JPS6157536B2 - - Google Patents

Info

Publication number
JPS6157536B2
JPS6157536B2 JP54098925A JP9892579A JPS6157536B2 JP S6157536 B2 JPS6157536 B2 JP S6157536B2 JP 54098925 A JP54098925 A JP 54098925A JP 9892579 A JP9892579 A JP 9892579A JP S6157536 B2 JPS6157536 B2 JP S6157536B2
Authority
JP
Japan
Prior art keywords
evaporator
moisture
air
evaporation
moisture absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54098925A
Other languages
Japanese (ja)
Other versions
JPS5623647A (en
Inventor
Yoichi Myashita
Kunihiro Shoji
Masaatsu Aihara
Tatsuo Kita
Naoaki Nishimura
Toshihiro Horii
Nobuo Tanaka
Keiko Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP9892579A priority Critical patent/JPS5623647A/en
Publication of JPS5623647A publication Critical patent/JPS5623647A/en
Publication of JPS6157536B2 publication Critical patent/JPS6157536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Central Air Conditioning (AREA)

Description

【発明の詳細な説明】 本発明は空気調和機に関する。[Detailed description of the invention] The present invention relates to an air conditioner.

一般に空気調和機は、冷房運転を行なう時圧縮
機を運転して蒸発器の表面温度を室内空気の露点
温度より低い温度迄低下させるように成すことに
より、顕熱及び潜熱処理を行ない空気の温度降下
と除湿とをともに行なうようにしている。
Generally, when an air conditioner performs cooling operation, the compressor is operated to lower the surface temperature of the evaporator to a temperature lower than the dew point temperature of the indoor air, thereby processing sensible heat and latent heat, thereby increasing the temperature of the air. Both descent and dehumidification are performed.

そのため冷凍サイクルの低圧側の圧力が低くな
り、高低圧の差圧が大きくなつて、エネルギー効
率(EER)を一定限度以上には向上できない問
題があつた。
As a result, the pressure on the low-pressure side of the refrigeration cycle becomes low, and the differential pressure between high and low pressures becomes large, creating a problem in which energy efficiency (EER) cannot be improved beyond a certain limit.

本考案は以上の問題を解決すべく発明したもの
で、蒸発器における潜熱負荷を減少させ或いは零
とし、蒸発器における顕熱比を増大させるように
成し、これによつて空気調和機の冷媒蒸発温度を
上げることを可能として、圧縮機の吸入圧力を大
とし、かつ高低圧力差を小となし、またエネルギ
ー効率を向上させる一方、除湿は吸湿溶液の吸収
作用によつて空気冷却とは別途行なうように成し
たのである。そしてこの空気中の水分の吸収作用
は、空気は通すが液体を通さない機能を有する撥
水性をもつた多孔シートを用いて吸湿溶液の密閉
循環路を形成し、冷房すべき室における空気中の
水分を前記多孔シートを介して溶液中に吸収さ
せ、斯く吸湿した溶液中の水分を蒸発させ、蒸発
した水蒸気を前記多孔シートを介して外気へ放出
し再生した後、再び冷房すべき室迄戻すごとく循
環させるサイクルを行なわせ、かつ室内空気中の
水分が吸湿溶液に吸収される時放出する吸収熱を
前記蒸発器の一部により冷却して除湿能力の増大
を計るごとくして、吸湿溶液を補充することなく
冷房を行なわせるように成したのである。
The present invention was invented to solve the above problems, and is designed to reduce or eliminate the latent heat load in the evaporator and increase the sensible heat ratio in the evaporator, thereby reducing the amount of refrigerant used in air conditioners. It is possible to raise the evaporation temperature, increase the suction pressure of the compressor, and reduce the difference between high and low pressures, and improve energy efficiency, while dehumidification is performed separately from air cooling due to the absorption action of the hygroscopic solution. It was done as it should be done. This action of absorbing moisture in the air can be achieved by forming a closed circulation path for the moisture-absorbing solution using a water-repellent porous sheet that allows air to pass through but not liquid. Moisture is absorbed into the solution through the porous sheet, the moisture in the solution thus absorbed is evaporated, the evaporated water vapor is released to the outside air through the porous sheet for regeneration, and then returned to the room to be cooled. The hygroscopic solution is circulated as if the moisture in the indoor air is absorbed by the hygroscopic solution, and the absorption heat released when the moisture in the indoor air is absorbed by the hygroscopic solution is cooled by a part of the evaporator to increase the dehumidification capacity. This made it possible to cool the air conditioner without having to replenish it.

即ち本発明は、圧縮機、凝縮器、膨張機構、蒸
発器を備え、前記蒸発器での冷媒の蒸発作用によ
り冷房を行なうごとく構成すると共に、撥水性を
有する多孔シートを用い、空気は通すが液体を通
さない密閉室をもつた吸湿エレメントと蒸発エレ
メントとを形成して、これら各エレメントを、第
1及び第2連絡管により連絡し、吸湿溶液の密閉
循環路を形成して、前記吸湿エレメントの吸湿溶
液により、前記吸湿エレメントを通る空気中の水
分を吸収除去し、前記蒸発エレメントにおいて吸
収した水分を蒸発して放出するごとく構成する一
方、前記吸湿エレメントを、前記蒸発器を通る空
気流路中に配置すると共に、前記蒸発エレメント
を、前記凝縮器の風下側に配置して凝縮排熱によ
り前記蒸発エレメントを流れる吸湿溶液を加熱す
るごとく成し、また、前記蒸発エレメントの密閉
室入口側に接続する第1連絡管の入口部を、前記
凝縮器に配管すると共に、前記吸湿エレメントの
密閉室入口側に接続する第2連絡管の入口部を、
前記蒸発器に配管したことを特徴とするものであ
る。
That is, the present invention includes a compressor, a condenser, an expansion mechanism, and an evaporator, and is configured to perform cooling by the evaporation action of refrigerant in the evaporator, and uses a water-repellent porous sheet to allow air to pass through. A moisture absorption element and an evaporation element having a sealed chamber that does not allow liquid to pass through are formed, and these elements are connected by first and second communication pipes to form a closed circulation path for the moisture absorption solution, and the moisture absorption element is A hygroscopic solution is configured to absorb and remove moisture in the air passing through the hygroscopic element, and evaporate and release the absorbed moisture in the evaporative element, while the hygroscopic element is connected to an air flow path passing through the evaporator. At the same time, the evaporation element is arranged on the leeward side of the condenser so that the hygroscopic solution flowing through the evaporation element is heated by condensation waste heat, and the evaporation element is arranged on the inlet side of the closed chamber of the evaporation element. The inlet part of the first connecting pipe to be connected is connected to the condenser, and the inlet part of the second connecting pipe to be connected to the closed chamber inlet side of the moisture absorbing element is connected to the condenser.
The device is characterized in that it is connected to the evaporator.

