JP6876576B2 - 3D image construction method - Google Patents

3D image construction method Download PDF

Info

Publication number
JP6876576B2
JP6876576B2 JP2017157298A JP2017157298A JP6876576B2 JP 6876576 B2 JP6876576 B2 JP 6876576B2 JP 2017157298 A JP2017157298 A JP 2017157298A JP 2017157298 A JP2017157298 A JP 2017157298A JP 6876576 B2 JP6876576 B2 JP 6876576B2
Authority
JP
Japan
Prior art keywords
sample
cross
grid
section
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017157298A
Other languages
Japanese (ja)
Other versions
JP2019036470A (en
Inventor
勇介 植竹
勇介 植竹
朝比奈 俊輔
俊輔 朝比奈
祐樹 山口
祐樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2017157298A priority Critical patent/JP6876576B2/en
Priority to EP18189380.1A priority patent/EP3474309B1/en
Priority to US16/104,308 priority patent/US10748308B2/en
Publication of JP2019036470A publication Critical patent/JP2019036470A/en
Application granted granted Critical
Publication of JP6876576B2 publication Critical patent/JP6876576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/226Image reconstruction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Description

本発明は、イオンビームを用いて試料の断面を作製し、その断面を走査型電子顕微鏡(Scanning Electron Microscope:以下、SEMと呼ぶ)によって観察することによる、試料の三次元像構築方法に関する。 The present invention relates to a method for constructing a three-dimensional image of a sample by preparing a cross section of a sample using an ion beam and observing the cross section with a scanning electron microscope (hereinafter referred to as SEM).

試料の内部の構造を解析するために、試料の三次元像の構築が行われている。これまで、試料の三次元像が構築される方法は複数提案されている。その代表的な方法として、切削によって試料の断面が作製される工程と、試料の断面のSEM像が取得される工程が交互に繰り返され、取得された複数のSEM像が取得された順に並べられることで試料の三次元像が構築される方法が知られている。 A three-dimensional image of the sample is being constructed to analyze the internal structure of the sample. So far, a plurality of methods for constructing a three-dimensional image of a sample have been proposed. As a typical method, the process of producing a cross section of a sample by cutting and the process of acquiring an SEM image of a cross section of a sample are alternately repeated, and a plurality of acquired SEM images are arranged in the order of acquisition. Therefore, a method for constructing a three-dimensional image of a sample is known.

切削による試料の断面の作製方法についても複数提案されている。例えば、ガラスナイフやダイヤモンドナイフ等で試料が切削されるミクロトーム法や、細く絞られたイオンビームが試料に照射されることで試料が切削される集束イオンビーム(Focused Ion Beam:以下、FIBと呼ぶ)法等である。特開平08−115699号公報(特許文献1)では、FIB法を用いた試料の三次元像構築方法が示されている。 Several methods for preparing a cross section of a sample by cutting have also been proposed. For example, a microtome method in which a sample is cut with a glass knife, a diamond knife, or the like, or a focused ion beam (hereinafter referred to as FIB) in which a sample is cut by irradiating the sample with a finely focused ion beam. ) Law, etc. Japanese Unexamined Patent Publication No. 08-115669 (Patent Document 1) shows a method for constructing a three-dimensional image of a sample using the FIB method.

しかしながら、先述のミクロトーム法およびFIB法は、断面の作製に適する試料が限定されるという問題点を有している。ミクロトーム法は、試料の切削にガラスナイフやダイヤモンドナイフが使用されることから、硬い試料には適さない。FIB法は、イオンビームのビーム径が小さい(10〜200nm)ため、数100μm角以上の大きな試料には適さない。 However, the above-mentioned microtome method and FIB method have a problem that a sample suitable for preparing a cross section is limited. The microtome method is not suitable for hard samples because glass knives and diamond knives are used to cut the sample. The FIB method is not suitable for a large sample of several hundred μm square or more because the beam diameter of the ion beam is small (10 to 200 nm).

このような問題点に対して、特開平09−210883号公報(特許文献2)では、試料の一部を覆うように配置される遮蔽板を備え、ビーム径が大きいイオンビームを試料に照射することで、遮蔽板から露出した試料を切削する断面試料作製装置が提案されている。特許文献2に記載された装置は、試料の切削にイオンビームが用いられるため、軟らかい試料だけではなく硬い試料にも適している。また、特許文献2に記載された装置は、イオンビームのビーム径が大きい(0.5〜2mm)ため、数100μm角以上の大きな試料に適している。 In response to such a problem, Japanese Patent Application Laid-Open No. 09-210883 (Patent Document 2) provides a shielding plate arranged so as to cover a part of the sample, and irradiates the sample with an ion beam having a large beam diameter. Therefore, a cross-sectional sample preparation device for cutting a sample exposed from a shielding plate has been proposed. Since the device described in Patent Document 2 uses an ion beam for cutting a sample, it is suitable not only for a soft sample but also for a hard sample. Further, since the apparatus described in Patent Document 2 has a large ion beam diameter (0.5 to 2 mm), it is suitable for a large sample having a square of several hundred μm or more.

特開平08−115699号公報Japanese Unexamined Patent Publication No. 08-115669

特開平09−210883号公報Japanese Unexamined Patent Publication No. 09-210883

特許文献2に記載された断面試料作製装置では、試料のうち遮蔽板から露出した部分がイオンビームによって切削される。したがって、遮蔽板の端の位置が切削位置となる。そのため、正確な三次元像を得るためには、観察者は、一定の狭い間隔で試料に対する遮蔽板の端の位置をずらし、試料を切削する必要がある。しかしながら、観察者は、試料に対する遮蔽板の端の位置をずらす量の決定を、観察者の感覚に頼らなければならなかったため、一定の狭い間隔で試料を切削し、試料の断面を作製することが困難であった。 In the cross-section sample preparation apparatus described in Patent Document 2, a portion of the sample exposed from the shielding plate is cut by an ion beam. Therefore, the position of the edge of the shielding plate is the cutting position. Therefore, in order to obtain an accurate three-dimensional image, the observer needs to shift the position of the edge of the shielding plate with respect to the sample at regular narrow intervals and cut the sample. However, since the observer had to rely on the observer's sense to determine the amount of displacement of the edge of the shielding plate with respect to the sample, the sample should be cut at regular narrow intervals to prepare a cross section of the sample. Was difficult.

本発明は、上記問題点を鑑みてなされたものであり、100μm角以上の大きな試料に対して、一定の狭い間隔で試料の断面が作製され、正確な三次元像が得られる、試料の三次元像構築方法を提供することを目的とする。 The present invention has been made in view of the above problems, and a cross section of a sample is prepared at regular narrow intervals for a large sample of 100 μm square or more, and an accurate three-dimensional image can be obtained. The purpose is to provide a method for constructing an original image.

上記課題を解決し、本発明の目的を達成するため、本発明の三次元像構築方法は、試料の一部を覆うように配置される遮蔽材を備え、前記遮蔽材の直線状の端縁部から露出する試料部分と前記遮蔽材に覆われる試料部分との境目を加工位置とし、前記加工位置にイオンビームによって断面を作製する断面試料作製装置を用いて、前記断面を作製する断面作製工程と、撮像手段によって前記試料の断面像を取得する断面像取得工程を交互に繰り返し、画像処理装置によって、取得された複数の前記断面像を撮像された順に並べることで、前記試料の三次元像を構築する三次元像構築方法において、前記断面作製工程は、矩形状の開口部が二次元的に配列された格子状マーク部材が、前記試料の表面に貼り付けられ、かつ前記遮蔽材の前記端縁部の伸びる方向に対して前記格子状マーク部材の前記矩形状の開口部を構成する辺が45度または90度をなすように前記遮蔽材の下に配置される試料準備工程と、前記格子状マーク部材を前記加工位置の指標として、前記遮蔽材と前記格子状マーク部材の相対位置を調節する加工位置決定工程と、を含むことを特徴とする。 In order to solve the above problems and achieve the object of the present invention, the three-dimensional image construction method of the present invention includes a shielding material arranged so as to cover a part of the sample, and a linear edge of the shielding material. A cross-section preparation step of producing the cross section using a cross-section sample preparation device that prepares a cross section by an ion beam at the processing position at the boundary between the sample portion exposed from the portion and the sample portion covered with the shielding material. By alternately repeating the cross-sectional image acquisition step of acquiring the cross-sectional image of the sample by the imaging means and arranging the plurality of acquired cross-sectional images in the order in which they were imaged by the image processing apparatus, the three-dimensional image of the sample is obtained. In the method for constructing a three-dimensional image, in the cross-section manufacturing step, a grid-shaped mark member in which rectangular openings are two-dimensionally arranged is attached to the surface of the sample, and the shielding material is said to have the same shape. A sample preparation step in which the side forming the rectangular opening of the lattice-shaped mark member is arranged under the shielding material so as to form 45 degrees or 90 degrees with respect to the extending direction of the edge portion, and the above-mentioned Using the lattice-shaped mark member as an index of the processing position, the processing position determination step of adjusting the relative position between the shielding material and the lattice-shaped mark member is included.

