WO2012073737A1 - Ultrafine polyamide fiber, and melt-spinning method and device therefor - Google Patents

Ultrafine polyamide fiber, and melt-spinning method and device therefor Download PDF

Info

Publication number
WO2012073737A1
WO2012073737A1 PCT/JP2011/076780 JP2011076780W WO2012073737A1 WO 2012073737 A1 WO2012073737 A1 WO 2012073737A1 JP 2011076780 W JP2011076780 W JP 2011076780W WO 2012073737 A1 WO2012073737 A1 WO 2012073737A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
melt
dtex
polyamide
single yarn
Prior art date
Application number
PCT/JP2011/076780
Other languages
French (fr)
Japanese (ja)
Inventor
健明 河野
小林 靖希
純 花岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012503140A priority Critical patent/JP5780237B2/en
Priority to EP11844483.5A priority patent/EP2647746B1/en
Priority to CN201180057162.3A priority patent/CN103221589B/en
Priority to US13/989,140 priority patent/US20130251992A1/en
Priority to KR1020137009386A priority patent/KR101580883B1/en
Publication of WO2012073737A1 publication Critical patent/WO2012073737A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to an ultrafine polyamide fiber having a very small single yarn fineness, and relates to a polyamide ultrafine fiber that can impart excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing to a woven or knitted fabric. Is.
  • Polyamide fibers are widely used for clothing and industrial materials because they have many excellent properties including mechanical properties.
  • false twisted yarn is widely used for woven fabrics, knitted fabrics, etc.
  • an ultrafine false twisted yarn having a single yarn fineness of 1.2 dtex or less can provide a very soft texture when made into a fabric, and has better heat retention and water absorption than a normal single yarn fineness false twisted yarn. improves. Therefore, the market demand for ultra fine false twisted yarn is increasing and becoming a standard.
  • polyamide ultrafine fiber by using a polyamide ultrafine fiber for false twisting that defines a friction coefficient, elongation, and hot water shrinkage in a fiber made of a polyamide resin having a single yarn fineness of 1.2 dtex or less, a fabric can be obtained.
  • a polyamide ultrafine fiber for false twisting that can impart a soft feeling (Patent Document 1).
  • each single yarn is brought into contact with a plate arranged inside the plurality of filaments discharged from the discharge holes on the downstream side of the spinneret including the plurality of discharge holes arranged in an annular shape.
  • a method of supplying an oil agent uniformly between yarns has been proposed (Patent Document 4).
  • Japanese Unexamined Patent Publication No. 2005-320655 Japanese Unexamined Patent Publication No. 2009-84749 Japanese Unexamined Patent Publication No. 2007-126759 Japanese Patent Application Laid-Open No. 2010-126846
  • the object of the present invention is to solve the problems of the prior art described above, and to provide a woven or knitted fabric with excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing. To provide fiber.
  • a polyamide ultrafine fiber characterized in that, in a polyamide fiber having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less, the average number of fluffs per 12000 m in the longitudinal direction of the filament is 1.0 or less.
  • Polyamide ultrafine fiber having a single yarn with a circular cross-sectional shape of the filament, and the orientation parameter of the single yarn surface portion relative to the orientation parameter of the single yarn central portion with respect to the orientation parameter of the single yarn having a circular cross-sectional shape
  • the polyamide ultrafine fiber according to any one of the above (1) to (3), wherein the ratio of is 1.10.
  • a melt spinning method of polyamide ultrafine fibers having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less and an average number of fluffs per 12000 m in the longitudinal direction of the filament of 1.0 or less, and the outer periphery of the spinneret A melt-spun yarn spun from a spinneret having discharge holes arranged circumferentially in the part, at the bottom of the center of the spinneret, inside the melt-spun yarn discharged from the discharge holes or
  • After supplying oil using an annular oil supply device having an annular slit for discharging an oil agent formed along the outer periphery of the guide the yarn is converged by a converging guide type oil supply device and
  • the cooling device is a cooling device that cools the melt spun yarn by blowing cooling air from the inside of the melt spun yarn discharged from the discharge hole.
  • the distance (L) from the spinneret surface to the cooling start position of the cooling device is 10 mm ⁇ L ⁇ 70 mm
  • the speed of the cooling air blown out at the cooling start position is 15 to 60 m / min.
  • Spinneret with discharge holes arranged circumferentially in the part, and melted by blowing cooling air from the inside or outside of the melt-spun yarn discharged from the discharge hole at the bottom of the center part of the spinneret A cooling device for cooling the spun yarn, and further, a disc-shaped guide portion in which the single yarn contacts the outer peripheral portion of the disc at a lower portion in the vertical direction of the cooling device, and an outer periphery of the guide immediately above the guide portion.
  • the average number of fluffs per 12000 m in the longitudinal direction of the filament is 1.0 or less.
  • Excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing can be obtained for woven and knitted fabrics, which cannot be obtained with polyamide ultrafine fibers. .
  • excellent anti-penetration properties can also be imparted.
  • FIG. 1 is a diagram showing an example of a method for producing polyamide ultrafine fibers according to the present invention.
  • FIG. 2 is a diagram showing an example of the shape of a cap hole used for producing the polyamide ultrafine fiber of the present invention.
  • FIG. 3 is a view showing another example of the shape of the cap hole used for producing the polyamide ultrafine fiber of the present invention.
  • FIG. 4 is a diagram showing an example of an annular oil supply device preferably used when producing the polyamide ultrafine fiber of the present invention.
  • FIG. 5 is a diagram showing another example of the method for producing polyamide ultrafine fibers according to the present invention.
  • the polyamide used in the polyamide ultrafine fiber of the present invention is a polyamide homopolymer or copolymer, and these polyamides are melt-molded having an amide bond formed from a lactam, an aminocarboxylic acid or a salt of a diamine and a dicarboxylic acid. It is a possible polymer.
  • polyamide various polyamides can be used, and are not particularly limited, but polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are preferable in terms of fiber forming ability and mechanical properties.
  • polyamide copolymers such as nylon 6 and nylon 66, those copolymerized with other aminocaproic acid, lactam, etc. at a ratio of 20 mol% or less with respect to the total monomer units can be used.
  • the sulfuric acid relative viscosity of the polyamide used in the present invention is preferably 2.0 to 3.5, more preferably 2.4 to 3.0, and still more preferably 2.5 from the viewpoint of yarn production stability. ⁇ 2.7.
  • the method for measuring the relative viscosity of sulfuric acid will be described later.
  • the second and third components may be copolymerized or mixed in addition to the main components within the range not departing from the object of the present invention.
  • polyvinyl pyrrolidone in the polyamide.
  • additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents and the like are added to the polyamide used in the present invention as necessary. It may be mixed.
  • the method for producing the polyamide ultrafine fiber of the present invention is not particularly limited as long as the polyamide ultrafine fiber of the present invention is obtained.
  • the polyamide is melted and discharged from the discharge holes arranged circumferentially on the outer periphery of the spinneret. After cooling, using a cooling device that cools the melt spun yarn uniformly and rapidly by blowing cooling air from the inside or outside of the melt spun yarn discharged from the discharge hole at the lower part of the center of the base,
  • a method is preferably used in which an oil agent is applied to each single yarn by an annular oiling device at the lower part of the cooling device in the vertical direction, and then the yarn is converged by a converging guide type oiling device and the second stage of oiling is performed.
  • the cooling device is preferably an annular cooling device, more preferably an outer blown annular cooling device that blows cooling air from the inside to the outside of the spun yarn running on the circumference of the circle, from the outside of the spun yarn.
  • An internal blowing type annular cooling device that blows cooling air to the inside is preferable.
  • an outer blowing type annular cooling device is preferable.
  • FIGS. 1 and FIG. 5 are schematic views showing an example of a synthetic fiber manufacturing process according to the present invention
  • FIG. 1 is an example using an outer blown annular cooling device 3
  • FIG. 5 is an inner blown annular cooling device. This is another example using 18.
  • the basic configuration of the manufacturing process of FIGS. 1 and 5 is the same, and description of common reference numerals is omitted.
  • an outer-blow-type annular type cooling installed at the lower center of the die for the purpose of reducing fineness unevenness in the longitudinal direction.
  • the apparatus 3 blows cooling air from the inside to the outside of the spun yarn, and rapidly cools and solidifies each single yarn at a uniform distance from the die surface.
  • an annular oil supply device having a disk-shaped guide portion in which a single yarn contacts with the outer peripheral portion of the disk before focusing the yarn, and an annular slit for discharging the oil agent formed along the outer periphery of the guide immediately above the guide portion.
  • the yarn is converged by the converging guide type oiling device 5 and the second-stage oiling is performed.
  • an interlace is applied by an interlace nozzle 6 as necessary, passes through a take-up roller 7 and a drawing roller 8, and is taken up by a winder (winding device) 9.
  • 10 is a fiber filament
  • 11 is a fiber product package.
  • it may be stretched by two or more sets of rollers before being wound on the package, in this case, since the interlace provided by stretching may be unraveled, the stretching ratio is lowered, or You may give an interlace again after extending
  • the heat retaining zone 2 below the base steam is ejected toward the surface of the base and the heat retaining zone 2 is filled with steam because the polymer around the discharge hole of the base and the oligomer contained in the polymer react with oxygen. It is preferably used since it has an effect of suppressing solidification and so-called base stain.
  • the vapor jet pressure is preferably 0.1 to 0.5 kPa. If the jet pressure is too small, the oxygen concentration in the heat retention zone below the base becomes high, and the effect of suppressing the contamination of the base surface becomes small. If the ejection pressure is too high, the discharged yarn will sway, leading to worsening of Wooster spots.
  • the outer blown annular cooling device 3 is used, but the inner blown annular cooling device 18 shown in FIG. 5 is used instead of the outer blown annular cooling device 3. You can also.
  • the inner-blow-type annular cooling device 18 is installed at the lower part of the center of the base so as to surround the spun yarn, and blows cooling air from the outer side to the inner side of the spun yarn, so that each single yarn is uniform from the base surface. Cool and solidify quickly at a short distance.
  • the cooling start point distance that is, the distance (L) from the base surface to the upper end of the cooling air blowing part in the annular cooling device is preferably 10 to 70 mm, more preferably 10 to 60 mm, still more preferably 10 to 50 mm. is there. If the cooling start point distance is too short, the cooling air blown out from the annular cooling device hits the die surface, and the die surface temperature decreases, so that the discharge stability of the thermoplastic polymer deteriorates, and spun yarn and fluff increase. . Also, if the cooling start point distance is too long, the polyamide solidifies before uniform and rapid cooling with cooling air, so that the fiber fineness fluctuation (Worster spots) tends to increase, and when the fabric is made There is a tendency for the quality to decline.
  • the wind speed of the cooling air in the annular cooling device is preferably 15 to 60 m / min, more preferably 20 to 55 m / min, and further preferably 25 to 50 m / min. If the cooling air speed is too low, uniform and rapid cooling of the single yarn will be insufficient, and the tension of the cooling yarn will be reduced. Further, since the fluff and spun yarn breakage occur frequently by contacting the guide with insufficient cooling of the polymer, the quality of the fabric is inferior. When the cooling air speed is too high, tension is applied to each single yarn, causing the yarn to vibrate slightly, increasing Worcester spots, and increasing yarn breakage during spinning.
  • the temperature of the cooling air in the annular cooling device is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and further preferably 15 to 35 ° C. If the temperature of the cooling air is too low, the temperature of the heat retention zone below the base decreases and the temperature of the base surface decreases, so the strength of the yarn tends to decrease. If the temperature of the cooling air is too high, the yarn In addition to the fact that the uniform cooling of the yarn becomes difficult and the cooling of the yarn is liable to be insufficient, and Worcester spots increase, the yarn breakage during spinning tends to increase.
  • the vertical length of the cooling air blowing part in the annular cooling device is preferably 100 to 500 mm, more preferably 150 to 400 mm, still more preferably 200 to 350 mm. If the cooling air blowing length is too long, the tension applied to the single yarn will increase, causing spun yarn breakage, and if the cooling air blowing length is too short, the oil will be applied with insufficient cooling of the single yarn, reducing fluff. , And spun yarn breakage.
  • the single yarn that has passed through the annular cooling device can be processed by the annular oiling device.
  • This annular oil supply device is arranged inside a spun yarn that runs on a circular circumference.
  • FIG. 4 is a conceptual diagram showing an example of an annular fueling device preferably used in the present invention.
  • the annular oil supply device 4 includes an oil discharge slit 12 and a disk-shaped guide 13.
  • the annular oil supply device 4 is arranged so that the fiber filament (single yarn) 14 that has passed through the annular cooling device contacts the disk-shaped guide 13.
  • An annular oil discharge slit 12 is formed along the outer periphery of the disk-shaped guide 13 so that the oil is supplied directly above the contact point of the disk-shaped guide 13 with the yarn.
  • the oil agent is supplied from the oil agent supply pipe 17 to the oil agent reservoir 15.
  • the oil agent filled in the oil agent reservoir 15 is discharged from the oil agent discharge slit 12 and comes into contact with each single yarn of the discharge yarn at the contact point with the yarn in the disk-shaped guide 13, and the oil agent is applied to each single yarn. .
  • the annular cooling device prevents the single yarn blown by cooling air from shaking, promotes uniform cooling of the single yarn, and reduces Worcester spots. Therefore, it is preferably used. Further, before converging the yarn, the oil agent is discharged from an annular slit for discharging the oil agent formed along the outer periphery of the guide just above the contact point with the yarn in the disk-shaped guide described above.
  • the method using the annular oil supply device applied to the yarn is because the yarn with high friction resistance before applying the oil agent comes into contact with the disk-shaped guide, or the single yarn not applied with the oil agent is rubbed together when the yarn is bundled.
  • a single yarn that has the effect of suppressing the generation of fuzz and that is not provided with an oil agent by a converging guide type oiling device, and that is not provided with an oil agent in the spinning process. It is preferably used because generation of fluff due to rubbing and generation of dyeing spots at the time of dyeing are suppressed, and fibers having high-order processability are obtained.
  • the position where the oil agent is applied by the annular oiling device is preferably 300 to 1000 mm below the base surface, more preferably 350 to 700 mm, and still more preferably 400 to 600 mm.
  • the oil agent is applied with insufficient cooling of the single yarn, which causes a decrease in filament strength and fluffing. If the oil supply position is too low, the single yarn discharged from the base surface Longer distance to converge makes yarn swinging more likely, leading to fluffing and worsening of Wooster's spots, and also increases the accompanying airflow effect of single yarn, increasing the running yarn tension. , Causing yarn breakage.
  • annular oil supply apparatus is not specifically limited, It is preferable that it is an emulsion type. In the case of an emulsion oil agent, an oil film is likely to be formed on the guide due to surface tension, and the oil agent can be applied uniformly along the circumferential direction of the disk-shaped guide.
  • the method of adopting the two-stage oil supply method in which the single yarn is converged by the converging guide type oil supply device 5 after the oil supply by the annular oil supply device 4 and the oil supply is further performed is the double-sided between the single yarns of the fibers and in the longitudinal direction. It can be preferably used because it can achieve the uniform oil agent application.
  • the annular oil supply device 4 although the oil agent is uniformly applied between the single yarns, it is difficult to obtain fibers uniformly oiled in the longitudinal direction, and the converged guide type oil supply device that enables the application of the uniform oil agent in the longitudinal direction is possible.
  • the focusing guide type oiling device used for the second stage oiling can use a normal oiling guide, and for example, an oiling guide as shown in the above-mentioned Patent Document 3 is preferably used.
  • the take-up speed of the yarn in the take-up roller 7 is preferably 3500 to 4500 m / min. If the take-up speed is too low, the orientation of the polyamide in the longitudinal direction becomes unstable, and dyeing spots in the longitudinal direction are likely to occur, and if the take-up speed is too high, the tension applied to the yarn increases. Or cause spun yarn breakage.
  • the draw ratio at the drawing roller 8 is preferably 1.0 to 1.3. If the draw ratio is too high, the elongation of the resulting fiber becomes too low, and in addition, the single yarn breaks and fluff is likely to occur.
  • the polyamide ultrafine fiber of the present invention is required to have a single yarn fineness of 0.1 dtex or more and 0.5 dtex or less, preferably 0.25 to 0.45 dtex.
  • the single yarn fineness is too thick, the yarn has high rigidity, and when it is made into a woven or knitted fabric, it is possible to obtain a woven or knitted fabric excellent in desired softness, smoothness, drape, high water absorption and high density.
  • the single yarn fineness is too thin, single yarn breakage is likely to occur when making the fabric, and the fluff and smoothness of the fabric tend to be inferior. There is a tendency for the quality to deteriorate.
  • the single yarn fineness is measured by the method described later.
  • the average number of fluffs per 12000 m in the longitudinal direction of the filament is required to be 1.0 or less for the polyamide ultrafine fiber of the present invention.
  • the average number of fluffs per 12000 m in the longitudinal direction is preferably 0.5 or less, and more preferably 0.
  • it is preferable to prevent single yarns having high frictional resistance before applying the oil agent and a method of applying the oil agent before the yarns are bundled by the above-described annular oil supply guide is preferable.
  • the average number of fluffs is measured by the method described later.
  • the fiber generally shows a variation in the fineness of the yarn in the longitudinal direction, and the thick portion of the yarn tends to be deeply dyed at the time of dyeing, and this appears particularly when the fineness of the single yarn is small.
  • the Wooster spots are preferably 1.0% or less. If the Wooster spots are too high, smoothness and a difference in shade at the time of dyeing are greatly developed, and the quality as a product tends to be inferior. Wooster spots are preferably 0.9% or less.
  • the method for reducing Wooster spots is not particularly limited, but a method in which the cooling air blowing device is brought close to the base surface and rapidly cooled, or a method in which cooling air is blown in an annular shape from the outer periphery and / or inner periphery is preferably used. It is done. More preferably, after cooling the single yarn uniformly by blowing cooling air in an annular shape from the inner periphery of the yarn, each single yarn is brought into contact with a disk-shaped guide to prevent the yarn from shaking. In the present invention, Wooster spots (thick spots) are measured by the method described later.
  • the orientation parameter of the surface portion and the orientation parameter of the central portion of the single yarn are different.
  • the difference in the orientation parameter between the surface portion and the central portion results in a difference in the refractive index of light passing through the central portion and the surface portion of the polyamide ultrafine fiber, and an anti-penetration effect can be obtained even with a circular cross section.
  • the ratio of the orientation parameter of the single yarn surface part to the orientation parameter of the single yarn central part is preferably 1.10 or more, more preferably 1.15 times or more and 2.00 times or less, further preferably 1.20 or more and 1.80 times or less.
  • the orientation parameter of the surface portion is in the above range with respect to the orientation parameter of the center portion of the single yarn, light passing through the cross-sectional direction of the single yarn is irregularly reflected, so that when the fabric is used, a see-through effect is obtained, and The strain in the fiber internal structure does not become too large, and sufficient filament strength can be maintained.
  • the orientation parameter is measured by the method described later.
  • the polyamide ultrafine fiber having such an orientation parameter is manufactured by selecting the above-mentioned preferable conditions so that the cooling air velocity (cooling air velocity) is not too small so as not to make the cooling start point distance too long. Obtainable.
  • the polyamide ultrafine fiber of the present invention has a very fine single yarn fineness and is a fiber in which the structure of the orientation parameter of the surface portion and the orientation parameter of the central portion is different by cooling the melt-spun yarn uniformly and rapidly. By adopting cooling conditions that allow more rapid and uniform cooling, the ratio of the orientation parameter of the single yarn surface portion to the orientation parameter of the single yarn central portion tends to increase.
  • the elongation of the polyamide ultrafine fiber is preferably 40 to 70%. If the elongation becomes too low, the tensile resistance of the filament becomes high, and the number of actual twists twisted in the false twisting process decreases, so that it becomes difficult to give sufficient crimp to the obtained processed yarn. In yarn, yarn breakage and fluff are likely to occur, and high-order passability tends to be inferior. On the other hand, if the elongation is too high, the actual number of twists to be twisted becomes excessive, fluffing occurs in the obtained processed yarn, the strength tends to decrease, and the drawn yarn has a high residual elongation. There is a tendency that streaks are likely to appear in the woven or knitted fabric, and the quality tends to be inferior. The measurement of the said elongation shall be based on the below-mentioned method.
  • the stress is 1.0 to 2.0 gf / dtex (9.8 ⁇ 10 ⁇ 3 to 19.6 ⁇ 10 ⁇ 3 N / dtex). And more preferably 1.2 to 1.8 gf / dtex (11.8 ⁇ 10 ⁇ 3 to 17.6 ⁇ 10 ⁇ 3 N / dtex). If the stress at 15% elongation is too low, the tension at the time of false twisting becomes too low, and the processed yarn is likely to break or change in the working tension, so that the quality of the processed yarn is lowered and the yield is likely to deteriorate.
  • the total fineness of the polyamide ultrafine fiber of the present invention is preferably 15 to 300 dtex, more preferably 15 to 200 dtex. If the total fineness is too small, the breaking strength of the fiber becomes small, the tear strength of the last fabric made into a fabric becomes small, and if the total fineness is too large, it becomes difficult for the dye to penetrate into the fiber at the time of dyeing. Dyeing spots are likely to occur, making it difficult to obtain a high-quality fabric. The total fineness is measured by the method described later.
  • the number of filaments of the polyamide ultrafine fiber of the present invention is preferably 30 or more, more preferably 30 to 500 filaments, and still more preferably 50 to 400 filaments. If the number of filaments is less than 30, it will be difficult to obtain the desired softness, drape, high water absorption, and high density, and if the number of filaments is too large, it will be difficult to uniformly interlace and release. Is easily deteriorated, and it is difficult to apply a uniform oil agent between filaments, and the occurrence of fluff due to single yarn breakage is likely to increase.
  • the cross-sectional shape of the polyamide ultrafine fiber of the present invention is not particularly limited, and examples thereof include a circular cross section and an irregular cross section.
  • a circular cross section is excellent in terms of spinning stability, excellent softness and draping properties.
  • the polyamide ultrafine fiber has a circular cross section and the center part and the surface part have the ratio of the preferred orientation parameters, the light passing through the cross-sectional direction of the single yarn is irregularly reflected due to the structural difference in orientation,
  • a material having a global cross section or a hollow cross section is preferable in that light passing through the surface of the single yarn is diffusely reflected, and therefore, when a cloth is used, high anti-transparency due to irregular reflection of transmitted light is obtained.
  • the trilobal cross section, multi-lobe cross section, and cross-sectional configurations in which multi-lobe cross sections and circular cross-section filaments are mixed high voids are obtained between single yarns when made into fabrics, resulting in high water absorption due to capillary action.
  • it is excellent in that it can be imparted with high bulk density, and is also preferably used because it is excellent in imparting the anti-permeability due to irregular reflection of transmitted light.
  • the polyamide ultrafine fiber of the present invention thus obtained can give the fabric excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing, and in a preferred embodiment it is further opaque. Excellent in properties. Therefore, when using the ultrafine fiber of the present invention as a woven fabric, it is used as an outer material such as a down jacket fabric excellent in heat retention and light weight, and when used as a knitted fabric, it is used for a high-class inner with the above functions, and tights. It can be preferably used for a covering yarn or the like.
  • Single yarn fineness (dtex) total fineness (dtex) / number of single yarns
  • the area ratio of the cross section of the single yarn in the cross-sectional shape was calculated, and the value obtained by multiplying the total fineness by the area ratio and dividing by the total number of filaments of the same shape.
  • Area ratio of section A area of section A / (area of section A + area of section B)
  • Area ratio of section B area of section B / (area of section A + area of section B)
  • Single yarn fineness (dtex) of cross section A in mixed filaments (total fineness (dtex) ⁇ area ratio of cross section A) / number of filaments of cross section A
  • Single yarn fineness (dtex) of cross section B in mixed filaments ( Total fineness (dtex) ⁇ area ratio of section B) / number of filaments in section B
  • Average number of fluff The average number of fluff is set using the MALUTI-POINT FRAY COUNTER MFC-200 (sensor part F type) from Toray Engineering Co., Ltd. (current name is tmt machinery) (sensor optical axis center) To U-Guide bottom): 2.0 mm, yarn speed: 600 m / min, measurement time: 20 minutes, feed tension: within the range of 0.25 g / dtex to 0.75 g / dtex The number of measurements was measured 10 times, and the measurement average value was defined as the average number of fluffs (pieces / 12,000 m).
  • Orientation parameter ratio Orientation parameters were measured by Raman spectroscopy for a sample (single yarn) having a circular cross-sectional shape, using T-64000 manufactured by Jobin Yvon / Ehime Bussan Co., Ltd., measurement mode: microscopic Raman, objective Lens: ⁇ 100, beam diameter: 1 ⁇ m, light source: Ar + laser / 514.5 nm, laser power: 100 mW, diffraction grating: Single 600, 1800 gr / mm, slit: 100 ⁇ m, detector: CCD 1024 ⁇ 256 manufactured by Jobin Yvon The measurement was performed under the following conditions.
  • a measurement sample was embedded in a resin (bisphenol-based epoxy resin, cured for 24 hours) and then sectioned with a microtome at a cutting angle of 5 ° or less from the fiber longitudinal direction.
  • the slice sample had a thickness of 1.5 ⁇ m and was cut out so as to pass through the center of the fiber.
  • the measurement of the orientation is performed under polarization conditions. When the polarization direction coincides with the longitudinal direction of the fiber, the parallel polarization ( ⁇ ) and when perpendicular, the vertical polarization ( ⁇ ) are obtained, and in the obtained Raman band, the vicinity of 1130 cm ⁇ 1 is obtained.
  • orientation parameter (I 1130 / I 1635 ) ⁇ / (I 1130 / I 1635 ) ⁇ It is.
  • the orientation parameter of the single yarn surface portion was irradiated with a laser at a point 1 ⁇ m inside from the single yarn surface portion, and the central orientation parameter was calculated at the center portion of the single yarn to calculate the orientation parameter. From this result, the ratio of the orientation parameter of the single yarn surface part to the orientation parameter of the single yarn central part was calculated by the following formula.
  • Orientation parameter ratio (Orientation parameter of single yarn surface portion) / (Orientation parameter of single yarn central portion)
  • Wooster plaques Wooster plaques were measured using a ZELLWEGER USTER USTER TESTER UT-4, measuring at a yarn speed of 50 m / min, S twist, and a twist number of 8000 rpm for 3 min. Was measured.
  • Elongation The elongation is measured using a TENSIRON RPC-1210A manufactured by ORIENTEC, gripped at a gripping interval of 50 cm, stretched at a pulling speed of 50 cm / min, and the tensile length when the yarn breaks is measured three times. The average value was divided by 50 cm and multiplied by 100.
  • Example 1 Nylon 66 with a 98% sulfuric acid relative viscosity of 2.63 is melted at 285 ° C., then supplied to a melt spinneret pack, and discharged from a die hole having a 98-hole circular hole. Each single yarn is directed to the spinneret surface.
  • a cooling air blowing section having a cooling start point distance of 30 mm and a vertical length of 300 mm is provided downstream of the steam ejection zone.
  • a single outer-blow-type annular cooling device is passed through, and 20 ° C.
  • an annular oil supply having a disk-shaped guide part in contact with the single yarn at the outer peripheral part of the disk and an annular slit for discharging the oil agent formed along the outer periphery of the guide immediately above the guide part.
  • Emulsion oil agent is applied by the device, and further, the second stage of oil is supplied by the convergence guide type oil supply device, the yarn is converged, and the interlace is applied, and it is taken up at 4000 m / min, and the draw ratio is 1.10 times.
  • nylon 66 is abbreviated as N66.
  • Example 2 Nylon 6 having a 98% sulfuric acid relative viscosity of 2.63 was melted at 255 ° C. and then spun in the same manner as in Example 1 except that it was used in a melt spinneret pack to obtain a nylon 6 fiber of 40 dtex / 98 filament. It was. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1. In the table, nylon 6 is abbreviated as N6.
  • Example 3 Spinning was carried out in the same manner as in Example 1 except that a die having a 268 hole circular hole was used, and a nylon 66 fiber of 40 dtex / 268 filament was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
  • Example 4 Spinning was carried out in the same manner as in Example 1 except that a base having a circular hole of 82 holes was used to obtain a nylon 66 fiber of 40 dtex / 82 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
  • Example 5 Example 1 except that the length in the vertical direction of the cooling air blowing portion in the outer-blow-type annular cooling device installed downstream of the steam blow zone below the mouthpiece is 100 mm, and the fueling position by the annular fueling device is 300 mm below the mouthpiece. Spinning was carried out in the same manner as described above to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
  • Example 6 Spinning was carried out in the same manner as in Example 1 except that nylon 66 having a 98% sulfuric acid relative viscosity of 2.63 was melted at 275 ° C. to obtain a nylon 66 fiber of 40 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
  • Example 7 Spinning was performed in the same manner as in Example 1 except that a die having a 42 hole circular hole was used and the fineness was changed to 17 dtex to obtain a nylon 66 fiber of 17 dtex / 42 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
  • Example 8 Spinning was performed in the same manner as in Example 1 except that a die having a circular hole of 680 holes was used and the fineness was changed to 280 dtex to obtain nylon 66 fibers of 280 dtex / 680 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
  • Example 9 Spinning was carried out in the same manner as in Example 1 except that a die having a 32-hole circular hole was used and the fineness was changed to 15 dtex to obtain nylon 66 fibers of 15 dtex / 32 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
  • Example 10 Nylon 6 with a 98% sulfuric acid relative viscosity of 2.63 is melted at 255 ° C. and then supplied to a melt spinning die pack, and discharged from a die outlet hole having a three-leaf slit shape as shown in FIG. Except for the above, spinning was carried out in the same manner as in Example 1 to obtain a three-leaf section nylon 6 fiber having 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
  • Example 11 Spinning was carried out in the same manner as in Example 10 except that a 49-hole die discharge hole having a cross-sectional shape of 49 holes as shown in FIG. 3 and a 98-hole die mixed with the same number of round holes were used, A nylon 6 fiber in which a 6-leaf section and a round section of 40 dtex / 98 filament were mixed was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
  • Example 12 After applying interlace, it was taken out at 3000 m / min, drawn at a draw ratio of 1.50, and then wound up at 4300 m / min under relaxed conditions in the same manner as in Example 1. Spinning was performed to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
  • Example 13 Spinning was carried out in the same manner as in Example 1 except that a single inner-blow-type annular cooling device having a cooling air blowing portion having a vertical length of 300 mm was passed instead of the outer-blow-type annular cooling device. , 40 dtex / 98 filament nylon 66 fiber was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
  • Example 14 Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 20 mm to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
  • Example 15 Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 40 mm, to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
  • Example 16 Spinning was performed in the same manner as in Example 1 except that the cooling start point distance was set to 10 mm, to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
  • Example 17 Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 60 mm to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
  • Example 18 Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially from the outer blown annular cooling device to 27 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
  • Example 19 Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially from the outer blown annular cooling device to 49 m / min, and nylon 66 fibers of 40 dtex / 98 filaments were obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
  • Example 20 Spinning was performed in the same manner as in Example 1 except that the air speed of the cooling air at 20 ° C. blown radially outward from the outer blown annular cooling device was changed to 17 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
  • Example 21 Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially outward from the outer blown annular cooling device was set to 58 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
  • Comparative Example 1 Spinning was carried out in the same manner as in Example 1 except that the material was discharged from a die hole having a 160-hole circular hole and the fineness was set to 15 dtex to obtain nylon 66 fiber of 15 dtex / 160 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
  • Comparative Example 2 Spinning was carried out in the same manner as in Example 1 except that the fineness was 56 dtex to obtain nylon 66 fiber of 56 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
  • Comparative Example 3 At a position 500 mm from the base surface of the lower part in the vertical direction of the outer blow type annular cooling device, a disk-shaped guide having no annular slit for discharging the oil is used, and the single thread is brought into contact with the disk-shaped guide without supplying the oil. Except for the above, spinning was performed in the same manner as in Example 1 to obtain a nylon 66 fiber of 40 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
  • Comparative Example 4 Spinning was performed in the same manner as in Example 1 except that the polyethylene terephthalate resin was melted at 290 ° C. and then used in a melt spinneret pack to obtain polyethylene terephthalate fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
  • Comparative Example 5 Spinning was performed in the same manner as in Example 1 except that the cooling device was a one-way type uniflow chimney, the yarn was converged by an oil supply guide, and oil was supplied to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
  • Comparative Example 6 Spinning is carried out in the same manner as in Example 1 except that the second stage oiling is performed and the yarn is converged by the converging guide after the second lubrication, and the nylon 66 of 40 dtex / 98 filament is used. Fiber was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

