ、内気が外気によって冷却されて、内気(暖気)の温度が下がることになる。よって、冬季のように外気温度が低い状況では、熱交換器121による内気(暖気)冷却の効果が高いことになり、それによって空調機110の省エネ効果が高いことになる。一方、夏季の場合には、熱交換器121による内気冷却の効果が小さい、または効果が無い、あるいは逆効果となる可能性もある。 Basically, only when “the temperature of the inside air (warm air)> the temperature of the outside air”, the inside air is cooled by the outside air, and the temperature of the inside air (warm air) is lowered. Therefore, in a situation where the outside air temperature is low as in winter, the effect of cooling the inside air (warm air) by the heat exchanger 121 is high, and thereby the energy saving effect of the air conditioner 110 is high. On the other hand, in the summer, there is a possibility that the effect of cooling the inside air by the heat exchanger 121 is small, ineffective, or counterproductive.
 上述したように、従来の間接外気冷房システムは、既存の一般的な空調機110に対して、間接外気冷房機120を新たに追加する形となり、その分、設置スペースが増大することになる。更に、図では簡略化して示したが、ダクト(内気ダクト124、外気ダクト125)は実際には大きな設置スペースをとるものである。また、上記の通り、比較的小さいとはいえ、送風機122と送風機123による電力消費量が加わることになる。また、図4に示すような間接外気冷房機120は、設置工事に関して手間が掛かりコストも掛かることになる。 As described above, in the conventional indirect outside air cooling system, the indirect outside air cooler 120 is newly added to the existing general air conditioner 110, and the installation space increases accordingly. Furthermore, although simplified in the drawing, the ducts (the inside air duct 124 and the outside air duct 125) actually take a large installation space. Moreover, as mentioned above, although it is comparatively small, the power consumption by the air blower 122 and the air blower 123 is added. In addition, the indirect outside air cooler 120 as shown in FIG. 4 takes time and costs for installation work.
 本発明の主要な課題は、コンパクトな一体型空調システムを提供することである。
 本発明の一体型空調システムは、以下の構成を有する。
 まず、概略的には、本発明の一体型空調システムは、内気が通過する内気ユニットと、外気が通過する外気ユニットとを有する。
The main subject of the present invention is to provide a compact integrated air conditioning system.
The integrated air conditioning system of the present invention has the following configuration.
First, schematically, the integrated air conditioning system of the present invention includes an inside air unit through which inside air passes and an outside air unit through which outside air passes.
 前記内気ユニットは、第1の熱交換器と、蒸発器と、該第1の熱交換器と蒸発器とに前記内気を通過させる為の第1の送風機とを有する。
 前記外気ユニットは、第2の熱交換器と、凝縮器と、該第2の熱交換器と凝縮器とに前記外気を通過させるための第2の送風機とを有する。
The inside air unit includes a first heat exchanger, an evaporator, and a first blower for allowing the inside air to pass through the first heat exchanger and the evaporator.
The outside air unit includes a second heat exchanger, a condenser, and a second blower for allowing the outside air to pass through the second heat exchanger and the condenser.
 そして、前記蒸発器と、前記凝縮器と、前記外気ユニットと前記内気ユニットの何れかに設けられる膨張弁と、前記外気ユニットと前記内気ユニットの何れかに設けられる圧縮機とに接続する冷媒配管を設け、該冷媒配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成する。 Then, refrigerant piping connected to the evaporator, the condenser, an expansion valve provided in any of the outside air unit and the inside air unit, and a compressor provided in any of the outside air unit and the inside air unit And an air conditioner using a compression refrigeration cycle is configured by circulating refrigerant through the refrigerant pipe to the evaporator, the condenser, the expansion valve, and the compressor.
 また、前記第1の熱交換器と第2の熱交換器とに接続する液配管を設け、該液配管を介して前記第1の熱交換器、第2の熱交換器に任意の流体を循環させ、該第2の熱交換器において該流体と前記外気とを熱交換させることで該流体を該外気によって冷却し、該冷却された流体と前記内気とを前記第1の熱交換器で熱交換させることで該内気を該流体によって冷却する間接外気冷房機を構成する。 Further, a liquid pipe connected to the first heat exchanger and the second heat exchanger is provided, and an arbitrary fluid is supplied to the first heat exchanger and the second heat exchanger via the liquid pipe. The fluid is circulated and heat is exchanged between the fluid and the outside air in the second heat exchanger to cool the fluid with the outside air, and the cooled fluid and the inside air are cooled with the first heat exchanger. An indirect outside air cooler that cools the inside air with the fluid by heat exchange is configured.
 上記一体型空調システムは、内気ユニットと外気ユニットとによって、外気を利用して内気温度を下げる間接外気冷房機能と、圧縮式冷凍サイクルによる一般的な空調機能の両方を備えるように構成される。 The integrated air conditioning system is configured to include both an indirect outside air cooling function for lowering the inside air temperature using outside air and a general air conditioning function using a compression refrigeration cycle by the inside air unit and the outside air unit.
 上記一体型空調システムにおいて、例えば更に、前記内気ユニットにおいて、前記第1の熱交換器と前記蒸発器と前記第1の送風機とが積層されて一体化した第1の積層体が構成されるようにしてもよい。 In the integrated air conditioning system, for example, in the inside air unit, the first heat exchanger, the evaporator, and the first blower are stacked and integrated to form a first stacked body. It may be.
 上記一体型空調システムにおいて、例えば更に、前記外気ユニットにおいて、前記第2の熱交換器と前記凝縮器と前記第2の送風機とが積層されて一体化した第2の積層体が構成されるようにしてもよい。 In the integrated air conditioning system, for example, in the outside air unit, the second heat exchanger, the condenser, and the second blower are stacked and integrated to form a second stacked body. It may be.
実施例1の空調システム(間接外気冷房システム)の構成図である。It is a block diagram of the air conditioning system (indirect external air cooling system) of Example 1. FIG. 実施例2の空調システム(一体型空調システム)の構成図である。It is a block diagram of the air conditioning system (integrated air conditioning system) of Example 2. 図2の構成の一部の拡大図である。FIG. 3 is an enlarged view of a part of the configuration of FIG. 2. 従来の間接外気冷房システムの構成図である。It is a block diagram of the conventional indirect outside air cooling system.
 以下、図面を参照して本発明の実施の形態について説明する。
 図1は、実施例1の空調システム(間接外気冷房システム)の構成図である。
 尚、図1では、間接外気冷房システムによる冷却対象空間は、図4に示す従来例と同じであるものとする。すなわち、冷却対象となる室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。尚、上記室内空間は、本例では図4と同様に図示のサーバ設置空間と床下空間と天井裏空間に分けられている。勿論、この例に限らないが、本説明ではこの例を用いる。尚、この例では、冷却対象は狭義にはサーバ設置空間であると見做すこともできる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of an air conditioning system (indirect outside air cooling system) according to a first embodiment.
In FIG. 1, the space to be cooled by the indirect outside air cooling system is assumed to be the same as the conventional example shown in FIG. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed. In this example, the indoor space is divided into a server installation space, an underfloor space, and a ceiling space as shown in FIG. Of course, although not limited to this example, this example is used in this description. In this example, the cooling target can be regarded as a server installation space in a narrow sense.
 また、図4の例と同様、壁1によって建物内と建物外とに区分され、建物内の空気(内気)は、冷気状態と暖気状態とを繰り返しながら循環している。また、本説明では基本的には建物外の空気(外気)の温度は、暖気状態の内気の温度よりも低いものと見做すものとする。 As in the example of FIG. 4, the wall 1 separates the inside of the building from the outside of the building, and the air inside the building (inside air) circulates while repeating a cold air state and a warm air state. In this description, basically, the temperature of the air outside the building (outside air) is assumed to be lower than the temperature of the warm air inside air.
 建物内には上記室内空間だけでなく上記機械室等も存在する。上述した通り、機械室は、例えば上記室内空間に隣接する空間であり、上記床下空間、天井裏空間に繋がっている。機械室には、後述するエアハンドリングユニット12、内気ユニット30等が設置される。 There are not only the indoor space but also the machine room in the building. As described above, the machine room is a space adjacent to the indoor space, for example, and is connected to the under-floor space and the ceiling space. In the machine room, an air handling unit 12 and an inside air unit 30 which will be described later are installed.
 概略的には、一般的な空調機10等が、上記室内空間に冷気を供給し、室内空間からのリターン空気(暖気)を冷却して再び冷気を生成する。但し、本システムでは、その前に、リターン空気(暖気)は、外気を利用して温度低下させている。 Schematically, a general air conditioner 10 or the like supplies cool air to the indoor space, cools return air (warm air) from the indoor space, and generates cool air again. However, in this system, before that, the temperature of the return air (warm air) is lowered using the outside air.
 図示の例では、一般的な空調機10は、床下空間に冷気を送出し、床下空間を介しサーバ設置空間に冷気を供給し、この冷気によって各発熱体101を冷却する。これによって冷気は暖気となり、この暖気は天井裏空間に流入した後、リターン空気として空調機10に戻されるが、その前段で間接外気冷房機20において外気を利用して温度低下させている。尚、空調機10は、上記従来の一般的な空調機110と同じであってよい。 In the illustrated example, the general air conditioner 10 sends cold air to the underfloor space, supplies cold air to the server installation space via the underfloor space, and cools each heating element 101 by this cold air. As a result, the cool air becomes warm air, and after this warm air flows into the ceiling space, it is returned to the air conditioner 10 as return air. In the preceding stage, the indirect outdoor air cooler 20 uses the outside air to lower the temperature. The air conditioner 10 may be the same as the conventional general air conditioner 110 described above.
 また、尚、以下の説明では、外気の温度が低いことを前提とする。尚、「外気の温度が低い」とは、具体的に何℃以下等と言えるものではなく、内気(暖気)の温度等に依存するものである。この事自体は、従来と同じである。ひとつの考え方としては、間接外気冷房は、外気を利用して内気(暖気)の温度を下げる為のものであるので、結果として上記リターン空気(暖気)の温度を下げることができる場合が、外気の温度が低いときと言えるものである。1例としては、上記の通り、外気の温度が、内気(暖気)の温度よりも低いときが、「外気の温度が低い」場合と見做せるが、この例に限るものではない。 In the following description, it is assumed that the temperature of the outside air is low. Note that “the temperature of the outside air is low” does not specifically mean what temperature or lower or the like, but depends on the temperature of the inside air (warm air) or the like. This is the same as before. One way of thinking is that indirect outside air cooling is intended to lower the temperature of the inside air (warm air) using outside air, and as a result, the temperature of the return air (warm air) can be lowered. It can be said that when the temperature of is low. As an example, as described above, when the temperature of the outside air is lower than the temperature of the inside air (warm air), it can be considered that the temperature of the outside air is low. However, the present invention is not limited to this example.
 ここで、上記床下空間に冷気を送出する構成は、図示の一般空調機10である。この一般空調機10は、冷凍機11、エアハンドリングユニット12、膨張弁13、冷媒管14等から成る。これら冷凍機11、エアハンドリングユニット12、膨張弁13、冷媒管14は、上記図4に示す従来の冷凍機111、エアハンドリングユニット112、膨張弁113、冷媒管114と同じであってよい。 Here, the configuration for sending the cold air to the underfloor space is the general air conditioner 10 shown in the figure. The general air conditioner 10 includes a refrigerator 11, an air handling unit 12, an expansion valve 13, a refrigerant pipe 14, and the like. The refrigerator 11, the air handling unit 12, the expansion valve 13, and the refrigerant pipe 14 may be the same as the conventional refrigerator 111, the air handling unit 112, the expansion valve 113, and the refrigerant pipe 114 shown in FIG.