本発明の概要を示す図。The figure which shows the outline of this invention. 断面試料作製装置の概略構成図。Schematic configuration diagram of a cross-sectional sample preparation device. 本発明の第1実施形態および第2実施形態に関するグリッドメッシュを示す図。The figure which shows the grid mesh which concerns on 1st Embodiment and 2nd Embodiment of this invention. 本発明の第1実施形態に関する、試料の三次元像構築方法の流れを示す図。The figure which shows the flow of the 3D image construction method of a sample concerning 1st Embodiment of this invention. 本発明の第1実施形態に関する、切削位置が格子点位置からずれた場合のグリッドメッシュの拡大上面図およびSEM像を示す図。The figure which shows the enlarged top view and SEM image of the grid mesh when the cutting position deviates from the lattice point position which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に関する、試料の三次元像構築方法の流れを示す図。The figure which shows the flow of the 3D image construction method of a sample concerning 2nd Embodiment of this invention.

以下、本発明の実施形態について、図1〜図6を用いて説明する。本明細書および各図面において、実質的に同一の構成、機能を示すものについては共通の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 6. In the present specification and the drawings, those showing substantially the same structure and function are designated by a common reference numeral, and redundant description will be omitted.

(本発明の概要)
まず、本発明の概要について説明する。図1は、本発明の概要を示す図である。まず、試料1の断面2が断面試料作製装置3によって作製される(断面作製工程)。次に、試料1の断面2がSEM4によって撮像され、断面2のSEM像5が得られる(断面像取得工程)。SEM像5が得られた後、試料1は断面試料作製装置3に戻され、再び前記断面作成工程が行われる。そして、新たな断面2が作製された試料1は再びSEM4に導入されて、新たな断面2のSEM像5が撮像される。
(Outline of the present invention)
First, the outline of the present invention will be described. FIG. 1 is a diagram showing an outline of the present invention. First, the cross section 2 of the sample 1 is produced by the cross-section sample preparation device 3 (cross-section preparation step). Next, the cross section 2 of the sample 1 is imaged by the SEM 4, and the SEM image 5 of the cross section 2 is obtained (cross section image acquisition step). After the SEM image 5 is obtained, the sample 1 is returned to the cross-section sample preparation device 3, and the cross-section preparation step is performed again. Then, the sample 1 in which the new cross section 2 is prepared is introduced into the SEM 4 again, and the SEM image 5 of the new cross section 2 is imaged.

以下、全く同様に、前記断面作製工程と前記断面像取得工程が交互に繰り返し行われ、所定の枚数(一般的に、30〜100枚程度)のSEM像5が得られたら、それらのSEM像5は画像処理装置6に取り込まれる。最後に、画像処理装置6は、撮像された順にSEM像5を並べて、試料1の三次元像データを構築し、三次元像データに基づいて図示しない三次元像表示装置に三次元像7が表示される(三次元像構築工程)。 Hereinafter, in exactly the same manner, when the cross-section preparation step and the cross-section image acquisition step are alternately repeated to obtain a predetermined number of SEM images (generally about 30 to 100), those SEM images are obtained. 5 is incorporated into the image processing device 6. Finally, the image processing device 6 arranges the SEM images 5 in the order in which they are imaged to construct the three-dimensional image data of the sample 1, and the three-dimensional image 7 is displayed on a three-dimensional image display device (not shown) based on the three-dimensional image data. It is displayed (three-dimensional image construction process).

(断面試料作製装置の構成)
図2を用いて、ビーム径が大きいイオンビーム8を試料1に照射し、試料1の断面2を作製する断面試料作製装置3の構成について説明する。図2は、断面試料作製装置3の概略構成図であり、図2(a)は断面試料作製装置3の内部が大気圧下にされ、試料1の位置が調節され、断面2が作製される位置が決められる状態を示す図、図2(b)は図2(a)の工程の後に、断面試料作製装置3の内部が真空排気され、イオンビーム8によって断面2が作製される状態を示す図である。
(Structure of cross-section sample preparation device)
A configuration of a cross-section sample preparation device 3 for irradiating a sample 1 with an ion beam 8 having a large beam diameter to prepare a cross-section 2 of the sample 1 will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of the cross-section sample preparation device 3, and FIG. 2 (a) shows that the inside of the cross-section sample preparation device 3 is placed under atmospheric pressure, the position of the sample 1 is adjusted, and the cross-section 2 is produced. FIG. 2 (b) shows a state in which the position is determined, and FIG. 2 (b) shows a state in which the inside of the cross-section sample preparation device 3 is vacuum-exhausted and the cross-section 2 is produced by the ion beam 8 after the step of FIG. 2 (a). It is a figure.

真空チャンバ9は、図2(b)に示すように、試料1が切削される際に収容される空間を構成しており、側面に真空排気機構10を備える。イオン銃11は、真空チャンバ9の上部に取り付けられており、アルゴンなどの気体を放電させてイオンを発生させる。発生させられたイオンはイオン銃11内の電界によって加速され、イオンビーム8がイオン銃11から出射される。 As shown in FIG. 2B, the vacuum chamber 9 constitutes a space for accommodating the sample 1 when it is cut, and is provided with a vacuum exhaust mechanism 10 on the side surface. The ion gun 11 is attached to the upper part of the vacuum chamber 9 and discharges a gas such as argon to generate ions. The generated ions are accelerated by the electric field in the ion gun 11, and the ion beam 8 is emitted from the ion gun 11.

試料ホルダ引出機構12は、真空チャンバ9を図2(a)のような開放状態、もしくは図2(b)のような閉鎖状態にするように真空チャンバ9に取り付けられており、図中の左右方向(Y軸方向)に移動可能である。試料ホルダ13は、試料ホルダ引出機構12に取り付けられており、コの字型で形成されている。試料ホルダ13は、試料ホルダ引出機構12の移動に伴って、真空チャンバ9の内部、外部に移動する。試料ホルダ13は、試料ホルダ引出機構12に対して取り付け、取り外し可能である。 The sample holder extraction mechanism 12 is attached to the vacuum chamber 9 so as to open the vacuum chamber 9 as shown in FIG. 2A or a closed state as shown in FIG. 2B, and is attached to the left and right sides in the drawing. It can move in the direction (Y-axis direction). The sample holder 13 is attached to the sample holder withdrawal mechanism 12, and is formed in a U shape. The sample holder 13 moves inside and outside the vacuum chamber 9 as the sample holder withdrawal mechanism 12 moves. The sample holder 13 is attached to and detachable from the sample holder withdrawal mechanism 12.

試料台位置調整機構14は、試料ホルダ13のコの字型の下段部13aの上面に取り付けられており、Y軸方向に移動可能である。試料台15は、試料台位置調整機構14の上にセットされ、試料台位置調整機構14の移動に伴ってY軸方向に移動する。試料台15は直方体に形成されており、試料台15の上面には、エポキシ樹脂等の接着剤によって試料1が取り付けられる。 The sample table position adjusting mechanism 14 is attached to the upper surface of the U-shaped lower portion 13a of the sample holder 13 and can be moved in the Y-axis direction. The sample table 15 is set on the sample table position adjusting mechanism 14, and moves in the Y-axis direction as the sample table position adjusting mechanism 14 moves. The sample table 15 is formed in a rectangular parallelepiped, and the sample 1 is attached to the upper surface of the sample table 15 with an adhesive such as an epoxy resin.

遮蔽板16は、試料1の上側に配置され、かつ試料ホルダ13のコの字型の上段部13bに取り付けられている。遮蔽板16は、試料ホルダ13に対して取り付け、取り外し可能である。また、遮蔽板16は、試料1の一部を覆い、覆った試料1部分がイオンビーム8に照射されるのを防ぐ。したがって、試料1のうち、遮蔽板16の端に位置する部分が切削位置17となり、遮蔽板16から露出した部分が切削され、切削位置17に断面2が作製される。 The shielding plate 16 is arranged above the sample 1 and is attached to the U-shaped upper portion 13b of the sample holder 13. The shielding plate 16 is attached to and detachable from the sample holder 13. Further, the shielding plate 16 covers a part of the sample 1 and prevents the covered sample 1 part from being irradiated to the ion beam 8. Therefore, in the sample 1, the portion located at the end of the shielding plate 16 becomes the cutting position 17, the portion exposed from the shielding plate 16 is cut, and the cross section 2 is produced at the cutting position 17.

先述したように、遮蔽板16は、試料ホルダ13に取り付けられているため、単独で移動できない。そのため、観察者は、切削位置17を決める際には、試料台位置調整機構14をY軸方向に動かすことで試料1をY軸方向に動かし、試料1のうち断面2を作製したい部分を遮蔽板16の端の位置まで移動させる。 As described above, since the shielding plate 16 is attached to the sample holder 13, it cannot move independently. Therefore, when determining the cutting position 17, the observer moves the sample 1 in the Y-axis direction by moving the sample table position adjusting mechanism 14 in the Y-axis direction, and shields the portion of the sample 1 in which the cross section 2 is desired to be produced. Move to the position of the edge of the plate 16.