以下本発明空気調和機の実施例を図面に基づい
て説明する。
Embodiments of the air conditioner of the present invention will be described below based on the drawings.

本発明空気調和機の基本構造は、第1図乃至第
7図に示すごとく、圧縮機1、凝縮器2、膨張機
構3、蒸発器4を備え、前記蒸発器4での冷媒の
蒸発作用により冷房を行なうごとく構成すると共
に、撥水性を有する多孔シート5を用い、空気は
通すが液体を通さない密閉室6をもつた吸湿エレ
メント7と蒸発エレメント8とを形成して、これ
ら各エレメント7,8を第1及び第2連絡管9,
10により連絡し、吸湿溶液の密閉循環路11を
形成して、前記吸湿エレメント7の吸湿溶液によ
り、前記吸湿エレメント7を通る空気を除湿し、
前記蒸発エレメントにおいて吸湿溶液中の水分を
蒸発して放出し溶液を再生するごとく構成する一
方、前記吸湿エレメント7を、前記蒸発器4を通
過する空気の流路中に配置して構成するのであ
る。
The basic structure of the air conditioner of the present invention, as shown in FIGS. 1 to 7, includes a compressor 1, a condenser 2, an expansion mechanism 3, and an evaporator 4. A moisture absorption element 7 and an evaporation element 8 are configured to perform air conditioning, and have a water-repellent porous sheet 5 and a sealed chamber 6 that allows air to pass through but not liquid. 8 to the first and second connecting pipes 9,
10 to form a closed circulation path 11 for the moisture absorbing solution so that the air passing through the moisture absorbing element 7 is dehumidified by the moisture absorbing solution in the moisture absorbing element 7;
The evaporation element is configured to evaporate and release the moisture in the hygroscopic solution to regenerate the solution, while the hygroscopic element 7 is arranged in the flow path of the air passing through the evaporator 4. .

しかして斯る吸湿溶液の循環サイクルによる除
湿作用により、前記蒸発器4は、潜熱負荷を減少
させ或いは零とし、該蒸発器4における顕熱比を
増大させるようにして、空気の温度降下のみ行な
わせるようにするのである。
Accordingly, due to the dehumidification effect due to the circulation cycle of the hygroscopic solution, the evaporator 4 reduces or eliminates the latent heat load, increases the sensible heat ratio in the evaporator 4, and only lowers the temperature of the air. The goal is to make it possible to do so.

又除湿を行なわせるために用いる前記吸湿溶液
は、例えば塩化リチウム等の潮解性物質を溶解し
た水溶液のごとく水分の吸収性が良好な溶液を用
いるのであり、又前記溶液は通さず空気は通す前
記多孔シート5は、両面貫通状の微小な孔を多数
揃えた撥水性を有するもので、セロハンなどの半
透膜、合繊、木綿、不織布などの布、和紙などの
紙、網あるいは粉末治金金属、発泡金属、ワイヤ
合成体など多孔加工した金属板を、シリコン、弗
素樹脂などの撥水性材料により撥水加工したり、
ゴアフロンなどの撥水性を有する樹脂に多孔加工
を施こすごとくしたものである。
The moisture-absorbing solution used for dehumidification is a solution with good water absorption properties, such as an aqueous solution containing a deliquescent substance such as lithium chloride, and the solution is one that does not allow the solution to pass through, but allows air to pass through. The porous sheet 5 has water repellency and has a large number of minute holes that penetrate both sides, and is made of semipermeable membranes such as cellophane, cloth such as synthetic fibers, cotton, and nonwoven fabrics, paper such as Japanese paper, net, or powder metallurgy. , porous metal plates such as foamed metals and wire composites are treated with water-repellent materials such as silicone and fluororesin,
It is made by applying porous processing to a water-repellent resin such as Goreflon.

そして前記シート5を用いて形成する前記密閉
室6は、後記するごとく薄肉状と成したり、細径
の管状と成して、該密閉室6に充填する吸湿溶液
と周辺空気とのシート5を介しての接触面積を十
分大きくすべく成すのである。
The sealed chamber 6 formed using the sheet 5 may be formed into a thin-walled shape or a narrow-diameter tubular shape as described later, and the sheet 5 may be formed using a hygroscopic solution filled in the sealed chamber 6 and the surrounding air. This is done in order to make the contact area through the contact area sufficiently large.

即ち前記密閉室6を備えた前記吸湿エレメント
7及び蒸発エレメント8は、吸湿溶液と周辺空気
との接触面積を増大したものが好ましく、例えば
第2,3図のごとく2枚の多孔シート5,5を相
対向させて重合し、予じめこの周囲を接着剤によ
り密閉状に接着して第2,3図のごとく薄肉状と
した長尺の前記密閉室6を形成し、斯く形成する
密閉室6を2個1対として、この内1枚は在来の
段ボール成形機などにより断面波形に形成して前
記平板状のものと重ね合わせ段ボール状に形成す
るのである。
That is, the moisture absorbing element 7 and the evaporating element 8 provided with the sealed chamber 6 are preferably those having an increased contact area between the moisture absorbing solution and the surrounding air, for example, two porous sheets 5, 5 as shown in FIGS. 2 and 3. are polymerized by facing each other, and the periphery thereof is sealed in advance with an adhesive to form the elongated sealed chamber 6 having a thin wall as shown in FIGS. 2 and 3. 6 are made into a pair, one of the sheets is formed into a corrugated cross section using a conventional corrugated board forming machine, and is overlapped with the flat sheet to form a corrugated board shape.