 つまり、一般空調機10は、上記従来の空調機110等の既存の一般的な空調装置(エアコン等)と同じであってよい。よって、特に詳細には図示・説明しないが、エアハンドリングユニット12は、図示の蒸発器12a、送風機(ファン)12bを有している。また、冷凍機11は、図示の送風機(ファン)11aだけでなく不図示の圧縮機、凝縮器を有している。 That is, the general air conditioner 10 may be the same as an existing general air conditioner (such as an air conditioner) such as the conventional air conditioner 110 described above. Therefore, although not shown or described in detail, the air handling unit 12 includes an evaporator 12a and a blower (fan) 12b as shown. The refrigerator 11 has not only a blower (fan) 11a shown but also a compressor and a condenser (not shown).
 このように、一般空調機10は、一般的な空調機の構成である上記蒸発器12a、不図示の圧縮機と凝縮器、膨張弁13等を有しており、これら各構成を冷媒管14を介して冷媒が循環している。すなわち、冷媒が「蒸発器→圧縮機→凝縮器→膨張弁→蒸発器」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。蒸発器12aにおいて冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気(流入暖気)を冷却する。奪った熱は、凝縮器において外気等へ放熱される。送風機(ファン)11aによって外気を不図示の凝縮器へと送り込み、上記のように不図示の凝縮器が外気へ放熱する。勿論、その後、この外気は冷凍機11の外へと排出される。 As described above, the general air conditioner 10 includes the evaporator 12a, which is a general air conditioner configuration, a compressor and a condenser (not shown), an expansion valve 13, and the like. The refrigerant circulates through. That is, the refrigerant circulates in a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator → compressor → condenser → expansion valve → evaporator”. When the refrigerant evaporates in the evaporator 12a, the surrounding heat is taken away, thereby cooling the surrounding air (inflowing warm air). The deprived heat is radiated to the outside air or the like in the condenser. Outside air is sent to a condenser (not shown) by a blower (fan) 11a, and the condenser (not shown) radiates heat to the outside as described above. Of course, after that, this outside air is discharged out of the refrigerator 11.
 尚、図示の壁1は、任意の建物の壁であり、この建物内には上記室内空間やこの室内空間の隣接空間(機械室)が存在する。上記エアハンドリングユニット12や後述する内気ユニット30等は機械室内に設置され、上記冷凍機11や後述する外気ユニット40等は建物外に設置される。建物内(室内空間と機械室)を内気が暖気状態と冷気状態を繰り返しながら循環し、建物外には外気が存在する。 Note that the wall 1 shown in the figure is a wall of an arbitrary building, and the indoor space and a space adjacent to the indoor space (machine room) exist in the building. The air handling unit 12, the inside air unit 30 and the like which will be described later are installed in the machine room, and the refrigerator 11 and the outside air unit 40 and the like which will be described later are installed outside the building. Inside air (indoor space and machine room) circulates while the inside air repeats a warm and cold state, and outside air exists outside the building.
 一般空調機10については上述した簡単な説明のみとするが、上記従来の空調機110の場合と同様、一般空調機10のエアハンドリングユニット12に流入させるリターン空気(暖気)の温度を下げることで、一般空調機10の消費電力量を低減することが望まれる。但し、当然、一般空調機10の消費電力量を低減させても、全体としての消費電力量が増えてしまっては意味がない。これより、外気を利用して内気(暖気)の温度を下げることが考えられ、従来では間接外気冷房機120を設けている。 The general air conditioner 10 is only described above, but as with the conventional air conditioner 110, the temperature of the return air (warm air) that flows into the air handling unit 12 of the general air conditioner 10 is reduced. It is desired to reduce the power consumption of the general air conditioner 10. However, naturally, even if the power consumption of the general air conditioner 10 is reduced, it does not make sense if the overall power consumption increases. Thus, it is conceivable to reduce the temperature of the inside air (warm air) using outside air, and the indirect outside air cooler 120 is conventionally provided.
 これに対して、本例では、図示の間接外気冷房機20を設けている。
 以下、間接外気冷房機20について詳細に説明する。
 まず、間接外気冷房機20は、内気ユニット30と外気ユニット40とから成る。
On the other hand, in this example, the illustrated indirect outside air cooler 20 is provided.
Hereinafter, the indirect outside air cooler 20 will be described in detail.
First, the indirect outside air cooler 20 includes an inside air unit 30 and an outside air unit 40.
 内気ユニット30と外気ユニット40は、例えば、それぞれ工場等で個別に製造された後、図示のように壁1(内壁、外壁それぞれ)に密着するように設置される。 The inside air unit 30 and the outside air unit 40 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall 1 (inner wall and outer wall, respectively) as illustrated.
 尚、壁1を境にして、建物外と建物内とに分けられるが、外気ユニット40は建物外に設置され、内気ユニット30は建物内に設置される。つまり、外気ユニット40は、壁1の建物外側の壁面に密着するようにして設置される。内気ユニット30は、壁1の建物内側の壁面に密着するようにして設置される。 In addition, although it is divided into the building exterior and the building with the wall 1 as a boundary, the outside air unit 40 is installed outside the building, and the inside air unit 30 is installed inside the building. That is, the outside air unit 40 is installed in close contact with the wall surface of the wall 1 outside the building. The inside air unit 30 is installed so as to be in close contact with the inner wall of the wall 1.
 内気ユニット30は、例えば、図示の液-ガス熱交換器31、送風機(ファン)32、配管21(その一部;半分程度)、循環ポンプ22を有する。 The inside air unit 30 includes, for example, the illustrated liquid-gas heat exchanger 31, a blower (fan) 32, a pipe 21 (part thereof: about half), and a circulation pump 22.
 外気ユニット40は、例えば、図示の液-ガス熱交換器41、送風機(ファン)42、配管21(その一部;半分程度)を有する。 The outdoor air unit 40 includes, for example, the illustrated liquid-gas heat exchanger 41, a blower (fan) 42, and a pipe 21 (part thereof: about half).
 内気ユニット30は、工場等での製造時に、例えば1面がオープン(開いている;何も無い状態)となった箱型の筐体の中に、図示の液-ガス熱交換器31、送風機(ファン)32等が設けられる。また筐体には図示の2つの孔(内気流入口33、内気排出口34)が空けられている。尚、図示の配管21(途中に循環ポンプ22が接続された配管21)は、工場等での製造時に既に液-ガス熱交換器31に接続されていてもよいし、設置時に液-ガス熱交換器31に接続してもよい。あるいは、工場では配管21のみを接続しておき、設置時に循環ポンプ22を配管21に接続するようにしてもよい。 When the inside air unit 30 is manufactured in a factory or the like, for example, a liquid-gas heat exchanger 31 and a blower shown in a box-shaped housing whose one surface is open (open; no state). (Fan) 32 etc. are provided. In addition, two holes (inner air inlet 33 and inner air outlet 34) shown in the figure are opened in the casing. Incidentally, the illustrated pipe 21 (pipe 21 to which the circulation pump 22 is connected in the middle) may already be connected to the liquid-gas heat exchanger 31 at the time of manufacture in a factory or the like, or the liquid-gas heat at the time of installation. You may connect to the exchanger 31. Alternatively, only the pipe 21 may be connected in the factory, and the circulation pump 22 may be connected to the pipe 21 at the time of installation.
 外気ユニット40は、工場等での製造時に、例えば1面がオープン(開いている;何も無い状態)となった箱型の筐体の中に、図示の液-ガス熱交換器41、送風機(ファン)42等が設けられる。 When the outside air unit 40 is manufactured in a factory or the like, for example, a liquid-gas heat exchanger 41, a blower shown in a box-shaped housing whose one side is open (open; no state). (Fan) 42 and the like are provided.
 尚、内気ユニット30、外気ユニット40は、何れも、上記オープンとなっている面を、壁1の壁面に合わせるようにして設置される。 Note that both the inside air unit 30 and the outside air unit 40 are installed so that the open surface matches the wall surface of the wall 1.
 また外気ユニット40の筐体には図示の2つの孔(外気流入口43、外気排出口44)が空けられている。尚、図示の配管21は、工場等での製造時に既に液-ガス熱交換器41に接続されていてもよいし、設置時に液-ガス熱交換器41に接続してもよい。 In addition, the housing of the outside air unit 40 has two holes (the outside air inlet 43 and the outside air outlet 44) shown in the figure. The illustrated pipe 21 may be already connected to the liquid-gas heat exchanger 41 at the time of manufacture in a factory or the like, or may be connected to the liquid-gas heat exchanger 41 at the time of installation.
 尚、設置時には壁1に上記配管21を通す為の貫通穴を2箇所開ける必要がある。また、工場での製造時に既に内気ユニット30と外気ユニット40それぞれに配管21(その一部;半分程度)を設けた場合には、この配管21同士を溶接する等して(更に、その際、循環ポンプ22も接続する)、図示の“途中に循環ポンプ22が接続された配管21”を形成するようにしてもよい。 In addition, at the time of installation, it is necessary to open two through holes for passing the pipe 21 through the wall 1. In addition, when the pipes 21 (partially; about half) are already provided in each of the inside air unit 30 and the outside air unit 40 at the time of manufacture in the factory, the pipes 21 are welded to each other (in addition, The circulation pump 22 is also connected), and the illustrated “pipe 21 to which the circulation pump 22 is connected” may be formed.
 上記のようにして内気ユニット30、外気ユニット40を設置することで、上記間接外気冷房機20が構成されることになる。 The indirect outside air cooler 20 is configured by installing the inside air unit 30 and the outside air unit 40 as described above.
 上記間接外気冷房機20では、図4に示す従来構成と同様、外気と内気とは相互に遮断されて熱交換が行われるので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内に取り入れないため、サーバ等の電子機器の信頼性が維持される。 In the indirect outside air cooler 20, as in the conventional configuration shown in FIG. 4, the outside air and the inside air are mutually blocked and heat exchange is performed, so the outside humidity, dust, and corrosive gas contained in the outside air are taken into the room. Therefore, the reliability of electronic devices such as servers is maintained.
 また、上記の通り、配管21を通す為の穴を壁1に空ける必要があるが、従来のように外気を流入・排出する為の孔126,127を設ける場合に比べれば、小さな孔で済み、設置工事が容易となる。 Further, as described above, it is necessary to make a hole in the wall 1 for allowing the pipe 21 to pass through. However, as compared with the conventional case where holes 126 and 127 for inflowing and exhausting outside air are provided, a smaller hole is sufficient. The installation work becomes easy.