光学顕微鏡傾斜機構18は、試料ホルダ引出機構12の上端部に取り付けられており、X軸に平行な軸19を備えている。光学顕微鏡20を保持した光学顕微鏡位置調整機構21は、軸19を介して光学顕微鏡傾斜機構18に接続されており、軸19を中心に回転し、傾斜が可能である。図2(b)に示すように、真空チャンバ9が閉鎖状態となる場合に、光学顕微鏡20が真空チャンバ9に対して干渉しないよう、光学顕微鏡位置調整機構21は傾斜した状態にされる。 The optical microscope tilt mechanism 18 is attached to the upper end of the sample holder extraction mechanism 12, and includes an axis 19 parallel to the X axis. The optical microscope position adjusting mechanism 21 holding the optical microscope 20 is connected to the optical microscope tilting mechanism 18 via a shaft 19, and can be rotated about the shaft 19 and tilted. As shown in FIG. 2B, when the vacuum chamber 9 is closed, the optical microscope position adjusting mechanism 21 is tilted so that the optical microscope 20 does not interfere with the vacuum chamber 9.

光学顕微鏡20には、光学顕微鏡画像表示部22が接続されている。光学顕微鏡画像表示部22には、光学顕微鏡20によって拡大された試料1および遮蔽板16の上面画像が表示される。観察者は、切削位置17を決める際に、光学顕微鏡画像表示部22を見ながら、試料台位置調整機構14を動かす。 An optical microscope image display unit 22 is connected to the optical microscope 20. The optical microscope image display unit 22 displays a top image of the sample 1 and the shielding plate 16 magnified by the optical microscope 20. When determining the cutting position 17, the observer moves the sample table position adjusting mechanism 14 while looking at the optical microscope image display unit 22.

(格子状部材の構成)
図3を用いて、図2における格子状部材(格子状マーク部材)23の構成について説明する。後述する本発明の実施形態においては、格子状部材23の一例として透過型電子顕微鏡の試料支持に使用されるグリッドメッシュ23が用いられる。図3は、本発明の第1実施形態および第2実施形態に関するグリッドメッシュ23を示す図である。なお、各図において、見やすくするためにグリッドメッシュ23の格子の数を間引いて示している。
(Structure of lattice member)
The configuration of the grid-like member (grid-like mark member) 23 in FIG. 2 will be described with reference to FIG. In the embodiment of the present invention described later, a grid mesh 23 used for supporting a sample of a transmission electron microscope is used as an example of the grid-like member 23. FIG. 3 is a diagram showing a grid mesh 23 according to the first embodiment and the second embodiment of the present invention. In each figure, the number of grids of the grid mesh 23 is thinned out for easy viewing.

グリッドメッシュ23は、直径3mm程度の円形の金網であり、図3に示すように、中央部分に格子を構成する直交した複数のバー24を備え、格子を構成する繰り返しの最小単位(以下、単位格子と呼ぶ)の形状は正方形である。25は、バー24の交点である格子点を示している。グリッドメッシュ23には、材質や、単位格子の形状と大きさによって種類が複数ある。本発明の実施においては、グリッドメッシュ23の材質に限定はなく、単位格子の形状は正方形や正六角形等の正多角形が望ましい。図3に示すように、単位格子の形状が正方形のグリッドメッシュ23が使用される場合には、隣り合うバー24の距離L1(配列ピッチ)が100μm以内のものが望ましい。 The grid mesh 23 is a circular wire mesh having a diameter of about 3 mm, and as shown in FIG. 3, has a plurality of orthogonal bars 24 forming a grid in the central portion, and is the smallest unit of repetition (hereinafter, unit) forming the grid. The shape of (called a grid) is square. Reference numeral 25 denotes a grid point which is an intersection of the bars 24. There are a plurality of types of grid mesh 23 depending on the material and the shape and size of the unit cell. In the practice of the present invention, the material of the grid mesh 23 is not limited, and the shape of the unit cell is preferably a regular polygon such as a square or a regular hexagon. As shown in FIG. 3, when the grid mesh 23 having a square unit lattice shape is used, it is desirable that the distance L1 (arrangement pitch) of the adjacent bars 24 is 100 μm or less.

以上のように構成される断面試料作製装置3とグリッドメッシュ23を用いて、観察者は以下のようにして試料1の断面2を作製する。 Using the cross-section sample preparation device 3 and the grid mesh 23 configured as described above, the observer prepares the cross-section 2 of the sample 1 as follows.

(第1実施形態)
以下、図4を用いて、本発明の第1実施形態について説明する。図4は、本発明の第1実施形態に関する、試料1の三次元像構築方法の流れを示す図である。図4(a)〜図4(d)は断面作製工程を細分化して示した図、図4(e)〜図4(h)は断面像取得工程および三次元像構築工程を細分化して示した図である。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a flow of a method for constructing a three-dimensional image of sample 1 according to the first embodiment of the present invention. 4 (a) to 4 (d) are views showing the cross-section preparation process in detail, and FIGS. 4 (e) to 4 (h) show the cross-section image acquisition process and the three-dimensional image construction process in detail. It is a figure.

(1)試料1の準備工程:まず、観察者は、表面が平滑になるように加工された板状の試料1を準備する。試料1の形状が不規則で小さい場合は、観察者は、試料1を樹脂包埋した上で表面が平滑になるように加工する。本発明の実施においては、後に、表面にグリッドメッシュ23が取り付けられた試料1に対してイオンビーム8が照射される。そのため、予め試料1の表面を平滑にすることで、試料1とグリッドメッシュ23の間に隙間が生じず、イオンビーム8が試料1に照射される際に、前記隙間によりイオンビーム8の進行方向が変わり、目的の切削位置17からずれた試料1の位置にイオンビーム8が照射されるのを防ぐことができる。 (1) Preparation step of sample 1: First, the observer prepares a plate-shaped sample 1 processed so that the surface is smooth. If the shape of the sample 1 is irregular and small, the observer embeds the sample 1 in a resin and processes the sample 1 so that the surface becomes smooth. In the practice of the present invention, the sample 1 having the grid mesh 23 attached to the surface is later irradiated with the ion beam 8. Therefore, by smoothing the surface of the sample 1 in advance, a gap is not generated between the sample 1 and the grid mesh 23, and when the ion beam 8 is irradiated to the sample 1, the traveling direction of the ion beam 8 is caused by the gap. It is possible to prevent the ion beam 8 from being irradiated to the position of the sample 1 deviated from the target cutting position 17.

(2)試料1の取り付け工程[図4(a)]:次に、観察者は、図4(a)に示すように、エポキシ樹脂等の接着剤を用いて、試料1を試料台15に取り付ける。その際、観察者は、試料1のうち断面2を作製する予定の部分が試料台15からはみ出るように取り付ける。 (2) Mounting step of sample 1 [FIG. 4 (a)]: Next, as shown in FIG. 4 (a), the observer puts sample 1 on the sample table 15 using an adhesive such as epoxy resin. Install. At that time, the observer attaches the sample 1 so that the portion of the sample 1 where the cross section 2 is to be prepared protrudes from the sample table 15.

(3)グリッドメッシュ23の取り付け工程[図4(b)]:次に、観察者は、図4(b)に示すように、エポキシ樹脂等の接着剤を用いて、試料1の平滑面にグリッドメッシュ23を取り付ける。その際、観察者は、後にグリッドメッシュ23の上に乗せられる遮蔽板16の辺のうち、試料1に切削位置17を形成させる辺Aと、バー24とのなす角が45度となるように(図4(c)参照)、グリッドメッシュ23を試料1に取り付ける。この場合、図4(b)に示すように、対角位置にある格子点25を結んだ直線Bが、試料台15の辺Cと平行になるように、観察者はグリッドメッシュ23を試料1に取り付ける。 (3) Mounting step of grid mesh 23 [FIG. 4 (b)]: Next, as shown in FIG. 4 (b), the observer uses an adhesive such as an epoxy resin on the smooth surface of the sample 1. Attach the grid mesh 23. At that time, the observer adjusts the angle between the side A for forming the cutting position 17 on the sample 1 and the bar 24 among the sides of the shielding plate 16 which is later placed on the grid mesh 23 to be 45 degrees. (See FIG. 4 (c)), the grid mesh 23 is attached to the sample 1. In this case, as shown in FIG. 4B, the observer sets the grid mesh 23 on the sample 1 so that the straight line B connecting the grid points 25 at the diagonal positions is parallel to the side C of the sample table 15. Attach to.

(4)遮蔽板16の取り付け工程:次に、観察者は、試料台15を試料台位置調整機構14にセットした後、グリッドメッシュ23の上に遮蔽板16が乗るように遮蔽板16を試料ホルダ13に取り付ける。 (4) Mounting step of the shielding plate 16: Next, after setting the sample table 15 on the sample table position adjusting mechanism 14, the observer samples the shielding plate 16 so that the shielding plate 16 rests on the grid mesh 23. Attach to holder 13.