そしてこの段ボール状のものを巻回して第5図
のごとき多数の隙間をもつた円柱状に形成し、矢
印のごとく吸湿溶液の連絡管9,10を接続して
前記密閉室6に吸湿溶液を流通させると共に前記
隙間に空気を流通させて吸湿及び蒸発を行なわせ
るごとくするのである。又前記した平板状のもの
と波形状のものを重ね合わせた段ボール状のもの
を第6図のごとく多数重ね合わせて上下両端部を
それぞれヘツダー12,12に接続して該ヘツダ
ー12,12に吸湿溶液の連絡管9,10を接続
するようにしてもよい。又前記した段ボール状と
する代りに第4図のごとく、1枚の多孔シート5
をひれ付状に凹凸加工して平面状の多孔シート5
と相対向させ重合するごとく成して周囲を密閉
し、第5,6図のごとく巻回加工したり、多数重
合加工するごとく形成してもよい。
Then, this cardboard-like material is rolled up to form a cylindrical shape with a large number of gaps as shown in FIG. At the same time, air is allowed to flow through the gap to absorb and evaporate moisture. Also, as shown in Figure 6, a large number of cardboard-like boards made by overlapping the above-mentioned flat board-like board and corrugated board-like board are stacked one on top of the other, and both upper and lower ends are connected to the headers 12, 12, respectively, and the headers 12, 12 absorb moisture. Solution communication pipes 9 and 10 may be connected. Also, instead of using the above-mentioned cardboard shape, a single porous sheet 5 is used as shown in FIG.
A planar porous sheet 5 is made by processing the material into a fin-like pattern.
They may be formed by facing each other and polymerized, the surroundings of which are sealed, and then wound as shown in FIGS. 5 and 6, or formed by multiple polymerization.

又第7図のごとく多孔シート5により細長の筒
体を形成して、これら多数の筒体を並設して上下
両端部とそれぞれヘツダー12,12に接続する
ようにしてもよい。
Alternatively, as shown in FIG. 7, an elongated cylindrical body may be formed from the perforated sheet 5, and a large number of these cylindrical bodies may be arranged in parallel and connected at both upper and lower ends to the headers 12, 12, respectively.

以上のごとく形成した吸湿エレメント7及び蒸
発エレメント8の各密閉室6を通る前記密閉循環
路11に吸湿溶液を充填して循環させる時、先ず
吸湿エレメント7が空気中から水分を吸収できる
条件は、吸湿すべき空気側の入口空気の水蒸気分
圧h1(mmHg)(以下単位略す)が吸湿溶液の水蒸
気分圧をh2より大なる時であり、又蒸発エレメン
ト8が空気中に水分を蒸発作用できる条件は、蒸
発させるべき空気側の入口空気の水蒸気分圧h2
吸湿溶液の水蒸気分圧h4より小なる時であり、前
記条件を勘案して吸湿溶液は一定の温度、相対湿
度のもとに一定濃度の水溶液にするのである。
When filling and circulating a hygroscopic solution into the sealed circulation path 11 passing through each of the sealed chambers 6 of the hygroscopic element 7 and evaporation element 8 formed as described above, the conditions under which the hygroscopic element 7 can absorb moisture from the air are as follows: This is when the water vapor partial pressure h 1 (mmHg) (unit omitted below) of the inlet air on the air side to absorb moisture is greater than the water vapor partial pressure of the moisture absorption solution h 2 , and the evaporation element 8 evaporates moisture into the air. The conditions that can be used are when the water vapor partial pressure h2 of the inlet air on the air side to be evaporated is smaller than the water vapor partial pressure h4 of the hygroscopic solution, and considering the above conditions, the hygroscopic solution is kept at a constant temperature and relative humidity. It is made into an aqueous solution of a certain concentration under the following conditions.

即ち前記吸湿溶液は、更に詳記するごとく前記
密閉循環路11を循環させる時、吸湿エレメント
7の入口部で低温とし前記条件h1>h2を満たす状
態にして吸湿エレメント7により吸収作用を行な
わせた後、蒸発エレメント8の入口部で高温とし
前記条件h3<h4を満たす状態にして蒸発エレメン
ト8により吸湿溶液中の水分を蒸発させ、溶液を
再生し、かつ吸湿エレメント7で空気中の水分を
吸収する時発生する吸収熱を前記蒸発器4で冷却
させることにより前記各条件の大小の差を十分に
大きくなるようにして、吸収と再生とのサイクル
の繰返しにより吸湿溶液の補充を行なうことなく
確実に除湿を行なえ、蒸発器4の潜熱負荷を減少
させられるのである。
That is, as will be described in more detail, when the hygroscopic solution is circulated through the closed circulation path 11, it is brought to a low temperature at the inlet of the hygroscopic element 7 and satisfies the condition h 1 > h 2 so that the hygroscopic element 7 performs an absorption action. After that, the temperature is set at the inlet of the evaporation element 8 to satisfy the condition h 3 < h 4 , and the moisture in the hygroscopic solution is evaporated by the evaporation element 8 to regenerate the solution. By cooling the heat of absorption generated when absorbing moisture in the evaporator 4, the difference in size between the above conditions is made sufficiently large, and the cycle of absorption and regeneration is repeated to replenish the moisture absorbing solution. Therefore, dehumidification can be reliably carried out without the need for dehumidification, and the latent heat load on the evaporator 4 can be reduced.