 上記設置後の内気ユニット30において、送風機(ファン)32は、上記天井裏空間の暖気を、内気流入口33から流入させ、内気ユニット30内(特に液-ガス熱交換器31内)を通過させた後、内気排出口34から排出させるような空気の流れ(図上、一点鎖線矢印で示す)を作り出す。基本的には、内気排出口34から排出する暖気の温度は、内気流入口33から流入する暖気の温度よりも低くなるようになっている。 In the inside air unit 30 after the installation, the blower (fan) 32 causes the warm air in the ceiling space to flow from the inside air inlet 33 and pass through the inside air unit 30 (particularly, the liquid-gas heat exchanger 31). After that, a flow of air that is discharged from the inside air discharge port 34 (shown by a one-dot chain line arrow in the figure) is created. Basically, the temperature of the warm air discharged from the inside air discharge port 34 is set lower than the temperature of the warm air flowing from the inside air flow inlet 33.
 内気排出口34から排出される暖気は、エアハンドリングユニット12内に流入し、エアハンドリングユニット12内の蒸発器12a等によって冷却されて冷気となり、この冷気が送風機(ファン)12bによって床下空間に送出されることになる。上記のように暖気温度を下げていることで、天井裏空間の暖気がそのままエアハンドリングユニット12内に流入する場合に比べれば、一般空調機10の消費電力量が低減することになる。 The warm air discharged from the inside air discharge port 34 flows into the air handling unit 12 and is cooled by the evaporator 12a or the like in the air handling unit 12 to become cool air, and this cool air is sent to the underfloor space by the blower (fan) 12b. Will be. By reducing the warm air temperature as described above, the power consumption of the general air conditioner 10 is reduced as compared with the case where the warm air in the ceiling space flows into the air handling unit 12 as it is.
 上記設置後の外気ユニット40において、送風機(ファン)42は、外気を外気流入口43から流入させ、外気ユニット40内(特に液-ガス熱交換器41内)を通過させた後、外気排出口44から排出させるような空気の流れ(図上、点線矢印で示す)を作り出す。 In the outside air unit 40 after the installation, the blower (fan) 42 allows the outside air to flow in from the outside air flow inlet 43 and passes through the outside air unit 40 (particularly in the liquid-gas heat exchanger 41), and then the outside air discharge port. An air flow (indicated by a dotted arrow in the figure) is generated so as to be discharged from 44.
 ここで、上記配管21は、その任意の箇所に上記循環ポンプ22が接続されると共に、配管内に液体(例えば水)が封入されている。これより、上記循環ポンプ22を運転することで、この液体(例えば水)が配管21を介して、液-ガス熱交換器31、液-ガス熱交換器41を循環して流れることになる。液-ガス熱交換器31と液-ガス熱交換器41とは、同じものであってよい。 Here, the piping 21 is connected to the circulation pump 22 at an arbitrary position, and a liquid (for example, water) is sealed in the piping. Accordingly, by operating the circulation pump 22, this liquid (for example, water) circulates through the liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 via the pipe 21. The liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 may be the same.
 ここで、液-ガス熱交換器31、41は、既存の構成であり、特に詳しくは説明しないが、簡単に説明する。上記従来の熱交換器121は、その内部に2種類の気体(何れも空気であり、室内暖気と外気)を通過させて、この2種類の気体間で熱交換させることで、特に外気温度が低い場合には外気によって室内暖気を冷却していた。液-ガス熱交換器31、41は、その内部に液体(例えば水)と気体(ここでは空気)を通過させて、液体-気体間で熱交換させることで、より温度が高い方を冷却させるものである。 Here, the liquid-gas heat exchangers 31 and 41 have an existing configuration and will be described briefly, although they will not be described in detail. The conventional heat exchanger 121 has two types of gas (both air, indoor warm air and outside air) passed through the heat exchanger 121 and heat exchange between the two types of gases, so that the outside air temperature is particularly high. When the temperature is low, the indoor warm air is cooled by the outside air. The liquid-gas heat exchangers 31 and 41 allow liquid (for example, water) and gas (in this case, air) to pass therethrough and exchange heat between the liquid and gas to cool the higher temperature. Is.
 尚、上記気体(空気)は、液-ガス熱交換器31では室内暖気であり、液-ガス熱交換器41では外気となる。また、上記液体は、上記配管21、循環ポンプ22によって循環させる水等である。 Note that the gas (air) is indoor warm air in the liquid-gas heat exchanger 31 and outside air in the liquid-gas heat exchanger 41. The liquid is water or the like circulated by the pipe 21 and the circulation pump 22.
 外気温度が低い場合、液-ガス熱交換器41では上記液体(水など)と外気との熱交換によって、液体(水など)の温度が下がり、外気の温度は上がる。これより比較的低温の液体(水など)は、配管21を介して液-ガス熱交換器31内に流入する。よって、液-ガス熱交換器31では、この比較的低温の液体(水など)と室内暖気との熱交換が行われることになる。これによって、室内暖気の温度は下がり、液体(水など)の温度は上がることになる。これによって比較的高温となった液体(水など)は、配管21を介して液-ガス熱交換器41内に流入し、再び上記のように外気によって冷却されることになる。尚、これによって温度上昇した外気は、外気排出口44から排出されることになる。 When the outside air temperature is low, in the liquid-gas heat exchanger 41, the temperature of the liquid (such as water) decreases and the temperature of the outside air increases due to heat exchange between the liquid (such as water) and the outside air. A relatively cooler liquid (such as water) flows into the liquid-gas heat exchanger 31 via the pipe 21. Therefore, in the liquid-gas heat exchanger 31, heat exchange between the relatively low-temperature liquid (such as water) and the indoor warm air is performed. As a result, the temperature of the indoor warm air decreases and the temperature of the liquid (water, etc.) increases. As a result, the liquid (water or the like) having a relatively high temperature flows into the liquid-gas heat exchanger 41 via the pipe 21 and is cooled again by the outside air as described above. The outside air whose temperature has risen due to this is discharged from the outside air outlet 44.
 尚、内気ユニット30内の空気の流れは、送風機32によって、図1では風向きは下方向(上から下へ向かう方向)となっているが、上方向(下から上へ向かう方向)にすることもできる。同様に、外気ユニット40内の空気の流れは、送風機42によって、図1では風向きは上方向となっているが、下方向にすることもできる。 Note that the air flow in the inside air unit 30 is directed downward (in the direction from the top to the bottom) in FIG. You can also. Similarly, the air flow in the outside air unit 40 is directed upward in FIG. 1 by the blower 42, but may be downward.
 但し、内気ユニット30内の空気の流れは、図1に示すように下方向とすることが望ましい。このようにすると、発熱体101で暖められた暖かい空気が上方にあり、液―ガス熱交換器31で冷却された空気が下方に流れるので、内気ユニット30内での空気の通流が、自然対流に逆らうことなく自然現象に沿ったものになる。 However, it is desirable that the air flow in the inside air unit 30 be downward as shown in FIG. In this way, the warm air warmed by the heating element 101 is on the upper side, and the air cooled by the liquid-gas heat exchanger 31 flows downward, so that the air flow in the inside air unit 30 is natural. It will be in line with natural phenomena without countering convection.
 ここで、上記間接外気冷房機20の製造、及び設置工事について説明する。
 図1に示す例では、外気ユニット40と内気ユニット30とは、その筐体の形状・大きさをほぼ同じにして(よって、壁への取付面積もほぼ同じとなる)、壁1を中心にしてほぼ左右対称となるように配置して一体化することで、上記間接外気冷房機20を形成している。尚、左右とは図上における話である。
Here, the manufacture and installation work of the indirect outside air cooler 20 will be described.
In the example shown in FIG. 1, the outside air unit 40 and the inside air unit 30 have substantially the same shape and size of the casing (and therefore the mounting area on the wall is also substantially the same), and the wall 1 is the center. Therefore, the indirect outside air cooler 20 is formed by arranging and integrating them so as to be substantially symmetrical. The left and right are the stories on the figure.
 これらユニットの設置時には、例えば、まず、壁1に複数の貫通孔を空ける。次に、外気ユニット40、内気ユニット30それぞれを、その筐体の骨格が壁1を挟んで左右対称となるような位置(つまり、図1に示すように壁1を挟んでほぼ同じ位置)に配置し、上記壁1に穿かれた複数の貫通孔を介して該複数の貫通孔の位置で外気ユニット40及び内気ユニット30をボルト・ナット等で固定する。更に、別の貫通孔を介して配管21を接続する。 When installing these units, for example, first, a plurality of through holes are made in the wall 1. Next, each of the outside air unit 40 and the inside air unit 30 is placed at a position where the frame of the casing is symmetrical with respect to the wall 1 (that is, approximately the same position with the wall 1 interposed therebetween as shown in FIG. 1). The outside air unit 40 and the inside air unit 30 are fixed with bolts / nuts or the like at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1. Further, the pipe 21 is connected through another through hole.
 また、図1に示す例では、外気ユニット40と内気ユニット30とは、筐体だけでなくその内部構成もほぼ同じであり(図示の通り、ほぼ左右対称)、異なるのは循環ポンプ22の有無等である。よって、例えば工場等では外気と内気の区別なく循環ポンプ22無しの構成としてユニットを製造し、設置の際にこのユニットを外気ユニット40、内気ユニット30のどちらとしても使えるようにする。但し、内気ユニット30にする場合には設置の際に循環ポンプ22を接続する作業が必要である。しかし、工場における製造効率が向上し、以ってコストダウンの効果も期待できる。 In the example shown in FIG. 1, the outside air unit 40 and the inside air unit 30 are not only the housing but also the internal configuration is substantially the same (substantially symmetrical as shown), and the difference is the presence or absence of the circulation pump 22. Etc. Therefore, for example, in a factory or the like, a unit is manufactured without the circulation pump 22 without distinguishing between outside air and inside air, and this unit can be used as both the outside air unit 40 and the inside air unit 30 during installation. However, when the inside air unit 30 is used, it is necessary to connect the circulation pump 22 at the time of installation. However, the manufacturing efficiency in the factory is improved, so that the effect of cost reduction can be expected.
 上述した間接外気冷房機20によれば、以下の効果を奏する。
 すなわち、間接外気冷房機20は、内部流体が液体で外部流体がガスである一対の液-ガス熱交換器31,41を、建物内外を隔てる壁1を介して配置し、一方の液-ガス熱交換器41の外部流体に外気を通流させ、他方の液-ガス熱交換器31の外部流体に内気を通流させ、両方の液-ガス熱交換器の内部流体(液体)を配管21を介して循環させる。これによって、外気と内気の熱交換を行う。
The indirect outside air cooler 20 described above has the following effects.
In other words, the indirect outside air cooler 20 has a pair of liquid-gas heat exchangers 31 and 41, in which the internal fluid is liquid and the external fluid is gas, arranged via the wall 1 separating the inside and outside of the building, and one liquid-gas External air is passed through the external fluid of the heat exchanger 41, internal air is passed through the external fluid of the other liquid-gas heat exchanger 31, and the internal fluid (liquid) of both liquid-gas heat exchangers is pipe 21. Circulate through. Thereby, heat exchange between the outside air and the inside air is performed.
 上記間接外気冷房機20は、上述した特徴により以下の効果を奏する。
 (1)外気を通流させる液-ガス熱交換器41を有する外気ユニット40と、内気を通流させる液-ガス熱交換器31を有する内気ユニット30とを、壁1を中心にして左右対称に配置し一体化したことにより、これらユニット30,40でほぼ同一構造の骨格の筐体を用いることができ、製造コストを軽減できる。
The indirect outside air cooler 20 has the following effects due to the characteristics described above.