(5)切削位置17の決定工程[図4(c)]:次に、観察者は、試料ホルダ13を試料ホルダ引出機構12に取り付けた後、試料台位置調整機構14によって、グリッドメッシュ23が取り付けられた試料1を遮蔽板16に対して動かすことで切削位置17を決定する。その際、観察者は、光学顕微鏡画像表示部22に表示される、試料1、グリッドメッシュ23、および遮蔽板16の上面拡大画像を見ながら(図2(a)の状態)、試料台位置調整機構14を動かして、図4(c)に示すように、格子点25の位置を遮蔽板16の端の位置まで移動させる。 (5) Step of determining cutting position 17 [FIG. 4 (c)]: Next, the observer attaches the sample holder 13 to the sample holder drawing mechanism 12, and then the grid mesh 23 is moved by the sample table position adjusting mechanism 14. The cutting position 17 is determined by moving the attached sample 1 with respect to the shielding plate 16. At that time, the observer adjusts the position of the sample table while observing the enlarged upper surface images of the sample 1, the grid mesh 23, and the shielding plate 16 displayed on the optical microscope image display unit 22 (state of FIG. 2A). The mechanism 14 is moved to move the position of the lattice point 25 to the position of the end of the shielding plate 16 as shown in FIG. 4 (c).

なお、この工程において、断面試料作製装置3が遮蔽板16の位置を動かすことのできる遮蔽板位置調整機構を備える場合は、観察者は、遮蔽板位置調整機構を調節することで、遮蔽板16の端の位置を格子点25の位置まで移動させてもよい。 In this step, when the cross-section sample preparation device 3 is provided with a shielding plate position adjusting mechanism capable of moving the position of the shielding plate 16, the observer adjusts the shielding plate position adjusting mechanism to adjust the shielding plate 16. The position of the edge of the may be moved to the position of the grid point 25.

(6)イオンビーム8の照射工程[図4(d−1)、(d−2)]:次に、観察者は、試料ホルダ引出機構12を真空チャンバ9内に押し込み(図2(b)の状態)、真空排気機構10によって真空チャンバ9内を真空排気した後、試料1にイオンビーム8を照射して、断面2を作製する。図4(d−1)は、本第1実施形態に関する、イオンビーム8が照射されている時の試料1付近の拡大上面図であり、図4(d−2)は、本第1実施形態に関する、イオンビーム8が照射された後の試料1付近の拡大上面図である。図4(d−1)に示すように、試料1にイオンビーム8が照射されると、試料1とグリッドメッシュ23のうち、遮蔽板16から露出した部分が徐々に切削され、最終的に図4(d−2)に示すように、遮蔽板16の陰になった部分が残る。 (6) Ion beam 8 irradiation step [FIGS. 4 (d-1), (d-2)]: Next, the observer pushes the sample holder extraction mechanism 12 into the vacuum chamber 9 (FIG. 2 (b)). After vacuum exhausting the inside of the vacuum chamber 9 by the vacuum exhaust mechanism 10, the sample 1 is irradiated with an ion beam 8 to prepare a cross section 2. FIG. 4 (d-1) is an enlarged top view of the vicinity of the sample 1 when the ion beam 8 is irradiated according to the first embodiment, and FIG. 4 (d-2) is the first embodiment. It is an enlarged top view of the vicinity of the sample 1 after being irradiated with the ion beam 8. As shown in FIG. 4 (d-1), when the sample 1 is irradiated with the ion beam 8, the portion of the sample 1 and the grid mesh 23 exposed from the shielding plate 16 is gradually cut, and finally the figure is shown. As shown in 4 (d-2), the shaded portion of the shielding plate 16 remains.

(7)SEM像5の取得工程[図4(e)]:次に、観察者は、試料ホルダ引出機構12を真空チャンバ9から引き出し、試料ホルダ13を試料ホルダ引出機構12から取り外す。その後、観察者は、試料ホルダ13から遮蔽板16を取り外し、試料1が取り付けられた試料台15を試料台位置調整機構14から取り外す。そして、観察者は、グリッドメッシュ23が取り付けられた試料1をSEM4にセットする。その後、試料1の断面2はSEM4で観察され、断面2のSEM像5が得られる。 (7) Acquisition step of SEM image 5 [FIG. 4 (e)]: Next, the observer pulls out the sample holder withdrawal mechanism 12 from the vacuum chamber 9 and removes the sample holder 13 from the sample holder withdrawal mechanism 12. After that, the observer removes the shielding plate 16 from the sample holder 13 and removes the sample table 15 to which the sample 1 is attached from the sample table position adjusting mechanism 14. Then, the observer sets the sample 1 to which the grid mesh 23 is attached in the SEM4. After that, the cross section 2 of the sample 1 is observed by SEM4, and the SEM image 5 of the cross section 2 is obtained.

図4(e)は、断面2のSEM像5の例である。図4(e)に示すように、SEM像5には、試料1の断面像および飛び飛びのグリッドメッシュ23の断面像が現れる。本第1実施形態においては、単位格子の形状は正方形で、切削位置17を形成させる遮蔽板16の辺Aと、バー24とのなす角が45度となるようにグリッドメッシュ23は試料1に取り付けられる。さらに、格子点25位置が切削位置17である。そのため、SEM像5に現れるグリッドメッシュ23の断面像は格子点25の断面像であり、飛び飛びのグリッドメッシュ23の断面像の間隔L2は等間隔である。 FIG. 4E is an example of an SEM image 5 having a cross section 2. As shown in FIG. 4E, a cross-sectional image of the sample 1 and a cross-sectional image of the discrete grid mesh 23 appear in the SEM image 5. In the first embodiment, the unit lattice has a square shape, and the grid mesh 23 is used as the sample 1 so that the angle between the side A of the shielding plate 16 forming the cutting position 17 and the bar 24 is 45 degrees. It is attached. Further, the grid point 25 position is the cutting position 17. Therefore, the cross-sectional image of the grid mesh 23 appearing in the SEM image 5 is a cross-sectional image of the grid points 25, and the intervals L2 of the cross-sectional images of the discrete grid mesh 23 are equal intervals.

以上の工程により、1枚目のSEM像5が取得された後、観察者は、(4)遮蔽板16の取り付け工程に戻り、すでに切削された切削位置17の格子点25の対角位置にある格子点25を次の切削位置17として再度断面2を作製し、作製した断面2をSEM4で観察することで2枚目のSEM像5を取得する。そして、観察者は、SEM像5が所定の枚数(30〜100枚程度)得られるまで、断面作製工程と断面像取得工程を交互に繰り返す。 After the first SEM image 5 is acquired by the above steps, the observer returns to (4) the step of attaching the shielding plate 16 to the diagonal position of the grid point 25 of the already cut cutting position 17. A cross section 2 is produced again with a certain grid point 25 as the next cutting position 17, and a second SEM image 5 is acquired by observing the produced cross section 2 with SEM4. Then, the observer alternately repeats the cross-section preparation step and the cross-section image acquisition step until a predetermined number (about 30 to 100) of SEM images 5 are obtained.

なお、SEM像5が所定の枚数得られても、(7)SEM像5の取得工程において、三次元像7を構築したい試料部分の断面像が得られていないと判断された場合には、観察者は、取得するSEM像5の枚数を追加し、追加した枚数のSEM像5が得られるまで、断面作製工程と断面像取得工程を交互に繰り返す。 In addition, even if a predetermined number of SEM images 5 are obtained, if it is determined in the step of (7) acquisition of the SEM image 5 that a cross-sectional image of a sample portion for which the three-dimensional image 7 is to be constructed is not obtained, it is determined. The observer adds the number of SEM images 5 to be acquired, and alternately repeats the cross-section preparation step and the cross-section image acquisition step until the added number of SEM images 5 are obtained.

(8)SEM像5の取り出し、取り込み工程:SEM像5が所定の枚数得られると、得られた全てのSEM像5はSEM4から画像処理装置6に取り込まれる。 (8) Taking out and capturing SEM images 5: When a predetermined number of SEM images 5 are obtained, all the obtained SEM images 5 are captured from the SEM 4 into the image processing apparatus 6.

(9)SEM像5の位置合わせ工程[図4(f)]:次に、観察者は、画像処理装置6において、得られたそれぞれのSEM像5に対して位置合わせを行う。図4(f)は、任意の切削位置DおよびEそれぞれのSEM像5を示す図であり、切削位置DのSEM像5を基準にして、切削位置EのSEM像5が位置合わせされる様子を示す図も併せて示している。図4(f)に示すように、SEM像5上の試料1の断面像の位置は、各切削位置17のSEM像5によって異なる。そのため、観察者は、SEM像5を並べる前に、各SEM像5上の試料1の断面像の位置を合わせておく必要がある。 (9) Alignment Step of SEM Image 5 [FIG. 4 (f)]: Next, the observer aligns each of the obtained SEM images 5 with the image processing apparatus 6. FIG. 4F is a diagram showing SEM images 5 of arbitrary cutting positions D and E, respectively, and the SEM image 5 of the cutting position E is aligned with reference to the SEM image 5 of the cutting position D. The figure showing is also shown. As shown in FIG. 4 (f), the position of the cross-sectional image of the sample 1 on the SEM image 5 differs depending on the SEM image 5 at each cutting position 17. Therefore, the observer needs to align the cross-sectional images of the sample 1 on each SEM image 5 before arranging the SEM images 5.