This ultrafine polyamide fiber is a polyamide fiber having a single-filament fineness of 0.10-0.50 dtex, in which the average number of fluffs per 12,000 m of the length of the filaments is 1.0 or less. The melt-spinning method of the invention for producing the ultrafine polyamide fiber comprises: cooling melt-spun filaments discharged from a spinneret having orifices annularly disposed in the peripheral part of the spinneret, using a cooler (3) which is located under the center of the spinneret and which blows cooling air against the melt-spun filaments ejected from the orifices, from inside or outside the melt-spun filaments to cool the melt-spun filaments; oiling the filaments using an annular oiling device (4) that has a disk-shaped guide part which is located vertically under the cooler (3) and in which single filaments come into contact with the periphery of the disk and that has an annular slit for oil ejection which has been formed right over the guide part along the periphery of the guide; and then collecting the filaments and simultaneously performing second-stage oiling, by means of a collecting guide type oiling device (5).

Description

[規則37.2に基づきISAが決定した発明の名称] ポリアミド極細繊維並びにその溶融紡糸方法及び装置[Name of invention determined by ISA based on Rule 37.2] Polyamide ultrafine fiber and melt spinning method and apparatus thereof
 本発明は単糸繊度が極めて小さい極細ポリアミド繊維に関し、優れたソフト性、平滑性、ドレープ性、高吸水性、高密度性、染色後の高品位を織編物に与えることができるポリアミド極細繊維に関するものである。 The present invention relates to an ultrafine polyamide fiber having a very small single yarn fineness, and relates to a polyamide ultrafine fiber that can impart excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing to a woven or knitted fabric. Is.
 ポリアミド繊維は機械的特性をはじめとして数多くの優れた特性を有していることから、衣料用途および産業資材用途に広く用いられている。衣料用途の中でも仮撚加工糸は織物、編物など用途が広く生産量もかなり多い。特に、単糸繊度が1.2dtex以下の極細仮撚加工糸は、布帛にしたとき、非常に柔らかな風合いが得られ、かつ保温性、吸水性も通常の単糸繊度の仮撚加工糸より向上する。よって、極細仮撚加工糸の市場要求は高まっており、定番化しつつある。 Polyamide fibers are widely used for clothing and industrial materials because they have many excellent properties including mechanical properties. Among the garment applications, false twisted yarn is widely used for woven fabrics, knitted fabrics, etc. In particular, an ultrafine false twisted yarn having a single yarn fineness of 1.2 dtex or less can provide a very soft texture when made into a fabric, and has better heat retention and water absorption than a normal single yarn fineness false twisted yarn. improves. Therefore, the market demand for ultra fine false twisted yarn is increasing and becoming a standard.
 上記のようなポリアミド極細繊維としては、単糸繊度1.2dtex以下のポリアミド樹脂からなる繊維において、摩擦係数、伸度、熱水収縮率を規定した仮撚用ポリアミド極細繊維を用いることで、布帛にソフト感を付与できる仮撚用ポリアミド極細繊維が提案されている(特許文献1)。 As the above-mentioned polyamide ultrafine fiber, by using a polyamide ultrafine fiber for false twisting that defines a friction coefficient, elongation, and hot water shrinkage in a fiber made of a polyamide resin having a single yarn fineness of 1.2 dtex or less, a fabric can be obtained. There has been proposed a polyamide ultrafine fiber for false twisting that can impart a soft feeling (Patent Document 1).
 また、単糸繊度1.2dtex以下のポリアミド繊維において、糸条の15%伸長時の応力、インターレース開繊部の開繊長を規定した仮撚用ポリアミド繊維を用いることで、ソフト性の優れた仮撚捲縮糸が得られる仮撚用ポリアミド繊維が提案されている(特許文献2)。 Further, in a polyamide fiber having a single yarn fineness of 1.2 dtex or less, by using a polyamide fiber for false twist that defines the stress at the time of 15% elongation of the yarn and the opening length of the interlace opening portion, the softness is excellent. There has been proposed a false twisting polyamide fiber from which false twisted crimped yarn can be obtained (Patent Document 2).
 これらのポリアミド極細繊維に油剤を均一付与する方法として、環状に吐出孔を配列した紡糸口金から吐出されるポリマーを糸条の内周または外周の全方向から冷風を吹き付ける冷却装置、所謂環状チムニーを使用して単糸を均一に冷却し、糸条を挟んで向かい合う給油ガイドにて油剤を付与することが提案されている(特許文献3)。 As a method for uniformly applying an oil agent to these polyamide ultrafine fibers, a so-called annular chimney is used, in which a polymer discharged from a spinneret in which discharge holes are arranged in a ring shape is blown with cold air from all directions on the inner or outer periphery of the yarn. It has been proposed that a single yarn is cooled uniformly by use, and an oil agent is applied by an oiling guide facing each other across the yarn (Patent Document 3).
 また、環状に配置された複数の吐出孔を備えた紡糸口金の下流側で、吐出孔から吐出された複数のフィラメントの内側に配置されるプレートに、それぞれの単糸を接触させることで、単糸間に均一に油剤を供給する方法が提案されている(特許文献4)。
日本国特開2005-320655号公報 日本国特開2009-84749号公報 日本国特開2007-126759号公報 日本国特開2010-126846号公報
Further, each single yarn is brought into contact with a plate arranged inside the plurality of filaments discharged from the discharge holes on the downstream side of the spinneret including the plurality of discharge holes arranged in an annular shape. A method of supplying an oil agent uniformly between yarns has been proposed (Patent Document 4).
Japanese Unexamined Patent Publication No. 2005-320655 Japanese Unexamined Patent Publication No. 2009-84749 Japanese Unexamined Patent Publication No. 2007-126759 Japanese Patent Application Laid-Open No. 2010-126846
 しかしながら、上記特許文献1,2に記載の方法で単糸繊度0.5dtex以下とさらに極細のポリアミド繊維を製造しようとすると、均一冷却や均一油剤付与が困難になるため、得られる極細ポリアミド繊維のウースター斑や毛羽品位が悪く、さらに単糸間の繊維構造差が大きくなる結果、仮撚り加工に供する場合は加工糸切れ、解じょ不良が発生し、織編物に供する場合は、整経時の毛羽が顕著となり、布帛の平滑性や品位の低下、染色後の染め斑が顕著に発生するなどの欠点があった。 However, if it is attempted to produce a very fine polyamide fiber having a single yarn fineness of 0.5 dtex or less by the method described in Patent Documents 1 and 2, it becomes difficult to uniformly cool or apply a uniform oil agent. As a result of poor Worcester spots and fluff quality, and a large difference in fiber structure between single yarns, when used for false twisting, processing yarn breakage and unraveling occur, and when used for woven and knitted fabrics, There were drawbacks such as fuzz becoming prominent, the smoothness and quality of the fabric being lowered, and dyeing spots after dyeing being noticeably generated.
 かかる問題を解決すべく、特許文献3記載の給油方法を適用しようとすると、糸条を集束するとともに油剤を付与することになる。単糸繊度0.5dtex以下の極細ポリアミド繊維においては、単糸1本あたりの強力が低下し、糸条収束時に単糸同士が擦過し、油剤付与前の繊維は摩擦係数が大きいという特有の問題がある。そのため、単糸同士の擦過や、油剤付与される前の単糸とガイドとの擦過によって単糸切れを起こしたり、収束した糸条の内層の単糸まで均一に油剤が付与されにくく、単糸間で油剤および水分の付着差が発生し、単糸間で繊維構造差が発生したりするため、染色後の品位が低下する欠点を残していた。 In order to solve such a problem, when an oil supply method described in Patent Document 3 is applied, the yarn is focused and an oil agent is applied. In the ultra-fine polyamide fiber with a single yarn fineness of 0.5 dtex or less, the strength per single yarn is reduced, the single yarns are scratched when the yarn converges, and the fiber before applying the oil agent has a large coefficient of friction. There is. For this reason, single yarn breakage due to rubbing between single yarns or rubbing between the single yarn and the guide before being applied with the oil agent, or even when the oil is evenly applied to the inner yarn of the converged yarn, it is difficult to apply the oil agent. The difference in adhesion between the oil agent and moisture occurs between the yarns and the fiber structure between the single yarns. Thus, there remains a defect that the quality after dyeing is lowered.
 さらに特許文献4記載の方法を適用しようとすると、単糸間の均一油剤付与には優れるものの、繊維の長手方向における均一な油剤付与は難しく、長手方向での油剤付着バラツキが発生することで、長手方向における繊維の構造差や摩擦係数バラツキが大きくなる。そのため、紡糸工程および高次加工工程において糸道ガイド類などとの擦過によって長手方向に張力バラツキが生じ、染色後に染め斑が発生し、高品位な布帛を得ることができないという欠点を残していた。 Furthermore, when trying to apply the method described in Patent Document 4, although uniform oil agent application between single yarns is excellent, uniform oil agent application in the longitudinal direction of the fiber is difficult, and oil agent adhesion variation in the longitudinal direction occurs, The structural difference and the friction coefficient variation of the fiber in the longitudinal direction increase. For this reason, in the spinning process and the high-order processing process, there was a disadvantage that tension variation occurred in the longitudinal direction due to rubbing with yarn guides and the like, dyeing spots were generated after dyeing, and a high-quality fabric could not be obtained. .
 本発明の目的は、前記した従来技術の問題を解決し、優れたソフト性、平滑性、ドレープ性、高吸水性、高密度性、染色後の高品位を織編物に与えることができるポリアミド極細繊維を提供することにある。 The object of the present invention is to solve the problems of the prior art described above, and to provide a woven or knitted fabric with excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing. To provide fiber.
 本発明は、上記課題を解決するため、以下の構成を採用する。
(1)単糸繊度が0.10dtex以上0.50dtex以下のポリアミド繊維において、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であることを特徴とするポリアミド極細繊維。
(2)フィラメントの長手方向のウースター斑が1.0%以下であることを特徴とする前記(1)に記載のポリアミド極細繊維。
(3)総繊度が15~300dtex、フィラメント数が30以上であることを特徴とする前記(1)または(2)に記載のポリアミド極細繊維。
(4)フィラメントの断面形状が異形断面であることを特徴とする前記(1)~(3)のいずれかに記載のポリアミド極細繊維。
(5)ポリアミド極細繊維において、フィラメントの断面形状が円形である単糸を有し、かつ円形断面形状を有する単糸の配向パラメーターについて、単糸中央部の配向パラメーターに対する単糸表面部の配向パラメーターの比が、1.10以上であることを特徴とする、前記(1)~(3)のいずれかに記載のポリアミド極細繊維。
(6)単糸繊度が0.10dtex以上0.50dtex以下であり、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であるポリアミド極細繊維の溶融紡糸方法であって、紡糸口金外周部に円周状に配された吐出孔を有する紡糸口金から紡出した溶融紡糸糸条を、前記紡糸口金の中心部の下部にあって、吐出孔から吐出された溶融紡糸糸条の内側または外側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置を用いて冷却し、さらに該冷却装置の鉛直方向下部に円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットを有する環状給油装置を用いて給油を行った後、集束ガイド型給油装置にて糸条を集束させるとともに2段目の給油を行うことを特徴とするポリアミド極細繊維の溶融紡糸方法。
(7)冷却装置が、吐出孔から吐出された溶融紡糸糸条の内側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置であることを特徴とする、前記(6)に記載のポリアミド極細繊維の溶融紡糸方法。
(8)冷却装置が下記を満足することを特徴とする、前記(6)または(7)に記載のポリアミド極細繊維の溶融紡糸方法。
  (i)紡糸口金面から冷却装置の冷却開始位置までの距離(L)が10mm≦L≦70mm
  (ii)冷却開始位置にて吹き出している冷却風の風速が15~60m/min
(9)単糸繊度が0.10dtex以上0.50dtex以下であり、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であるポリアミド極細繊維の溶融紡糸装置であって、紡糸口金外周部に円周状に配された吐出孔を有する紡糸口金と、該紡糸口金の中心部の下部にあって、吐出孔から吐出された溶融紡糸糸条の内側または外側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置を有しており、さらに該冷却装置の鉛直方向下部に円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットを有する環状給油装置と、その下流に糸条を集束させるとともに2段目の給油を行うための集束ガイド型給油装置を有することを特徴とするポリアミド極細繊維の溶融紡糸装置。
(10)冷却装置が、吐出孔から吐出された溶融紡糸糸条の内側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置であることを特徴とする、前記(9)に記載のポリアミド極細繊維の溶融紡糸装置。
The present invention adopts the following configuration in order to solve the above problems.
(1) A polyamide ultrafine fiber characterized in that, in a polyamide fiber having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less, the average number of fluffs per 12000 m in the longitudinal direction of the filament is 1.0 or less.
(2) The polyamide ultrafine fiber as described in (1) above, wherein Worcester spots in the longitudinal direction of the filament are 1.0% or less.
(3) The polyamide ultrafine fiber as described in (1) or (2) above, wherein the total fineness is 15 to 300 dtex and the number of filaments is 30 or more.
(4) The polyamide ultrafine fiber as described in any one of (1) to (3) above, wherein the filament has an irregular cross-section.
(5) Polyamide ultrafine fiber having a single yarn with a circular cross-sectional shape of the filament, and the orientation parameter of the single yarn surface portion relative to the orientation parameter of the single yarn central portion with respect to the orientation parameter of the single yarn having a circular cross-sectional shape The polyamide ultrafine fiber according to any one of the above (1) to (3), wherein the ratio of is 1.10.
(6) A melt spinning method of polyamide ultrafine fibers having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less and an average number of fluffs per 12000 m in the longitudinal direction of the filament of 1.0 or less, and the outer periphery of the spinneret A melt-spun yarn spun from a spinneret having discharge holes arranged circumferentially in the part, at the bottom of the center of the spinneret, inside the melt-spun yarn discharged from the discharge holes or A disk-shaped guide unit in which cooling is performed using a cooling device that blows cooling air from the outside to cool the melt-spun yarn, and a single yarn is in contact with the outer periphery of the disk at the lower part in the vertical direction of the cooling device, and a guide unit After supplying oil using an annular oil supply device having an annular slit for discharging an oil agent formed along the outer periphery of the guide, the yarn is converged by a converging guide type oil supply device and the second stage oil supply is performed. Melt spinning method of the polyamide ultrafine fiber characterized Ukoto.
(7) The polyamide according to (6), wherein the cooling device is a cooling device that cools the melt spun yarn by blowing cooling air from the inside of the melt spun yarn discharged from the discharge hole. A method for melt spinning ultrafine fibers.
(8) The melt spinning method for polyamide ultrafine fibers according to (6) or (7) above, wherein the cooling device satisfies the following conditions.
(I) The distance (L) from the spinneret surface to the cooling start position of the cooling device is 10 mm ≦ L ≦ 70 mm
(Ii) The speed of the cooling air blown out at the cooling start position is 15 to 60 m / min.
(9) A melt spinning apparatus for polyamide ultrafine fibers having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less and an average number of fluffs per 12000 m in the longitudinal direction of the filament of 1.0 or less. Spinneret with discharge holes arranged circumferentially in the part, and melted by blowing cooling air from the inside or outside of the melt-spun yarn discharged from the discharge hole at the bottom of the center part of the spinneret A cooling device for cooling the spun yarn, and further, a disc-shaped guide portion in which the single yarn contacts the outer peripheral portion of the disc at a lower portion in the vertical direction of the cooling device, and an outer periphery of the guide immediately above the guide portion. Characterized in that it has an annular oil supply device having an annular slit for discharging an oil agent and a converging guide type oil supply device for converging the yarn downstream and supplying the second stage oil supply. Melt spinning apparatus of the ultra-fine fibers.
(10) The polyamide according to (9), wherein the cooling device is a cooling device that cools the melt-spun yarn by blowing cooling air from the inside of the melt-spun yarn discharged from the discharge hole. Ultra-fine fiber melt spinning equipment.
 本発明により、以下に説明する通り、単糸繊度が0.10dtex以上0.50dtex以下のポリアミド繊維において、フィラメントの長手方向12000mあたりの平均毛羽数を1.0個以下とすることで、従来のポリアミド極細繊維では得られなかった優れたソフト性、平滑性、ドレープ性、高吸水性、高密度性、染色後の高品位を織編物に与えることができるポリアミド極細繊維が得られるようになった。さらに好ましい態様においては優れた防透け性も付与することができる。 According to the present invention, as will be described below, in a polyamide fiber having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less, the average number of fluffs per 12000 m in the longitudinal direction of the filament is 1.0 or less. Excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing can be obtained for woven and knitted fabrics, which cannot be obtained with polyamide ultrafine fibers. . In a more preferred embodiment, excellent anti-penetration properties can also be imparted.