(1) The outside air unit 40 having the liquid-gas heat exchanger 41 for allowing the outside air to flow and the inside air unit 30 having the liquid-gas heat exchanger 31 for allowing the inside air to flow are symmetrical about the wall 1. Since these units 30 and 40 can be integrated with each other, it is possible to use a skeleton housing having almost the same structure, thereby reducing the manufacturing cost.
 (2)また、間接外気冷房機20の設置の際に、壁1に穿かれた複数の貫通孔を介して該複数の貫通孔の位置で外気ユニット40及び内気ユニット30をボルト・ナット等で固定したため、施工費を少なくして、かつ、設置工事を容易にすることができる。 (2) Further, when installing the indirect outside air cooler 20, the outside air unit 40 and the inside air unit 30 are connected with bolts and nuts at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1. Since it is fixed, the construction cost can be reduced and the installation work can be facilitated.
 (3)図4等の従来システムと比較して、ダクト部分を減らすことができ、ダクト抵抗による圧力損失を低減することが可能になる。 (3) Compared with the conventional system of FIG. 4 and the like, the duct portion can be reduced, and the pressure loss due to the duct resistance can be reduced.
 次に、実施例2の空調システム(一体型空調システム)について説明する。
 尚、実施例2の空調システムも、間接外気冷房システムの一種であるといえるが、一体型となっており、コンパクトな構成となっている。
Next, the air conditioning system (integrated air conditioning system) of Example 2 will be described.
In addition, although the air conditioning system of Example 2 can also be said to be a kind of indirect outside air cooling system, it is integrated and has a compact configuration.
 上記実施例1の間接外気冷房システムは、間接外気冷房機20に関しては、ダクトレスでコンパクトで設置が容易な構成を提案したが、一般空調機10に関しては従来と略同様である。 The indirect outside air cooling system of the first embodiment has proposed a ductless, compact and easy installation configuration for the indirect outside air cooling device 20, but the general air conditioner 10 is substantially the same as the conventional one.
 実施例2においては、間接外気冷房機の機能と一般空調機の機能とが一体となった、一体型間接外気冷房システムを提案する。 Example 2 proposes an integrated indirect outdoor air cooling system in which the functions of an indirect outdoor air cooler and the functions of a general air conditioner are integrated.
 これによって、装置構成全体の簡略化を図ることができ、装置をよりコンパクトにでき、コスト低減でき、全体としての消費電力の低減も期待できる。 This makes it possible to simplify the overall device configuration, make the device more compact, reduce costs, and reduce overall power consumption.
 図2は、実施例2の空調システム(一体型空調システム)の構成図である。
 また、図3は、図2の構成の一部の拡大図である。
FIG. 2 is a configuration diagram of the air conditioning system (integrated air conditioning system) of the second embodiment.
FIG. 3 is an enlarged view of a part of the configuration of FIG.
 尚、図2において、一体型間接外気冷房システムによる冷却対象空間は、図1や図4に示す例と同じであるものとする。すなわち、冷却対象となる室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。そして、床下空間に冷気を送出し、床下空間を介してサーバ設置空間に冷気を供給し、この冷気によって各発熱体101を冷却する。これによって冷気は暖気となり、この暖気は天井裏空間に流入する。 In FIG. 2, it is assumed that the space to be cooled by the integrated indirect outdoor air cooling system is the same as the example shown in FIGS. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling space.
 ここで、上記床下空間に冷気を送出する構成は、図示の一体型間接外気冷房システム50である。一体型間接外気冷房システム50は、間接外気冷房機20の機能と一般空調機10の機能とが一体となった構成を有する。一体型間接外気冷房システム50は、上記天井裏空間の暖気を流入させて、まず間接外気冷房機の機能によって暖気の温度を下げ、続いて、一般空調機の機能によって所定温度の冷気を生成する。以下、図2、図3を参照して詳しく説明する。 Here, the configuration for sending the cool air to the underfloor space is the integrated indirect outdoor air cooling system 50 shown in the figure. The integrated indirect outside air cooling system 50 has a configuration in which the function of the indirect outside air cooler 20 and the function of the general air conditioner 10 are integrated. The integrated indirect outside air cooling system 50 allows the warm air in the ceiling space to flow in, first lowers the temperature of the warm air by the function of the indirect outside air cooler, and then generates cool air at a predetermined temperature by the function of the general air conditioner. . Hereinafter, a detailed description will be given with reference to FIGS.
 一体型間接外気冷房システム50は、図2、図3に示す内気ユニット60と外気ユニット70とから成る。 The integrated indirect outside air cooling system 50 includes an inside air unit 60 and an outside air unit 70 shown in FIGS.
 尚、上記間接外気冷房機50の間接外気冷房機の機能では、図4に示す従来例や図1に示す構成と同様、外気と内気とは相互に遮断され、熱交換が行われるので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内に取り入れないため、サーバ等の電子機器の信頼性が維持される。 In the indirect outside air cooler function of the indirect outside air cooler 50, the outside air and the inside air are mutually cut off and heat exchange is performed as in the conventional example shown in FIG. 4 and the configuration shown in FIG. Therefore, the reliability of electronic devices such as servers is maintained because the outside air humidity, dust, and corrosive gas contained in are not taken into the room.
 内気ユニット60と外気ユニット70は、例えば、それぞれ工場等で個別に製造された後、図示のように壁1の壁面に密着するように設置される。その際、更に、図示の配管51、冷媒管52等を設置することで(あるいは、略半分ずつ作っておいたもの同士を接続(溶接等)する)、一体型間接外気冷房システム50が構成される。尚、配管51、冷媒管52を設置する為に壁1に貫通孔を設ける必要があるが、この貫通孔は図1や図4の構成と同じく、4箇所となる。尚、内気ユニット60と外気ユニット70の製造・設置については、上記実施例1の内気ユニット30と外気ユニット40等と略同様であってもよく、ここではこれ以上詳細には説明しない。 The inside air unit 60 and the outside air unit 70 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall surface of the wall 1 as illustrated. At that time, the integrated indirect outside air cooling system 50 is configured by installing the illustrated pipe 51, the refrigerant pipe 52, etc. (or connecting (welding, etc.) one that has been made approximately half by two). The In addition, although it is necessary to provide a through-hole in the wall 1 in order to install the piping 51 and the refrigerant | coolant pipe | tube 52, this through-hole becomes four places similarly to the structure of FIG.1 and FIG.4. The production and installation of the inside air unit 60 and the outside air unit 70 may be substantially the same as the inside air unit 30 and the outside air unit 40 of the first embodiment, and will not be described in detail here.
 尚、壁1を境にして、建物外と建物内とに分けられるが、外気ユニット70は建物外に設置され、内気ユニット60は建物内に設置される。つまり、外気ユニット70は、壁1の建物外側の壁面に密着するようにして設置される。内気ユニット60は、壁1の建物内側の壁面に密着するようにして設置される。 The wall 1 is divided into a building outside and a building inside. The outside air unit 70 is installed outside the building, and the inside air unit 60 is installed inside the building. That is, the outside air unit 70 is installed in close contact with the wall surface of the wall 1 outside the building. The inside air unit 60 is installed so as to be in close contact with the inner wall surface of the wall 1.
 外気ユニット70と内気ユニット60とは、壁1を挟んで相互に対応する位置に設けられることが望ましい。壁1を挟んで相互に対応する位置とは、例えば図2や図3等に図示するような位置であり、例えば外気ユニット70側から見た場合、壁1の裏側に内気ユニット60が存在するような位置である。別の言い方をするならば、仮に図示のように外気ユニット70の筐体と内気ユニット60の筐体とがほぼ同じ形状・大きさであったならば、これら2つの筐体が図示のように壁1でほぼ対称(図上では、ほぼ左右対称)の関係となるように配置されている。勿論、この様な例に限らないが、基本的には、設置し易くなるように、配管が短くなるように、設置することが望ましい。 It is desirable that the outside air unit 70 and the inside air unit 60 are provided at positions corresponding to each other across the wall 1. The positions corresponding to each other across the wall 1 are positions as illustrated in FIGS. 2 and 3, for example. When viewed from the outside air unit 70 side, for example, the inside air unit 60 exists on the back side of the wall 1. It is such a position. In other words, if the casing of the outside air unit 70 and the casing of the inside air unit 60 are substantially the same shape and size as shown in the figure, these two casings are as shown in the figure. They are arranged so as to have a substantially symmetrical relationship (almost symmetrical in the drawing) on the wall 1. Of course, the present invention is not limited to such an example, but basically, it is desirable to install so that the piping is shortened so as to facilitate installation.
 内気ユニット60は、積層体61等を有する。積層体61は、蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61c等を有し、これらが図示のように積層されて一体となった構成となっている。尚、この様に、蒸発器、液-ガス熱交換器、送風機(ファン)を積層体として一体型とする構成には、少なからずメリットがあるが、この構成例に限定されるわけではない。但し、実施例2の特徴は“一体型”ユニットであるので、内気ユニット60内には蒸発器、液-ガス熱交換器、送風機(ファン)が設けられている必要がある。 The inside air unit 60 has a laminated body 61 and the like. The laminated body 61 has an evaporator 61a, a liquid-gas heat exchanger 61b, a blower (fan) 61c, etc., and these are laminated and integrated as shown in the figure. It should be noted that the configuration in which the evaporator, the liquid-gas heat exchanger, and the air blower (fan) are integrated as a laminated body has a number of advantages, but is not limited to this configuration example. However, since the feature of the second embodiment is an “integrated type” unit, the inside air unit 60 needs to be provided with an evaporator, a liquid-gas heat exchanger, and a blower (fan).
 また、内気ユニット60の筐体(例えば1面がオープンの箱型等)には、図示の内気流入口62、内気排出口63等の孔が開けられている。送風機(ファン)61cは、上記天井裏空間の暖気を、内気流入口62から当該ユニット60内に流入させ、内気ユニット60内(特に積層体61内)を通過させた後、内気排出口63から排出させるような空気の流れ(図上、一点鎖線矢印で示す)を作り出す。 Also, the housing of the inside air unit 60 (for example, a box shape with one open surface) has holes such as the inside air inlet 62 and the inside air outlet 63 shown in the figure. The blower (fan) 61 c allows the warm air in the ceiling space to flow into the unit 60 from the internal air flow inlet 62 and pass through the inside air unit 60 (particularly, the laminated body 61), and then from the inside air discharge port 63. Create a flow of air that can be discharged (indicated by the dashed-dotted arrows in the figure).
 上記積層体61は、この様な空気の流れの上流側に上記液-ガス熱交換器61bが設けられ、下流側に上記蒸発器61aが設けられるように構成する。従って、図示の構成例に限るものではなく、この条件を満たす構成であればなんでもよい。 The laminate 61 is configured such that the liquid-gas heat exchanger 61b is provided on the upstream side of such an air flow and the evaporator 61a is provided on the downstream side. Accordingly, the present invention is not limited to the illustrated configuration example, and any configuration that satisfies this condition may be used.