本第1実施形態においては、単位格子の対角位置にある格子点25毎に試料1は切削されるため、どのSEM像5においても、試料1の断面像に対するグリッドメッシュ23の断面像の相対位置は変わらない。したがって、図4(f)に示すように、観察者は、1枚のSEM像5を基準とし、基準のSEM像5上の2箇所のグリッドメッシュ23の断面像の位置と、その他のSEM像5上の対応する2箇所のグリッドメッシュ23の断面像の位置をそれぞれ合わせることで、全てのSEM像5上の試料1の断面像の位置を、SEM像5上の左右方向、上下方向、および回転方向全てにおいて一致させることができる。 In the first embodiment, since the sample 1 is cut at every 25 grid points diagonally located on the unit grid, the cross-sectional image of the grid mesh 23 is relative to the cross-sectional image of the sample 1 in any SEM image 5. The position does not change. Therefore, as shown in FIG. 4 (f), the observer uses one SEM image 5 as a reference, the positions of the cross-sectional images of the two grid meshes 23 on the reference SEM image 5, and the other SEM images. By aligning the positions of the cross-sectional images of the two corresponding grid meshes 23 on the SEM image 5, the positions of the cross-sectional images of the sample 1 on all the SEM images 5 can be set in the horizontal direction, the vertical direction, and the vertical direction on the SEM image 5. It can be matched in all directions of rotation.

なお、SEM像5の位置合わせは、観察者が手動で行ってもよいし、画像処理装置6が、各SEM像5上の共通の物体の断面像を自動で認識し、共通の物体の位置を自動で合わせる機能、もしくは指定された位置と位置を自動で合わせる機能を有する場合は、観察者は画像処理装置6のそれらの機能を用いてもよい。 The SEM image 5 may be aligned manually by the observer, or the image processing device 6 automatically recognizes a cross-sectional image of a common object on each SEM image 5 and positions the common object. The observer may use those functions of the image processing device 6 when it has a function of automatically aligning the images or a function of automatically aligning the designated position with the position.

(10)三次元像データの構築工程[図4(g)]:次に、画像処理装置6によって、全てのSEM像5は撮像順に並べられて三次元像データが構築される。この三次元像データに基づいて、図示しない三次元像表示装置に試料1の三次元像7が表示される。 (10) Three-dimensional image data construction step [FIG. 4 (g)]: Next, the image processing device 6 arranges all the SEM images 5 in the order of imaging to construct the three-dimensional image data. Based on this three-dimensional image data, the three-dimensional image 7 of the sample 1 is displayed on a three-dimensional image display device (not shown).

(11)三次元像7の寸法の設定工程[図4(h)]:最後に、観察者は、切削間隔およびSEM4の観察条件を画像処理装置6に入力することで、三次元像7の寸法を正しく設定する。図4(h)は、三次元像7とグリッドメッシュ23の位置関係を示す図である。 (11) Dimension setting step of the three-dimensional image 7 [FIG. 4 (h)]: Finally, the observer inputs the cutting interval and the observation conditions of the SEM 4 to the image processing device 6, so that the three-dimensional image 7 can be set. Set the dimensions correctly. FIG. 4H is a diagram showing the positional relationship between the three-dimensional image 7 and the grid mesh 23.

図4(h)に示すように、X軸とZ軸からなる面に断面2が作製された場合、三次元像7の奥行き(X軸方向の長さ)および高さ(Z軸方向の長さ)は、SEM像5の1ピクセルあたりの長さにより求められる。例えば、実寸が120×100μmの断面が10倍に拡大され、1200×1000ピクセルのSEM像5が得られた場合、SEM像5の1ピクセルあたりの長さは0.1μmである。画像処理装置6は取り込まれたSEM像5のピクセル数を認識できるため、観察者が画像処理装置6にSEM像5の1ピクセルあたりの長さを入力することで、画像処理装置6は各断面の実寸を算出することができる。したがって、観察者は、1ピクセルあたりの長さを画像処理装置6に入力することで、正しい奥行きおよび高さが設定された三次元像7を得る。 As shown in FIG. 4 (h), when the cross section 2 is formed on the surface composed of the X-axis and the Z-axis, the depth (length in the X-axis direction) and the height (length in the Z-axis direction) of the three-dimensional image 7 are formed. Is determined by the length of the SEM image 5 per pixel. For example, when a cross section having an actual size of 120 × 100 μm is enlarged 10 times to obtain an SEM image 5 having 1200 × 1000 pixels, the length of the SEM image 5 per pixel is 0.1 μm. Since the image processing device 6 can recognize the number of pixels of the captured SEM image 5, the observer inputs the length per pixel of the SEM image 5 to the image processing device 6, so that the image processing device 6 can perform each cross section. The actual size of can be calculated. Therefore, the observer inputs the length per pixel into the image processing apparatus 6 to obtain a three-dimensional image 7 in which the correct depth and height are set.

また、三次元像7の幅(Y軸方向の長さ)は、試料1を切削する間隔により求められる。本第1実施形態においては、単位格子の対角位置にある格子点25毎に試料1は切削されるため、切削間隔は単位格子の対角線の長さに等しい。そのため、観察者は、単位格子の対角線の長さを画像処理装置6に入力することで、正しい幅が設定された三次元像7を得る。 The width (length in the Y-axis direction) of the three-dimensional image 7 is determined by the interval at which the sample 1 is cut. In the first embodiment, since the sample 1 is cut at every 25 grid points at diagonal positions of the unit grid, the cutting interval is equal to the diagonal length of the unit grid. Therefore, the observer inputs the length of the diagonal line of the unit cell into the image processing device 6 to obtain a three-dimensional image 7 having the correct width.

なお、切削位置17が格子点25位置からわずかにずれてしまい、切削間隔が一定でない場合もある。図5は、本第1実施形態に関する、切削位置17が格子点25位置からずれた場合のグリッドメッシュ23の拡大上面図およびSEM像5を示す図であり、図5(a)は格子点25位置からずれた切削位置Fとその隣の切削位置Gが示されたグリッドメッシュ23の拡大上面図、図5(b)は切削位置Fに作製された断面2のSEM像5を示す図である。切削位置Fは格子点25位置からずれているため、図5(b)に示す、切削位置FにおけるSEM像5のグリッドメッシュ23の断面像はバー24の断面像であり、グリッドメッシュ23の断面像の間隔は等間隔ではなく、広い間隔L3と狭い間隔L4が交互に現れる。 The cutting position 17 may be slightly deviated from the grid point 25 position, and the cutting interval may not be constant. 5A and 5B are views showing an enlarged top view of the grid mesh 23 and an SEM image 5 when the cutting position 17 deviates from the grid point 25 position according to the first embodiment, and FIG. 5A is a diagram showing the grid point 25. An enlarged top view of the grid mesh 23 showing the cutting position F deviated from the position and the cutting position G adjacent to the cutting position F, FIG. 5B is a view showing the SEM image 5 of the cross section 2 produced at the cutting position F. .. Since the cutting position F is deviated from the grid point 25 position, the cross-sectional image of the grid mesh 23 of the SEM image 5 at the cutting position F shown in FIG. 5B is a cross-sectional image of the bar 24, and is a cross-sectional image of the grid mesh 23. The image spacing is not equal, and wide spacing L3 and narrow spacing L4 appear alternately.

本第1実施形態においては、単位格子の形状は正方形で、切削位置17を形成させる遮蔽板16の辺Aと、バー24とのなす角が45度となるようにグリッドメッシュ23は試料1に取り付けられる。そのため、図5(a)に示すように、切削位置Fと本来切削位置17となるはずであった格子点25aにより、角度が90度、45度、45度からなる直角二等辺三角形が形成される。この直角二等辺三角形の斜辺の長さは、SEM像5のグリッドメッシュ23の断面像の間隔のうち、狭い方の間隔L4と等しい。したがって、観察者は、SEM像5のグリッドメッシュ23の断面像の間隔を測ることで、切削位置Fの、本来の切削位置17からのずれ分(図5の場合、0.5×L4)を算出できる。その結果、観察者は、切削位置17が格子点25位置からずれた場合でも、正確な切削間隔を画像処理装置6に入力でき、三次元像7の幅を正しく設定できる。 In the first embodiment, the unit lattice has a square shape, and the grid mesh 23 is used as the sample 1 so that the angle between the side A of the shielding plate 16 forming the cutting position 17 and the bar 24 is 45 degrees. It is attached. Therefore, as shown in FIG. 5A, a right-angled isosceles triangle having angles of 90 degrees, 45 degrees, and 45 degrees is formed by the cutting position F and the lattice point 25a that should have been the cutting position 17 originally. To. The length of the hypotenuse of this right-angled isosceles triangle is equal to the narrower interval L4 of the intervals of the cross-sectional images of the grid mesh 23 of the SEM image 5. Therefore, the observer measures the distance between the cross-sectional images of the grid mesh 23 of the SEM image 5 to determine the deviation of the cutting position F from the original cutting position 17 (0.5 × L4 in the case of FIG. 5). Can be calculated. As a result, the observer can input an accurate cutting interval to the image processing device 6 even if the cutting position 17 deviates from the grid point 25 position, and can correctly set the width of the three-dimensional image 7.