図1は本発明のポリアミド極細繊維生産方法の一例を表す図である。FIG. 1 is a diagram showing an example of a method for producing polyamide ultrafine fibers according to the present invention. 図2は本発明のポリアミド極細繊維生産に用いる口金孔形状の一例を表す図である。FIG. 2 is a diagram showing an example of the shape of a cap hole used for producing the polyamide ultrafine fiber of the present invention. 図3は本発明のポリアミド極細繊維生産に用いる口金孔形状の他の一例を表す図である。FIG. 3 is a view showing another example of the shape of the cap hole used for producing the polyamide ultrafine fiber of the present invention. 図4は本発明のポリアミド極細繊維を生産する際に好ましく使用される環状給油装置の一例を表す図である。FIG. 4 is a diagram showing an example of an annular oil supply device preferably used when producing the polyamide ultrafine fiber of the present invention. 図5は本発明のポリアミド極細繊維生産方法の他の一例を表す図である。FIG. 5 is a diagram showing another example of the method for producing polyamide ultrafine fibers according to the present invention.
 以下、本発明の実態の形態について詳細に説明する。 Hereinafter, the actual form of the present invention will be described in detail.
 本発明のポリアミド極細繊維に使用されるポリアミドは、ポリアミドのホモポリマーまたはコポリマーであり、これらのポリアミドは、ラクタム、アミノカルボン酸あるいはジアミンとジカルボン酸との塩から形成されるアミド結合を有する溶融成形可能な重合体である。 The polyamide used in the polyamide ultrafine fiber of the present invention is a polyamide homopolymer or copolymer, and these polyamides are melt-molded having an amide bond formed from a lactam, an aminocarboxylic acid or a salt of a diamine and a dicarboxylic acid. It is a possible polymer.
 ポリアミドとしては、種々のポリアミドを使用することができ、特に限定されないが、繊維形成能および力学的特性の点でポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)が好ましい。これらナイロン6,ナイロン66などのポリアミドのコポリマーとしては、全単量体単位に対し20モル%以下の割合で他のアミノカプロン酸、ラクタムなどを共重合したものが使用できる。 As the polyamide, various polyamides can be used, and are not particularly limited, but polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are preferable in terms of fiber forming ability and mechanical properties. As these polyamide copolymers such as nylon 6 and nylon 66, those copolymerized with other aminocaproic acid, lactam, etc. at a ratio of 20 mol% or less with respect to the total monomer units can be used.
 また、本発明で使用するポリアミドの硫酸相対粘度は、製糸安定性の観点から2.0~3.5であることが好ましく、より好ましくは2.4~3.0、さらに好ましくは2.5~2.7である。上記硫酸相対粘度の測定方法は後述によるものとする。 In addition, the sulfuric acid relative viscosity of the polyamide used in the present invention is preferably 2.0 to 3.5, more preferably 2.4 to 3.0, and still more preferably 2.5 from the viewpoint of yarn production stability. ~ 2.7. The method for measuring the relative viscosity of sulfuric acid will be described later.
 本発明におけるポリマーには本発明の目的を逸脱しない範囲で、主成分の他に第2、第3成分を共重合または混合してもよい。 In the polymer of the present invention, the second and third components may be copolymerized or mixed in addition to the main components within the range not departing from the object of the present invention.
 特に、本発明の目的に加えて、吸湿性を付与したい場合、ポリアミド中にポリビニルピロリドンを含有させることも可能である。 In particular, in addition to the object of the present invention, when it is desired to provide hygroscopicity, it is also possible to include polyvinyl pyrrolidone in the polyamide.
 また、本発明で用いるポリアミドには各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤などを必要に応じて混合していてもよい。 In addition, various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents and the like are added to the polyamide used in the present invention as necessary. It may be mixed.
 本発明のポリアミド極細繊維の製造方法については、本発明のポリアミド極細繊維が得られる限り特に限定はしないが、ポリアミドを溶融し、紡糸口金外周部に円周状に配された吐出孔からこれを吐出し、口金中心部の下部にあって、吐出孔から吐出された溶融紡糸糸条の内側または外側から冷却風を吹き付けて溶融紡糸糸条を均一に急冷する冷却装置を用いて冷却したのち、さらに該冷却装置の鉛直方向下部にある、環状給油装置にて単糸毎に油剤を付与したのちに集束ガイド型給油装置にて糸条を集束させるとともに2段目の給油を行なう方法が好ましく用いられる。2段目の給油の後は、必要に応じてインターレースを付与した後パッケージに巻き取る1工程法が太細斑や毛羽が特に少ないポリアミド繊維が得られる点およびコストの面から好ましい。なお、冷却装置としては、環状型冷却装置が好ましく、より好ましくは円の周上に走行する紡糸糸条の内側から外側へ冷却風を吹き付ける外吹き式環状型冷却装置、紡糸糸条の外側から内側へ冷却風を吹き付ける内吹き式環状型冷却装置がよい。とりわけ外吹き式環状型冷却装置が好ましい。 The method for producing the polyamide ultrafine fiber of the present invention is not particularly limited as long as the polyamide ultrafine fiber of the present invention is obtained. However, the polyamide is melted and discharged from the discharge holes arranged circumferentially on the outer periphery of the spinneret. After cooling, using a cooling device that cools the melt spun yarn uniformly and rapidly by blowing cooling air from the inside or outside of the melt spun yarn discharged from the discharge hole at the lower part of the center of the base, In addition, a method is preferably used in which an oil agent is applied to each single yarn by an annular oiling device at the lower part of the cooling device in the vertical direction, and then the yarn is converged by a converging guide type oiling device and the second stage of oiling is performed. It is done. After the second stage of refueling, a one-step method in which an interlace is applied as necessary and wound on a package is preferable from the viewpoint of obtaining a polyamide fiber with particularly small thick spots and fluff and cost. The cooling device is preferably an annular cooling device, more preferably an outer blown annular cooling device that blows cooling air from the inside to the outside of the spun yarn running on the circumference of the circle, from the outside of the spun yarn. An internal blowing type annular cooling device that blows cooling air to the inside is preferable. In particular, an outer blowing type annular cooling device is preferable.
 本発明のポリアミド繊維の製造方法の好ましい一例を、図1および図5にしたがって具体的に説明する。図1および図5は本発明にかかる合成繊維の製造工程の一例を示す概略図であり、図1は外吹き式環状型冷却装置3を使用した一例、図5は内吹き式環状型冷却装置18を使用した他の一例である。以下の説明において、図1および図5の製造工程の基本構成は同じであり、共通する符号の説明は省略する。 A preferred example of the method for producing a polyamide fiber of the present invention will be specifically described with reference to FIGS. FIG. 1 and FIG. 5 are schematic views showing an example of a synthetic fiber manufacturing process according to the present invention, FIG. 1 is an example using an outer blown annular cooling device 3, and FIG. 5 is an inner blown annular cooling device. This is another example using 18. In the following description, the basic configuration of the manufacturing process of FIGS. 1 and 5 is the same, and description of common reference numerals is omitted.
 図1において、溶融されたポリアミドを口金1から吐出し、口金下保温ゾーン2を通過させた後、長手方向の繊度斑を低減させる目的で、口金中心下部に設置された外吹き式環状型冷却装置3により紡出糸条の内側から外側に向けて冷却風を吹き当て、各単糸を口金面から均一な距離で急速に冷却、固化させる。さらに糸条を集束させる前に、円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットをもつ環状給油装置4によって単糸ごとに油剤を付与した後、集束ガイド型給油装置5で糸条を集束させるとともに2段目の給油を行うことが好ましい。給油後、必要に応じてインターレースノズル6でインターレースを付与し、引き取りローラー7、延伸ローラー8を通過し、ワインダー(巻取装置)9で巻き取る。尚、10は繊維フィラメント、11は繊維製品パッケージである。また、パッケージに巻き取る前に2組以上のローラーにより延伸しても良いが、この場合、延伸することにより付与されているインターレースがほどけてしまう事があるため、延伸倍率は低くするか、もしくは延伸後に再度インターレースを付与してもよい。 In FIG. 1, after the melted polyamide is discharged from the die 1 and passed through the heat retaining zone 2 below the die, an outer-blow-type annular type cooling installed at the lower center of the die for the purpose of reducing fineness unevenness in the longitudinal direction. The apparatus 3 blows cooling air from the inside to the outside of the spun yarn, and rapidly cools and solidifies each single yarn at a uniform distance from the die surface. Further, an annular oil supply device having a disk-shaped guide portion in which a single yarn contacts with the outer peripheral portion of the disk before focusing the yarn, and an annular slit for discharging the oil agent formed along the outer periphery of the guide immediately above the guide portion. After the oil agent is applied to each single yarn by 4, it is preferable that the yarn is converged by the converging guide type oiling device 5 and the second-stage oiling is performed. After refueling, an interlace is applied by an interlace nozzle 6 as necessary, passes through a take-up roller 7 and a drawing roller 8, and is taken up by a winder (winding device) 9. In addition, 10 is a fiber filament, 11 is a fiber product package. In addition, although it may be stretched by two or more sets of rollers before being wound on the package, in this case, since the interlace provided by stretching may be unraveled, the stretching ratio is lowered, or You may give an interlace again after extending | stretching.
 口金下保温ゾーン2において、口金面に向かって蒸気を噴出させ、口金下保温ゾーン2を蒸気で充満させることは、口金の吐出孔まわりのポリマーおよびポリマー中に含まれるオリゴマーが酸素と反応して固化し、所謂口金汚れとなることを抑制する効果があるため好ましく用いられる。この際、蒸気の噴出圧力は0.1~0.5kPaとなることが好ましく、噴出圧力が小さすぎる場合は口金下保温ゾーンの酸素濃度が高くなり、口金面汚れの抑制効果が小さくなる、また噴出圧力が大きすぎる場合は吐出糸条の揺れを引き起こすため、ウースター斑の悪化につながる。 In the heat retaining zone 2 below the base, steam is ejected toward the surface of the base and the heat retaining zone 2 is filled with steam because the polymer around the discharge hole of the base and the oligomer contained in the polymer react with oxygen. It is preferably used since it has an effect of suppressing solidification and so-called base stain. At this time, the vapor jet pressure is preferably 0.1 to 0.5 kPa. If the jet pressure is too small, the oxygen concentration in the heat retention zone below the base becomes high, and the effect of suppressing the contamination of the base surface becomes small. If the ejection pressure is too high, the discharged yarn will sway, leading to worsening of Wooster spots.
 円形の周上に配列された紡出糸条の冷却に際し、環状型冷却装置を用い、糸条に対して外吹き放射状に冷却風を吹き付けることは、口金から吐出されたポリアミドから発生するオリゴマー成分や口金面をシールしている蒸気が紡糸装置内部に滞留せず、外部へ開放できるため好ましく用いられる。 When cooling the spun yarn arranged on the circumference of the circle, using an annular cooling device and blowing cooling air radially outwardly on the yarn is an oligomer component generated from the polyamide discharged from the base Further, it is preferably used because the steam that seals the base and the base does not stay in the spinning device and can be released to the outside.
 上記図1の製造工程では外吹き式環状型冷却装置3を使用しているが、外吹き式環状型冷却装置3の代わりに図5に示した内吹き式環状型冷却装置18を使用することもできる。内吹き式環状型冷却装置18は、口金中心下部に紡出糸条を取り囲むように設置され、紡出糸条の外側から内側に向けて冷却風を吹き当て、各単糸を口金面から均一な距離で急速に冷却、固化させる。 In the manufacturing process of FIG. 1, the outer blown annular cooling device 3 is used, but the inner blown annular cooling device 18 shown in FIG. 5 is used instead of the outer blown annular cooling device 3. You can also. The inner-blow-type annular cooling device 18 is installed at the lower part of the center of the base so as to surround the spun yarn, and blows cooling air from the outer side to the inner side of the spun yarn, so that each single yarn is uniform from the base surface. Cool and solidify quickly at a short distance.
 冷却開始点距離、すなわち口金面から環状型冷却装置における冷却風吹き出し部の上端までの距離(L)は10~70mmであることが好ましく、より好ましくは10~60mm、さらに好ましくは10~50mmである。冷却開始点距離が短すぎると環状型冷却装置から吹き出される冷却風が口金面にあたり、口金面温度が低下するために熱可塑性ポリマーの吐出安定性が悪化し、紡糸糸切れや毛羽が増加する。また冷却開始点距離が長すぎると冷却風による均一かつ急速な冷却を行う前にポリアミドが固化してしまうため、繊維の長手方向の繊度変動(ウースター斑)が大きくなりやすく、布帛にしたときの品位が低下する傾向にある。 The cooling start point distance, that is, the distance (L) from the base surface to the upper end of the cooling air blowing part in the annular cooling device is preferably 10 to 70 mm, more preferably 10 to 60 mm, still more preferably 10 to 50 mm. is there. If the cooling start point distance is too short, the cooling air blown out from the annular cooling device hits the die surface, and the die surface temperature decreases, so that the discharge stability of the thermoplastic polymer deteriorates, and spun yarn and fluff increase. . Also, if the cooling start point distance is too long, the polyamide solidifies before uniform and rapid cooling with cooling air, so that the fiber fineness fluctuation (Worster spots) tends to increase, and when the fabric is made There is a tendency for the quality to decline.
 環状型冷却装置における冷却風の風速は15~60m/minであることが好ましく、より好ましくは20~55m/min、さらに好ましくは25~50m/minである。冷却風速が小さすぎる場合は単糸の均一かつ急速な冷却が不十分となることや、冷却糸条の張りが小さくなるため、外乱により糸揺れが起こりやすくなることにより、ウースター斑が大きくなる。またポリマーの冷却が不十分なままガイドと接触することで、毛羽や紡糸糸切れが多発するため、布帛としたときの品位に劣る。冷却風速が大きすぎる場合は各単糸に張力がかかりすぎるため、糸条が微振動を起こし、ウースター斑が大きくなることや、また紡糸時の糸切れが増加する。 The wind speed of the cooling air in the annular cooling device is preferably 15 to 60 m / min, more preferably 20 to 55 m / min, and further preferably 25 to 50 m / min. If the cooling air speed is too low, uniform and rapid cooling of the single yarn will be insufficient, and the tension of the cooling yarn will be reduced. Further, since the fluff and spun yarn breakage occur frequently by contacting the guide with insufficient cooling of the polymer, the quality of the fabric is inferior. When the cooling air speed is too high, tension is applied to each single yarn, causing the yarn to vibrate slightly, increasing Worcester spots, and increasing yarn breakage during spinning.
 環状型冷却装置における冷却風の温度は5~50℃であることが好ましく、より好ましくは10~40℃、さらに好ましくは15~35℃である。冷却風の温度が低すぎると口金下保温ゾーンの温度が低下し、口金面の温度が低下してしまうため、糸条の強度が低下する傾向があり、冷却風の温度が高すぎると糸条の均一冷却がされにくくなり、かつ糸条の冷却が不十分となりやすく、ウースター斑が大きくなるのに加え、紡糸時の糸切れが増加する傾向がある。 The temperature of the cooling air in the annular cooling device is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and further preferably 15 to 35 ° C. If the temperature of the cooling air is too low, the temperature of the heat retention zone below the base decreases and the temperature of the base surface decreases, so the strength of the yarn tends to decrease. If the temperature of the cooling air is too high, the yarn In addition to the fact that the uniform cooling of the yarn becomes difficult and the cooling of the yarn is liable to be insufficient, and Worcester spots increase, the yarn breakage during spinning tends to increase.
 環状型冷却装置における冷却風吹き付け部の鉛直方向の長さは100~500mmであることが好ましく、より好ましくは150~400mm、さらに好ましくは200~350mmである。冷却風吹き付け長が長すぎると単糸にかかる張力が大きくなり、紡糸糸切れの原因となり、冷却風吹き付け長が短すぎると単糸の冷却が不十分なまま油剤付与されるため、毛羽の減少、および紡糸糸切れの原因となる。 The vertical length of the cooling air blowing part in the annular cooling device is preferably 100 to 500 mm, more preferably 150 to 400 mm, still more preferably 200 to 350 mm. If the cooling air blowing length is too long, the tension applied to the single yarn will increase, causing spun yarn breakage, and if the cooling air blowing length is too short, the oil will be applied with insufficient cooling of the single yarn, reducing fluff. , And spun yarn breakage.
 環状型冷却装置を通過した単糸は、環状給油装置により処理することができる。この環状給油装置は、円形の周上に走行する紡出糸条の内側に配置される。 The single yarn that has passed through the annular cooling device can be processed by the annular oiling device. This annular oil supply device is arranged inside a spun yarn that runs on a circular circumference.
 図4は、本発明において好ましく使用される環状給油装置の一例を示す概念図である。この環状給油装置4は、油剤吐出用スリット12および円盤形ガイド13を有する。円盤形ガイド13に環状型冷却装置を通過した繊維フィラメント(単糸)14が接触するように環状給油装置4が配置される。この円盤形ガイド13における糸条との接触点の直上に油剤が供給されるよう円盤形ガイド13の外周にそって環状の油剤吐出用スリット12が形成されている。油剤は油剤供給用配管17から油剤溜まり15に供給される。油剤溜まり15に充填された油剤は油剤吐出用スリット12から吐出され、円盤形ガイド13における糸条との接触点で吐出糸条の各単糸と接触し、各単糸に油剤が付与される。 FIG. 4 is a conceptual diagram showing an example of an annular fueling device preferably used in the present invention. The annular oil supply device 4 includes an oil discharge slit 12 and a disk-shaped guide 13. The annular oil supply device 4 is arranged so that the fiber filament (single yarn) 14 that has passed through the annular cooling device contacts the disk-shaped guide 13. An annular oil discharge slit 12 is formed along the outer periphery of the disk-shaped guide 13 so that the oil is supplied directly above the contact point of the disk-shaped guide 13 with the yarn. The oil agent is supplied from the oil agent supply pipe 17 to the oil agent reservoir 15. The oil agent filled in the oil agent reservoir 15 is discharged from the oil agent discharge slit 12 and comes into contact with each single yarn of the discharge yarn at the contact point with the yarn in the disk-shaped guide 13, and the oil agent is applied to each single yarn. .