 また、特に図示しないが、積層体(一体型)としない場合でも、空気の流れの上流側に液-ガス熱交換器が設けられ、下流側に蒸発器が設けられるように構成する必要がある。つまり、内気(暖気)に対して、液-ガス熱交換器で温度を下げた後に、蒸発器において所定温度(設定温度)となるように調整する構成とする必要がある。 Although not particularly illustrated, it is necessary to configure so that a liquid-gas heat exchanger is provided on the upstream side of the air flow and an evaporator is provided on the downstream side even when the laminate (integrated type) is not used. . That is, it is necessary to adjust the internal air (warm air) to a predetermined temperature (set temperature) in the evaporator after the temperature is lowered by the liquid-gas heat exchanger.
 尚、上記のことは、液-ガス熱交換器61bと蒸発器61aとの相対的な位置関係の話であり、上記積層体61において送風機(ファン)61cの位置(空気の流れに対する配置順番)はどこでもよい。つまり、送風機61cは、上記空気の流れの最上流の位置、最下流の位置、中間の位置(液-ガス熱交換器61bと蒸発器61aとの間)の何れの位置であってもよい。これは、積層体としない場合でも同様である。また、これは後述する積層体71に関しても略同様である。 The above is a description of the relative positional relationship between the liquid-gas heat exchanger 61b and the evaporator 61a, and the position of the blower (fan) 61c (arrangement order with respect to the air flow) in the laminate 61. Can be anywhere. That is, the blower 61c may be in any position of the most upstream position, the most downstream position, and the intermediate position (between the liquid-gas heat exchanger 61b and the evaporator 61a) of the air flow. This is the same even when the laminate is not used. This is also the same for the laminated body 71 described later.
 外気ユニット70は、積層体71等を有する。積層体71は、凝縮器71a、液-ガス熱交換器71b、送風機(ファン)71c等を有し、これらが図示のように積層されて一体となった構成となっている。但し、内気ユニット60と同様、必ずしも積層体とする例に限るものではない。しかし、内気ユニット60と同様、外気ユニット70内には凝縮器、液-ガス熱交換器、送風機(ファン)が設けられている必要がある。 The outside air unit 70 has a laminated body 71 and the like. The laminated body 71 includes a condenser 71a, a liquid-gas heat exchanger 71b, a blower (fan) 71c, etc., and these are laminated and integrated as shown in the figure. However, like the inside air unit 60, it is not necessarily limited to the example of the laminated body. However, like the inside air unit 60, the outside air unit 70 needs to be provided with a condenser, a liquid-gas heat exchanger, and a blower (fan).
 また、外気ユニット70の筐体等には、図示の外気流入口72、外気排出口73等の孔が開けられている。送風機(ファン)71cは、外気を外気流入口72から当該ユニット70内に流入させ、外気ユニット70内(特に積層体71内)を通過させた後、外気排出口73から排出させるような空気の流れ(図上、点線矢印で示す)を作り出す。 Also, the outside air unit 70 is provided with holes such as the outside air inlet 72 and the outside air outlet 73 shown in the figure. The blower (fan) 71c allows the outside air to flow into the unit 70 from the outside air flow inlet 72, passes through the inside of the outside air unit 70 (particularly within the laminated body 71), and then is discharged from the outside air discharge port 73. Create a flow (indicated by dotted arrows on the diagram).
 上記積層体71は、この様な空気の流れの上流側に上記液-ガス熱交換器71bが設けられ、下流側に上記凝縮器71aが設けられるように構成する。また、既に述べたように、積層体71に関しても上記積層体61と略同様に、送風機(ファン)71cの位置(空気の流れに対する配置順番)は、どこでもよい(従って、図示の構成例に限るものではなく、上記の条件を満たす構成であればなんでもよい)。これは、積層体としない場合でも同様である。 The laminate 71 is configured such that the liquid-gas heat exchanger 71b is provided on the upstream side of such an air flow, and the condenser 71a is provided on the downstream side. Further, as already described, the position of the blower (fan) 71c (arrangement order with respect to the air flow) may be anywhere with respect to the layered body 71 as well, as in the case of the layered body 61 (therefore limited to the illustrated configuration example). Any configuration that satisfies the above conditions is acceptable. This is the same even when the laminate is not used.
 上述したように、内気ユニット60、外気ユニット70は、何れも、図2、図3に示す構成は、一例を示すものであり、この例に限らない。 As described above, both the inside air unit 60 and the outside air unit 70 are examples of the configurations shown in FIGS. 2 and 3, and are not limited to this example.
 上記積層体61,71の構成、製造方法は、様々であってよく、ここでは詳細には説明しないが、製造し易く、または/及び、出来るだけコンパクトとなるような構成、製造方法とすることが望ましい。例えば、積層体61を例にすると、上記蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61cの全てを、任意の筐体内に収める(ユニット化する)と共に、この筐体の大きさ、形状を略同一にすること等が考えられる。更に、例えば一例として、この筐体の形状を、例えばほぼ直方体とし、これら3つの直方体を積層することで、積層体61の形状をほぼ直方体とすること等も考えられる。 The configuration and manufacturing method of the laminates 61 and 71 may be various. Although not described in detail here, the configuration and the manufacturing method are as easy to manufacture and / or as compact as possible. Is desirable. For example, taking the laminated body 61 as an example, the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are all housed (unitized) in an arbitrary housing, and the size of the housing is also described. It is conceivable that the shapes are substantially the same. Further, as an example, the shape of the casing may be a substantially rectangular parallelepiped, for example, and the shape of the stacked body 61 may be a substantially rectangular parallelepiped by stacking these three rectangular parallelepipeds.
 また、この例では、上記蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61cの積層化・一体化(積層体61の形成)は、例えば一例としては、上記の筐体同士を相互に接続することで行われる。筐体同士の接続は、例えば、各筐体の隅に設けられた穴に棒やボルトを通してナット等で固定する等、一般的な方法であってよい。 In this example, the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are stacked and integrated (formation of the stacked body 61). This is done by connecting each other. The connection between the housings may be a general method, for example, fixing a nut or the like through a rod or a bolt in a hole provided in a corner of each housing.
 尚、勿論、上記筐体には、内気を通過させる為の多数の孔や各種配管を通す為の穴等が設けられている。 Of course, the casing is provided with a number of holes for allowing the inside air to pass therethrough and holes for passing various pipes.
 ここで、液-ガス熱交換器61bと71bは、実施例1の液-ガス熱交換器31,41と略同様に、配管51を介して相互に接続されており、循環ポンプ53によって配管51内の液体(水など)が、液-ガス熱交換器61b、71b及び配管51内を循環している。また、液-ガス熱交換器61b、71bは、上記液-ガス熱交換器31,41と同様の構成であってよく、既存の構成であり特に詳細には説明しない。 Here, the liquid-gas heat exchangers 61 b and 71 b are connected to each other via a pipe 51 in substantially the same manner as the liquid-gas heat exchangers 31 and 41 of the first embodiment. The liquid (such as water) in the liquid circulates in the liquid-gas heat exchangers 61 b and 71 b and the pipe 51. The liquid-gas heat exchangers 61b and 71b may have the same configuration as the liquid-gas heat exchangers 31 and 41, and are existing configurations and will not be described in detail.
 液-ガス熱交換器61b内には、上記液体(水など)が通過すると共に上記内気(暖気)が通過する。これより、液-ガス熱交換器61b内で液体(水など)と暖気との熱交換が行われ、基本的には暖気が冷却されて(暖気の熱が液体に移動して)、暖気の温度が低下することになる。但し、これは、外気と暖気の温度次第であり、暖気の温度が下がることが保証されるものではない。但し、外気の温度が高いときには、循環ポンプ53を停止すること等で対応することが考えられる。 In the liquid-gas heat exchanger 61b, the liquid (such as water) passes and the inside air (warm air) passes. As a result, heat exchange between the liquid (such as water) and the warm air is performed in the liquid-gas heat exchanger 61b, and the warm air is basically cooled (the heat of the warm air moves to the liquid). The temperature will drop. However, this depends on the temperature of the outside air and the warm air, and it is not guaranteed that the temperature of the warm air decreases. However, when the temperature of the outside air is high, it can be considered that the circulation pump 53 is stopped.
 また、蒸発器61aと凝縮器71aに対して、冷媒管52、膨張弁54、圧縮機55が設けられている。これら各構成自体は、一般空調機10の各構成と略同様である。すなわち、一般空調機10において、エアハンドリングユニット12には上記蒸発器12aやファン12bが備えられており、蒸発器61aは蒸発器12aに相当する構成である。また、上述したように冷凍機11には不図示の圧縮機、凝縮器が備えられているが、これらに相当する構成が上記圧縮機55、凝縮器71aである。また、膨張弁54は、膨張弁13に相当する構成である。 Further, a refrigerant pipe 52, an expansion valve 54, and a compressor 55 are provided for the evaporator 61a and the condenser 71a. Each of these components is substantially the same as each component of the general air conditioner 10. That is, in the general air conditioner 10, the air handling unit 12 includes the evaporator 12a and the fan 12b, and the evaporator 61a has a configuration corresponding to the evaporator 12a. Further, as described above, the refrigerator 11 is provided with a compressor and a condenser (not shown). The compressor 55 and the condenser 71a correspond to these components. The expansion valve 54 has a configuration corresponding to the expansion valve 13.
 図示の通り、蒸発器61a、凝縮器71a、膨張弁54、及び圧縮機55は、冷媒管52に接続されている。冷媒管52を介して冷媒が蒸発器61a、凝縮器71a、膨張弁54、及び圧縮機55を循環する。すなわち、冷媒が「蒸発器61a→圧縮機55→凝縮器71a→膨張弁54→蒸発器61a」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。蒸発器61aにおいて冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気を冷却する。奪った熱は、凝縮器71aにおいて外気等へ放熱される。膨張弁54、及び圧縮機55の機能は、従来通りであり、特に説明しない。 As shown in the figure, the evaporator 61a, the condenser 71a, the expansion valve 54, and the compressor 55 are connected to the refrigerant pipe 52. The refrigerant circulates through the evaporator 61 a, the condenser 71 a, the expansion valve 54, and the compressor 55 through the refrigerant pipe 52. That is, the refrigerant circulates in a general compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator 61a → compressor 55 → condenser 71a → expansion valve 54 → evaporator 61a”. When the refrigerant evaporates in the evaporator 61a, the surrounding heat is taken away, thereby cooling the surrounding air. The deprived heat is radiated to the outside air or the like in the condenser 71a. The functions of the expansion valve 54 and the compressor 55 are conventional and will not be described in particular.
 尚、図示の通り、膨張弁54は内気ユニット60に設けられているが、外気ユニット70内に設けてもよい。圧縮機55は外気ユニット70内に設けられているが、内気ユニット60に設けてもよい。つまり、膨張弁54が内気ユニット60内に設けられ、圧縮機55が外気ユニット70内に設けられる構成と、膨張弁54が外気ユニット70内に設けられ、圧縮機55が内気ユニット60内に設けられる構成と、膨張弁54と圧縮機55の両方が内気ユニット60内に設けられる構成と、膨張弁54と圧縮機55の両方が外気ユニット70内に設けられる構成と、が有り得る。 As illustrated, the expansion valve 54 is provided in the inside air unit 60, but may be provided in the outside air unit 70. The compressor 55 is provided in the outside air unit 70, but may be provided in the inside air unit 60. That is, the configuration in which the expansion valve 54 is provided in the inside air unit 60 and the compressor 55 is provided in the outside air unit 70, and the expansion valve 54 is provided in the outside air unit 70, and the compressor 55 is provided in the inside air unit 60. There may be a configuration in which both the expansion valve 54 and the compressor 55 are provided in the inside air unit 60, and a configuration in which both the expansion valve 54 and the compressor 55 are provided in the outside air unit 70.