しかして第1図に示したものは、1つのハウジ
ング13に仕切板14を設けて、室内に開口する
室内側室15と、室外に開口する室外側室16と
を形成し、前記室内側室15に、その開口内側か
ら内方に前記吸湿エレメント7、蒸発温度を約18
℃とした蒸発器4、開口方向に吹出す室内フアン
17を順に配置し、また前記室外側室16に、そ
の開口内側から内方に前記蒸発エレメント8、凝
縮温度を約48℃とした凝縮器2、開口方向に吹出
す室外フアン18を順に配置すると共に、前記吸
湿エレメント7の上部に前記第1連絡管9の一端
を接続し、他端の入口部を凝縮器2の上部を介し
て蒸発エレメント8の上部に接続し、又前記蒸発
エレメント8の下部に前記第2連絡管10の一端
を接続し、他端の入口部を蒸発器4の下部を介し
て吸湿エレメント7の下部に接続したのである。
However, in the case shown in FIG. 1, a partition plate 14 is provided in one housing 13 to form an indoor chamber 15 that opens indoors and an outdoor chamber 16 that opens outdoors. , the moisture absorbing element 7 inward from the inside of its opening, and the evaporation temperature is about 18
An evaporator 4 at a temperature of about 48° C. and an indoor fan 17 blowing air in the direction of the opening are arranged in this order, and in the outdoor chamber 16, the evaporating element 8 is arranged inward from the inside of the opening, and a condenser with a condensing temperature of about 48° C. 2. Arrange outdoor fans 18 blowing air in the opening direction, connect one end of the first communication pipe 9 to the upper part of the moisture absorbing element 7, and connect the inlet of the other end to the upper part of the condenser 2 for evaporation. One end of the second communication pipe 10 was connected to the upper part of the element 8, and one end of the second communication pipe 10 was connected to the lower part of the evaporator element 8, and the inlet section of the other end was connected to the lower part of the moisture absorption element 7 via the lower part of the evaporator 4. It is.

尚、19は吸湿溶液の循環ポンプ、20は前記
室内、室外フアン17,18用モータ、21,2
2は室内側室15、室外側室16の各開口に設け
たグリル、23は室内、室外を隔てる壁である。
In addition, 19 is a circulation pump for the hygroscopic solution, 20 is a motor for the indoor and outdoor fans 17 and 18, and 21, 2
2 is a grill provided at each opening of the indoor chamber 15 and the outdoor chamber 16, and 23 is a wall separating the indoor and outdoor areas.

しかして第1図の構成において、例えば室内側
の空気温度25℃、相対温度50%、水蒸気分圧h1
13.3、又室外側の空気温度30℃、相対湿度66%、
水蒸気分圧h3が21.1の状態で、前記圧縮機1、ポ
ンプ19、モータ20を作動させて冷房運転を行
なうには、以下のごとく両エレメント7,8にお
いて温度変化のない定温式のサイクルにより除湿
を行なえるのである。即ち循環する吸湿溶液が前
記蒸発器4の下部を流通し冷却されて、第8図
のごとく水蒸気分圧h2が室内側の入口空気の水蒸
気分圧h1より充分低い状態、例えば温度25℃、濃
度37%の状態として、吸湿エレメント7に流入さ
せる。斯くすると吸湿エレメント7を流通する時
シート5を介して入口空気中の水分を吸収でき、
この吸収時発生する吸収熱は、蒸発温度を例えば
18℃とした蒸発器4から送風される低温空気によ
り逐次冷却され、温度一定のまま濃度が低下して
行き、吸湿エレメント7から流出する時第8図
のごとく温度25℃、濃度27%となる。
In the configuration shown in Figure 1, for example, the indoor air temperature is 25°C, the relative temperature is 50%, and the water vapor partial pressure h1 is
13.3, outdoor air temperature 30℃, relative humidity 66%,
In order to operate the compressor 1, pump 19, and motor 20 to perform cooling operation when the water vapor partial pressure h3 is 21.1, a constant temperature cycle with no temperature change is performed in both elements 7 and 8 as described below. It can dehumidify. That is, the circulating hygroscopic solution flows through the lower part of the evaporator 4 and is cooled, so that the water vapor partial pressure h2 is sufficiently lower than the water vapor partial pressure h1 of the inlet air on the indoor side, as shown in FIG. 8, for example, at a temperature of 25°C. , the water is allowed to flow into the moisture absorbing element 7 at a concentration of 37%. In this way, moisture in the inlet air can be absorbed through the sheet 5 when flowing through the moisture absorbing element 7,
The heat of absorption generated during this absorption increases the evaporation temperature, for example
It is successively cooled by the low-temperature air blown from the evaporator 4 at 18°C, and the concentration decreases while keeping the temperature constant. When it flows out from the moisture absorption element 7, the temperature is 25°C and the concentration is 27%, as shown in Figure 8. .

そして前記吸湿エレメント7から流出した溶液
は、前記凝縮器2の上部を流通して加熱され、濃
度一定のまゝ温度のみ45℃迄昇温されて水蒸気分
圧h4が室外側の空気の水蒸気分圧h3より充分高い
第8図の状態となる。従つて蒸発エレメント8
内で蒸発ガス化してシート5を介して空気中に水
分を放出でき、該放出時例えば、凝縮温度を48℃
とした凝縮器2から送風される高温空気により保
温されて温度一定のまゝ濃度が増大して行き、蒸
発エレメント8から流出する時第8図のごとく
温度45℃、濃度37%となる。
The solution flowing out from the moisture absorbing element 7 is heated by flowing through the upper part of the condenser 2, and the temperature is raised to 45°C while the concentration remains constant, so that the water vapor partial pressure h 4 becomes the water vapor in the air outside the room. The state shown in FIG. 8 is reached, which is sufficiently higher than the partial pressure h3 . Therefore, the evaporation element 8
Moisture can be released into the air through the sheet 5 by being evaporated and gasified within the chamber, and at the time of release, the condensation temperature is set to 48°C, for example.
It is kept warm by the high-temperature air blown from the condenser 2, and the concentration increases while the temperature remains constant, and when it flows out from the evaporation element 8, the temperature is 45°C and the concentration is 37%, as shown in FIG.

そして蒸発エレメント8から流出した溶液は、
蒸発器4下部を流通して冷却された第8図の状
態となつて吸湿エレメント7に戻るのであり、こ
の定温式サイクルの繰り返しにより室内空気から
除湿を行なえ、蒸発器4における潜熱負荷を減少
させられるのである。
The solution flowing out from the evaporation element 8 is
It flows through the lower part of the evaporator 4 and returns to the cooled state shown in FIG. It will be done.

以上のごとく定温式サイクルにより除湿を行な
えるので、前記除湿条件h1>h2、h4>h3の各大小
の値の差をいずれも十分に大きくでき除湿能力を
大きくできるのである。
As described above, since dehumidification can be performed by a constant temperature cycle, the difference between the values of the dehumidifying conditions h 1 > h 2 and h 4 > h 3 can be made sufficiently large, and the dehumidifying capacity can be increased.