以上の本第1実施形態によれば、一定の狭い間隔で試料1は切削され、かつSEM像5に現れるグリッドメッシュ23の断面像が、各SEM像5上の試料1の断面像の位置が合わせられる際の目印とされることで、正確な三次元像7が得られる。また、切削位置17が格子点25位置からずれても、正確な切削間隔が求められ、正確な三次元像7が得られる。 According to the above first embodiment, the sample 1 is cut at regular narrow intervals, and the cross-sectional image of the grid mesh 23 appearing in the SEM image 5 is the position of the cross-sectional image of the sample 1 on each SEM image 5. An accurate three-dimensional image 7 can be obtained by using it as a mark when it is matched. Further, even if the cutting position 17 deviates from the grid point 25 position, an accurate cutting interval is required and an accurate three-dimensional image 7 can be obtained.

(第2実施形態)
以下、図6を用いて、本発明の第2実施形態について説明する。図6は、本発明の第2実施形態に関する、試料1の三次元像構築方法の流れを示す図である。図6(a)〜図6(d)は断面作製工程を細分化して示した図、図6(e)〜図6(h)は断面像取得工程および三次元像構築工程を細分化して示した図である。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing a flow of a method for constructing a three-dimensional image of sample 1 according to the second embodiment of the present invention. 6 (a) to 6 (d) are views showing the cross-section preparation process in detail, and FIGS. 6 (e) to 6 (h) show the cross-section image acquisition process and the three-dimensional image construction process in detail. It is a figure.

なお、本第2実施形態が第1実施形態と異なるところは、(3)グリッドメッシュ23の取り付け工程[図6(b)]、(5)切削位置17の決定工程[図6(c)]、および(11)三次元像7の寸法の設定工程[図6(h)]である。第1実施形態と異なる工程を明確にするために、図6では、第1実施形態と異なる上記の工程を示す図を太枠で囲って示し、以下では第1実施形態と共通の工程に関する説明を省略する。 The second embodiment is different from the first embodiment in that (3) the grid mesh 23 mounting step [FIG. 6 (b)] and (5) the cutting position 17 determining step [FIG. 6 (c)]. , And (11) a step of setting the dimensions of the three-dimensional image 7 [FIG. 6 (h)]. In order to clarify the process different from the first embodiment, in FIG. 6, a diagram showing the above process different from the first embodiment is shown by enclosing it in a thick frame, and the following description describes the process common to the first embodiment. Is omitted.

(3)グリッドメッシュ23の取り付け工程[図6(b)]:(2)試料1の取り付け工程の後、観察者は、図6(b)に示すように、エポキシ樹脂等の接着剤12を用いて、試料1の上にグリッドメッシュ23を取り付ける。その際、観察者は、後にグリッドメッシュ23の上に乗せられる遮蔽板16の辺のうち、試料1に切削位置17を形成させる辺Aと、バー24とのなす角が90度(0度)となるように(図6(c)参照)、グリッドメッシュ23を試料1に取り付ける。この場合、図6(b)に示すように、バー24が試料台15の辺Cと平行になるように、観察者はグリッドメッシュ23を試料1に取り付ける。 (3) Attaching step of grid mesh 23 [FIG. 6 (b)]: (2) After the attaching step of sample 1, the observer attaches the adhesive 12 such as epoxy resin as shown in FIG. 6 (b). The grid mesh 23 is mounted on top of sample 1 in use. At that time, the observer observes that the angle between the side A on which the cutting position 17 is formed on the sample 1 and the bar 24 is 90 degrees (0 degrees) among the sides of the shielding plate 16 which is later placed on the grid mesh 23. The grid mesh 23 is attached to the sample 1 so as to be (see FIG. 6 (c)). In this case, as shown in FIG. 6B, the observer attaches the grid mesh 23 to the sample 1 so that the bar 24 is parallel to the side C of the sample table 15.

(5)切削位置17の決定工程[図6(c)]:(4)遮蔽板16の取り付け工程の後、観察者は、試料ホルダ13を試料ホルダ引出機構12に取り付け、試料台位置調整機構14によって、グリッドメッシュ23が取り付けられた試料1を遮蔽板16に対して動かすことで切削位置17を決定する。その際、観察者は、光学顕微鏡画像表示部22に表示される、試料1、グリッドメッシュ23、および遮蔽板16の上面拡大画像を見ながら(図2(a)の状態)、試料台位置調整機構14を動かして、図6(c)に示すように、隣り合うバー24の中央の位置を遮蔽板16の端の位置まで移動させる。 (5) Determining step of cutting position 17 [FIG. 6 (c)]: (4) After the step of attaching the shielding plate 16, the observer attaches the sample holder 13 to the sample holder drawing mechanism 12 and adjusts the sample table position. 14 determines the cutting position 17 by moving the sample 1 to which the grid mesh 23 is attached with respect to the shielding plate 16. At that time, the observer adjusts the position of the sample table while observing the enlarged upper surface images of the sample 1, the grid mesh 23, and the shielding plate 16 displayed on the optical microscope image display unit 22 (state of FIG. 2A). The mechanism 14 is moved to move the central position of the adjacent bars 24 to the position of the edge of the shielding plate 16 as shown in FIG. 6 (c).

なお、この工程において、断面試料作製装置3が遮蔽板16の位置を動かすことのできる遮蔽板位置調整機構を備える場合は、観察者は、遮蔽板位置調整機構を調節することで、遮蔽板16の端の位置を隣り合うバー24の中央の位置まで移動させてもよい。 In this step, when the cross-section sample preparation device 3 is provided with a shielding plate position adjusting mechanism capable of moving the position of the shielding plate 16, the observer adjusts the shielding plate position adjusting mechanism to adjust the shielding plate 16. The position of the edge may be moved to the center position of the adjacent bars 24.

本第2実施形態の(7)SEM像5の取得工程において得られるSEM像5には、第1実施形態と同様に、試料1の断面像および飛び飛びのグリッドメッシュ23の断面像が現れる。本第2実施形態においては、単位格子の形状は正方形で、切削位置17を形成させる遮蔽板16の辺Aと、バー24とのなす角が90度(0度)となるようにグリッドメッシュ23は試料1に取り付けられる。さらに、隣り合うバー24の中央の位置が切削位置17である。 Similar to the first embodiment, the cross-sectional image of the sample 1 and the cross-sectional image of the discrete grid mesh 23 appear in the SEM image 5 obtained in the step (7) acquisition of the SEM image 5 of the second embodiment. In the second embodiment, the shape of the unit cell is square, and the grid mesh 23 is formed so that the angle formed by the side A of the shielding plate 16 forming the cutting position 17 and the bar 24 is 90 degrees (0 degrees). Is attached to sample 1. Further, the central position of the adjacent bars 24 is the cutting position 17.

そのため、本第2実施形態でのSEM像5に現れるグリッドメッシュ23の断面像はバー24の断面像であり、飛び飛びのグリッドメッシュ23の断面像の間隔L2は等間隔である。なおかつ、試料1の断面像に対するグリッドメッシュ23の断面像の相対位置は、どの切削位置17のSEM像5においても変わらない。以上のことから、観察者は、本第2実施形態においても、(9)SEM像5の位置合わせ工程を第1実施形態と全く同様にして行うことができる。 Therefore, the cross-sectional image of the grid mesh 23 appearing in the SEM image 5 in the second embodiment is a cross-sectional image of the bar 24, and the intervals L2 of the cross-sectional images of the discrete grid mesh 23 are equal intervals. Moreover, the relative position of the cross-sectional image of the grid mesh 23 with respect to the cross-sectional image of the sample 1 does not change in the SEM image 5 of any cutting position 17. From the above, the observer can perform (9) the positioning step of the SEM image 5 in the second embodiment in exactly the same manner as in the first embodiment.

(11)三次元像7の寸法の設定工程[図6(h)]:(10)三次元像7の構築工程の後、観察者は、切削間隔およびSEM4の観察条件を画像処理装置6に入力することで、三次元像7の寸法を正しく設定する。図6(h)は、三次元像7とグリッドメッシュ23の位置関係を示す図である。図4(h)および図6(h)に示すように、本第2実施形態と第1実施形態とでは、切削間隔が異なる。本第2実施形態においては、隣り合うバー24の中央の位置が切削位置17であるため、切削間隔は隣り合うバー24の距離L1とおおよそ等しい。そのため、観察者は、隣り合うバー24の距離L1を画像処理装置6に入力することで、正しい幅が設定された三次元像7を得る。 (11) Dimension setting step of the three-dimensional image 7 [FIG. 6 (h)]: (10) After the step of constructing the three-dimensional image 7, the observer informs the image processing device 6 of the cutting interval and the observation conditions of the SEM4. By inputting, the dimensions of the three-dimensional image 7 are set correctly. FIG. 6H is a diagram showing the positional relationship between the three-dimensional image 7 and the grid mesh 23. As shown in FIGS. 4 (h) and 6 (h), the cutting interval is different between the second embodiment and the first embodiment. In the second embodiment, since the central position of the adjacent bars 24 is the cutting position 17, the cutting interval is approximately equal to the distance L1 of the adjacent bars 24. Therefore, the observer inputs the distance L1 of the adjacent bars 24 to the image processing device 6 to obtain a three-dimensional image 7 having the correct width.