 また、循環ポンプ53は、図示の例では内気ユニット60に設けられているが、外気ユニット70に設けるようにしてもよい。 The circulation pump 53 is provided in the inside air unit 60 in the illustrated example, but may be provided in the outside air unit 70.
 尚、上記液-ガス熱交換器61b、液-ガス熱交換器71bは、液体と気体との間の熱交換を行う熱交換器であるが、この例に限らない。これらの液-ガス熱交換器の代わりに、気体と気体との間の熱交換を行う熱交換器(ガス-ガス熱交換器と呼ぶものとする)を設けてもよい。当然、この場合には、液体の代わりに何らかの気体を用いることになる。ここで、このような液体や気体を総称して“流体”と呼ぶものとするならば、上記液-ガス熱交換器やガス-ガス熱交換器を総称して、流体-気体熱交換器あるいは流体-流体熱交換器などとよんでもよい。この場合、配管51には何らかの“流体”が流れるものと言えることになる。つまり、配管51を介して2つの熱交換器(図示の例では液-ガス熱交換器61bと液-ガス熱交換器71bであるが、上記の通り、この例に限らない)に、任意の“流体”を循環させるものと言えることになる。
 以上、一体型間接外気冷房システム50の各構成について説明した。
The liquid-gas heat exchanger 61b and the liquid-gas heat exchanger 71b are heat exchangers that perform heat exchange between the liquid and the gas, but are not limited to this example. Instead of these liquid-gas heat exchangers, a heat exchanger (referred to as a gas-gas heat exchanger) that performs heat exchange between gases may be provided. Of course, in this case, some gas is used instead of the liquid. Here, if such a liquid or gas is generically called “fluid”, the liquid-gas heat exchanger or gas-gas heat exchanger is generically called a fluid-gas heat exchanger or It may be called a fluid-fluid heat exchanger. In this case, it can be said that some “fluid” flows through the pipe 51. In other words, two heat exchangers (liquid-gas heat exchanger 61b and liquid-gas heat exchanger 71b in the illustrated example, but not limited to this example as described above) are connected to any heat exchanger via the pipe 51. It can be said that the “fluid” is circulated.
Heretofore, each configuration of the integrated indirect outdoor air cooling system 50 has been described.
 以下、上記各構成による一体型間接外気冷房システム50の動作について説明する。
 すなわち、上記天井裏空間の内気(暖気)が、内気流入口62を介して内気ユニット60内に流入すると、まず、この暖気が液-ガス熱交換器61b内を通過することで、当該暖気と液体(水など)との間で熱交換が行われ、暖気の温度が低下する。どの程度低下するのかは、外気温度(液体の温度)や暖気の温度に依ることになる。
Hereinafter, the operation of the integrated indirect outdoor air cooling system 50 having the above-described configurations will be described.
That is, when the inside air (warm air) in the ceiling space flows into the inside air unit 60 through the inside air flow inlet 62, first, the warm air passes through the liquid-gas heat exchanger 61b, so that the warm air and Heat exchange is performed with a liquid (such as water), and the temperature of the warm air decreases. The degree of the reduction depends on the outside air temperature (liquid temperature) and the warm air temperature.
 上記温度低下した暖気は、続いて、蒸発器61aを通過する。これによって、温度低下した暖気は、蒸発器61aで冷却されて更に温度低下し冷気となる。この冷気は、所定温度(設定温度)となるようにコントロールされる。その為に、当然、不図示の(図3では一応示す)コントローラ80も存在している。このコントローラ80は、一体型間接外気冷房システム50全体を制御するものであり、例えば各ファンの回転数制御や循環ポンプ53の制御等の各種制御も行っているが、ここでは特に説明しない。尚、コントローラ80は、CPU等の演算装置やメモリ等の記憶装置を有しており、メモリ等に予め記憶されているプログラムを実行することで、また不図示の各種センサによる計測値を随時入力することで、一体型間接外気冷房システムの制御を行うことになる。 The warm air whose temperature has been lowered passes through the evaporator 61a. As a result, the warm air whose temperature has been lowered is cooled by the evaporator 61a, and the temperature is further lowered to become cold air. This cold air is controlled to be a predetermined temperature (set temperature). For this reason, there is of course a controller 80 (not shown) (not shown). The controller 80 controls the entire integrated indirect outdoor air cooling system 50, and performs various controls such as control of the rotational speed of each fan and control of the circulation pump 53, but is not particularly described here. The controller 80 has an arithmetic device such as a CPU and a storage device such as a memory. The controller 80 executes programs stored in advance in the memory and inputs measurement values from various sensors (not shown) as needed. By doing so, the integrated indirect outdoor air cooling system is controlled.
 また、このコントローラ80は、内気ユニット60の筐体内もしくは外気ユニット70の筐体内に設けられて良いし、これらユニットの外(ユニットの近傍等)に設けられても良い。尚、図3では、コントローラ80に係る各種信号線等は図示していないが、実際には存在し、コントローラ80は、これらの信号線を介して、上記一体型間接外気冷房システム50等の各種構成を制御する。例えば、送風機61cの吹出口付近には不図示の温度センサが設けられており、コントローラ80は、この温度センサによる計測温度を不図示の信号線を介して取得する。そして、コントローラ80は、この計測温度が設定温度となるように、不図示の信号線を介して、上記一般的な圧縮式冷凍サイクルに係る各構成を制御する。 Further, the controller 80 may be provided in the case of the inside air unit 60 or the case of the outside air unit 70, or may be provided outside these units (in the vicinity of the unit, etc.). In FIG. 3, various signal lines and the like related to the controller 80 are not shown, but actually exist, and the controller 80 transmits various signals such as the integrated indirect outdoor air cooling system 50 and the like via these signal lines. Control the configuration. For example, a temperature sensor (not shown) is provided in the vicinity of the air outlet of the blower 61c, and the controller 80 obtains a temperature measured by the temperature sensor via a signal line (not shown). And the controller 80 controls each structure which concerns on the said general compression-type refrigerating cycle via a signal line not shown so that this measured temperature may become preset temperature.
 尚、既に述べた通り本例では、暖気の流れの上流側に液-ガス熱交換器61bを配置し、下流側に蒸発器61aを配置している。 As already described, in this example, the liquid-gas heat exchanger 61b is disposed upstream of the warm air flow, and the evaporator 61a is disposed downstream.
 上記蒸発器61aで生成された冷気は、(送風機61cを通過し)内気排出口63から排出される。ここで、図2に示すように、内気排出口63は床下空間に繋がるように配置されている。尚、この為、一体型間接外気冷房システム50は、上記図1の間接外気冷房機20とは異なり、図2に示すように一部が床下まで入り込むようにして設置することになる。これより、内気排出口63から排出された冷気は、床下空間に流入し、床下空間を介してサーバ設置空間に流入し、発熱体101を冷却することになる。冷気は、発熱体101を冷却することで暖気となり、この暖気は天井裏空間に流入し、再び上記内気流入口62から内気ユニット60内に流入することになる。 The cold air generated by the evaporator 61a is discharged from the inside air outlet 63 (passes through the blower 61c). Here, as shown in FIG. 2, the inside air outlet 63 is disposed so as to be connected to the underfloor space. For this reason, unlike the indirect outdoor air cooling system 20 of FIG. 1, the integrated indirect outdoor air cooling system 50 is installed so that a part thereof enters under the floor as shown in FIG. Thus, the cold air discharged from the inside air discharge port 63 flows into the underfloor space, flows into the server installation space via the underfloor space, and cools the heating element 101. The cool air becomes warm air by cooling the heating element 101, and this warm air flows into the space behind the ceiling and again flows into the internal air unit 60 from the internal air flow inlet 62.
 一方、外気ユニット70に関しては、外気流入口72を介して外気ユニット70内に流入した外気は、まず、液-ガス熱交換器71b内を通過することで、当該外気と液体(水など)との間で熱交換が行われる。この液体(水など)は、上記液-ガス熱交換器61bにおいて暖気と熱交換することで温度上昇している。この様に温度が高くなっている液体(水など)と外気との間で熱交換が行われることで、液体(水など)の温度が低下する。温度低下した液体(水など)は、循環ポンプ53と配管51により、再び液-ガス熱交換器61b側に供給されることになる。 On the other hand, with respect to the outside air unit 70, outside air that has flowed into the outside air unit 70 through the outside air inlet 72 first passes through the liquid-gas heat exchanger 71b, so that the outside air and liquid (such as water) are exchanged. Heat exchange between the two. The temperature of the liquid (water or the like) is increased by exchanging heat with warm air in the liquid-gas heat exchanger 61b. In this way, heat exchange is performed between the liquid (water or the like) whose temperature is high and the outside air, so that the temperature of the liquid (water or the like) decreases. The liquid (such as water) whose temperature has decreased is supplied again to the liquid-gas heat exchanger 61b side by the circulation pump 53 and the pipe 51.
 一方、外気は、液-ガス熱交換器71b内を通過する際の上記液体(水など)との熱交換によって、温度上昇することになる。この温度上昇した外気は、続いて、凝縮器71aを通過することになり、凝縮器71aは上記の様に放熱を行っていることから更に温度上昇し、その後、外気排出口73から排出されることになる。 On the other hand, the temperature of the outside air rises due to heat exchange with the liquid (such as water) when passing through the liquid-gas heat exchanger 71b. The outside air whose temperature has risen continues to pass through the condenser 71a, and the condenser 71a is further radiating heat as described above, so that the temperature rises further, and is then discharged from the outside air outlet 73. It will be.
 尚、上述した説明における“建物内”は、“室内側”と呼んでもよい。従って、“室内側”には、「冷却対象となる室内空間」だけでなく、機械室等も含まれることになる。換言すれば、“室内側”とは上記“内気”(建物内の空気)が存在する空間であると言うこともできる。同様に、上述した説明における“建物外”は、“室外側”と呼んでもよい。換言すれば、“室外側”とは、上記“外気”(建物外の空気)が存在する空間であると言うこともできる。尚、“室内空間”は、上記“室内側”とは多少異なる意味となり、上記「間接外気冷房システムによる冷却対象空間(冷却対象となる室内空間)」を意味するものとする。従って、“室内空間”には機械室等は含まれない。 Note that “inside the building” in the above description may be called “inside the room”. Therefore, the “indoor side” includes not only “indoor space to be cooled” but also a machine room and the like. In other words, the “indoor side” can be said to be a space in which the “inside air” (air in the building) exists. Similarly, “outside of building” in the above description may be referred to as “outdoor”. In other words, the “outdoor” can be said to be a space where the “outside air” (air outside the building) exists. The “indoor space” has a slightly different meaning from the “indoor side”, and means “the space to be cooled by the indirect outside air cooling system (the room space to be cooled)”. Therefore, the “indoor space” does not include a machine room or the like.