又以上説明したものは蒸発器4の風下側に吸湿
エレメント7を配置し、空気中の水分吸収時発生
する吸収熱に対応させるべく吸湿エレメント7に
対する蒸発器4の冷却作用を大きくした定温式サ
イクルの場合であるが、第9図のごとく蒸発器4
の風上側に吸湿エレメント7を配置し、吸湿エレ
メント7に対する蒸発器4の冷却作用が小さくな
る場合には、室内空気中の水分吸収時発生する吸
収熱により吸湿溶液が昇温する第10図の昇温式
サイクルとして除湿を行なうことができる。
Furthermore, the above-described cycle is a constant temperature cycle in which the moisture absorption element 7 is arranged on the leeward side of the evaporator 4, and the cooling effect of the evaporator 4 on the moisture absorption element 7 is increased in order to cope with the absorption heat generated when moisture is absorbed in the air. In this case, as shown in Fig. 9, the evaporator 4
If the hygroscopic element 7 is arranged on the windward side of the hygroscopic element 7 and the cooling effect of the evaporator 4 on the hygroscopic element 7 becomes small, the temperature of the hygroscopic solution increases due to the absorption heat generated when moisture is absorbed from the indoor air. Dehumidification can be performed as a heating cycle.

即ち、第10図に示した昇温式のものでは、吸
湿溶液が前記蒸発器4の下部を流通し、冷却され
て前記空気中の水分を吸湿溶液に吸収できるため
の条件h1>h2を満たすべく、例えば温度25℃、濃
度35.9%の状態の吸湿溶液を吸湿エレメント7に
流入させる。この場合吸湿エレメント7において
シート5を介して空気中の水分を吸収できる。そ
してこの吸収時吸湿溶液は蒸発器4の冷却作用が
殆んどないため吸収熱により昇温されて第10図
のごとく温度35℃、濃度34.5%となる。
That is, in the temperature increasing type shown in FIG. 10, the condition h 1 > h 2 is that the hygroscopic solution can flow through the lower part of the evaporator 4, be cooled, and absorb moisture in the air into the hygroscopic solution . In order to meet the requirements, a hygroscopic solution having a temperature of 25° C. and a concentration of 35.9% is flowed into the hygroscopic element 7, for example. In this case, the moisture absorption element 7 can absorb moisture in the air via the sheet 5. During absorption, this hygroscopic solution has almost no cooling effect from the evaporator 4, so its temperature increases due to the heat of absorption, resulting in a temperature of 35° C. and a concentration of 34.5%, as shown in FIG.

そして前記吸湿エレメント7から流出した溶液
は、前記凝縮器2の上部を流通して加熱され、濃
度一定のまゝ温度のみ45℃迄昇温されて前記蒸発
条件h4>h3を満たす第10図の状態となる。従
つて蒸発エレメント9内で蒸発ガス化してシート
5を介して空気中に水分を放出でき、該放出時吸
湿溶液は凝縮温度を例えば48℃とした凝縮器8か
ら送風される高温空気により保温されて温度一定
のまゝ濃度が増大して行き、蒸発エレメント8か
ら流出するときは第10図のごとく温度45℃、
濃度35.9%となる。そして蒸発エレメント8から
流出した溶液は、蒸発器4により冷却され第10
図の状態となつて吸湿エレメント7に戻るので
あり、この昇温式サイクルの繰り返しにより室内
空気から除湿を行なえ、蒸発器4における潜熱負
荷を減少するのである。
Then, the solution flowing out from the moisture absorbing element 7 is heated by flowing through the upper part of the condenser 2, and only the temperature is raised to 45 ° C. while the concentration remains constant . It will be in the state shown in the figure. Therefore, the moisture can be evaporated and gasified in the evaporation element 9 and released into the air through the sheet 5. At the time of release, the moisture-absorbing solution is kept warm by high-temperature air blown from the condenser 8 with a condensation temperature of, for example, 48°C. The concentration increases while the temperature remains constant, and when it flows out from the evaporation element 8, the temperature is 45°C, as shown in Figure 10.
The concentration is 35.9%. The solution flowing out from the evaporation element 8 is cooled by the evaporator 4 and
It returns to the moisture absorbing element 7 in the state shown in the figure, and by repeating this heating cycle, indoor air can be dehumidified and the latent heat load on the evaporator 4 can be reduced.

因みに、以上説明した第8,10図の定温式及
び昇温式のものにより、例えば潜熱、顕熱負荷
(Kml/h)が418、1822、冷房負荷2240(Kml/
h)、除湿量720(c.c./h)の条件を満たす冷房を
行うには、定温式及び昇温式のものはそれぞれ除
湿溶液の1Kg当りの除湿量が270c.c.及び40c.c.とな
るので吸湿溶液の1時間当りの循環量は720/270
=2.7 Kg及び720/40=18Kgとなり、凝縮器2による再熱
量 (Kml/h)は(45℃−25℃)×0.7(比熱)×2.7
(循環量)=37.8及び(45℃−35℃)×0.7×18=
126となり、又溶液冷却熱量は(45℃−25℃)×
0.7(比熱)×2.7(循環量)=37.8及び(45℃−25
℃)×0.7×18=252、空気中の水分吸収時の吸収
熱(Kml/h)は580×0.72=418及び580×0.72
×0.7=293、全必要クーラー負荷(Kml/h)は
1822(顕熱負荷)+418(吸収熱)+37.8(溶液冷
却熱量)=2277.8及び1822(顕熱負荷)+293(吸
収熱)+252(溶液冷却熱量)=2367となるのであ
り、エネルギー効率(EER)を求めると、蒸発
温度を18℃迄高くした場合3.01及び2.89、又蒸発
温度を15℃迄高くした場合2.70及び2.59となり、
現行の蒸発温度10℃でエネルギー効率2.50のもの
にくらべてエネルギー効率を十分に向上できるの
である。
Incidentally, with the constant temperature type and temperature increasing type shown in Figures 8 and 10 explained above, for example, the latent heat and sensible heat loads (Kml/h) are 418 and 1822, and the cooling load is 2240 (Kml/h).
h) In order to perform cooling that satisfies the condition of dehumidification amount of 720 (cc/h), the dehumidification amount per 1 kg of dehumidifying solution is 270 c.c. and 40 c.c. for fixed temperature type and temperature rising type, respectively. Therefore, the circulation amount of the hygroscopic solution per hour is 720/270
= 2.7 Kg and 720/40 = 18 Kg, and the amount of reheat by condenser 2 (Kml/h) is (45℃ - 25℃) x 0.7 (specific heat) x 2.7
(Circulation amount) = 37.8 and (45℃ - 35℃) x 0.7 x 18 =
126, and the solution cooling heat amount is (45℃−25℃) ×
0.7 (specific heat) x 2.7 (circulation amount) = 37.8 and (45℃−25
°C) × 0.7 × 18 = 252, the heat of absorption (Kml/h) when absorbing moisture in the air is 580 × 0.72 = 418 and 580 × 0.72
×0.7=293, total required cooler load (Kml/h) is
The energy efficiency (EER ) are 3.01 and 2.89 when the evaporation temperature is increased to 18℃, and 2.70 and 2.59 when the evaporation temperature is increased to 15℃,
Compared to the current evaporation temperature of 10°C and energy efficiency of 2.50, the energy efficiency can be sufficiently improved.