なお、本第2実施形態において、切削位置17を隣り合うバー24の中央の位置としたが、切削位置17は格子点25位置(バー24の線上)以外であればどこでもよい。切削位置17が格子点25位置以外であれば、SEM像5に飛び飛びのグリッドメッシュ23の断面像が現れ、観察者は(9)SEM像5の位置合わせ工程を行うことができる。例えば、切削位置17を格子点25位置からわずかにずらした位置とした場合でも、観察者は(9)SEM像5の位置合わせ工程を行うことができる。この場合においても、切削間隔は隣り合うバー24の距離L1におおよそ等しくなるため、観察者は、(11)三次元像7の寸法の設定工程において三次元像7の幅を正しく設定できる。 In the second embodiment, the cutting position 17 is set to the center position of the adjacent bars 24, but the cutting position 17 may be any position other than the grid point 25 position (on the line of the bar 24). If the cutting position 17 is other than the grid point 25 position, a cross-sectional image of the grid mesh 23 that is scattered appears in the SEM image 5, and the observer can perform (9) the alignment step of the SEM image 5. For example, even when the cutting position 17 is set to a position slightly deviated from the grid point 25 position, the observer can perform (9) the alignment step of the SEM image 5. Even in this case, since the cutting interval is approximately equal to the distance L1 of the adjacent bars 24, the observer can correctly set the width of the three-dimensional image 7 in the step of (11) setting the dimensions of the three-dimensional image 7.

以上の本第2実施形態によれば、ほぼ一定の狭い間隔で試料1は切削され、かつSEM像5に現れるグリッドメッシュ23の断面像が、各SEM像5上の試料1の断面像の位置が合わせられる際の目印とされることで、正確な三次元像7が構築される。 According to the second embodiment described above, the sample 1 is cut at substantially constant narrow intervals, and the cross-sectional image of the grid mesh 23 appearing in the SEM image 5 is the position of the cross-sectional image of the sample 1 on each SEM image 5. An accurate three-dimensional image 7 is constructed by using it as a mark when the two are matched.

なお、第1実施形態および第2実施形態において、断面試料作製装置3が、図2(a)中のZ軸方向の周りを回転移動することのできる遮蔽板位置調製機構を備える場合は、観察者は、(3)グリッドメッシュ23の取り付け工程において、取り付け向きを気にせずにグリッドメッシュ23を試料1の平滑面に取り付けた後、(5)切削位置17の決定工程において、遮蔽板位置調製機構を回転させ、遮蔽板16の辺のうち試料1に切削位置17を形成させる辺と、試料1上のグリッドメッシュ23のバー24とのなす角が45度または90度となるように遮蔽板16の位置を調節した上で、切削位置17を決めてもよい。 In the first embodiment and the second embodiment, when the cross-sectional sample preparation device 3 is provided with a shielding plate position adjusting mechanism capable of rotationally moving around the Z-axis direction in FIG. 2A, observation is performed. After mounting the grid mesh 23 on the smooth surface of the sample 1 without worrying about the mounting direction in the mounting step of the grid mesh 23, the person adjusts the position of the shielding plate in the step of determining the cutting position 17. The shielding plate is rotated so that the angle between the side of the shielding plate 16 at which the cutting position 17 is formed on the sample 1 and the bar 24 of the grid mesh 23 on the sample 1 is 45 degrees or 90 degrees. The cutting position 17 may be determined after adjusting the position of 16.

また、断面試料作製装置3が、図2(a)中のZ軸方向の周りを回転移動することのできる試料台位置調整機構14を備える場合は、観察者は、(3)グリッドメッシュ23の取り付け工程において、取り付け向きを気にせずにグリッドメッシュ23を試料1の平滑面に取り付けた後、(5)切削位置17の決定工程において、試料台位置調整機構14を回転させ、遮蔽板16の辺のうち試料1に切削位置17を形成させる辺と、試料1上のグリッドメッシュ23のバー24とのなす角が45度または90度となるように試料1の位置を調節した上で、切削位置17を決めてもよい。 Further, when the cross-sectional sample preparation device 3 includes the sample table position adjusting mechanism 14 capable of rotationally moving around the Z-axis direction in FIG. 2 (a), the observer can see (3) the grid mesh 23. In the mounting process, after mounting the grid mesh 23 on the smooth surface of the sample 1 without worrying about the mounting direction, in the step of (5) determining the cutting position 17, the sample table position adjusting mechanism 14 is rotated to obtain the shielding plate 16. After adjusting the position of the sample 1 so that the angle between the side on which the cutting position 17 is formed on the sample 1 and the bar 24 of the grid mesh 23 on the sample 1 is 45 degrees or 90 degrees, the cutting is performed. The position 17 may be determined.

1:試料、2:断面、3:断面試料作製装置、4:SEM、5:SEM像、6:画像処理装置、7:三次元像、8:イオンビーム、9:真空チャンバ、10:真空排気機構、11:イオン銃、12:試料ホルダ引出機構、13:試料ホルダ、14:試料台位置調整機構、15:試料台、16:遮蔽板、17:切削位置、18:光学顕微鏡傾斜機構、19:軸、20:光学顕微鏡、21:光学顕微鏡位置調整機構、22:光学顕微鏡画像表示部、23:グリッドメッシュ、24:バー、25:格子点 1: Sample, 2: Cross section, 3: Cross section sample preparation device, 4: SEM, 5: SEM image, 6: Image processing device, 7: Three-dimensional image, 8: Ion beam, 9: Vacuum chamber, 10: Vacuum exhaust Mechanism, 11: Ion gun, 12: Sample holder withdrawal mechanism, 13: Sample holder, 14: Sample stand position adjustment mechanism, 15: Sample stand, 16: Shield plate, 17: Cutting position, 18: Optical microscope tilt mechanism, 19 : Axis, 20: Optical microscope, 21: Optical microscope position adjustment mechanism, 22: Optical microscope image display unit, 23: Grid mesh, 24: Bar, 25: Grid point

Claims (5)