 環状型冷却装置を通過した単糸を円盤形のガイドに接触させることは、冷却風を吹き付けられた単糸が揺れるのを防止し、単糸の均一冷却を促進させ、ウースター斑を低減させる効果があるため好ましく用いられる。さらに、糸条を集束させる前に、前述の円盤形ガイドにおける糸条との接触点の直上にガイドの外周にそって形成した、油剤吐出用の環状スリットから油剤を吐出させ、油剤を各単糸に付与する環状給油装置を用いる方法は、油剤付与前の摩擦抵抗の高い糸が、円盤形ガイドに接触することや、糸条集束時に油剤付与されていない単糸同士が擦過されることによる毛羽の発生を抑制する効果があり、また集束ガイド型給油装置による油剤付与ではできなかった単糸間の均一油剤付与がなされるため、紡糸工程における糸道ガイドと油剤付与のされていない単糸が擦過することによる毛羽の発生や染色時の染め斑の発生が抑制され、高次加工性の良好な繊維が得られるため好ましく用いられる。また、環状給油装置により油剤を付与する位置は口金面から300~1000mm下方であることが好ましく、より好ましくは350~700mm、さらに好ましくは400~600mm下方である。給油位置が高すぎると単糸の冷却が不十分なまま油剤が付与されるため、フィラメントの強度低下や毛羽の発生の原因となり、給油位置が低すぎると、口金面から吐出された単糸が集束するまでの距離が長くなるため、糸揺れが起こりやすくなり、毛羽の原因やウースター斑の悪化に繋がるのに加え、単糸の随伴気流効果が大きくなるため、走行糸条の張力が高くなり、紡糸糸切れの原因となる。環状給油装置にて付与される油剤の種類は、特に限定されないが、エマルジョンタイプであることが好ましい。エマルジョン油剤では表面張力によるガイド上での油膜形成が起こりやすく、円盤形ガイドの周方向に沿って均一に油剤を付与することができる。 Contacting the single yarn that has passed through the annular cooling device with the disk-shaped guide prevents the single yarn blown by cooling air from shaking, promotes uniform cooling of the single yarn, and reduces Worcester spots. Therefore, it is preferably used. Further, before converging the yarn, the oil agent is discharged from an annular slit for discharging the oil agent formed along the outer periphery of the guide just above the contact point with the yarn in the disk-shaped guide described above. The method using the annular oil supply device applied to the yarn is because the yarn with high friction resistance before applying the oil agent comes into contact with the disk-shaped guide, or the single yarn not applied with the oil agent is rubbed together when the yarn is bundled. A single yarn that has the effect of suppressing the generation of fuzz and that is not provided with an oil agent by a converging guide type oiling device, and that is not provided with an oil agent in the spinning process. It is preferably used because generation of fluff due to rubbing and generation of dyeing spots at the time of dyeing are suppressed, and fibers having high-order processability are obtained. The position where the oil agent is applied by the annular oiling device is preferably 300 to 1000 mm below the base surface, more preferably 350 to 700 mm, and still more preferably 400 to 600 mm. If the oil supply position is too high, the oil agent is applied with insufficient cooling of the single yarn, which causes a decrease in filament strength and fluffing.If the oil supply position is too low, the single yarn discharged from the base surface Longer distance to converge makes yarn swinging more likely, leading to fluffing and worsening of Wooster's spots, and also increases the accompanying airflow effect of single yarn, increasing the running yarn tension. , Causing yarn breakage. Although the kind of oil agent provided with a cyclic | annular oil supply apparatus is not specifically limited, It is preferable that it is an emulsion type. In the case of an emulsion oil agent, an oil film is likely to be formed on the guide due to surface tension, and the oil agent can be applied uniformly along the circumferential direction of the disk-shaped guide.
 環状給油装置4にて給油を行ったのち、集束ガイド型給油装置5にて単糸を集束させるとともに、さらに給油を行う2段給油方式をとる方法は、繊維の単糸間および長手方向の両面での均一油剤付与が達成できるため好ましく用いられる。環状給油装置4においては単糸間に均一に油剤が付与されるものの、長手方向に均一に油剤付与された繊維を得ることが難しく、長手方向の均一油剤付与を可能とする集束ガイド型給油装置5と環状給油装置4との2段給油方式とすることで繊維の単糸間および長手方向の両面での均一油剤付与が可能となり、染色後の品位の良好なポリアミド極細繊維を得ることができる。 The method of adopting the two-stage oil supply method in which the single yarn is converged by the converging guide type oil supply device 5 after the oil supply by the annular oil supply device 4 and the oil supply is further performed is the double-sided between the single yarns of the fibers and in the longitudinal direction. It can be preferably used because it can achieve the uniform oil agent application. In the annular oil supply device 4, although the oil agent is uniformly applied between the single yarns, it is difficult to obtain fibers uniformly oiled in the longitudinal direction, and the converged guide type oil supply device that enables the application of the uniform oil agent in the longitudinal direction is possible. By adopting a two-stage lubrication system of 5 and the annular lubrication device 4, it is possible to apply a uniform oil agent between the single yarns of the fibers and both sides in the longitudinal direction, and it is possible to obtain polyamide ultrafine fibers of good quality after dyeing .
 また2段目の給油に用いられる集束ガイド型給油装置は通常の給油ガイドを使用することができ、たとえば前述の特許文献3に示されるような給油ガイドが好ましく用いられる。 Also, the focusing guide type oiling device used for the second stage oiling can use a normal oiling guide, and for example, an oiling guide as shown in the above-mentioned Patent Document 3 is preferably used.
 引取りローラー7における糸条の引取り速度は3500~4500m/分であることが好ましい。引取り速度が低すぎる場合は長手方向におけるポリアミドの配向が不安定になり、長手での染め斑が発生しやすくなり、引取り速度が高すぎる場合は糸条にかかる張力が大きくなるため、毛羽や紡糸糸切れの原因となる。さらに延伸ローラー8での延伸倍率は1.0~1.3であることが好ましい。延伸倍率が高すぎると得られる繊維の伸度が低くなりすぎるのに加え、単糸が切れることで毛羽が発生しやすくなる。 The take-up speed of the yarn in the take-up roller 7 is preferably 3500 to 4500 m / min. If the take-up speed is too low, the orientation of the polyamide in the longitudinal direction becomes unstable, and dyeing spots in the longitudinal direction are likely to occur, and if the take-up speed is too high, the tension applied to the yarn increases. Or cause spun yarn breakage. Furthermore, the draw ratio at the drawing roller 8 is preferably 1.0 to 1.3. If the draw ratio is too high, the elongation of the resulting fiber becomes too low, and in addition, the single yarn breaks and fluff is likely to occur.
 本発明のポリアミド極細繊維は、単糸繊度が0.1dtex以上0.5dtex以下であることが必要であり、好ましくは0.25~0.45dtexである。単糸繊度が太すぎる場合は、糸条の剛性が高くなり、織編物にした際、所望するソフト性、平滑性、ドレープ性、高吸水性、高密度性の優れた織編物を得ることが困難となり、単糸繊度が細過ぎる場合は、布帛にする際の単糸切れが発生しやすくなり、布帛の毛羽立ちや平滑性が劣る傾向があり、またウースター斑が悪化するため布帛の染色後の品位が悪化する傾向がある。上記単糸繊度の測定は後述の方法によるものとする。 The polyamide ultrafine fiber of the present invention is required to have a single yarn fineness of 0.1 dtex or more and 0.5 dtex or less, preferably 0.25 to 0.45 dtex. When the single yarn fineness is too thick, the yarn has high rigidity, and when it is made into a woven or knitted fabric, it is possible to obtain a woven or knitted fabric excellent in desired softness, smoothness, drape, high water absorption and high density. When the single yarn fineness is too thin, single yarn breakage is likely to occur when making the fabric, and the fluff and smoothness of the fabric tend to be inferior. There is a tendency for the quality to deteriorate. The single yarn fineness is measured by the method described later.
 本発明のポリアミド極細繊維はフィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であることが必要である。平均毛羽数が1.0個より多い場合、製織、製編時の整経毛羽の発生や仮撚加工時の加工糸切れ、解じょ不良が発生し、さらに織編物にしたときに、平滑性や品位に欠ける。好ましくは長手方向12000mあたりの平均毛羽数は0.5個以下であり、さらに好ましくは0個である。毛羽数を小さくするためには、油剤付与前の摩擦抵抗の高い単糸同士の擦過を防止することが好ましく、上述の環状給油ガイドにより糸条の集束前に油剤を付与する方法が好ましい。上記平均毛羽数の測定は後述の方法によるものとする。 The average number of fluffs per 12000 m in the longitudinal direction of the filament is required to be 1.0 or less for the polyamide ultrafine fiber of the present invention. When the average number of fluff is more than 1.0, warp fluff is generated during weaving and knitting, processing thread breakage during false twisting, and unraveling defects occur. It lacks sex and quality. The average number of fluffs per 12000 m in the longitudinal direction is preferably 0.5 or less, and more preferably 0. In order to reduce the number of fluffs, it is preferable to prevent single yarns having high frictional resistance before applying the oil agent, and a method of applying the oil agent before the yarns are bundled by the above-described annular oil supply guide is preferable. The average number of fluffs is measured by the method described later.
 繊維は一般に長手方向に糸条繊度変動を示しており、染色時に糸条の太い部分が濃染となる傾向があり、特に単糸の繊度が小さい場合にはこれが顕著に現れる。繊維の太細斑が大きいと、織編物の均染性が低下し外観を損ねるため、ウースター斑(太細斑)は1.0%以下であることが好ましい。ウースター斑が高すぎると、平滑性や染色時の濃淡差が大きく発現し、製品としての品位が劣る傾向にある。ウースター斑は好ましくは0.9%以下である。ウースター斑を小さくする方法については特に限定はしないが、冷却風吹き出し装置を口金面に近づけ、急冷する方法や、糸条を外周および/または内周から円環状に冷却風を吹き付ける方法が好ましく用いられる。さらに好ましくは糸条の内周から円環状に冷却風を吹き付けて単糸を均一に冷却した後、各単糸を円盤状のガイドに接触させて糸の揺れを防止する方法が用いられる。本発明においてウースター斑(太細斑)の測定は後述の方法によるものとする。 The fiber generally shows a variation in the fineness of the yarn in the longitudinal direction, and the thick portion of the yarn tends to be deeply dyed at the time of dyeing, and this appears particularly when the fineness of the single yarn is small. If the fine fibers are large, the levelness of the woven or knitted fabric is deteriorated and the appearance is deteriorated. Therefore, the Wooster spots (thick spots) are preferably 1.0% or less. If the Wooster spots are too high, smoothness and a difference in shade at the time of dyeing are greatly developed, and the quality as a product tends to be inferior. Wooster spots are preferably 0.9% or less. The method for reducing Wooster spots is not particularly limited, but a method in which the cooling air blowing device is brought close to the base surface and rapidly cooled, or a method in which cooling air is blown in an annular shape from the outer periphery and / or inner periphery is preferably used. It is done. More preferably, after cooling the single yarn uniformly by blowing cooling air in an annular shape from the inner periphery of the yarn, each single yarn is brought into contact with a disk-shaped guide to prevent the yarn from shaking. In the present invention, Wooster spots (thick spots) are measured by the method described later.
 本発明のポリアミド極細繊維が、断面形状が円形である単糸を含むとき、その単糸における、表面部の配向パラメーターと中央部の配向パラメーターが異なることが好ましい。表面部と中央部における配向パラメーターが異なることで、ポリアミド極細繊維の中央部と表面部を通過する光の屈折率が異なり、円形断面であっても防透け効果が得られるのである。具体的には、単糸中央部の配向パラメーターに対する単糸表面部の配向パラメーターの比が1.10以上であることが好ましく、より好ましくは1.15倍以上2.00倍以下、さらに好ましくは1.20以上1.80倍以下である。単糸の中央部の配向パラメーターに対し、表面部の配向パラメーターが上記範囲にある場合、単糸の断面方向を通過する光が乱反射するため、布帛とした際に防透け効果が得られ、かつ繊維内部構造における歪みも大きくなりすぎず、十分なフィラメントの強度も保持することができる。上記配向パラメーターの測定は後述の方法によるものとする。このような配向パラメーターを有するポリアミド極細繊維は、冷却開始点距離を長くしすぎないよう、冷却風の風速(冷却風速)を小さくしすぎないよう、前述の好ましい条件を選択して製造することにより得ることができる。 When the polyamide ultrafine fiber of the present invention includes a single yarn having a circular cross-sectional shape, it is preferable that the orientation parameter of the surface portion and the orientation parameter of the central portion of the single yarn are different. The difference in the orientation parameter between the surface portion and the central portion results in a difference in the refractive index of light passing through the central portion and the surface portion of the polyamide ultrafine fiber, and an anti-penetration effect can be obtained even with a circular cross section. Specifically, the ratio of the orientation parameter of the single yarn surface part to the orientation parameter of the single yarn central part is preferably 1.10 or more, more preferably 1.15 times or more and 2.00 times or less, further preferably 1.20 or more and 1.80 times or less. When the orientation parameter of the surface portion is in the above range with respect to the orientation parameter of the center portion of the single yarn, light passing through the cross-sectional direction of the single yarn is irregularly reflected, so that when the fabric is used, a see-through effect is obtained, and The strain in the fiber internal structure does not become too large, and sufficient filament strength can be maintained. The orientation parameter is measured by the method described later. The polyamide ultrafine fiber having such an orientation parameter is manufactured by selecting the above-mentioned preferable conditions so that the cooling air velocity (cooling air velocity) is not too small so as not to make the cooling start point distance too long. Obtainable.
 本発明のポリアミド極細繊維は、ごく細い単糸繊度を有するものであり、溶融紡糸した糸条を均一かつ急速に冷却することで上記表面部の配向パラメーターと中央部の配向パラメーターの構造が異なる繊維が得られるようになり、より急速かつ均一に冷却できる冷却条件を採用することで、単糸中央部の配向パラメーターに対する単糸表面部の配向パラメーターの比が増大する傾向にある。 The polyamide ultrafine fiber of the present invention has a very fine single yarn fineness and is a fiber in which the structure of the orientation parameter of the surface portion and the orientation parameter of the central portion is different by cooling the melt-spun yarn uniformly and rapidly. By adopting cooling conditions that allow more rapid and uniform cooling, the ratio of the orientation parameter of the single yarn surface portion to the orientation parameter of the single yarn central portion tends to increase.
 また、このポリアミド極細繊維の伸度は40~70%であることが好ましい。伸度が低くなりすぎると、フィラメントの引張抵抗が高くなり、仮撚り加工において加撚される実撚り数が少なくなるため、得られる加工糸に十分な捲縮が付与されにくくなり、また、延伸糸において、糸切れや毛羽が発生しやすくなり、高次通過性が劣る傾向になる。一方、伸度が高すぎると、加撚される実撚り数が過剰となり、得られた加工糸に毛羽が生じたり、強度が低下しやすくなり、延伸糸において、残留伸度が高いために、織編物にスジが発現したりしやすくなり、品位に劣りやすくなる傾向がある。上記伸度の測定は後述の方法によるものとする。 Further, the elongation of the polyamide ultrafine fiber is preferably 40 to 70%. If the elongation becomes too low, the tensile resistance of the filament becomes high, and the number of actual twists twisted in the false twisting process decreases, so that it becomes difficult to give sufficient crimp to the obtained processed yarn. In yarn, yarn breakage and fluff are likely to occur, and high-order passability tends to be inferior. On the other hand, if the elongation is too high, the actual number of twists to be twisted becomes excessive, fluffing occurs in the obtained processed yarn, the strength tends to decrease, and the drawn yarn has a high residual elongation. There is a tendency that streaks are likely to appear in the woven or knitted fabric, and the quality tends to be inferior. The measurement of the said elongation shall be based on the below-mentioned method.
 また、得られたポリアミド極細繊維を15%伸長させたときの応力は1.0~2.0gf/dtex(9.8×10-3~19.6×10-3N/dtex)であることが好ましく、より好ましくは1.2~1.8gf/dtex(11.8×10-3~17.6×10-3N/dtex)である。15%伸長時応力が低すぎると、仮撚り加工時の張力が低くなりすぎ、加工糸切れや、加工張力変動が生じやすく、加工糸の品位低下や、収率が悪化しやすくなる。また、15%伸長時応力が高すぎると、仮撚り加工を行う際、インターレース部に大きな張力が集中し、単糸切れを発生させ、工程通過性や、織編物の品位を低下させやすくなる。上記15%伸長させたときの応力の測定は後述の方法によるものとする。 Further, when the obtained polyamide ultrafine fiber is stretched 15%, the stress is 1.0 to 2.0 gf / dtex (9.8 × 10 −3 to 19.6 × 10 −3 N / dtex). And more preferably 1.2 to 1.8 gf / dtex (11.8 × 10 −3 to 17.6 × 10 −3 N / dtex). If the stress at 15% elongation is too low, the tension at the time of false twisting becomes too low, and the processed yarn is likely to break or change in the working tension, so that the quality of the processed yarn is lowered and the yield is likely to deteriorate. On the other hand, if the stress at 15% elongation is too high, a large tension is concentrated on the interlace part when performing false twisting, and breakage of the single yarn occurs, and the process passability and the quality of the woven or knitted fabric tend to be lowered. The measurement of the stress when the 15% elongation is performed is based on the method described later.
 本発明のポリアミド極細繊維の総繊度は、15~300dtexであることが好ましく、より好ましくは15~200dtexである。総繊度が小さすぎると繊維の破断強力が小さくなり、布帛にした最の布帛の引き裂き強度が小さくなってしまい、総繊度が大きすぎる場合は染色時に繊維内部まで染料が浸透しにくくなり、染色後に染め斑が発生しやすくなり、高品位な布帛を得にくくなる。上記総繊度の測定は後述の方法によるものとする。 The total fineness of the polyamide ultrafine fiber of the present invention is preferably 15 to 300 dtex, more preferably 15 to 200 dtex. If the total fineness is too small, the breaking strength of the fiber becomes small, the tear strength of the last fabric made into a fabric becomes small, and if the total fineness is too large, it becomes difficult for the dye to penetrate into the fiber at the time of dyeing. Dyeing spots are likely to occur, making it difficult to obtain a high-quality fabric. The total fineness is measured by the method described later.