 以上説明した一体型間接外気冷房システム50によれば、主に下記の効果が得られる。
 (a)コンパクト化
 従来や実施例1では、一般空調機と間接外気冷房機の2つの機器があったが、これら2つの機器を一体化したことで、小型化を図ることができ、以って設置スペースを削減することができ、例えば機械室等が狭い場合でも設置し易くなる(あるいは、従来では設置できないほど狭かったものを設置可能とする)。
According to the integrated indirect outside air cooling system 50 described above, the following effects are mainly obtained.
(A) Downsizing In the past and in Example 1, there were two devices, a general air conditioner and an indirect outside air cooler. However, by integrating these two devices, the size can be reduced. Thus, the installation space can be reduced. For example, even when the machine room is small, it is easy to install (or it is possible to install a machine room that is too narrow to be installed in the past).
 (b)ダクトレス、壁面取り付けによる施工費低減
 この効果は、上記実施例1でも同様であり、従来のようにダクトを設ける必要はなくなる。内気ユニット、外気ユニットを予め例えば工場等で製造しておき、施工時にはこれらユニットを壁面に取り付けるだけなので(配管用の孔を空ける等の作業は必要であるが)施工の手間が軽減でき、以って施工費を低減することができる。
(B) Construction cost reduction by ductless and wall surface mounting This effect is the same as in the first embodiment, and there is no need to provide a duct as in the prior art. Since the inside air unit and the outside air unit are manufactured in advance at a factory, for example, and these units are simply attached to the wall surface during construction (although work such as making holes for piping is necessary), the labor of construction can be reduced. Therefore, the construction cost can be reduced.
 (c)積層体によるコンパクト化と製作性の向上
 従来や実施例1等では、例えば建物内の構成に関しては、蒸発器、液-ガス熱交換器、ファン等がバラバラに存在していた(当然、製造も個別に行っていた)。これに対して、実施例2では、蒸発器、液-ガス熱交換器、ファンを積層させて一体化した積層体としたことにより、小型化を図ることができる。また、個別に製造せずにまとまって製造するので、製造し易くなる。特に、図2や図3に示すように形や大きさが略同一となるように揃えることで、製作性が更に向上することが期待できる。また、持ち運びに便利で設置し易いという効果も期待できる。
(C) Downsizing and improvement of manufacturability by the laminated body Conventionally, in Example 1 and the like, for example, regarding the configuration in the building, there are various evaporators, liquid-gas heat exchangers, fans, etc. Manufacturing was done individually). On the other hand, in the second embodiment, miniaturization can be achieved by forming a laminated body in which an evaporator, a liquid-gas heat exchanger, and a fan are laminated and integrated. Moreover, since it manufactures collectively, without manufacturing separately, it becomes easy to manufacture. In particular, as shown in FIGS. 2 and 3, it can be expected that the manufacturability is further improved by aligning the shapes and sizes so as to be substantially the same. In addition, the effect of being easy to carry and easy to install can be expected.
 (d)ファン共通化による送風動力(送風電力)低減と低価格化
 実施例2の構成では、従来や実施例1に比べてファン数を削減でき、以って送風動力(送風電力)低減と低価格化を図ることができる。例えば図1に示す実施例1の構成では、ファンは、ファン11a、ファン12b、ファン32、ファン42の4つのファンが設けられていた。これに対して、図2、図3に示す実施例2の構成では、ファン61c、71cという2つのファンのみで済む。つまり、ファン数を半減できる。よって、例えばファンの購入費を半減できる。また、ファンを動作させるには電力が必要であるが、この電力も4つの場合に比べれば2つの方が少なくて済む。
(D) Reduction of blowing power (fan power) and price reduction by using a common fan In the configuration of the second embodiment, the number of fans can be reduced as compared with the prior art and the first embodiment. Lower prices can be achieved. For example, in the configuration of the first embodiment illustrated in FIG. 1, the fans are provided with four fans: a fan 11 a, a fan 12 b, a fan 32, and a fan 42. On the other hand, in the configuration of Embodiment 2 shown in FIGS. 2 and 3, only two fans 61c and 71c are required. That is, the number of fans can be halved. Thus, for example, the cost of purchasing a fan can be halved. Also, power is required to operate the fan, but this power can be less for two compared to four.
 本発明の一体型空調システムによれば、従来では一般空調機と間接外気冷房機の2つの機器があったが、これら2つの機器を一体化したことで、小型化を図ることができる。また、従来では蒸発器、圧縮機、熱交換器、ファン等がバラバラに存在していたが、これらを積層させて一体化した積層体としたことにより、更に小型化を図ることができ、また製造し易くなる。更に、ファンの数を削減でき、以って送風電力低減と低価格化を図ることができる。 According to the integrated air conditioning system of the present invention, there are conventionally two devices, a general air conditioner and an indirect outside air cooler. However, by integrating these two devices, the size can be reduced. Conventionally, evaporators, compressors, heat exchangers, fans, etc. existed separately, but by making these laminates integrated into one, further downsizing can be achieved, Easy to manufacture. Furthermore, the number of fans can be reduced, thereby reducing the blowing power and reducing the price.

Claims (9)

  1.  内気が通過する内気ユニットと、外気が通過する外気ユニットとを有し、
     前記内気ユニットは、第1の熱交換器と、蒸発器と、該第1の熱交換器と蒸発器とに前記内気を通過させる為の第1の送風機とを有し、
     前記外気ユニットは、第2の熱交換器と、凝縮器と、該第2の熱交換器と凝縮器とに前記外気を通過させるための第2の送風機とを有し、
     前記蒸発器と、前記凝縮器と、前記外気ユニットと前記内気ユニットの何れかに設けられる膨張弁と、前記外気ユニットと前記内気ユニットの何れかに設けられる圧縮機とに接続する冷媒配管を設け、該冷媒配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第1の熱交換器と第2の熱交換器とに接続する配管を設け、該配管を介して前記第1の熱交換器、第2の熱交換器に任意の流体を循環させ、該第2の熱交換器において該流体と前記外気とを熱交換させることで該流体を該外気によって冷却し、該冷却された流体と前記内気とを前記第1の熱交換器で熱交換させることで該内気を該流体によって冷却する、間接外気冷房機を構成することを特徴とする一体型空調システム。
    An inside air unit through which inside air passes and an outside air unit through which outside air passes,
    The inside air unit has a first heat exchanger, an evaporator, and a first blower for allowing the inside air to pass through the first heat exchanger and the evaporator,
    The outside air unit includes a second heat exchanger, a condenser, and a second blower for allowing the outside air to pass through the second heat exchanger and the condenser.
    Provided is a refrigerant pipe connected to the evaporator, the condenser, an expansion valve provided in any of the outside air unit and the inside air unit, and a compressor provided in any of the outside air unit and the inside air unit. The refrigerant, the condenser, the expansion valve, and the compressor are circulated through the refrigerant pipe to constitute an air conditioner using a compression refrigeration cycle,
    A pipe connected to the first heat exchanger and the second heat exchanger is provided, and an arbitrary fluid is circulated through the pipe to the first heat exchanger and the second heat exchanger, Heat exchange between the fluid and the outside air in a second heat exchanger to cool the fluid with the outside air, and heat exchange between the cooled fluid and the inside air in the first heat exchanger. And an indirect outside air cooler configured to cool the inside air with the fluid.
  2.  前記内気ユニットにおいて、前記第1の熱交換器と前記蒸発器と前記第1の送風機とが積層されて一体化した第1の積層体が構成されていることを特徴とする請求項1記載の一体型空調システム。 The said inside air unit WHEREIN: The 1st laminated body which the said 1st heat exchanger, the said evaporator, and the said 1st air blower were laminated | stacked and integrated was comprised. Integrated air conditioning system.
  3.  前記外気ユニットにおいて、前記第2の熱交換器と前記凝縮器と前記第2の送風機とが積層されて一体化した第2の積層体が構成されていることを特徴とする請求項1または2記載の一体型空調システム。 The said outside air unit WHEREIN: The 2nd laminated body which laminated | stacked and integrated the said 2nd heat exchanger, the said condenser, and the said 2nd air blower is comprised. The integrated air conditioning system described.
  4.  前記内気ユニットにおいて、前記第1の送風機によって形成される前記内気の流れの上流側に前記第1の熱交換器が設けられ、下流側に前記蒸発器が設けられることを特徴とする請求項1~3の何れかに記載の一体型空調システム。 2. The inside air unit, wherein the first heat exchanger is provided upstream of the inside air flow formed by the first blower, and the evaporator is provided downstream. The integrated air conditioning system according to any one of 1 to 3.
  5.  前記外気ユニットにおいて、前記第2の送風機によって形成される前記外気の流れの上流側に前記第2の熱交換器が設けられ、下流側に前記凝縮器が設けられることを特徴とする請求項1~4の何れかに記載の一体型空調システム。 The said outside air unit WHEREIN: The said 2nd heat exchanger is provided in the upstream of the flow of the said outside air formed with the said 2nd air blower, and the said condenser is provided in the downstream. The integrated air conditioning system according to any one of 1 to 4.
  6.  室外側に設けられ外気が通過する外気ユニットに対応して設けられる、室内側に設けられ内気が通過する内気ユニットであって、
     第1の熱交換器と、蒸発器と、該第1の熱交換器と蒸発器とに前記内気を通過させる為の第1の送風機とを有し、
     前記蒸発器と、前記外気ユニット内の凝縮器と、前記外気ユニット内または当該内気ユニット内に設けられる膨張弁と、前記外気ユニット内または当該内気ユニット内に設けられる圧縮機とに接続する冷媒配管の一部を有し、該冷媒配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第1の熱交換器と前記外気ユニット内の第2の熱交換器とに接続する液配管の一部を有し、該液配管を介して前記第1の熱交換器、第2の熱交換器に任意の流体を循環させることで、前記第1の熱交換器において該流体と前記内気との間で熱交換させて該内気を冷却する間接外気冷房機を構成することを特徴とする内気ユニット。
    An indoor air unit that is provided on the indoor side and through which the inside air passes is provided corresponding to an outside air unit that is provided on the outdoor side and through which the outside air passes.
    A first heat exchanger, an evaporator, and a first blower for passing the inside air through the first heat exchanger and the evaporator;
    Refrigerant piping connected to the evaporator, a condenser in the outside air unit, an expansion valve provided in the outside air unit or the inside air unit, and a compressor provided in the outside air unit or the inside air unit. The air conditioner by the compression refrigeration cycle is configured by circulating the refrigerant to the evaporator, the condenser, the expansion valve, and the compressor through the refrigerant pipe,
    It has a part of liquid piping connected to the 1st heat exchanger and the 2nd heat exchanger in the outside air unit, and the 1st heat exchanger and the 2nd heat are connected via the liquid piping. An indirect outside air cooler configured to cool the inside air by causing heat exchange between the fluid and the inside air in the first heat exchanger by circulating an arbitrary fluid through the exchanger is configured. A shy unit.
  7.  室内側に設けられ内気が通過する内気ユニットに対応して設けられる、室外側に設けられ外気が通過する外気ユニットであって、
     第2の熱交換器と、凝縮器と、該第2の熱交換器と凝縮器とに前記外気を通過させるための第2の送風機とを有し、
     前記凝縮器と、前記内気ユニット内の蒸発器と、前記内気ユニット内または当該外気ユニット内に設けられる膨張弁と、前記内気ユニット内または当該外気ユニット内に設けられる圧縮機とに接続する冷媒配管の一部を有し、該冷媒配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第2の熱交換器と前記内気ユニット内の第1の熱交換器とに接続する液配管の一部を有し、該液配管を介して前記第1の熱交換器、第2の熱交換器に任意の流体を循環させることで、前記第2の熱交換器において該流体と前記外気とで熱交換させて該流体を冷却する間接外気冷房機を構成することを特徴とする外気ユニット。
    An outside air unit that is provided on the indoor side and is provided corresponding to an inside air unit through which the inside air passes, and is provided outside the room and through which the outside air passes.
    A second heat exchanger, a condenser, and a second blower for allowing the outside air to pass through the second heat exchanger and the condenser;
    Refrigerant piping connected to the condenser, an evaporator in the inside air unit, an expansion valve provided in the inside air unit or the outside air unit, and a compressor provided in the inside air unit or the outside air unit. The air conditioner by the compression refrigeration cycle is configured by circulating the refrigerant to the evaporator, the condenser, the expansion valve, and the compressor through the refrigerant pipe,
    It has a part of liquid piping connected to the 2nd heat exchanger and the 1st heat exchanger in the inside air unit, and the 1st heat exchanger and the 2nd heat are connected via the liquid piping. An outside air unit comprising an indirect outside air cooler configured to circulate an arbitrary fluid through an exchanger so that heat is exchanged between the fluid and the outside air in the second heat exchanger to cool the fluid. .
  8.  室外側に設けられ外気が通過する外気ユニットに対応して設けられる、室内側に設けられ内気が通過する内気ユニット内に設けられ、該内気を冷却する為の構成であって、
     前記外気ユニットにおいて前記外気と熱交換された流体と、前記内気とを通過させて、該流体と該内気との間で熱交換させる第1の熱交換器と、
     前記外気ユニットと共に圧縮式冷凍サイクルを構成する蒸発器と、
     第1の送風機とが、
     積層されて一体化して成る積層体。
    A configuration for cooling the inside air provided in an indoor air unit provided on the indoor side through which the inside air passes, provided corresponding to an outside air unit provided outside the room through which the outside air passes,
    A first heat exchanger that allows the fluid exchanged with the outside air in the outside air unit and the inside air to pass through and exchanges heat between the fluid and the inside air;
    An evaporator constituting a compression refrigeration cycle together with the outside air unit;
    The first blower
    A laminate that is laminated and integrated.
  9.  室内側に設けられ内気が通過する内気ユニットに対応して設けられる、室外側に設けられ外気が通過する外気ユニット内に設けられ、前記内気の熱を外気に移動させる為の構成であって、
     前記内気ユニットにおいて前記内気と熱交換された流体と、前記外気とを通過させて、該流体と該外気との間で熱交換させる第2の熱交換器と、
     前記内気ユニットと共に圧縮式冷凍サイクルを構成する凝縮器と、
     第2の送風機とが、
     積層されて一体化して成る積層体。
    It is provided in an outdoor air unit that is provided on the indoor side and is provided corresponding to an indoor air unit through which the internal air passes, and is provided in an outdoor air unit that is provided on the outdoor side and through which the external air passes.
    A second heat exchanger that allows the fluid exchanged with the inside air in the inside air unit and the outside air to pass through and exchanges heat between the fluid and the outside air;
    A condenser constituting a compression refrigeration cycle together with the inside air unit;
    The second blower
    A laminate that is laminated and integrated.
PCT/JP2011/076841 2010-11-30 2011-11-21 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof WO2012073746A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/879,024 US20130213071A1 (en) 2010-11-30 2011-11-21 Integrated air conditioning system, indoor air unit for same, outdoor air unit for same, and stacked member
JP2012546786A JPWO2012073746A1 (en) 2010-11-30 2011-11-21 Integrated air conditioning system, its inside air unit, outside air unit, laminate
CN2011800477814A CN103140718A (en) 2010-11-30 2011-11-21 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267249 2010-11-30
JP2010-267249 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073746A1 true WO2012073746A1 (en) 2012-06-07

Family

ID=46171689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076841 WO2012073746A1 (en) 2010-11-30 2011-11-21 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof

Country Status (4)

Country Link
US (1) US20130213071A1 (en)
JP (1) JPWO2012073746A1 (en)
CN (1) CN103140718A (en)
WO (1) WO2012073746A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148382A (en) * 2014-02-06 2015-08-20 株式会社竹中工務店 Air conditioning system, and combination type air conditioning system
JP2016109340A (en) * 2014-12-04 2016-06-20 富士電機株式会社 Snow ice utilization air conditioning system
JP2016121861A (en) * 2014-12-25 2016-07-07 富士電機株式会社 Snow ice utilization air conditioning system and control device thereof
CN108644863A (en) * 2018-06-28 2018-10-12 中冶京诚工程技术有限公司 Air source heat pump assembled radiation and convection plate heating plant
JP2018185060A (en) * 2017-04-24 2018-11-22 富士電機株式会社 Air conditioning system, outdoor unit therefor and heat exchanger
WO2019082570A1 (en) * 2017-10-26 2019-05-02 株式会社デンソー Vehicular heat management system
CN113382599A (en) * 2021-05-28 2021-09-10 西安交通大学 Natural liquid film evaporation cooling server cabinet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069131A1 (en) * 2012-09-13 2014-03-13 Mitsubishi Electric Corporation Air conditioning system
CN103528150A (en) * 2013-10-17 2014-01-22 江苏香江科技股份有限公司 Energy-saving integrated air conditioner for communication machine room
CN104010477A (en) * 2014-06-13 2014-08-27 浪潮电子信息产业股份有限公司 Data center with hot air channel and cold air channel arranged separately
CN105627502A (en) * 2014-11-28 2016-06-01 南京五洲制冷集团有限公司 Direct-current variable-frequency all-fresh-air air conditioning unit
US10342163B2 (en) 2015-12-02 2019-07-02 Google Llc Cooling a data center
CN105937791B (en) * 2016-05-27 2019-07-19 深圳市英维克科技股份有限公司 A kind of unit external heat dissipation system for computer room
US9510486B1 (en) * 2016-07-13 2016-11-29 Matteo B. Gravina Data center cooling system having electrical power generation
KR20190119104A (en) * 2017-03-23 2019-10-21 리볼버 26 인베스트먼트 코오포레이션 Glycol and Refrigerant Cooled Cooling Air Handling Units for Multilayer Data Centers
CA3072888A1 (en) * 2017-07-14 2019-01-17 Inertech Ip Llc Modular air cooling and distribution systems and methods
WO2021000510A1 (en) * 2019-07-03 2021-01-07 北京秦淮数据有限公司 Cooling system used for data center system, and data center system
CN111818783B (en) * 2020-09-08 2021-03-09 苏州浪潮智能科技有限公司 Server data center system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157536B2 (en) * 1979-08-02 1986-12-08 Daikin Kogyo Co Ltd
JPH02233923A (en) * 1989-03-06 1990-09-17 Mitsui Ginkou:Kk Central direct expansion air conditioning device
JPH10300128A (en) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JP2001099446A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Air conditioning apparatus, and non-humidifying heating body-containing cooling equipment
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2004132575A (en) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp Cooling device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039111A (en) * 1997-02-14 2000-03-21 Denso Corporation Cooling device boiling and condensing refrigerant
US6539736B1 (en) * 1999-08-03 2003-04-01 Mitsubishi Denki Kabushiki Kaisha Method for controlling to cool a communication station
US6374627B1 (en) * 2001-01-09 2002-04-23 Donald J. Schumacher Data center cooling system
JP4648966B2 (en) * 2008-08-19 2011-03-09 日立電線株式会社 Data center
JP5503312B2 (en) * 2010-01-29 2014-05-28 Gac株式会社 Air conditioning system
US20110259573A1 (en) * 2010-04-26 2011-10-27 Gac Corporation Cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157536B2 (en) * 1979-08-02 1986-12-08 Daikin Kogyo Co Ltd
JPH02233923A (en) * 1989-03-06 1990-09-17 Mitsui Ginkou:Kk Central direct expansion air conditioning device
JPH10300128A (en) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JP2001099446A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Air conditioning apparatus, and non-humidifying heating body-containing cooling equipment
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2004132575A (en) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp Cooling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148382A (en) * 2014-02-06 2015-08-20 株式会社竹中工務店 Air conditioning system, and combination type air conditioning system
JP2016109340A (en) * 2014-12-04 2016-06-20 富士電機株式会社 Snow ice utilization air conditioning system
JP2016121861A (en) * 2014-12-25 2016-07-07 富士電機株式会社 Snow ice utilization air conditioning system and control device thereof
JP2018185060A (en) * 2017-04-24 2018-11-22 富士電機株式会社 Air conditioning system, outdoor unit therefor and heat exchanger
WO2019082570A1 (en) * 2017-10-26 2019-05-02 株式会社デンソー Vehicular heat management system
JP2019077398A (en) * 2017-10-26 2019-05-23 株式会社デンソー Vehicular heat management system
US11499757B2 (en) 2017-10-26 2022-11-15 Denso Corporation Vehicular heat management system
CN108644863A (en) * 2018-06-28 2018-10-12 中冶京诚工程技术有限公司 Air source heat pump assembled radiation and convection plate heating plant
CN108644863B (en) * 2018-06-28 2023-12-05 中冶京诚工程技术有限公司 Air source heat pump assembled radiation convection plate heating device
CN113382599A (en) * 2021-05-28 2021-09-10 西安交通大学 Natural liquid film evaporation cooling server cabinet

Also Published As

Publication number Publication date
CN103140718A (en) 2013-06-05
JPWO2012073746A1 (en) 2014-05-19
US20130213071A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2012073746A1 (en) Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof
JP5626365B2 (en) Air-conditioning system using outside air, its inside air unit, outside air unit, laminate
JP5907247B2 (en) Integrated air conditioning system and its control device
WO2012124723A1 (en) Outside air utilization air-conditioning system and air-conditioner thereof
KR20180108762A (en) System and method for controlling refrigeration system
WO2011067905A1 (en) Outdoor unit for air conditioner
WO2012124712A1 (en) Air-conditioning system using outside air
US20130092355A1 (en) Heat Exchanger With Subcooling Circuit
WO2019031450A1 (en) Outdoor unit for refrigeration device
US10578345B2 (en) Heat transfer and hydronic systems
WO2013175890A1 (en) Air-conditioning system, integrated air-conditioning system, and control device
CN103968593A (en) Air conditioner with self-cooling circulating system
WO2014175109A1 (en) Air conditioner
JP6310077B2 (en) Heat source system
JP6991343B2 (en) Free cooling unit
JP2014163530A (en) Air conditioning apparatus
JP6292469B2 (en) Air conditioner outdoor unit
JP2015152241A (en) Outdoor unit of air conditioner
WO2023187931A1 (en) Heat exchange device and cooling device
JP2011112242A (en) Air conditioner
KR102174514B1 (en) Air conditioning system
WO2022158574A1 (en) Heat exchanger
WO2015008416A1 (en) Server room cooling system
WO2020035945A1 (en) Free cooling unit
JP3203017U (en) air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047781.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546786

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845023

Country of ref document: EP

Kind code of ref document: A1