尚、以上の説明では吸湿溶液はポンプ19によ
り強制循環させるようにしたが、吸湿エレメント
7の密閉室6を蒸発エレメント8の密閉室6に対
し第11図のごとく上下方向下位に配置するごと
くして、ポンプ19を用いることなく吸湿溶液の
濃度変化による比重差により前記吸湿溶液を自然
循環させることができる。
In the above explanation, the hygroscopic solution is forcibly circulated by the pump 19, but the sealed chamber 6 of the hygroscopic element 7 is placed below the sealed chamber 6 of the evaporation element 8 in the vertical direction as shown in FIG. Therefore, the hygroscopic solution can be naturally circulated without using the pump 19 due to the difference in specific gravity due to changes in the concentration of the hygroscopic solution.

ポンプ19を用いなくとも、吸湿エレメント7
においては吸湿作用により濃度が低下し、比重が
小さくなつて上方へ自然循環力が発生し、入口部
も比重が低下して行く。又蒸発エレメント8にお
いては水分の放出作用により濃度が増大し、比重
が大きくなつて下方への自然循環力が発生し出口
部程比重が増大して行く。しかも該出口部の比重
増大側の方が吸湿エレメント7入口部の比重減少
側よりも高位にあるため、蒸発エレメント8から
吸湿エレメント7に比重差による自然循環力が発
生し、結局吸湿溶液は密閉循環路11を第11図
で反時計方向に自然循環することとなる。
Even without using the pump 19, the moisture absorption element 7
The concentration decreases due to moisture absorption, the specific gravity decreases, a natural circulation force is generated upward, and the specific gravity also decreases at the inlet. Further, in the evaporation element 8, the concentration increases due to the action of releasing water, and the specific gravity increases, causing a downward natural circulation force and increasing the specific gravity toward the outlet. Moreover, since the increasing specific gravity side of the outlet is located higher than the decreasing specific gravity side of the inlet of the moisture absorbing element 7, a natural circulation force is generated from the evaporating element 8 to the moisture absorbing element 7 due to the difference in specific gravity, and the moisture absorbing solution is sealed tightly. Natural circulation occurs in the circulation path 11 in a counterclockwise direction as shown in FIG.

そして、前記自然循環を行なわせる時前記連絡
管9,10を両エレメント7,8の出口側から
ほゞ水平に導出して、前記凝縮器2及び蒸発器4
内を導出させた後、上下方向に向きを変えて両エ
レメント7,8の入口側に接続すべく成すことに
より、前記凝縮器2と蒸発エレメント8入口側と
の間においても、凝縮器2での加熱による比重低
下により蒸発エレメント8出口側への上昇を容易
に行なわせるごとくできると共に、前記蒸発器4
での冷却による比重増大により、吸湿エレメント
7入口側への下降を一層容易に行なわせることが
でき、自然循環力を全体に増大できるのである。
When performing the natural circulation, the communication pipes 9 and 10 are led out almost horizontally from the outlet sides of both the elements 7 and 8, and the condenser 2 and the evaporator 4 are connected to each other.
After the inside is led out, the direction is changed in the vertical direction and connected to the inlet side of both elements 7 and 8, so that even between the condenser 2 and the inlet side of the evaporation element 8, As the specific gravity of the evaporator 4 decreases due to heating, the evaporator element 8 can easily rise toward the outlet side.
By increasing the specific gravity due to cooling, the moisture absorbing element 7 can be lowered to the inlet side more easily, and the natural circulation force can be increased as a whole.

又、以上の説明では、前記両エレメント7,8
と蒸発器4、凝縮器2と室内外フアン17,18
とはともに1つのハウジング13に収納するごと
くしたが、第12図のごとく室内に設置する室内
ハウジング24と室外に設置する室外ハウジング
25とを設けて、前記室内ハウジング24に蒸発
器4と吸湿エレメント7及び室内フアン17を、
また前記室外ハウジング25に凝縮器2と蒸発エ
レメント8及び室外フアン18をそれぞれ配置す
るごとく構成してもよい。尚、図示していないが
前記室内ハウジング24を室外ハウジング25に
対し下位に設置することにより、吸湿溶液を自然
循環させることができるのである。
Furthermore, in the above explanation, both the elements 7 and 8
and evaporator 4, condenser 2 and indoor/outdoor fans 17, 18
However, as shown in FIG. 12, an indoor housing 24 installed indoors and an outdoor housing 25 installed outdoors are provided, and the evaporator 4 and moisture absorption element are housed in the indoor housing 24. 7 and indoor fan 17,
Alternatively, the condenser 2, evaporation element 8, and outdoor fan 18 may be arranged in the outdoor housing 25, respectively. Although not shown, by installing the indoor housing 24 below the outdoor housing 25, the hygroscopic solution can be naturally circulated.