 本発明のポリアミド極細繊維のフィラメント数は30以上が好ましく、より好ましくは30~500フィラメントであり、さらに好ましくは50~400フィラメントである。フィラメント数が30未満の場合は狙いとする優れたソフト性、ドレープ性、高吸水性、高密度性が得られにくくなり、フィラメント数が大きすぎると均一にインターレースを付与しにくく、解じょ性が悪化しやすくなり、またフィラメント間の均一油剤付与が難しくなり単糸切れに起因する毛羽の発生が増加しやすくなる。 The number of filaments of the polyamide ultrafine fiber of the present invention is preferably 30 or more, more preferably 30 to 500 filaments, and still more preferably 50 to 400 filaments. If the number of filaments is less than 30, it will be difficult to obtain the desired softness, drape, high water absorption, and high density, and if the number of filaments is too large, it will be difficult to uniformly interlace and release. Is easily deteriorated, and it is difficult to apply a uniform oil agent between filaments, and the occurrence of fluff due to single yarn breakage is likely to increase.
 本発明のポリアミド極細繊維の断面形状は特に限定されるものではなく、例えば,円形断面、異形断面が挙げられる。異形断面としては、例えば偏平断面、レンズ型断面、三葉断面、六葉断面、いわゆるマルチローバル断面と呼ばれる3~8ヶの凸部と同数の凹部を有する異形断面、中空断面その他公知の異形断面でもよい。好ましい断面としては円形断面が紡糸安定性と優れたソフト性、ドレープ性付与の点で優れている。さらにポリアミド極細繊維が円形断面で中央部と表面部が前記好ましい配向パラメーターの比を有する場合は、配向の構造差により単糸の断面方向を通過する光が乱反射し、また、三葉断面、マルチローバル断面や、中空断面を有するものは、単糸表面を通過する光が乱反射するため、布帛とした際に透過光の乱反射による高い防透け性が得られる点で好ましい。さらに、三葉断面やマルチローバル断面、およびマルチローバル断面と円形断面のフィラメントが混合した断面構成などは、布帛にした際に単糸間に高い空隙が得られ、毛細管現象に起因する高吸水性や、高嵩密度性の付与ができる点で優れ、さらに透過光が乱反射することによる防透け性の付与においても優れているため、好ましく用いられる。 The cross-sectional shape of the polyamide ultrafine fiber of the present invention is not particularly limited, and examples thereof include a circular cross section and an irregular cross section. For example, a flat section, a lens-type section, a trilobal section, a six-leaf section, a so-called multi-lobe section, a deformed section having three to eight convex sections and the same number of concave sections, a hollow section, and other known modified sections But you can. As a preferred cross section, a circular cross section is excellent in terms of spinning stability, excellent softness and draping properties. Further, when the polyamide ultrafine fiber has a circular cross section and the center part and the surface part have the ratio of the preferred orientation parameters, the light passing through the cross-sectional direction of the single yarn is irregularly reflected due to the structural difference in orientation, A material having a global cross section or a hollow cross section is preferable in that light passing through the surface of the single yarn is diffusely reflected, and therefore, when a cloth is used, high anti-transparency due to irregular reflection of transmitted light is obtained. Furthermore, the trilobal cross section, multi-lobe cross section, and cross-sectional configurations in which multi-lobe cross sections and circular cross-section filaments are mixed, high voids are obtained between single yarns when made into fabrics, resulting in high water absorption due to capillary action. In addition, it is excellent in that it can be imparted with high bulk density, and is also preferably used because it is excellent in imparting the anti-permeability due to irregular reflection of transmitted light.
 かくして得られる本発明のポリアミド極細繊維は、優れたソフト性、平滑性、ドレープ性、高吸水性、高密度性、染色後の高品位を布帛に与えることができ、好ましい態様においてはさらに防透け性にも優れる。よって本発明の極細繊維を織物とした際は保温性、軽量性に優れたダウンジャケット生地などのアウター素材、編物とした際は、上記機能をもった高級感のあるインナー、さらにタイツなどに用いられるカバリング糸などに好ましく用いることができる。 The polyamide ultrafine fiber of the present invention thus obtained can give the fabric excellent softness, smoothness, drape, high water absorption, high density, and high quality after dyeing, and in a preferred embodiment it is further opaque. Excellent in properties. Therefore, when using the ultrafine fiber of the present invention as a woven fabric, it is used as an outer material such as a down jacket fabric excellent in heat retention and light weight, and when used as a knitted fabric, it is used for a high-class inner with the above functions, and tights. It can be preferably used for a covering yarn or the like.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 本明細書および実施例中の各特性値は次の方法にしたがって求めた。 Each characteristic value in the present specification and examples was determined according to the following method.
 (1)総繊度および単糸繊度
 試料(糸条)を枠周1.000mの検尺機にて、27デシテックス以下の品種は1000回巻カセ、28デシテックス以上の品種は500回巻カセを作成し、熱風乾燥機にて105±2℃×60分乾燥した後、天秤にて計量した値により次式(i)または(ii)にて算出したものを総繊度とした。また得られた総繊度を糸条単糸数で割り返した値を単糸繊度とした。
(i)27デシテックス以下の品種
  総繊度(dtex)=計量値(g)×(10000/1000)×{1+(公定水分率(%)/100)}
(ii)28デシテックス以上の品種
  総繊度(dtex)=計量値(g)×(10000/500)×{1+(公定水分率(%)/100)}
 ここで、実施例中で使用したナイロン6およびナイロン66ポリマーについては、公定水分率を4.5%として繊度の算出を行った。
  単糸繊度(dtex)=総繊度(dtex)/単糸数
 ただし、異なる2種類の断面形状(断面Aおよび断面B)の混繊フィラメントにおける単糸繊度については、以下に示す式にて、それぞれの断面形状における単糸断面の面積比を算出し、上記総繊度に面積比を乗じ、同形状のフィラメントの総数で割った値とした。
  断面Aの面積比=断面Aの面積/(断面Aの面積+断面Bの面積)
  断面Bの面積比=断面Bの面積/(断面Aの面積+断面Bの面積)
  混繊フィラメント中の断面Aの単糸繊度(dtex)=(総繊度(dtex)×断面Aの面積比)/断面Aのフィラメント数
  混繊フィラメント中の断面Bの単糸繊度(dtex)=(総繊度(dtex)×断面Bの面積比)/断面Bのフィラメント数
(1) Total fineness and single yarn fineness Using a measuring machine with a frame circumference of 1.000 m, create a 1000-turn casserole for varieties below 27 decitex and a 500-turn casserole for varieties above 28 decitex Then, after drying at 105 ± 2 ° C. for 60 minutes with a hot air dryer, the value calculated by the following formula (i) or (ii) based on the value measured with a balance was taken as the total fineness. Further, the value obtained by dividing the obtained total fineness by the number of single yarns was defined as the single yarn fineness.
(I) Varieties of 27 dtex or less Total fineness (dtex) = Weighed value (g) × (10000/1000) × {1+ (official moisture content (%) / 100)}
(Ii) Varieties of 28 dtex or more Total fineness (dtex) = Weighed value (g) × (10000/500) × {1+ (official moisture content (%) / 100)}
Here, for the nylon 6 and nylon 66 polymers used in the examples, the fineness was calculated with an official moisture content of 4.5%.
Single yarn fineness (dtex) = total fineness (dtex) / number of single yarns However, for the single yarn fineness in the mixed filaments of two different types of cross-sectional shapes (cross-section A and cross-section B), The area ratio of the cross section of the single yarn in the cross-sectional shape was calculated, and the value obtained by multiplying the total fineness by the area ratio and dividing by the total number of filaments of the same shape.
Area ratio of section A = area of section A / (area of section A + area of section B)
Area ratio of section B = area of section B / (area of section A + area of section B)
Single yarn fineness (dtex) of cross section A in mixed filaments = (total fineness (dtex) × area ratio of cross section A) / number of filaments of cross section A Single yarn fineness (dtex) of cross section B in mixed filaments = ( Total fineness (dtex) × area ratio of section B) / number of filaments in section B
 (2)硫酸相対粘度
 試料を秤量し、98重量%濃硫酸に試料濃度(C)が1g/100mlとなるように溶解し、該溶液についてオストワルド粘度計にて25℃での落下秒数(T1)を測定する。さらに試料を溶解していない98重量%濃硫酸について、同様に25℃での落下秒数(T2)を測定した後、試料の相対粘度(ηr)を下式により算出する。
(ηr)=(T1/T2)+{1.891×(1.000-C)}
(2) Sulfuric acid relative viscosity A sample is weighed and dissolved in 98% by weight concentrated sulfuric acid so that the sample concentration (C) is 1 g / 100 ml, and the solution is dropped by an Ostwald viscometer at 25 ° C. (T1 ). Furthermore, about 98 weight% concentrated sulfuric acid which has not melt | dissolved the sample, after similarly dropping seconds (T2) at 25 degreeC are measured, the relative viscosity ((eta) r) of a sample is computed by the following Formula.
(Ηr) = (T1 / T2) + {1.891 × (1.000−C)}
 (3)平均毛羽数
 平均毛羽数は、東レエンジニアリング社(現在の社名はtmtマシナリー)のMALUTI-POINT FRAY COUNTER MFC-200(センサー部 F型)を使用して、毛羽長設定(センサー光軸中心からU-Guide底部までの距離):2.0mm、糸速:600m/min、測定時間:20分間の条件において、給糸張力:0.25g/dtex~0.75g/dtexの範囲にあることを確認しながら、測定回数:10回測定し、その測定平均値を平均毛羽数(個/12000m)とした。
(3) Average number of fluff The average number of fluff is set using the MALUTI-POINT FRAY COUNTER MFC-200 (sensor part F type) from Toray Engineering Co., Ltd. (current name is tmt machinery) (sensor optical axis center) To U-Guide bottom): 2.0 mm, yarn speed: 600 m / min, measurement time: 20 minutes, feed tension: within the range of 0.25 g / dtex to 0.75 g / dtex The number of measurements was measured 10 times, and the measurement average value was defined as the average number of fluffs (pieces / 12,000 m).
 (4)配向パラメーター比
 配向パラメーターは断面形状が円形であるサンプル(単糸)について、ラマン分光法により測定し、Jobin Yvon/愛宕物産社製 T-64000を使用し、測定モード:顕微ラマン、対物レンズ:×100、ビーム径:1μm、光源:Ar+レーザー/514.5nm、レーザーパワー:100mW、回折格子:Single 600、1800gr/mm、スリット:100μm、検出器:Jobin Yvon社製CCD 1024×256の条件にて測定を行った。測定試料は樹脂(ビスフェノール系エポキシ樹脂、24時間硬化)包埋後、繊維長手方向から5°以下の切削角にてミクロトームにより切片化した。切片試料の厚みは1.5μmであり、繊維の中心を通るように切り出した。配向の測定は偏光条件下で行い、偏光方向が繊維長手方向と一致する場合を平行偏光(∥)、直交する場合を垂直偏光(⊥)とし、それぞれ得られるラマンバンドにおいて、1130cm-1付近のC-C変角振動モードに帰属されるピーク強度(I1130)と、1635cm-1付近のC=C伸縮振動に帰属されるピーク強度(I1635)の比から配向の程度を評価した。すなわち
配向パラメーター=(I1130/I1635)∥/(I1130/I1635)⊥
である。このうち、測定点について、単糸表面部の配向パラメーターは単糸表面部から1μm内部の点、中央部の配向パラメーターは単糸中央部の点についてレーザーを照射し、配向パラメーターを算出した。この結果より、単糸中央部の配向パラメーターに対する単糸表面部の配向パラメーター比は以下の式にて算出した。なお、単糸中央部と単糸表面部の配向パラメーターについては、フィラメント中より無作為に採取した単糸5本における平均値を用いて算出した。
 配向パラメーター比=(単糸表面部の配向パラメーター)/(単糸中央部の配向パラメーター)
(4) Orientation parameter ratio Orientation parameters were measured by Raman spectroscopy for a sample (single yarn) having a circular cross-sectional shape, using T-64000 manufactured by Jobin Yvon / Ehime Bussan Co., Ltd., measurement mode: microscopic Raman, objective Lens: × 100, beam diameter: 1 μm, light source: Ar + laser / 514.5 nm, laser power: 100 mW, diffraction grating: Single 600, 1800 gr / mm, slit: 100 μm, detector: CCD 1024 × 256 manufactured by Jobin Yvon The measurement was performed under the following conditions. A measurement sample was embedded in a resin (bisphenol-based epoxy resin, cured for 24 hours) and then sectioned with a microtome at a cutting angle of 5 ° or less from the fiber longitudinal direction. The slice sample had a thickness of 1.5 μm and was cut out so as to pass through the center of the fiber. The measurement of the orientation is performed under polarization conditions. When the polarization direction coincides with the longitudinal direction of the fiber, the parallel polarization (∥) and when perpendicular, the vertical polarization (⊥) are obtained, and in the obtained Raman band, the vicinity of 1130 cm −1 is obtained. The degree of orientation was evaluated from the ratio of the peak intensity (I 1130 ) attributed to the CC deformation vibration mode and the peak intensity (I 1635 ) attributed to C = C stretching vibration near 1635 cm −1 . That is, orientation parameter = (I 1130 / I 1635 ) ∥ / (I 1130 / I 1635 ) ⊥
It is. Among the measurement points, the orientation parameter of the single yarn surface portion was irradiated with a laser at a point 1 μm inside from the single yarn surface portion, and the central orientation parameter was calculated at the center portion of the single yarn to calculate the orientation parameter. From this result, the ratio of the orientation parameter of the single yarn surface part to the orientation parameter of the single yarn central part was calculated by the following formula. In addition, about the orientation parameter of the single yarn center part and the single yarn surface part, it calculated using the average value in five single yarns collected at random from the filament.
Orientation parameter ratio = (Orientation parameter of single yarn surface portion) / (Orientation parameter of single yarn central portion)
 (5)ウースター斑
 ウースター斑は、ZELLWEGER USTER社のUSTER TESTER UT-4を使用し、糸速50m/分、S撚り、撚り数8000rpmで3分間の測定条件において、1/2inertのウースター斑U%を測定した。
(5) Wooster plaques Wooster plaques were measured using a ZELLWEGER USTER USTER TESTER UT-4, measuring at a yarn speed of 50 m / min, S twist, and a twist number of 8000 rpm for 3 min. Was measured.
 (6)15%伸長時応力
 15%伸長時応力はORIENTEC社製TENSIRON RPC-1210Aを使用し、つかみ間隔50cmで把持し、50cm/minの引っ張り速度で伸長させ、57.5cmまで伸長させたときの張力を3回測定し、その平均値を繊維の繊度で割り返した値とした。
(6) 15% elongation stress 15% elongation stress when using TENSIRON RPC-1210A manufactured by ORIENTEC, gripping at a gripping interval of 50 cm, stretching at a pulling speed of 50 cm / min, and stretching to 57.5 cm The tension was measured three times, and the average value was divided by the fineness of the fiber.
 (7)伸度
 伸度はORIENTEC社製TENSIRON RPC-1210Aを使用し、つかみ間隔50cmで把持し、50cm/minの引っ張り速度で伸張させ、糸が破断した際の引っ張り長を3回測定し、その平均値を50cmで割り、100を掛けた値とした。
(7) Elongation The elongation is measured using a TENSIRON RPC-1210A manufactured by ORIENTEC, gripped at a gripping interval of 50 cm, stretched at a pulling speed of 50 cm / min, and the tensile length when the yarn breaks is measured three times. The average value was divided by 50 cm and multiplied by 100.
 (8)布帛のソフト性
 得られた繊維からなり染色した布帛について、柔らかさ、表面のなめらかさ、ドレープ性、布帛の色の深みを触感および目視で判定し、以下の4段階で判定した。
 (A)・・・極めて良好(染色した布帛が柔らかく、表面がなめらかであり、ドレープ性がある。布帛表面に毛羽立ちはみられない。)
 (B)・・・良好(柔らかさ、ドレープ性に優れるものの、なめらかさに劣り、一部表面に毛羽立ちが見られる。)
 (C)・・・やや不良(ドレープ性があるものの、柔らかさ、なめらかさに劣り、一部に毛羽立ちが見られる。)
 (D)・・・不良(布帛が硬く、なめらかさ、ドレープ性に劣り、表面に毛羽立ちがみられる。)。
(8) Softness of cloth The softness, the smoothness of the surface, the drapeability, and the color depth of the cloth were determined visually and tactilely, and the following four stages were determined.
(A)... Very good (the dyed fabric is soft, the surface is smooth and draped. No fuzz is observed on the fabric surface)
(B) ... good (although it is excellent in softness and drapeability, it is inferior in smoothness, and some surfaces are fluffy.)
(C) ··· Slightly poor (although it has drape properties, it is inferior in softness and smoothness, and some fluff is seen.)
(D) Defective (the fabric is hard, smooth and drape is inferior, and the surface is fuzzy).
 (9)布帛の染色品位
 得られた繊維をタテ・ヨコ両方に用い、かつヨコ打ち込み長180cmの平織物を作成し、布帛を酸性染料(Mitsui Nylon Black GL)を用いて染色した。染色後の平織物を透視検反機によって検査者(10人)の評価により、長手方向で100m検反し、次の基準で相対評価した。
 (A)・・・スジ、濃淡ムラが全くない。
 (B)・・・弱いスジ、濃淡ムラが多少見られるが実用可能レベル。
 (C)・・・弱いスジ、濃淡ムラが多く見られ実用可能レベルではない。
 (D)・・・強いスジ、濃淡ムラが多く見られ実用可能レベルではない。
(9) Dyeing quality of the fabric The obtained fiber was used for both vertical and horizontal, and a plain woven fabric having a length of 180 cm was created, and the fabric was dyed with an acid dye (Mitsui Nylon Black GL). The plain fabric after dyeing was inspected 100 m in the longitudinal direction by an inspector (10 persons) using a fluoroscopic inspection machine, and subjected to relative evaluation according to the following criteria.
(A) ... there are no streaks or shading.
(B) ... Slight streaks and uneven shading are seen, but at a practical level.
(C) ···················································· Practical level
(D) A lot of strong streaks and shading unevenness is observed, which is not at a practical level.
 (10)布帛の吸水性(バイレック法)
 JIS L1096(1999)「バイレック法」により測定した。この測定で得られる吸水高さについて次の基準で評価した。
 (A)・・・90mm以上
 (B)・・・65mm以上90mm未満
 (C)・・・55mm以上65mm未満
 (D)・・・55mm未満。
(10) Water absorbency of fabric (Bilec method)
Measured according to JIS L1096 (1999) “Bilec method”. The water absorption height obtained by this measurement was evaluated according to the following criteria.
(A) ... 90 mm or more (B) ... 65 mm or more and less than 90 mm (C) ... 55 mm or more and less than 65 mm (D) ... less than 55 mm.