試料の一部を覆うように配置される遮蔽材を備え、前記遮蔽材の直線状の端縁部から露出する試料部分と前記遮蔽材に覆われる試料部分との境目を加工位置とし、前記加工位置にイオンビームによって断面を作製する断面試料作製装置を用いて、前記断面を作製する断面作製工程と、撮像手段によって前記試料の断面像を取得する断面像取得工程を交互に繰り返し、画像処理装置によって、取得された複数の前記断面像を撮像された順に並べることで、前記試料の三次元像を構築する三次元像構築方法において、
前記断面作製工程は、矩形状の開口部が二次元的に配列された格子状マーク部材が、前記試料の表面に貼り付けられ、かつ前記遮蔽材の前記端縁部の伸びる方向に対して前記格子状マーク部材の前記矩形状の開口部を構成する辺が45度をなすように前記遮蔽材の下に配置される試料準備工程と、
前記格子状マーク部材を前記加工位置の指標として、前記遮蔽材と前記格子状マーク部材の相対位置を調節する加工位置決定工程と、
を含むことを特徴とする三次元像構築方法。
The processing is provided with a shielding material arranged so as to cover a part of the sample, and the boundary between the sample portion exposed from the linear edge portion of the shielding material and the sample portion covered with the shielding material is set as the processing position. Using a cross-section sample preparation device that prepares a cross section at a position with an ion beam, the cross-section preparation step of producing the cross section and the cross-section image acquisition step of acquiring the cross-section image of the sample by an imaging means are alternately repeated, and the image processing device. In the three-dimensional image construction method for constructing a three-dimensional image of the sample by arranging the plurality of the cross-sectional images acquired by the above in the order in which they were imaged.
In the cross-section manufacturing step, a grid-shaped mark member in which rectangular openings are two-dimensionally arranged is attached to the surface of the sample, and the edge portion of the shielding material is extended in the extending direction. A sample preparation step in which the sides forming the rectangular opening of the grid-shaped mark member are arranged under the shielding material so as to form 45 degrees, and a sample preparation step.
Using the grid-shaped mark member as an index of the machining position, a machining position determining step of adjusting the relative position between the shielding material and the grid-shaped mark member, and
A three-dimensional image construction method characterized by including.
試料の一部を覆うように配置される遮蔽材を備え、前記遮蔽材の直線状の端縁部から露出する試料部分と前記遮蔽材に覆われる試料部分との境目を加工位置とし、前記加工位置にイオンビームによって断面を作製する断面試料作製装置を用いて、前記断面を作製する断面作製工程と、撮像手段によって前記試料の断面像を取得する断面像取得工程を交互に繰り返し、画像処理装置によって、取得された複数の前記断面像を撮像された順に並べることで、前記試料の三次元像を構築する三次元像構築方法において、
前記断面作製工程は、矩形状の開口部が二次元的に配列された格子状マーク部材が、前記試料の表面に貼り付けられ、かつ前記遮蔽材の前記端縁部の伸びる方向に対して前記格子状マーク部材の前記矩形状の開口部を構成する辺が90度をなすように前記遮蔽材の下に配置される試料準備工程と、
前記格子状マーク部材を前記加工位置の指標として、前記遮蔽材と前記格子状マーク部材の相対位置を調節する加工位置決定工程と、
を含むことを特徴とする三次元像構築方法。
The processing is provided with a shielding material arranged so as to cover a part of the sample, and the boundary between the sample portion exposed from the linear edge portion of the shielding material and the sample portion covered with the shielding material is set as the processing position. Using a cross-section sample preparation device that prepares a cross section at a position with an ion beam, the cross-section preparation step of producing the cross section and the cross-section image acquisition step of acquiring the cross-section image of the sample by an imaging means are alternately repeated, and the image processing device. In the three-dimensional image construction method for constructing a three-dimensional image of the sample by arranging the plurality of the cross-sectional images acquired by the above in the order in which they were imaged.
In the cross-section manufacturing step, a grid-shaped mark member in which rectangular openings are two-dimensionally arranged is attached to the surface of the sample, and the edge portion of the shielding material is extended in the extending direction. A sample preparation step in which the sides forming the rectangular opening of the grid-shaped mark member are arranged under the shielding material so as to form 90 degrees, and a sample preparation step.
Using the grid-shaped mark member as an index of the machining position, a machining position determining step of adjusting the relative position between the shielding material and the grid-shaped mark member, and
A three-dimensional image construction method characterized by including.
請求項1または2のいずれかに記載の三次元像構築方法において、
前記加工位置決定工程は、前記格子状マーク部材の格子点の位置を前記加工位置とし、前記遮蔽材と前記格子状マーク部材の相対位置を調節することを特徴とする三次元像構築方法。
In the three-dimensional image construction method according to claim 1 or 2.
The processing position determining step is a three-dimensional image construction method, characterized in that the position of a grid point of the grid-shaped mark member is set as the processing position, and the relative position between the shielding material and the grid-shaped mark member is adjusted.
請求項2記載の三次元像構築方法において、
前記加工位置決定工程は、前記格子状マーク部材の格子点の位置以外の位置を前記加工位置とし、前記遮蔽材と前記格子状マーク部材の相対位置を調節することを特徴とする三次元像構築方法。
In the three-dimensional image construction method according to claim 2.
The three-dimensional image construction is characterized in that the processing position determining step sets a position other than the position of the lattice point of the grid-shaped mark member as the processing position and adjusts the relative position between the shielding material and the grid-shaped mark member. Method.
請求項1〜4のいずれかに記載の三次元像構築方法において、
前記複数の断面像を撮像された順に並べる工程の前に、複数の前記断面像から基準とする断面像を選び、前記基準の断面像以外の断面像上の前記格子状マーク部材の断面像の位置を、前記基準の断面像上の前記格子状マーク部材の断面像の位置に合わせることを特徴とする三次元像構築方法。
In the three-dimensional image construction method according to any one of claims 1 to 4.
Before the step of arranging the plurality of cross-sectional images in the order in which they are imaged, a reference cross-sectional image is selected from the plurality of the cross-sectional images, and the cross-sectional image of the grid-shaped mark member on the cross-sectional image other than the reference cross-sectional image. A method for constructing a three-dimensional image, characterized in that the position is aligned with the position of the cross-sectional image of the grid-shaped mark member on the reference cross-sectional image.
JP2017157298A 2017-08-17 2017-08-17 3D image construction method Active JP6876576B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017157298A JP6876576B2 (en) 2017-08-17 2017-08-17 3D image construction method
EP18189380.1A EP3474309B1 (en) 2017-08-17 2018-08-16 Three dimensional image reconstruction method
US16/104,308 US10748308B2 (en) 2017-08-17 2018-08-17 Three-dimensional image reconstruction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017157298A JP6876576B2 (en) 2017-08-17 2017-08-17 3D image construction method

Publications (2)

Publication Number Publication Date
JP2019036470A JP2019036470A (en) 2019-03-07
JP6876576B2 true JP6876576B2 (en) 2021-05-26

Family

ID=63787655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157298A Active JP6876576B2 (en) 2017-08-17 2017-08-17 3D image construction method

Country Status (3)

Country Link
US (1) US10748308B2 (en)
EP (1) EP3474309B1 (en)
JP (1) JP6876576B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122769A1 (en) 2021-09-02 2023-03-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Converter of an at least partially electrically driven motor vehicle and motor vehicle
CN115575364B (en) * 2022-09-30 2023-08-04 中国科学院生物物理研究所 Ion beam processing method based on optical microscopic imaging

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115699A (en) 1994-10-17 1996-05-07 Hitachi Ltd Device for machining and observing cross section three-dimensionally
JP3263920B2 (en) 1996-02-01 2002-03-11 日本電子株式会社 Sample preparation apparatus and method for electron microscope
US5774224A (en) * 1997-01-24 1998-06-30 International Business Machines Corporation Linear-scanning, oblique-viewing optical apparatus
US6373070B1 (en) * 1999-10-12 2002-04-16 Fei Company Method apparatus for a coaxial optical microscope with focused ion beam
FI107192B (en) * 1999-11-09 2001-06-15 Outokumpu Oy Method for checking the surface quality of an electrode
US7869057B2 (en) * 2002-09-09 2011-01-11 Zygo Corporation Multiple-angle multiple-wavelength interferometer using high-NA imaging and spectral analysis
JP4546830B2 (en) * 2002-09-30 2010-09-22 アプライド マテリアルズ イスラエル リミテッド Dark field inspection system
US7289224B2 (en) * 2003-09-15 2007-10-30 Zygo Corporation Low coherence grazing incidence interferometry for profiling and tilt sensing
WO2007124437A2 (en) * 2006-04-20 2007-11-01 Washington University In St. Louis Objective-coupled selective plane illumination microscopy
JP2007333682A (en) * 2006-06-19 2007-12-27 Jeol Ltd Cross-sectional sample producing apparatus using ion beam
US7561279B2 (en) * 2006-06-29 2009-07-14 Engineering Synthesis Design, Inc. Scanning simultaneous phase-shifting interferometer
WO2008080127A2 (en) * 2006-12-22 2008-07-03 Zygo Corporation Apparatus and method for measuring characteristics of surface features
US8059336B2 (en) * 2007-05-04 2011-11-15 Aperio Technologies, Inc. Rapid microscope scanner for volume image acquisition
JP5043589B2 (en) * 2007-10-15 2012-10-10 ソニー株式会社 Cross-section sample preparation system and cross-section sample preparation method
US8120781B2 (en) * 2008-11-26 2012-02-21 Zygo Corporation Interferometric systems and methods featuring spectral analysis of unevenly sampled data
US8269980B1 (en) * 2009-05-11 2012-09-18 Engineering Synthesis Design, Inc. White light scanning interferometer with simultaneous phase-shifting module
JP5331586B2 (en) * 2009-06-18 2013-10-30 株式会社日立ハイテクノロジーズ Defect inspection apparatus and inspection method
KR101580883B1 (en) * 2010-11-29 2015-12-30 도레이 카부시키가이샤 Ultrafine polyamide fiber, and melt-spinning method and device therefor
CA2835713C (en) * 2011-05-13 2023-04-04 Fibics Incorporated Microscopy imaging method and system
JP6336894B2 (en) * 2014-11-21 2018-06-06 日本電子株式会社 Sample preparation equipment
EP3237949A4 (en) * 2014-12-23 2018-08-01 GE Healthcare Bio-Sciences Corp. Selective plane illumination microscopy instruments
US10801926B2 (en) * 2017-07-17 2020-10-13 Expresslo Llc Probe with solid beveled tip and method for using same for specimen extraction

Also Published As

Publication number Publication date
US20190057522A1 (en) 2019-02-21
US10748308B2 (en) 2020-08-18
EP3474309A1 (en) 2019-04-24
EP3474309B1 (en) 2020-04-15
JP2019036470A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP5296413B2 (en) Cross-sectional image acquisition method using composite charged particle beam apparatus and composite charged particle beam apparatus
JP6876576B2 (en) 3D image construction method
JP4974737B2 (en) Charged particle system
JP6002489B2 (en) Charged particle beam apparatus and sample preparation method
JP2014107274A (en) Method of performing tomographic imaging of sample in charged-particle microscope
KR102590634B1 (en) Charged particle beam apparatus and sample processing method
EP3121834A1 (en) Fiducial formation for tem/stem tomography tilt-series acquisition and alignment
US10937625B2 (en) Method of imaging a sample using an electron microscope
JP5858702B2 (en) Compound charged particle beam system
JP6876455B2 (en) Observation method and sample preparation method
CN109142399A (en) A kind of imaging system and sample detection method
JP4265960B2 (en) Real-time machining position correction method and apparatus
CN208420756U (en) A kind of imaging system
JP4433092B2 (en) Three-dimensional structure observation method
JP4988175B2 (en) Sample table for charged particle equipment
JP5822642B2 (en) Charged particle beam apparatus and sample processing / observation method
JP5851218B2 (en) Sample analyzer
US11282672B2 (en) Charged particle beam apparatus and sample processing observation method
JP4393352B2 (en) electronic microscope
CN111896571A (en) Method for correcting imaging direction of TEM sample
DE102022127254B3 (en) Method for preparing a microscopic sample for FIB/SEM tomography and computer program product
JP4232848B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP7214262B2 (en) Charged particle beam device, sample processing method
WO2021125010A1 (en) Stereoscopic image observation method, and sample grid employed in same
JP5934521B2 (en) Sample analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6876576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150