以上のごとく本発明によれば、吸湿エレメント
の入口部における吸湿溶液を、蒸発器により低温
と成すことができ、これにより、前記吸湿エレメ
ントにおける吸湿溶液の水蒸気分圧h2を、吸湿す
べき空気側の水蒸気分圧h1よりも小さくすること
ができ、この水蒸気分圧h2,h1の差分に見合つた
水分を空気側から吸湿溶液側へと良好に吸収でき
るのである。
As described above, according to the present invention, the hygroscopic solution at the inlet of the hygroscopic element can be brought to a low temperature by the evaporator, so that the water vapor partial pressure h 2 of the hygroscopic solution in the hygroscopic element is lowered to the air to be absorbed. The water vapor partial pressure h 1 can be made smaller than the water vapor partial pressure h 1 on the side, and moisture corresponding to the difference between the water vapor partial pressures h 2 and h 1 can be well absorbed from the air side to the hygroscopic solution side.

また、吸湿作用を行わせた後の蒸発エレメント
の入口部における吸湿溶液を、凝縮器により高温
と成すことができ、これにより、前記蒸発エレメ
ントにおける吸湿溶液の水蒸気分圧h4を、蒸発さ
せるべき空気側の水蒸気分圧h3よりも大きくする
ことができ、この水蒸気分圧h4,h3の差分に見合
つた水分を溶液側から空気側へと良好に蒸発させ
ることができるのである。
In addition, the hygroscopic solution at the inlet of the evaporation element after performing the hygroscopic action can be heated to a high temperature by the condenser, thereby reducing the water vapor partial pressure h 4 of the hygroscopic solution in the evaporation element to be evaporated. The water vapor partial pressure h 3 on the air side can be made larger, and water corresponding to the difference between the water vapor partial pressures h 4 and h 3 can be evaporated from the solution side to the air side.

従つて、蒸発器側の空気の除湿が確実かつ効率
良く行なえるのであり、該蒸発器の潜熱負荷を確
実に低減できるのである。
Therefore, the air on the evaporator side can be dehumidified reliably and efficiently, and the latent heat load on the evaporator can be reliably reduced.

そして、前記蒸発器の潜熱負荷を低減できるこ
とから、該蒸発器の顕熱比を増大でき、蒸発温度
を高くできるのであり、さらに、圧縮機の吸入圧
力を上昇でき、高低圧力差を減少できるのであ
り、結局、前記蒸発器のエネルギー効率を高める
ことができることとなるのである。
Since the latent heat load on the evaporator can be reduced, the sensible heat ratio of the evaporator can be increased and the evaporation temperature can be increased.Furthermore, the suction pressure of the compressor can be increased and the difference between high and low pressures can be reduced. As a result, the energy efficiency of the evaporator can be improved.

その上、前記吸湿及び蒸発エレメントを密閉室
をもつ構造と成すと共に、これら各エレメントを
第1及び第2連絡管により連絡することにより、
吸湿溶液の密閉循環路を形成し、この密閉循環路
により、空気中の水分の吸湿及び蒸発を行うごと
く構成したから、吸湿及び蒸発作用を一層効率良
く行え、省エネルギー化も図れるのである。
Furthermore, by forming the moisture absorption and evaporation element into a structure having a closed chamber, and by connecting each of these elements through the first and second communication pipes,
Since a closed circulation path for the hygroscopic solution is formed, and this closed circulation path is configured to absorb and evaporate moisture in the air, the moisture absorption and evaporation effects can be performed more efficiently, and energy savings can also be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面説明図、第
2図乃至第4図は吸湿、蒸発エレメントの一部拡
大断面図、第5図乃至第7図は吸湿、蒸発エレメ
ントの実施例を示す斜視図、第8図は定温式の除
湿サイクル説明図、第9図は本発明の他の実施例
を示す断面説明図、第10図は昇温式の除湿サイ
クルの説明図、第11図、第12図は本発明の他
の実施例を示す断面説明図である。 1…圧縮機、2…凝縮器、3…膨張機構、4…
蒸発機構、5…多孔シート、6…密閉室、7…吸
湿エレメント、8…蒸発エレメント、9,10…
第1,2連絡管、11…密閉循環路。
Fig. 1 is a cross-sectional explanatory diagram showing an embodiment of the present invention, Figs. 2 to 4 are partially enlarged sectional views of a moisture absorption and evaporation element, and Figs. 5 to 7 show an example of a moisture absorption and evaporation element. FIG. 8 is an explanatory diagram of a constant temperature dehumidification cycle, FIG. 9 is a sectional explanatory diagram showing another embodiment of the present invention, FIG. 10 is an explanatory diagram of a temperature increasing dehumidification cycle, and FIG. 11 , FIG. 12 is a cross-sectional explanatory view showing another embodiment of the present invention. 1... Compressor, 2... Condenser, 3... Expansion mechanism, 4...
Evaporation mechanism, 5... Porous sheet, 6... Sealed chamber, 7... Moisture absorption element, 8... Evaporation element, 9, 10...
1st and 2nd communication pipes, 11... sealed circulation path.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、膨張機構、蒸発器を備え、
前記蒸発器での冷媒の蒸発作用により冷房を行う
ごとく構成すると共に、撥水性を有する多孔シー
トを用い、空気は通すが液体を通さない密閉室を
もつた吸湿エレメントと蒸発エレメントとを形成
して、これら各エレメントを、第1及び第2連絡
管により連絡し、吸湿溶液の密閉循環路を形成し
て、前記吸湿エレメントの吸湿溶液により、前記
吸湿エレメントを通る空気中の水分を吸収除去
し、前記蒸発エレメントにおいて吸収した水分を
蒸発して放出するごとく構成する一方、前記吸湿
エレメントを、前記蒸発器を通る空気流路中に配
置すると共に、前記蒸発エレメントを、前記凝縮
器の風下側に配置して凝縮排熱により前記蒸発エ
レメントを流れる吸湿溶液を加熱するごとく成
し、また、前記蒸発エレメントの密閉室入口側に
接続する第1連絡管の入口部を、前記凝縮器に配
管すると共に、前記吸湿エレメントの密閉室入口
側に接続する第2連絡管の入口部を、前記蒸発器
に配管したことを特徴とする空気調和機。 2 一つのハウジングに仕切板を設けて、室内に
開口する室内側室と、室外に開口する室外側室と
を形成し、前記室内側室に蒸発器と吸湿エレメン
ト及び室内フアンを、また前記室外側室に凝縮器
と蒸発エレメント及び室外フアンをそれぞれ配置
したことを特徴とする特許請求の範囲第1項記載
の空気調和機。 3 室内に設置する室内ハウジングと、室外に設
置する室外ハウジングとを設けて、前記室内ハウ
ジングに蒸発器と吸湿エレメント及び室内フアン
を、また前記室外ハウジングに凝縮器と蒸発エレ
メント及び室外フアンをそれぞれ配置したことを
特徴とする特許請求の範囲第1項記載の空気調和
機。
[Claims] 1. Comprising a compressor, a condenser, an expansion mechanism, and an evaporator,
The evaporator is constructed so that air conditioning is performed by the evaporation action of the refrigerant in the evaporator, and a moisture absorbing element and an evaporation element are formed using a water-repellent porous sheet and having a closed chamber that allows air to pass through but not liquid. , these elements are connected by first and second communication pipes to form a closed circulation path for the moisture absorbing solution, and the moisture in the air passing through the moisture absorbing element is absorbed and removed by the moisture absorbing solution of the moisture absorbing element; The moisture absorbing element is configured to evaporate and release moisture absorbed in the evaporation element, and the moisture absorption element is disposed in an air flow path passing through the evaporator, and the evaporation element is disposed on the leeward side of the condenser. the hygroscopic solution flowing through the evaporation element is heated by condensation waste heat, and the inlet part of the first communication pipe connected to the closed chamber inlet side of the evaporation element is connected to the condenser, An air conditioner characterized in that an inlet portion of a second communication pipe connected to the closed chamber inlet side of the moisture absorbing element is connected to the evaporator. 2 A partition plate is provided in one housing to form an indoor chamber that opens indoors and an outdoor chamber that opens outdoors, and an evaporator, a moisture absorbing element, and an indoor fan are installed in the indoor chamber, and the outdoor chamber 2. The air conditioner according to claim 1, wherein a condenser, an evaporation element, and an outdoor fan are respectively arranged in the air conditioner. 3 An indoor housing installed indoors and an outdoor housing installed outdoors are provided, and the evaporator, moisture absorption element, and indoor fan are placed in the indoor housing, and the condenser, evaporation element, and outdoor fan are placed in the outdoor housing, respectively. An air conditioner according to claim 1, characterized in that:
JP9892579A 1979-08-02 1979-08-02 Air-conditioning machine Granted JPS5623647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9892579A JPS5623647A (en) 1979-08-02 1979-08-02 Air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9892579A JPS5623647A (en) 1979-08-02 1979-08-02 Air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS5623647A JPS5623647A (en) 1981-03-06
JPS6157536B2 true JPS6157536B2 (en) 1986-12-08