 (11)布帛の防透け性
 得られた繊維にて筒編みを作成した後、検査者(10人)の評価により、精練後の布帛の防透け性を次の基準で相対評価した。
 (A)・・・極めて良好(透け感が全く無く、防透け素材として使用可能。)
 (B)・・・良好(若干透け感が認められるが、防透け素材として実用可能なレベル)
 (C)・・・実用可能(通常の用途において問題ないレベル)
 (D)・・・不良(透明感が強く、インナー用には使用不可能)
(11) The sheerness of the fabric After the tube was knitted with the obtained fiber, the sheerness of the fabric after scouring was relatively evaluated according to the following criteria by the evaluation of an inspector (10 persons).
(A) ... very good (no sense of sheer, can be used as a sheer-proof material)
(B) ... good (a slight sense of sheerness is recognized, but a practical level as a sheerproof material)
(C): Practical (level that is not a problem in normal use)
(D) ・ ・ ・ Bad (Transparency is strong and cannot be used for inner)
 (12)布帛の総合評価
 布帛の総合評価として次の基準によって評価した。
 (A)・・・布帛のソフト性、染色品位、吸水性、防透け性の4項目全てについて(A)もしくは(B)評価であり、2項目以上が(A)である。
 (B)・・・布帛のソフト性、染色品位、吸水性、防透け性の4項目において、(C)評価が1項目以下であるが、(D)評価の項目は無い。
 (C)・・・布帛のソフト性、染色品位、吸水性、防透け性の4項目全てについて(D)評価の項目はないが、(C)評価の項目が2項目以上ある。
 (D)・・・布帛のソフト性、染色品位、吸水性、防透け性の4項目のうち1項目以上に(D)評価の項目がある。
(12) Comprehensive evaluation of fabrics The following criteria were evaluated as comprehensive evaluations of fabrics.
(A)... (A) or (B) evaluation for all four items of fabric softness, dyeing quality, water absorption, and see-through property, and two or more items are (A).
(B) ... In four items of fabric softness, dyeing quality, water absorption, and see-through property, (C) evaluation is 1 item or less, but there is no (D) evaluation item.
(C)... There are no (D) evaluation items for all four items of fabric softness, dyeing quality, water absorption, and anti-peeling properties, but (C) there are two or more evaluation items.
(D): One or more items among the four items of fabric softness, dyeing quality, water absorption, and see-through property include (D) evaluation items.
 実施例1
 98%硫酸相対粘度2.63のナイロン66を285℃で溶融後、溶融紡糸口金パックに供し、98ホールの円形孔を持った口金孔から吐出し、各単糸を、紡糸口金面に向けて0.25kPaの圧力で蒸気が噴出されている蒸気噴出ゾーンを通過させた後、該蒸気噴出ゾーン下流側で、冷却開始点距離が30mmで、鉛直方向の長さが300mmの冷却風吹き出し部を有する単体の外吹き式環状型冷却装置を通過させ、外吹きに放射状に吹く20℃の冷却風を40m/minの風速にて吹き付け、冷却固化を行わせる。その後、口金面より500mmの位置で、円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットを有する環状給油装置によりエマルジョン油剤を付与し、さらに収束ガイド型給油装置にて2段目の給油を行うとともに糸条を収束させ、インターレースの付与を行いながら、4000m/分で引き取り、延伸倍率1.10倍にて延伸を行った後、リラックス条件下において4200m/分でパッケージに巻き取り、40dtex/98フィラメント、伸度45%のナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。なお表中、ナイロン66をN66と略記する。
Example 1
Nylon 66 with a 98% sulfuric acid relative viscosity of 2.63 is melted at 285 ° C., then supplied to a melt spinneret pack, and discharged from a die hole having a 98-hole circular hole. Each single yarn is directed to the spinneret surface. After passing through a steam ejection zone where steam is ejected at a pressure of 0.25 kPa, a cooling air blowing section having a cooling start point distance of 30 mm and a vertical length of 300 mm is provided downstream of the steam ejection zone. A single outer-blow-type annular cooling device is passed through, and 20 ° C. cooling air blown radially is blown to the outer blow at a wind speed of 40 m / min to cause cooling and solidification. Thereafter, at a position 500 mm from the base surface, an annular oil supply having a disk-shaped guide part in contact with the single yarn at the outer peripheral part of the disk and an annular slit for discharging the oil agent formed along the outer periphery of the guide immediately above the guide part. Emulsion oil agent is applied by the device, and further, the second stage of oil is supplied by the convergence guide type oil supply device, the yarn is converged, and the interlace is applied, and it is taken up at 4000 m / min, and the draw ratio is 1.10 times. Then, the film was wound at 4200 m / min under relaxing conditions to obtain a nylon 66 fiber having 40 dtex / 98 filament and 45% elongation. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1. In the table, nylon 66 is abbreviated as N66.
 実施例2
 98%硫酸相対粘度2.63のナイロン6を255℃で溶融後、溶融紡糸口金パックに供したこと以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン6繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。なお表中、ナイロン6をN6と略記する。
Example 2
Nylon 6 having a 98% sulfuric acid relative viscosity of 2.63 was melted at 255 ° C. and then spun in the same manner as in Example 1 except that it was used in a melt spinneret pack to obtain a nylon 6 fiber of 40 dtex / 98 filament. It was. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1. In the table, nylon 6 is abbreviated as N6.
 実施例3
 268ホールの円形孔を持った口金を使用する以外は実施例1と同様の方法で紡糸を行い、40dtex/268フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。
Example 3
Spinning was carried out in the same manner as in Example 1 except that a die having a 268 hole circular hole was used, and a nylon 66 fiber of 40 dtex / 268 filament was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
 実施例4
 82ホールの円形孔を持った口金を使用する以外は実施例1と同様の方法で紡糸を行い、40dtex/82フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。
Example 4
Spinning was carried out in the same manner as in Example 1 except that a base having a circular hole of 82 holes was used to obtain a nylon 66 fiber of 40 dtex / 82 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
 実施例5
 口金下蒸気噴出ゾーンの下流に設置された外吹き式環状型冷却装置における冷却風吹き出し部の鉛直方向の長さを100mmとし、環状給油装置による給油位置を口金下300mmとした以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。
Example 5
Example 1 except that the length in the vertical direction of the cooling air blowing portion in the outer-blow-type annular cooling device installed downstream of the steam blow zone below the mouthpiece is 100 mm, and the fueling position by the annular fueling device is 300 mm below the mouthpiece. Spinning was carried out in the same manner as described above to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
 実施例6
 98%硫酸相対粘度2.63のナイロン66を275℃で溶融した以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表1に示す。
Example 6
Spinning was carried out in the same manner as in Example 1 except that nylon 66 having a 98% sulfuric acid relative viscosity of 2.63 was melted at 275 ° C. to obtain a nylon 66 fiber of 40 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例7
 42ホールの円形孔を持った口金を使用し、繊度を17dtexとした以外は実施例1と同様の方法で紡糸を行い、17dtex/42フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表2に示す。
Example 7
Spinning was performed in the same manner as in Example 1 except that a die having a 42 hole circular hole was used and the fineness was changed to 17 dtex to obtain a nylon 66 fiber of 17 dtex / 42 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
 実施例8
 680ホールの円形孔を持った口金を使用し、繊度を280dtexとした以外は実施例1と同様の方法で紡糸を行い、280dtex/680フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表2に示す。
Example 8
Spinning was performed in the same manner as in Example 1 except that a die having a circular hole of 680 holes was used and the fineness was changed to 280 dtex to obtain nylon 66 fibers of 280 dtex / 680 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
 実施例9
 32ホールの円形孔をもった口金を使用し、繊度を15dtexとした以外は実施例1と同様の方法で紡糸を行い、15dtex/32フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表2に示す。
Example 9
Spinning was carried out in the same manner as in Example 1 except that a die having a 32-hole circular hole was used and the fineness was changed to 15 dtex to obtain nylon 66 fibers of 15 dtex / 32 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
 実施例10
 98%硫酸相対粘度2.63のナイロン6を255℃で溶融後、溶融紡糸口金パックに供し、98ホールの図2に示すような断面形状が3葉のスリット形状を持った口金吐出孔から吐出した以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントの3葉断面ナイロン6繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表2に示す。
Example 10
Nylon 6 with a 98% sulfuric acid relative viscosity of 2.63 is melted at 255 ° C. and then supplied to a melt spinning die pack, and discharged from a die outlet hole having a three-leaf slit shape as shown in FIG. Except for the above, spinning was carried out in the same manner as in Example 1 to obtain a three-leaf section nylon 6 fiber having 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
 実施例11
 49ホールの図3に示すような断面形状が6葉の口金吐出孔、及び同数の丸孔が混在している98ホールの口金を用いた以外は実施例10と同様の方法で紡糸を行い、40dtex/98フィラメントの6葉断面と丸断面の混在したナイロン6繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表2に示す。
Example 11
Spinning was carried out in the same manner as in Example 10 except that a 49-hole die discharge hole having a cross-sectional shape of 49 holes as shown in FIG. 3 and a 98-hole die mixed with the same number of round holes were used, A nylon 6 fiber in which a 6-leaf section and a round section of 40 dtex / 98 filament were mixed was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例12
 インターレースの付与を行った後、3000m/分にて引き取り、延伸倍率1.50倍にて延伸を行った後に、リラックス条件下において4300m/分で巻取った以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表3に示す。
Example 12
After applying interlace, it was taken out at 3000 m / min, drawn at a draw ratio of 1.50, and then wound up at 4300 m / min under relaxed conditions in the same manner as in Example 1. Spinning was performed to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
 実施例13
 鉛直方向の長さが300mmの冷却風吹き出し部を有する単体の内吹き式環状型冷却装置を、外吹き式環状型冷却装置の代わりに通過させる以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表3に示す。
Example 13
Spinning was carried out in the same manner as in Example 1 except that a single inner-blow-type annular cooling device having a cooling air blowing portion having a vertical length of 300 mm was passed instead of the outer-blow-type annular cooling device. , 40 dtex / 98 filament nylon 66 fiber was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
 実施例14
 冷却開始点距離を20mmとする以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表3に示す。
Example 14
Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 20 mm to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
 実施例15
 冷却開始点距離を40mmとする以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表3に示す。
Example 15
Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 40 mm, to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
 実施例16
 冷却開始点距離を10mmとする以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表3に示す。
Example 16
Spinning was performed in the same manner as in Example 1 except that the cooling start point distance was set to 10 mm, to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例17
 冷却開始点距離を60mmとする以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表4に示す。
Example 17
Spinning was carried out in the same manner as in Example 1 except that the cooling start point distance was 60 mm to obtain 40 dtex / 98 filament nylon 66 fibers. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
 実施例18
 外吹き式環状型冷却装置から外吹きに放射状に吹く20℃の冷却風の風速を27m/minとした以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表4に示す。
Example 18
Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially from the outer blown annular cooling device to 27 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
 実施例19
 外吹き式環状型冷却装置から外吹きに放射状に吹く20℃の冷却風の風速を49m/minとした以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表4に示す。
Example 19
Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially from the outer blown annular cooling device to 49 m / min, and nylon 66 fibers of 40 dtex / 98 filaments were obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
 実施例20
 外吹き式環状型冷却装置から外吹きに放射状に吹く20℃の冷却風の風速を17m/minとした以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表4に示す。
Example 20
Spinning was performed in the same manner as in Example 1 except that the air speed of the cooling air at 20 ° C. blown radially outward from the outer blown annular cooling device was changed to 17 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
 実施例21
 外吹き式環状型冷却装置から外吹きに放射状に吹く20℃の冷却風の風速を58m/minとした以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表4に示す。
Example 21
Spinning was carried out in the same manner as in Example 1 except that the air velocity of the cooling air at 20 ° C. blown radially outward from the outer blown annular cooling device was set to 58 m / min, and nylon 66 fiber of 40 dtex / 98 filament was obtained. Obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1
 160ホールの円形孔を持った口金孔から吐出し、繊度を15dtexとした以外は実施例1と同様の方法で紡糸を行い、15dtex/160フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 1
Spinning was carried out in the same manner as in Example 1 except that the material was discharged from a die hole having a 160-hole circular hole and the fineness was set to 15 dtex to obtain nylon 66 fiber of 15 dtex / 160 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
 比較例2
 繊度を56dtexとした以外は実施例1と同様の方法で紡糸を行い、56dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 2
Spinning was carried out in the same manner as in Example 1 except that the fineness was 56 dtex to obtain nylon 66 fiber of 56 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
 比較例3
 外吹き式環状型冷却装置の鉛直方向下部の口金面より500mmの位置において、油剤吐出用の環状スリットを持たない円盤形ガイドを用い、油剤供給を行わずに円盤形ガイドに単糸を接触させる以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 3
At a position 500 mm from the base surface of the lower part in the vertical direction of the outer blow type annular cooling device, a disk-shaped guide having no annular slit for discharging the oil is used, and the single thread is brought into contact with the disk-shaped guide without supplying the oil. Except for the above, spinning was performed in the same manner as in Example 1 to obtain a nylon 66 fiber of 40 dtex / 98 filament. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
 比較例4
 ポリエチレンテレフタレート樹脂を290℃で溶融後、溶融紡糸口金パックに供した以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのポリエチレンテレフタレート繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 4
Spinning was performed in the same manner as in Example 1 except that the polyethylene terephthalate resin was melted at 290 ° C. and then used in a melt spinneret pack to obtain polyethylene terephthalate fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
 比較例5
 冷却装置を一方向型のユニフローチムニーとし、給油ガイドにて糸条を収束し、給油する以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 5
Spinning was performed in the same manner as in Example 1 except that the cooling device was a one-way type uniflow chimney, the yarn was converged by an oil supply guide, and oil was supplied to obtain nylon 66 fibers of 40 dtex / 98 filaments. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
 比較例6
 環状給油装置にて給油を行ったのち、2段目の給油を行わずに集束ガイドにて糸条を集束する以外は実施例1と同様の方法で紡糸を行い、40dtex/98フィラメントのナイロン66繊維を得た。得られた原糸および布帛の特性評価を行った。結果を表5に示す。
Comparative Example 6
Spinning is carried out in the same manner as in Example 1 except that the second stage oiling is performed and the yarn is converged by the converging guide after the second lubrication, and the nylon 66 of 40 dtex / 98 filament is used. Fiber was obtained. The properties of the obtained raw yarn and fabric were evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
1 口金
2 口金下保温ゾーン
3 外吹き式環状型冷却装置
4 環状給油装置
5 集束ガイド型給油装置
6 インターレースノズル
7 引き取りローラー
8 延伸ローラー
9 ワインダー(巻取装置)
10 繊維フィラメント
11 繊維製品パッケージ
12 油剤吐出用スリット
13 円盤形ガイド
14 繊維フィラメント
15 油剤溜まり
16 スリットより吐出された油剤
17 油剤供給用配管
18 内吹き式環状型冷却装置
DESCRIPTION OF SYMBOLS 1 Base 2 Heat retention zone under base 3 Outer blow type annular cooling device 4 Annular lubrication device 5 Converging guide type lubrication device 6 Interlace nozzle 7 Take-out roller 8 Stretch roller 9 Winder (winding device)
DESCRIPTION OF SYMBOLS 10 Fiber filament 11 Textile product package 12 Oil agent discharge slit 13 Disc-shaped guide 14 Fiber filament 15 Oil agent reservoir 16 Oil agent 17 discharged from slit 17 Oil supply pipe 18 Inner blown annular cooling device

Claims (10)

  1.  単糸繊度が0.10dtex以上0.50dtex以下のポリアミド繊維において、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であることを特徴とするポリアミド極細繊維。 Polyamide ultrafine fiber characterized in that, in a polyamide fiber having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less, the average number of fluffs per 12000 m in the longitudinal direction of the filament is 1.0 or less.
  2.  フィラメントの長手方向のウースター斑が1.0%以下であることを特徴とする、請求項1に記載のポリアミド極細繊維。 2. The polyamide ultrafine fiber according to claim 1, wherein a Wooster spot in the longitudinal direction of the filament is 1.0% or less.
  3.  総繊度が15~300dtex、フィラメント数が30以上であることを特徴とする請求項1または2に記載のポリアミド極細繊維。 The polyamide ultrafine fiber according to claim 1 or 2, wherein the total fineness is 15 to 300 dtex and the number of filaments is 30 or more.
  4.  フィラメントの断面形状が異形断面であることを特徴とする請求項1~3のいずれかに記載のポリアミド極細繊維。 The polyamide ultrafine fiber according to any one of claims 1 to 3, wherein the filament has an irregular cross-section.
  5.  ポリアミド極細繊維において、フィラメントの断面形状が円形である単糸を有し、かつ円形断面形状を有する単糸の配向パラメーターについて、単糸中央部の配向パラメーターに対する単糸表面部の配向パラメーターの比が、1.10以上であることを特徴とする、請求項1~3のいずれかに記載のポリアミド極細繊維。 In the polyamide ultrafine fiber, the filament has a single yarn with a circular cross-sectional shape, and the orientation parameter of the single yarn having a circular cross-sectional shape has a ratio of the orientation parameter of the single yarn surface portion to the orientation parameter of the single yarn central portion. The polyamide ultrafine fiber according to any one of claims 1 to 3, which is 1.10 or more.
  6.  単糸繊度が0.10dtex以上0.50dtex以下であり、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であるポリアミド極細繊維の溶融紡糸方法であって、紡糸口金外周部に円周状に配された吐出孔を有する紡糸口金から紡出した溶融紡糸糸条を、前記紡糸口金の中心部の下部にあって、吐出孔から吐出された溶融紡糸糸条の内側または外側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置を用いて冷却し、さらに該冷却装置の鉛直方向下部に円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットを有する環状給油装置を用いて給油を行った後、集束ガイド型給油装置にて糸条を集束させるとともに2段目の給油を行うことを特徴とするポリアミド極細繊維の溶融紡糸方法。 A melt spinning method for polyamide ultrafine fibers having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less and an average number of fluffs per 12000 m in the longitudinal direction of the filament of 1.0 or less. A melt-spun yarn spun from a spinneret having discharge holes arranged in a circumferential shape is cooled from the inside or outside of the melt-spun yarn discharged from the discharge hole at the bottom of the center of the spinneret. Cool by using a cooling device that cools the melt-spun yarn by blowing air, and further, a disk-shaped guide part in which the single yarn contacts the lower part in the vertical direction of the cooling device at the outer periphery of the disk, and immediately above the guide part. After supplying oil by using an annular oil supply device having an annular slit for discharging an oil agent formed along the outer periphery of the guide, the yarn is converged by the converging guide type oil supply device and the second stage of oil supply is performed. Melt spinning method of the polyamide ultrafine fiber characterized and.
  7.  冷却装置が、吐出孔から吐出された溶融紡糸糸条の内側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置であることを特徴とする、請求項6に記載のポリアミド極細繊維の溶融紡糸方法。 The melt of polyamide ultrafine fiber according to claim 6, wherein the cooling device is a cooling device that cools the melt spun yarn by blowing cooling air from the inside of the melt spun yarn discharged from the discharge holes. Spinning method.
  8.  冷却装置が下記を満足することを特徴とする請求項6または7に記載のポリアミド極細繊維の溶融紡糸方法。
    (1)紡糸口金面から冷却装置の冷却開始位置までの距離(L)が10mm≦L≦70mm
    (2)冷却開始位置にて吹き出している冷却風の風速が15~60m/min
    The method for melt spinning polyamide ultrafine fibers according to claim 6 or 7, wherein the cooling device satisfies the following conditions.
    (1) The distance (L) from the spinneret surface to the cooling start position of the cooling device is 10 mm ≦ L ≦ 70 mm
    (2) The speed of the cooling air blown out at the cooling start position is 15 to 60 m / min.
  9.  単糸繊度が0.10dtex以上0.50dtex以下であり、フィラメントの長手方向12000mあたりの平均毛羽数が1.0個以下であるポリアミド極細繊維の溶融紡糸装置であって、紡糸口金外周部に円周状に配された吐出孔を有する紡糸口金と、該紡糸口金の中心部の下部にあって、吐出孔から吐出された溶融紡糸糸条の内側または外側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置を有しており、さらに該冷却装置の鉛直方向下部に円盤の外周部で単糸が接触する円盤形のガイド部と、ガイド部の直上にガイドの外周にそって形成した油剤吐出用の環状スリットを有する環状給油装置と、その下流に糸条を集束させるとともに2段目の給油を行うための集束ガイド型給油装置を有することを特徴とするポリアミド極細繊維の溶融紡糸装置。 A melt spinning apparatus for polyamide ultrafine fibers having a single yarn fineness of 0.10 dtex or more and 0.50 dtex or less and an average number of fluffs per 12000 m in the longitudinal direction of the filament of 1.0 or less. A spinneret having discharge holes arranged in a circumferential shape and a melt-spun yarn by blowing cooling air from the inside or outside of the melt-spun yarn discharged from the discharge hole at the lower part of the center of the spinneret. A disk-shaped guide portion that contacts a single yarn at the outer peripheral portion of the disk at the lower portion in the vertical direction of the cooling device, and formed along the outer periphery of the guide directly above the guide portion. A polyamide electrode having an annular oil supply device having an annular slit for discharging an oil agent, and a converging guide type oil supply device for converging the yarn downstream and supplying the second stage of oil supply Melt spinning apparatus of the fiber.
  10.  冷却装置が、吐出孔から吐出された溶融紡糸糸条の内側から冷却風を吹き付けて溶融紡糸糸条を冷却する冷却装置であることを特徴とする、請求項9に記載のポリアミド極細繊維の溶融紡糸装置。 The melting device for polyamide ultrafine fibers according to claim 9, wherein the cooling device is a cooling device for cooling the melt spun yarn by blowing cooling air from the inside of the melt spun yarn discharged from the discharge holes. Spinning device.
PCT/JP2011/076780 2010-11-29 2011-11-21 Ultrafine polyamide fiber, and melt-spinning method and device therefor WO2012073737A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012503140A JP5780237B2 (en) 2010-11-29 2011-11-21 Polyamide ultrafine fiber and melt spinning method and apparatus thereof
EP11844483.5A EP2647746B1 (en) 2010-11-29 2011-11-21 Polyamide yarn comprising ultrafine filaments, and melt-spinning method and device therefor
CN201180057162.3A CN103221589B (en) 2010-11-29 2011-11-21 Ultrafine polyamide fiber, and melt-pinning method and device therefor
US13/989,140 US20130251992A1 (en) 2010-11-29 2011-11-21 Ultrafine polyamide fiber, and melt-spinning method and device therefor
KR1020137009386A KR101580883B1 (en) 2010-11-29 2011-11-21 Ultrafine polyamide fiber, and melt-spinning method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010264475 2010-11-29
JP2010-264475 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073737A1 true WO2012073737A1 (en) 2012-06-07