Family

ID=14232697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9892579A Granted JPS5623647A (en) 1979-08-02 1979-08-02 Air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS5623647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073746A1 (en) * 2010-11-30 2012-06-07 富士電機株式会社 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof
WO2012090850A1 (en) * 2010-12-28 2012-07-05 富士電機株式会社 Outside air utilization air-conditioning system, and inside air unit, outside air unit and laminate thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884486A (en) * 1997-06-19 1999-03-23 Northern Telecom Limited Thermoelectric humidity pump and method for dehumidfying of an electronic apparatus
WO2009054234A1 (en) * 2007-10-26 2009-04-30 Hachiyo Engineering Co., Ltd. Dehumidifier system
WO2012069901A1 (en) * 2010-11-25 2012-05-31 Lehky, Jan Marc Extraction of water from air
JP6020632B2 (en) * 2015-03-20 2016-11-02 ダイキン工業株式会社 Humidity control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213348A (en) * 1975-07-23 1977-02-01 Sumitomo Chem Co Ltd A method of producing a pattern on mirrors
JPS5213667A (en) * 1975-07-21 1977-02-02 Sony Corp Method of manufacturing printed substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213667A (en) * 1975-07-21 1977-02-02 Sony Corp Method of manufacturing printed substrate
JPS5213348A (en) * 1975-07-23 1977-02-01 Sumitomo Chem Co Ltd A method of producing a pattern on mirrors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073746A1 (en) * 2010-11-30 2012-06-07 富士電機株式会社 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof
CN103140718A (en) * 2010-11-30 2013-06-05 富士电机株式会社 Integrated air-conditioning system, and internal air unit, external air unit, and laminated body, thereof
WO2012090850A1 (en) * 2010-12-28 2012-07-05 富士電機株式会社 Outside air utilization air-conditioning system, and inside air unit, outside air unit and laminate thereof

Also Published As

Publication number Publication date
JPS5623647A (en) 1981-03-06

Similar Documents

Publication Publication Date Title
CN110715390B (en) Air conditioning system for a building with a cold fluid circuit
JP4986372B2 (en) Air conditioning device
US9140460B2 (en) Control methods and systems for indirect evaporative coolers
JP3596549B2 (en) Humidity control device
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
KR20010032785A (en) Liquid desiccant dehumidifier and air conditioner
US20100319370A1 (en) Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
CN101975421A (en) Heat pump-driven membrane-type liquid dehumidification and energy storage device
WO2001046628A1 (en) Liquid desiccant air conditioner
CN108826508B (en) Vertical dehumidifier of parallelly connected air inlet precooling of wind path
JP6377933B2 (en) Outside air treatment device
CN201811367U (en) Heat pump-driven membrane-type liquid dehumidification and energy storage device
JPS6157536B2 (en)
TWI770482B (en) dehumidifier
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
JPS61164623A (en) Dehumidifier
KR101103431B1 (en) Heat exchanger of a dehumidifier
JP2004271067A (en) Moisture conditioning device
CN210602023U (en) Dehumidifier
JP2004190907A (en) Desiccant air-conditioner with multistage indirect heat exchanging device
JP2021090898A (en) Dehumidifying device
KR200238250Y1 (en) dehumidifier
SU693095A1 (en) Air-conditioner
KR200238251Y1 (en) dehumidifier
KR20210093548A (en) Dehumidifier