Family

ID=46171681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076780 WO2012073737A1 (en) 2010-11-29 2011-11-21 Ultrafine polyamide fiber, and melt-spinning method and device therefor

Country Status (7)

Country Link
US (1) US20130251992A1 (en)
EP (1) EP2647746B1 (en)
JP (1) JP5780237B2 (en)
KR (1) KR101580883B1 (en)
CN (1) CN103221589B (en)
TW (1) TWI527945B (en)
WO (1) WO2012073737A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776708A (en) * 2012-08-22 2012-11-14 成都彩虹环保科技有限公司 Fiber processing device
WO2013129370A1 (en) * 2012-02-29 2013-09-06 東レ株式会社 Polyamide fiber and method for producing same
US20140256873A1 (en) * 2013-03-09 2014-09-11 Suresh Laxman Shenoy Fine fibers made from reactive additives
CN104088025A (en) * 2014-07-02 2014-10-08 北京中丽制机工程技术有限公司 Spinning device and method for melt-spun spandex
JP2015124462A (en) * 2013-12-27 2015-07-06 東レ株式会社 Modified cross-section polyamide multifilament
US10640891B2 (en) 2011-09-21 2020-05-05 Donaldson Company, Inc. Fibers made from soluble polymers
JP2021025140A (en) * 2019-07-31 2021-02-22 東レ株式会社 Polyamide multifilament for false-twisting and polyamide false twist yarn

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219835B1 (en) * 2014-11-12 2019-09-25 Toray Industries, Inc. Ultra-fine high-strength polyamide multifilament, and covering yarn, stocking, and fabric using same
CN106048753A (en) * 2016-07-28 2016-10-26 苏州敏喆机械有限公司 Center annular blowing device for melt spinning
CN106757771B (en) * 2017-01-17 2019-07-26 河南工程学院 A kind of preparation method of superfine polyamide fiber net
CN106948016B (en) * 2017-02-24 2020-04-21 上海凯赛生物技术股份有限公司 Polyamide fiber package and production method thereof
JP6876576B2 (en) * 2017-08-17 2021-05-26 日本電子株式会社 3D image construction method
WO2019146600A1 (en) * 2018-01-25 2019-08-01 東レ株式会社 Polyamide multifilament and knitted lace manufactured using same
DE102019001484A1 (en) * 2019-03-02 2020-09-03 Oerlikon Textile Gmbh & Co. Kg Preparation thread guide
CN117471101B (en) * 2023-12-28 2024-03-12 中国科学院烟台海岸带研究所 Tumor MSI mismatch repair protein detection method based on multichannel Raman probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320655A (en) 2004-05-10 2005-11-17 Unitica Fibers Ltd Polyamide ultrafine fiber for false twisting
JP2007077547A (en) * 2005-09-15 2007-03-29 Toray Ind Inc Method for producing super fine polyamide multifilament and apparatus for melt-spinning polyamide multifilament yarn
JP2007126759A (en) 2005-10-31 2007-05-24 Toray Ind Inc Method for melt spinning of extra fine polyamide fiber
JP2009084749A (en) 2007-09-28 2009-04-23 Toray Ind Inc Polyamide fiber for false twist and method for producing polyamide fiber for false twist
JP2010077570A (en) * 2008-09-29 2010-04-08 Toray Ind Inc Melt-spinning method and melt-spinning apparatus
JP2010126846A (en) 2008-11-28 2010-06-10 Toray Ind Inc Oil agent coater
JP2011074539A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Modified cross-section polyamide multifilament

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118912A (en) * 1993-10-14 1995-05-09 Murata Mach Ltd Device for spinning synthetic filament
DE19821778B4 (en) * 1998-05-14 2004-05-06 Ems-Inventa Ag Device and method for producing microfilaments of high titer uniformity from thermoplastic polymers
DE19922240A1 (en) * 1999-05-14 2000-11-16 Lurgi Zimmer Ag Manufacture of synthetic continuous polyester or polyamide yarn, by melt spinning at high drawing speeds, achieves ultra-fine dimensions and low breakage rate, in light of mathematical understanding of process and materials variables
JP2002105740A (en) * 2000-09-22 2002-04-10 Murata Mach Ltd Oiling nozzle
JP2009209479A (en) * 2008-03-04 2009-09-17 Nippon Ester Co Ltd Method and apparatus for melt-spinning combined filament yarn of modified shape
WO2009119302A1 (en) * 2008-03-26 2009-10-01 東レ株式会社 Polyamide 56 filament, and fiber structure and air-bag base cloth each comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320655A (en) 2004-05-10 2005-11-17 Unitica Fibers Ltd Polyamide ultrafine fiber for false twisting
JP2007077547A (en) * 2005-09-15 2007-03-29 Toray Ind Inc Method for producing super fine polyamide multifilament and apparatus for melt-spinning polyamide multifilament yarn
JP2007126759A (en) 2005-10-31 2007-05-24 Toray Ind Inc Method for melt spinning of extra fine polyamide fiber
JP2009084749A (en) 2007-09-28 2009-04-23 Toray Ind Inc Polyamide fiber for false twist and method for producing polyamide fiber for false twist
JP2010077570A (en) * 2008-09-29 2010-04-08 Toray Ind Inc Melt-spinning method and melt-spinning apparatus
JP2010126846A (en) 2008-11-28 2010-06-10 Toray Ind Inc Oil agent coater
JP2011074539A (en) * 2009-09-30 2011-04-14 Toray Ind Inc Modified cross-section polyamide multifilament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2647746A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640891B2 (en) 2011-09-21 2020-05-05 Donaldson Company, Inc. Fibers made from soluble polymers
US11479882B2 (en) 2011-09-21 2022-10-25 Donaldson Company, Inc. Fibers made from soluble polymers
WO2013129370A1 (en) * 2012-02-29 2013-09-06 東レ株式会社 Polyamide fiber and method for producing same
CN102776708A (en) * 2012-08-22 2012-11-14 成都彩虹环保科技有限公司 Fiber processing device
US20140256873A1 (en) * 2013-03-09 2014-09-11 Suresh Laxman Shenoy Fine fibers made from reactive additives
CN105143527A (en) * 2013-03-09 2015-12-09 唐纳森公司 Fine fibers made from reactive additives
US10300415B2 (en) * 2013-03-09 2019-05-28 Donaldson Company, Inc. Fine fibers made from reactive additives
JP2015124462A (en) * 2013-12-27 2015-07-06 東レ株式会社 Modified cross-section polyamide multifilament
CN104088025A (en) * 2014-07-02 2014-10-08 北京中丽制机工程技术有限公司 Spinning device and method for melt-spun spandex
JP2021025140A (en) * 2019-07-31 2021-02-22 東レ株式会社 Polyamide multifilament for false-twisting and polyamide false twist yarn
JP7287169B2 (en) 2019-07-31 2023-06-06 東レ株式会社 Polyamide Multifilament for False Twisting and Polyamide False Twisted Textured Yarn

Also Published As

Publication number Publication date
KR20130141484A (en) 2013-12-26
JP5780237B2 (en) 2015-09-16
US20130251992A1 (en) 2013-09-26
CN103221589B (en) 2014-12-03
KR101580883B1 (en) 2015-12-30
EP2647746B1 (en) 2016-08-10
EP2647746A4 (en) 2014-07-30
EP2647746A1 (en) 2013-10-09
TW201231746A (en) 2012-08-01
JPWO2012073737A1 (en) 2014-05-19
TWI527945B (en) 2016-04-01
CN103221589A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5780237B2 (en) Polyamide ultrafine fiber and melt spinning method and apparatus thereof
JP3769013B2 (en) Hollow nylon filament, hollow nylon yarn, and production method thereof
JP6127969B2 (en) Polyamide fiber and method for producing the same
JP6687035B2 (en) Polyamide multifilament and lace knitting and stockings using the same
US7078096B2 (en) Method for producing polyester extra fine multi-filament yarn and polyester extra fine false twist textured yarn, polyester extra fine multi-filament yarn, and polyester extra-fine false twist textured yarn
JP6879362B2 (en) Polyamide multifilament and lace knitting using it
JP4983518B2 (en) False twisting polyamide fiber and method for producing false twisting polyamide fiber
JP2013032223A (en) Drum-like package of polylactic acid monofilament, and method for manufacturing the same
JP2017218698A (en) Extra fine flat false-twisted yarn
KR102575877B1 (en) Core-sheath composite cross-sectional fiber with excellent hygroscopicity and wrinkle resistance
JP2007126759A (en) Method for melt spinning of extra fine polyamide fiber
JP2020158906A (en) High-strength polyamide monofilament
JP4571095B2 (en) Original polylactic acid false twisted yarn, method for producing the same, and carpet
WO2021246270A1 (en) Polyamide monofilament
JP2024051376A (en) Polyamide multifilament and polyamide false twist textured yarn
WO2023136307A1 (en) Polyamide multifilament and fabric
WO2022209813A1 (en) Polyamide multifilament
JP2017155348A (en) Polyamide fiber and fabric made thereof
JP2022156186A (en) Melt-spinning apparatus and melt-spinning method
JP4395977B2 (en) Method for producing polyamide fiber
JP2006325717A (en) String
JP2012211423A (en) Composite drawn false twisted yarn
JPS61194213A (en) Fine denier polyester fiber
TW200526827A (en) Spinneret for producing circular cross section yarn and process for making the same
JPH04316627A (en) Production of filament and short fiber blended yarn

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012503140

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009386

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011844483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011844483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE