WO2022209813A1 - Polyamide multifilament - Google Patents

Polyamide multifilament Download PDF

Info

Publication number
WO2022209813A1
WO2022209813A1 PCT/JP2022/011230 JP2022011230W WO2022209813A1 WO 2022209813 A1 WO2022209813 A1 WO 2022209813A1 JP 2022011230 W JP2022011230 W JP 2022011230W WO 2022209813 A1 WO2022209813 A1 WO 2022209813A1
Authority
WO
WIPO (PCT)
Prior art keywords
flatness
dtex
multifilament
strength
polyamide multifilament
Prior art date
Application number
PCT/JP2022/011230
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉雄大
渡邉勇太
鯨井実月
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280013676.7A priority Critical patent/CN116964259A/en
Priority to JP2022521608A priority patent/JPWO2022209813A1/ja
Priority to EP22780034.9A priority patent/EP4317550A1/en
Publication of WO2022209813A1 publication Critical patent/WO2022209813A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/54Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads coloured
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • the present invention relates to flat cross-section polyamide multifilaments suitable for woven and knitted fabrics in clothing applications. More particularly, the present invention relates to a polyamide multifilament that can provide a woven or knitted fabric with excellent softness, practical durability, and aesthetics when the flat cross-section polyamide multifilament of the present invention is used for clothing.
  • Synthetic fibers such as polyamide and polyester are widely used in clothing and industrial applications due to their excellent mechanical and chemical properties.
  • polyamide fibers are widely used in general clothing such as stockings, innerwear, and sportswear due to their unique softness, high strength, abrasion resistance, color development, and hygroscopicity. .
  • Patent Document 1 discloses oval or convex lens-shaped polyamide multifilament having a flatness of 1.5 to 5.0 and a fiber cross-sectional shape that is symmetrical with respect to the long axis, and a covering elastic yarn using the same.
  • 2 proposes a covering elastic yarn having a single yarn fineness of 0.6 to 1.0 dtex and a cross-sectional shape symmetrical with respect to the long axis, and a stocking using the same.
  • the cross-sectional shape of the single yarn has a flattening ratio of 1.5 to 8, which is represented by the ratio a/b of the maximum major axis length a and the maximum minor axis length b.
  • the flat cross-section polyamide multifilament described in Patent Document 1 is designed to minimize the spinneret hole in order to achieve high strength. This increases the variation in the strength and abrasion resistance, and causes fuzz, streaks, uneven gloss, and lacks aesthetics.
  • Patent Document 1 are applied to Patent Document 2 to promote the relaxation of polymer orientation and lower the solidification point, such as keeping the atmosphere temperature under the die at a high temperature in order to increase the strength product, solidification A high degree of flatness could not be obtained in forming a flat cross section due to the decrease in the score, and the texture could not be differentiated.
  • the object of the present invention is to solve the above problems, and to provide a flat cross-section polyamide multifilament that is excellent in practical durability, soft touch and aesthetics for woven or knitted fabrics for clothing.
  • the present invention employs the following configuration.
  • the total fineness is 4 to 100 dtex
  • the single yarn fineness is 1.1 to 5.0 dtex
  • the strength and elongation product is 4.5 to 10.0 cN / dtex
  • the single yarn cross section is represented by the major diameter b and the minor diameter a.
  • the polyamide multifilament of the present invention is a polyamide multifilament characterized by high flatness, high strength and elongation product, and little variation in flatness between single filaments. Furthermore, the polyamide multifilament of the present invention can be used to obtain woven fabrics or knitted fabrics for clothing that are excellent in practical durability, soft touch, and aesthetics.
  • One embodiment of a production apparatus that can be preferably used in the method for producing a polyamide multifilament of the present invention
  • One embodiment of the ejection hole shape of a spinneret that can be preferably used in the method for producing a polyamide multifilament of the present invention
  • One embodiment of the fiber cross-section of the polyamide multifilament of the present invention Hole arrangement of spinneret that can be preferably used in the method for producing polyamide multifilament of the present invention Hole arrangement of the spinneret used in Comparative Example 6
  • the polyamide constituting the polyamide multifilament of the present invention is a resin composed of a high molecular weight body in which a so-called hydrocarbon group is linked to the main chain via an amide bond, and such a polyamide is excellent in spinnability and mechanical properties.
  • Polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are mainly preferred, and polycaproamide (nylon 6) is more preferred because it is difficult to gel and has good spinning properties.
  • Other components include, but are not limited to, polydodecanamide, polyhexamethyleneadipamide, polyhexamethyleneazelamide, polyhexamethylenesebacamide, polyhexamethylenedodecanamide, polymetaxylylene adipate. units of aminocarboxylic acid, dicarboxylic acid, diamine, etc., which are monomers constituting polyhexamethylene terephthalamide, polyhexamethylene isophthalamide, and the like.
  • titanium oxide is often used as a matting agent for polyamide multifilaments, but the polyamide of the present invention may also contain titanium oxide as a matting agent.
  • the content of titanium oxide may be appropriately set within a range that does not impair the effects of the present invention, and the preferred range is 0 to 2% by weight.
  • various additives other than the above-described titanium oxide may be contained within a range that does not impair the effects of the present invention. Examples of these additives include stabilizers such as manganese compounds, heat-resistant agents, and flame retardants.
  • the polyamide multifilament of the present invention has a total fineness of 4 to 100 dtex and a single filament fineness of 1.1 to 5.0 dtex, and is mainly used for clothing applications that require a soft feel.
  • the total fineness in the range of 4 to 100 dtex, it is possible to obtain a clothing product excellent in soft feeling. If it is less than 4 dtex, the strength of the raw yarn is insufficient, the tear strength of the woven fabric and the burst strength of the knitted fabric are inferior, and the practical durability of the clothing product is impaired.
  • it is 70 dtex or less.
  • the single yarn fineness in the range of 1.1 to 5.0 dtex it is possible to obtain a clothing product excellent in soft feeling. If it is less than 1.1 dtex, fluff and pilling of woven and knitted fabrics are likely to occur, and the practical durability and aesthetics of clothing products are reduced.
  • it is 4.0 dtex or less.
  • the polyamide multifilament of the present invention has a strength and elongation product of 4.5 to 10.0 cN/dtex. Within this range, the fabric tear strength, the knit fabric burst strength, and the wear resistance are excellent, and the practical durability of the clothing product can be obtained. If it is less than 4.5, the practical durability of the clothing product is impaired. Preferably, it is 6.0 or more.
  • the polyamide multifilament of the present invention has a flatness (b/a) of 6.1 to 15.0, which is represented by the long diameter b and the short diameter a of the single filament cross section.
  • the flatness referred to here is a line indicating the long diameter b, which is obtained by measuring the long diameter b of the single yarn cross section as shown in FIG.
  • the bending softness of the fibers is improved, and it is possible to obtain a clothing product that is superior in softness to the touch compared to the conventional technique, thereby achieving differentiation. If it is less than 6.1, it is not possible to obtain a clothing product that is soft to the touch and differentiated from the prior art. On the other hand, if it exceeds 15.0, the strength and elongation product will be lowered, and the tear strength of the fabric, the burst strength of the knitted fabric, and the wear resistance will be lowered, thus impairing the practical durability of the clothing product. It is preferably 7.0 to 14.0, more preferably 8.0 to 11.0.
  • the polyamide multifilament of the present invention has a flatness CV value of 2.0 or less.
  • a flatness of 6.1 to 15.0 indicates a high flatness in terms of shape, so that it emits a strong luster due to the scattering and reflection of light.
  • the appearance of the fabric surface tends to look like streaks, and uneven gloss tends to occur.
  • it has a very delicate shape that is prone to damage and fluffing at places where it is twisted and stressed.
  • the flatness CV value referred to here indicates the variation in flatness of each single yarn, and is a value obtained by dividing the standard deviation value of flatness of all filaments by the average value of flatness.
  • Aesthetics is an expression that indicates the cleanness of the overall appearance of the surface of the fabric, free from product defects such as fluff, streaks, and gloss unevenness. If it exceeds 2.0, streaks, uneven luster, or fuzz may occur, or a combination thereof, resulting in poor aesthetics.
  • the abrasion resistance is also inferior, impairing the practical durability of clothing products. It is preferably 1.5 or less.
  • the cross-sectional shape of the polyamide multifilament according to the embodiment of the present invention is not particularly limited as long as it has a flat shape, and the surface shape is not particularly limited.
  • a polyamide multifilament according to embodiments of the present invention may have a lens-shaped cross-section, a bean-shaped cross-section, a modified cross-section having 3-8 convexes and the same number of concaves.
  • a particularly preferred form is the flat flat shape illustrated in FIG. 4(1).
  • the polyamide multifilament of the present invention preferably has a flatness smoothness of 1.5% or less.
  • the flat smoothness ratio as used herein indicates the uniformity of the flat minor axis of the single yarn, and of the short diameter aN of the cross section of the single yarn, the maximum minor diameter aM and the minimum minor diameter am are expressed as (aM-am)/ax 100 was calculated, and the average value of all filaments was taken as the flatness/smoothness ratio.
  • FIG. 1 shows one embodiment of a production apparatus preferably used in the method for producing polyamide multifilament of the present invention.
  • the polyamide multifilament of the present invention the polyamide is melted, the polyamide polymer is weighed and transported by a gear pump, and finally extruded from the discharge hole provided in the spinneret 1 to form each filament.
  • each filament discharged from the spinneret 1 in this way is surrounded by a gas supply device 2 for blowing out steam to suppress contamination of the spinneret over time, and for slow cooling.
  • a heating cylinder 3 is provided as shown in FIG. After that, the multifilament is formed by applying an oil agent by the lubricating device 5 and by bundling each filament to form a multifilament. .
  • the polyamide resin chips used have a relative viscosity of 2.5 to 4.0 in 98% sulfuric acid.
  • the higher the 98% sulfuric acid relative viscosity the easier it is to obtain a high flatness, while the higher the flatness, the lower the strength and elongation product. By setting it as such a range, the flatness and the strength and elongation product can be obtained.
  • the extrusion pressure of the molten polymer during spinning and its rising speed over time can be suppressed, and an excessive load on production equipment and an extension of the spinneret replacement cycle can be achieved.
  • the melting temperature is 20 ° C. higher than the melting point (Tm) of the polyamide (Tm + 20 ° C.) or higher, and 95 ° C. with respect to Tm. It is preferable to melt at a high temperature (Tm+95° C.) or lower. By setting the viscosity within such a range, the melt viscosity is suitable for melt spinning, so that stable spinning becomes possible.
  • FIG. 3 shows one embodiment of the shape of the ejection holes of the spinneret.
  • the discharge hole has a structure in which the circular holes at both ends are connected by slits, and in order to control the flatness to 6.1 to 15.0, the discharge hole width H (mm) of the spinneret 1 is minimized. do.
  • the shear rate is lowered in order to reduce the stress applied to the polymer on the discharge hole wall (circumference).
  • the aspect ratio of the ejection hole (ejection hole length N/ejection hole width H shown in FIG. 3) is set to 15-30.
  • the thickness is set within such a range, it is possible to achieve both high and uniform flatness and excellent productivity.
  • the aspect ratio is 18-27.
  • the discharge hole width H is set to 0.060 to 0.080 mm. More preferably, it is 0.065 to 0.075 mm. Flatness can be achieved by minimizing the width of the ejection hole within the range in which the polymer is stably ejected. Furthermore, in order to efficiently obtain a flat cross-section fiber that satisfies the single filament fineness, flatness, and flatness/smoothness of the present invention, the diameter D of the round hole shown in FIG. It is preferable that
  • FIG. 5 illustrates the case of an annular cooling device.
  • the hole arrangement is such that a line segment connecting the center point of the mouthpiece and the length center point (N/2) of the discharge holes intersects perpendicularly with the line segment of the length of the discharge holes.
  • FIG. 2 shows a schematic cross-sectional model diagram showing the spinneret and the heating tube.
  • a heating cylinder 3 is provided above the cooling device 4 so as to surround each filament on its entire circumference.
  • the orientation of the polyamide polymer discharged from the spinneret 1 can be improved by placing the heating cylinder 3 above the cooling device 4 and setting the atmospheric temperature in the heating cylinder within the range of 280 to 310°C. .
  • a desired strength and elongation product can be achieved by promoting the relaxation of the orientation in the slow cooling zone from the mouthpiece surface to the bottom surface of the heating cylinder. If the heating cylinder is not installed, the slow cooling region is lost, and the orientation relaxation from the die surface to cooling is insufficient, so it is difficult to achieve the desired strength and elongation product.
  • the length L of the heating cylinder is preferably 30 to 80 mm, although it depends on the single filament fineness of the multifilament. By setting the length of the heating cylinder to 30 mm or more, the distance becomes sufficient to promote the relaxation of polymer orientation, and the desired strength and elongation product is achieved. A desired flatness is achieved by setting the thickness to 80 mm or less. More preferably, it is 40 to 70 mm.
  • the heating cylinder is preferably multi-layered.
  • the temperature distribution in the heating cylinder is constant, the heat convection tends to be disturbed, and the solidification state of each filament. and become a factor that worsens U%. Therefore, by making the heating cylinder multi-layered and gradually lowering the temperature setting from the upper layer to the lower layer, it is possible to intentionally create a heat convection from the upper layer to the lower layer, creating a downdraft in the same direction as the accompanying flow of the yarn.
  • the multilayer heating cylinder is composed of two or more layers, and the single layer length L1 of the multilayer heating cylinder is preferably in the range of 10 to 25 mm.
  • the cooling device 4 In the production of the polyamide multifilament of the present invention, it is important for the cooling device 4 to uniformly cool each single yarn, and cooling is performed by an annular cooling device.
  • an annular cooling device that blows rectified cooling air from the outer peripheral side toward the center or an annular cooling device that blows rectified cooling air from the center toward the outer periphery is used.
  • the flatness CV value increases due to the difference in cooling between the single yarn on the front side and the single yarn on the back side of the outlet.
  • the solidification point of the polymer is raised. This is because the elastic force acting on the polymer is directed outward and acts in the direction that minimizes the surface area, thereby shortening the working time. That is, the solidification point of the polymer coming out of the lower surface of the heating cylinder and entering the cooling zone is brought as close to the upper end of the cooling zone as possible.
  • the vertical distance LS from the lower surface of the spinneret to the upper end of the cooling air blowing portion of the cooling device 4 (hereinafter referred to as cooling start distance LS) is 30 to 100 mm.
  • the horizontal distance LF from the upper end of the cooling air blowing portion of the cooling device 4 to the yarn group (hereinafter referred to as the cooling start point-to-yarn distance LF) is 7 to 15 mm.
  • the base point of the yarn group is the farthest position from the cooling air blowing portion. L can be arbitrarily adjusted by the length of the heating cylinder and LF by the arrangement of the mouthpiece holes.
  • the cooling wind speed as an effective method of bringing the solidification point closer to the upper end. It is preferably in the range of .0 to 6.0 m/min. When the velocity is 4.0 m/min or more, the heat exchange rate of the polymer increases and the solidification point approaches the upper end surface of the cooling zone, thereby realizing the desired flatness. On the other hand, from the viewpoint of operability, 6.0 m/min or less is preferable. Also, the temperature of the cooling air in the cooling zone is also an important factor in heat exchange, and the temperature of the cooling air is preferably 20° C. or less. When the temperature is 20° C. or lower, the heat exchange rate of the polymer increases and the solidification point approaches the upper end surface of the cooling zone, thereby realizing the desired flatness.
  • the position of the lubricating device 5 that is, the vertical distance Lg from the lower surface of the spinneret in FIG. It is preferably 800 to 1,500 mm, more preferably 1,000 to 1,300 mm, depending on the fineness and cooling efficiency of the filaments from the cooling device.
  • the filament temperature drops to an appropriate level when the oil is applied, and when the length is 1500 mm or less, yarn sway due to downdraft is small, and a multifilament with a low U% can be obtained.
  • the distance from the solidification point to the oiling position is shortened, which reduces the accompanying flow, and the spinning tension is reduced, which suppresses the spinning orientation, and the drawability is excellent, so the strength is high. It is preferable from the point of view of conversion.
  • the length is 800 mm or more, the bending of the yarn from the mouthpiece to the lubricating guide becomes appropriate, the influence of rubbing on the guide is less likely to occur, and the increase in strength is less reduced.
  • a fiber sample is measured according to JIS L1013 (2010) Tensile Strength and Elongation, and a tensile strength-elongation curve is drawn.
  • the type of tester was a constant speed elongation type
  • the grip interval was 50 cm
  • the tensile speed was 50 cm/min.
  • the maximum tensile strength and elongation at that time were measured.
  • Elongation elongation at break (%)
  • Strength tensile strength at break (cN) / fineness (dtex)
  • Strength and elongation product ⁇ strength (cN / dtex) ⁇ ⁇ ⁇ elongation (%) + 100 ⁇ / 100 B.
  • a fiber sample is set on a measuring scale with a total fineness of 1.125 m/circumference, rotated 500 times to create a loop-shaped skein, dried with a hot air dryer (105 ⁇ 2 ° C. x 60 minutes), and then weighed. The fineness was calculated from the value obtained by weighing the skein and multiplying it by the official moisture content. The official moisture content was 4.5%.
  • nylon 6 chips having a sulfuric acid relative viscosity ( ⁇ r) of 3.3, a melting point of 225° C. and containing no titanium oxide were dried by a conventional method so as to have a moisture content of 0.03% by mass or less.
  • the obtained nylon 6 chips were melted at a spinning temperature (melting temperature) of 298° C. and discharged from a spinneret (discharge rate: 39.2 g/min).
  • the spinneret had 68 holes, 2 threads per spinneret, and as shown in FIG. , was used.
  • the spinning machine was spun using the spinning machine shown in FIG. A heating cylinder having a length of L50 mm was used, and the ambient temperature of the heating cylinder was set to 290°C. Each filament discharged from the spinneret is cooled from the outer circumference to the center with a cooling start distance LS of 60 mm, a cooling start point-to-yarn distance LF of 10 mm, a wind temperature of 18 ° C., and a wind speed of 5.0 m / min.
  • the yarn was passed through an annular cooling device 4 to cool and solidify to room temperature. After that, the oil solution was applied at a position Lg of 1300 mm from the face of the nozzle, and each filament was bundled to form a multifilament.
  • Convergence was imparted by injecting high-pressure air onto the running yarn in the device 6 .
  • the pressure of the injected air was 0.2 MPa (flow rate 30 L/min). After that, it is drawn so that the drawing ratio between the take-up roller 7 and the drawing roller 8 is 1.8 times, and it is wound by the winder 9 at 3500 m/min. A nylon 6 multifilament was obtained.
  • the obtained multifilaments were used for warp and weft, and woven in a plain weave with a warp density of 188/2.54 cm and a weft density of 155/2.54 cm.
  • the obtained gray fabric was dyed in the following (a) to (e) to obtain a fabric with a warp density of 200/2.54 cm and a weft density of 160/2.54 cm.
  • Example 2 and 3 [Comparative Examples 1 and 2] A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the heating cylinder length L and the cooling start distance LS were changed as shown in Table 1 to obtain a woven fabric. Table 1 shows the evaluation results.
  • Example 4 A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the sulfuric acid relative viscosity ( ⁇ r) of the polyamide was changed as shown in Table 1 to obtain a woven fabric. Table 1 shows the evaluation results.
  • Examples 6 and 7 [Comparative Examples 3 and 4] A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the aspect ratio of the discharge hole of the spinneret shown in FIG. 3 was changed as shown in Table 2, and a woven fabric was obtained. Table 1 shows the evaluation results.
  • Example 8 The number of holes of the spinneret was 48, two threads per spinneret, and the aspect ratio of the ejection holes of the spinneret shown in FIG. A 78 dtex, 24 filament, flat nylon 6 multifilament was obtained in the same manner as in 1 to obtain a woven fabric.
  • Example 9 The number of holes of the spinneret was 48, two threads per spinneret, and the aspect ratio of the ejection holes of the spinneret shown in FIG. A 100 dtex, 24 filament, flat nylon 6 multifilament was obtained in the same manner as in 1 to obtain a woven fabric.
  • Example 5 A 56 dtex, 34 filament, and a flat nylon 6 multifilament were obtained in the same manner as in Example 1, except that the cooling device 4 was changed to a uniflow system that blows cooling rectified air in one direction to obtain a woven fabric. Table 2 shows the evaluation results.
  • Example 6 A nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the spinneret was changed to a hole arrangement in which the cooling air hit in parallel with the major axis direction of the flat cross section as shown in FIG. , a woven fabric was obtained. Table 2 shows the evaluation results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

This polyamide multifilament has a total fineness of 4-100 dtex, a single filament fineness of 1.1-5.0 dtex, a strength-elongation product of 4.5-10.0 cN/dtex, a flatness (b/a) expressed by a major axis b and a minor axis a in a single filament cross section of 6.1-15.0, and a flatness CV value of 2.0 or less. Provided is a polyamide multifilament having a flat cross-section and excellent practical durability of a knitted material or textile for clothing, and having a soft texture and an excellent aesthetic appearance.

Description

ポリアミドマルチフィラメントpolyamide multifilament
 本発明は、衣料用途における織物、編物に好適な扁平断面ポリアミドマルチフィラメントに関するものである。さらに詳しくは、本発明の扁平断面ポリアミドマルチフィラメントを衣料に用いたとき、ソフトな風合い、実用耐久性、審美性に優れる織物または編物を提供することができるポリアミドマルチフィラメントに関するものである。 The present invention relates to flat cross-section polyamide multifilaments suitable for woven and knitted fabrics in clothing applications. More particularly, the present invention relates to a polyamide multifilament that can provide a woven or knitted fabric with excellent softness, practical durability, and aesthetics when the flat cross-section polyamide multifilament of the present invention is used for clothing.
 ポリアミドやポリエステル等の合成繊維は、機械的・化学的性質において優れた特性を有することから衣料用途や産業用途で広く利用されている。特に、ポリアミド繊維はその独特の柔らかさ、高強度、耐摩耗性、発色性、吸湿性等において優れた特性を有することから、ストッキング、インナーウエア、スポーツウエアなど一般衣料用途で広く使用されている。 Synthetic fibers such as polyamide and polyester are widely used in clothing and industrial applications due to their excellent mechanical and chemical properties. In particular, polyamide fibers are widely used in general clothing such as stockings, innerwear, and sportswear due to their unique softness, high strength, abrasion resistance, color development, and hygroscopicity. .
 衣料製品に対する要求特性のひとつに風合いがある。風合いに対する改善技術として扁平糸が多数提案されている。例えば特許文献1には、扁平度が1.5~5.0、繊維断面形状が長軸に対して線対称である小判や凸レンズ形状のポリアミドマルチフィラメントおよびそれを用いたカバリング弾性糸、特許文献2には、単糸繊度0.6~1.0dtex、断面形状が長軸に対して線対称であるカバリング弾性糸およびそれを用いたストッキングが提案されている。また、特許文献3には、エアバック用途ではあるものの、単糸の断面形状が、最大長軸長aと最大短軸長bの比a/bで表される扁平率で1.5~8.0である合成繊維マルチフィラメントを経糸/緯糸の両方、もしくは片方に用いたエアバッグ用基布が提案されている。 Texture is one of the characteristics required for clothing products. A large number of flat yarns have been proposed as techniques for improving texture. For example, Patent Document 1 discloses oval or convex lens-shaped polyamide multifilament having a flatness of 1.5 to 5.0 and a fiber cross-sectional shape that is symmetrical with respect to the long axis, and a covering elastic yarn using the same. 2 proposes a covering elastic yarn having a single yarn fineness of 0.6 to 1.0 dtex and a cross-sectional shape symmetrical with respect to the long axis, and a stocking using the same. Further, in Patent Document 3, although it is used for airbags, the cross-sectional shape of the single yarn has a flattening ratio of 1.5 to 8, which is represented by the ratio a/b of the maximum major axis length a and the maximum minor axis length b. 0.0 synthetic fiber multifilament for both or one of warp and weft.
国際公開第2020/105637号WO2020/105637 特開2009-203563号公報JP 2009-203563 A 特開2003-55861号公報JP-A-2003-55861
 風合いに対する要求は時代と共に進化しており、柔らかさを追求すると、より高扁平度の糸が要求される。しかしながら、高扁平度化すると、強度や摩耗性が低下することで実用耐久性が低下してしまうことから、衣料用途で実用耐久性を伴うポリアミドマルチフィラメントの扁平度は高くて5.0程度であり、耐久性を維持しつつさらなる高扁平化が望まれていた。 The demand for texture has evolved with the times, and the pursuit of softness requires yarn with a higher degree of flatness. However, if the flatness is increased, the strength and abrasion resistance will decrease, resulting in a decrease in practical durability. Therefore, there has been a demand for a higher flatness while maintaining durability.
 特許文献1記載の扁平断面ポリアミドマルチフィラメントは、高強度化を達成するべく口金孔の極小化を図っているため、より高扁平な断面にしようとすると、扁平度や単糸繊度、原糸物性のバラつきが増加し、強度や摩耗性の低下、毛羽、スジ、光沢ムラが発生し審美性に欠ける。また、特許文献1に記載された強伸度積を高めるため口金下の雰囲気温度を高温に保つなどのポリマー配向緩和を促進して固化点を下げる条件を特許文献2に適用しても、固化点が下がることにより扁平断面形成において高扁平度が得られず、風合いの差別化ができるものではなかった。さらに、特許文献3記載の扁平断面ポリアミドマルチフィラメントを衣料用途に展開すべく細繊度化としても、徐冷域が適正でなく、単糸の冷却差が大きいために、扁平度や単糸繊度、原糸物性のバラつきが増加し、強度や摩耗性の低下、毛羽、スジ、光沢ムラが発生し審美性に欠ける。 The flat cross-section polyamide multifilament described in Patent Document 1 is designed to minimize the spinneret hole in order to achieve high strength. This increases the variation in the strength and abrasion resistance, and causes fuzz, streaks, uneven gloss, and lacks aesthetics. In addition, even if the conditions described in Patent Document 1 are applied to Patent Document 2 to promote the relaxation of polymer orientation and lower the solidification point, such as keeping the atmosphere temperature under the die at a high temperature in order to increase the strength product, solidification A high degree of flatness could not be obtained in forming a flat cross section due to the decrease in the score, and the texture could not be differentiated. Furthermore, even if the flat cross-section polyamide multifilament described in Patent Document 3 is reduced in fineness in order to develop it for clothing applications, the slow cooling region is not appropriate and the cooling difference between single yarns is large, so the flatness, single yarn fineness, and raw yarn Variation in physical properties increases, strength and abrasion resistance decrease, fuzz, streaks, and uneven gloss occur, resulting in poor aesthetics.
 本発明は上記問題を解決するものであり、衣料用織物または編物の実用耐久性に優れ、ソフトな風合い、審美性に優れる扁平断面ポリアミドマルチフィラメントを提供することを課題とする。 The object of the present invention is to solve the above problems, and to provide a flat cross-section polyamide multifilament that is excellent in practical durability, soft touch and aesthetics for woven or knitted fabrics for clothing.
 上記課題を解決するため、本発明は以下の構成を採用する。
(1)総繊度が4~100dtex、単糸繊度が1.1~5.0dtex、強伸度積が4.5~10.0cN/dtex、単糸断面の長径bと短径aで表される扁平度(b/a)が6.1~15.0、扁平度CV値が2.0以下であるポリアミドマルチフィラメント。
(2)扁平平滑率が1.5%以下であることを特徴とする前記(1)記載のポリアミドマルチフィラメント。
扁平平滑率(%)=(aM-am)/a×100
(aM:最大短径、am:最小短径)
(3)上記(1)または(2)記載のポリアミドマルチフィラメントを含む織物。
(4)上記(1)または(2)記載のポリアミドマルチフィラメントを含む編物。
In order to solve the above problems, the present invention employs the following configuration.
(1) The total fineness is 4 to 100 dtex, the single yarn fineness is 1.1 to 5.0 dtex, the strength and elongation product is 4.5 to 10.0 cN / dtex, and the single yarn cross section is represented by the major diameter b and the minor diameter a. A polyamide multifilament having a flatness (b/a) of 6.1 to 15.0 and a flatness CV value of 2.0 or less.
(2) The polyamide multifilament according to (1) above, which has a flattening/smoothing rate of 1.5% or less.
Flatness smoothness (%) = (aM-am) / a × 100
(aM: maximum minor axis, am: minimum minor axis)
(3) A woven fabric comprising the polyamide multifilament described in (1) or (2) above.
(4) A knitted fabric comprising the polyamide multifilament described in (1) or (2) above.
 本発明のポリアミドマルチフィラメントは、高扁平度、高強伸度積、単糸間の扁平度のバラつきが少ないことを特徴とするポリアミドマルチフィラメントである。さらには、本発明のポリアミドマルチフィラメントは、実用耐久性に優れ、ソフトな風合い、審美性に優れる衣料用織物または編物を得ることができる。 The polyamide multifilament of the present invention is a polyamide multifilament characterized by high flatness, high strength and elongation product, and little variation in flatness between single filaments. Furthermore, the polyamide multifilament of the present invention can be used to obtain woven fabrics or knitted fabrics for clothing that are excellent in practical durability, soft touch, and aesthetics.
本発明のポリアミドマルチフィラメントの製造方法に好ましく用いることのできる製造装置の一実施態様One embodiment of a production apparatus that can be preferably used in the method for producing a polyamide multifilament of the present invention 本発明のポリアミドマルチフィラメントの製造方法に好ましく用いることのできる紡糸口金および加熱筒を示す概略断面モデル図Schematic cross-sectional model diagram showing a spinneret and a heating cylinder that can be preferably used in the method for producing a polyamide multifilament of the present invention. 本発明のポリアミドマルチフィラメントの製造方法に好ましく用いることのできる紡糸口金の吐出孔形状の一実施態様One embodiment of the ejection hole shape of a spinneret that can be preferably used in the method for producing a polyamide multifilament of the present invention 本発明のポリアミドマルチフィラメントの繊維横断面の一実施態様One embodiment of the fiber cross-section of the polyamide multifilament of the present invention 本発明のポリアミドマルチフィラメントの製造方法に好ましく用いることのできる紡糸口金の孔配列Hole arrangement of spinneret that can be preferably used in the method for producing polyamide multifilament of the present invention 比較例6に用いた紡糸口金の孔配列Hole arrangement of the spinneret used in Comparative Example 6
 以下、本発明をさらに詳細に説明する。 The present invention will be described in further detail below.
 本発明のポリアミドマルチフィラメントを構成するポリアミドは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂であって、かかるポリアミドは、製糸性、機械特性に優れており、主としてポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)が好ましく、ゲル化し難しく、製糸性が良いことからポリカプロアミド(ナイロン6)がさらに好ましい。前記における主としてとは、ポリカプロアミドではポリカプロアミドを構成するε-カプロラクタム単位とし、ポリヘキサメチレンアジパミドではポリヘキサメチレンアジパミドを構成するヘキサメチレンジアンモニウムアジペート単位として、それぞれ80モル%以上であることをいい、さらに好ましくは90モル%以上である。その他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。 The polyamide constituting the polyamide multifilament of the present invention is a resin composed of a high molecular weight body in which a so-called hydrocarbon group is linked to the main chain via an amide bond, and such a polyamide is excellent in spinnability and mechanical properties. Polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are mainly preferred, and polycaproamide (nylon 6) is more preferred because it is difficult to gel and has good spinning properties. 80 mol % of ε-caprolactam units constituting polycaproamide for polycaproamide and hexamethylenediammonium adipate units constituting polyhexamethylene adipamide for polyhexamethylene adipamide, respectively. or more, more preferably 90 mol % or more. Other components include, but are not limited to, polydodecanamide, polyhexamethyleneadipamide, polyhexamethyleneazelamide, polyhexamethylenesebacamide, polyhexamethylenedodecanamide, polymetaxylylene adipate. units of aminocarboxylic acid, dicarboxylic acid, diamine, etc., which are monomers constituting polyhexamethylene terephthalamide, polyhexamethylene isophthalamide, and the like.
 一般的に、ポリアミドマルチフィラメントの艶消し剤として酸化チタンを用いることが多いが、本発明のポリアミドにも、艶消し剤として酸化チタンを含んでいてもよい。酸化チタン含有量は、本発明の効果を阻害しない範囲で適宜設定してよく、その好ましい範囲としては0~2重量%である。また、本発明の効果を阻害しない範囲で、前述の酸化チタン以外にも種々の添加剤を含んでいてもよい。この添加剤を例示すると、マンガン化合物等の安定剤、耐熱剤、難燃剤等が挙げられる。 Generally, titanium oxide is often used as a matting agent for polyamide multifilaments, but the polyamide of the present invention may also contain titanium oxide as a matting agent. The content of titanium oxide may be appropriately set within a range that does not impair the effects of the present invention, and the preferred range is 0 to 2% by weight. Moreover, various additives other than the above-described titanium oxide may be contained within a range that does not impair the effects of the present invention. Examples of these additives include stabilizers such as manganese compounds, heat-resistant agents, and flame retardants.
 本発明のポリアミドマルチフィラメントの総繊度は4~100dtex、単糸繊度は1.1~5.0dtexの範囲にあることがソフトな風合いが要求される衣料用途に主に使用される。総繊度を4~100dtexの範囲とすることで、ソフトな風合いに優れた衣料製品を得ることができる。4dtex未満の場合、原糸の強力が不足し、織物引裂強力、編物破裂強力に劣り、衣料製品の実用耐久性を損なう。好ましくは、70dtex以下である。また、単糸繊度を1.1~5.0dtexの範囲とすることで、ソフトな風合いに優れた衣料製品を得ることができる。1.1dtex未満の場合、原糸毛羽や織物、編物にピリングが発生しやすくなり、衣料製品の実用耐久性や審美性が低下する。好ましくは、4.0dtex以下である。 The polyamide multifilament of the present invention has a total fineness of 4 to 100 dtex and a single filament fineness of 1.1 to 5.0 dtex, and is mainly used for clothing applications that require a soft feel. By setting the total fineness in the range of 4 to 100 dtex, it is possible to obtain a clothing product excellent in soft feeling. If it is less than 4 dtex, the strength of the raw yarn is insufficient, the tear strength of the woven fabric and the burst strength of the knitted fabric are inferior, and the practical durability of the clothing product is impaired. Preferably, it is 70 dtex or less. Further, by setting the single yarn fineness in the range of 1.1 to 5.0 dtex, it is possible to obtain a clothing product excellent in soft feeling. If it is less than 1.1 dtex, fluff and pilling of woven and knitted fabrics are likely to occur, and the practical durability and aesthetics of clothing products are reduced. Preferably, it is 4.0 dtex or less.
 本発明のポリアミドマルチフィラメントは、強伸度積が4.5~10.0cN/dtexである。かかる範囲とすることで、織物引裂強力、編物破裂強力、耐摩耗性に優れ、衣料製品の実用耐久性を得ることができる。4.5未満の場合、衣料製品の実用耐久性を損なう。好ましくは、6.0以上である。 The polyamide multifilament of the present invention has a strength and elongation product of 4.5 to 10.0 cN/dtex. Within this range, the fabric tear strength, the knit fabric burst strength, and the wear resistance are excellent, and the practical durability of the clothing product can be obtained. If it is less than 4.5, the practical durability of the clothing product is impaired. Preferably, it is 6.0 or more.
 本発明のポリアミドマルチフィラメントは、単糸断面の長径bと短径aで表される扁平度(b/a)が6.1~15.0である。ここでいう扁平度とは、繊維軸に対して垂直に切断して撮影された繊維断面画像から、図4(2)に示すように単糸断面の長径bを測定し、長径bを示す線分を6等分した5点から、長径bに対して垂直な直線を描いた後、その直線と繊維外形との交点間の線分を短径aNとし、5本の短径aN(a1,a2,a3,a4,a5)を測定した平均値(短径a)より扁平度=b/aを算出する。全フィラメントについて扁平度を測定し、平均値を本発明で言う扁平度とした。また、短径aNの内、最大値をaM、最小値をamとした。扁平度をかかる範囲とすることで、繊維の曲げ柔らかさが向上し、従来技術よりもソフトな風合いに優れる衣料製品を得ることができ、差別化が図れる。6.1未満の場合は、ソフトな風合いの従来技術と差別化された衣料製品が得られない。また、15.0を超えると、強伸度積が低下し、織物引裂強力、編物破裂強力、耐摩耗性が低下するため、衣料製品の実用耐久性を損なう。好ましくは、7.0~14.0、さらに好ましくは8.0~11.0である。 The polyamide multifilament of the present invention has a flatness (b/a) of 6.1 to 15.0, which is represented by the long diameter b and the short diameter a of the single filament cross section. The flatness referred to here is a line indicating the long diameter b, which is obtained by measuring the long diameter b of the single yarn cross section as shown in FIG. After drawing a straight line perpendicular to the major axis b from 5 points that divide the fiber into 6 equal parts, the line segment between the intersection points of the straight line and the fiber outline is the minor axis aN, and the five minor axes aN (a1, Flatness = b/a is calculated from the average value (minor axis a) of a2, a3, a4, a5). Flatness was measured for all filaments, and the average value was taken as the flatness referred to in the present invention. Also, of the minor axis aN, the maximum value is aM and the minimum value is am. By setting the flatness to such a range, the bending softness of the fibers is improved, and it is possible to obtain a clothing product that is superior in softness to the touch compared to the conventional technique, thereby achieving differentiation. If it is less than 6.1, it is not possible to obtain a clothing product that is soft to the touch and differentiated from the prior art. On the other hand, if it exceeds 15.0, the strength and elongation product will be lowered, and the tear strength of the fabric, the burst strength of the knitted fabric, and the wear resistance will be lowered, thus impairing the practical durability of the clothing product. It is preferably 7.0 to 14.0, more preferably 8.0 to 11.0.
 本発明のポリアミドマルチフィラメントは、扁平度CV値が2.0以下である。扁平度6.1~15.0は、形状的に高扁平であるため、光の散乱・反射によって強い光沢を発する。一方、その形状が故に、長軸方向に曲がりやすく捻れやすい。そのため、布帛表面の外観は、スジっぽく見えやすく、光沢ムラを引き起こしやすい。また、捻れて応力がかかった箇所にダメージを受けて毛羽になりやすい非常に繊細な形状である。扁平度CV値を2.0以下とすることで、審美性に優れた衣料製品が得られる。ここでいう扁平度CV値とは、各単糸の扁平度バラツキを示し、全フィラメントの扁平度の標準偏差値を扁平度の平均値で除した値である。また、審美性とは、製品欠点となる毛羽、スジ、光沢ムラなどのない総合的に見た布帛表面の外観のきれいさを示した表現である。2.0を超えると、スジ、光沢ムラ、毛羽のいずれかもしくは複合的に発生し、審美性が劣る。また、耐摩耗性にも劣り、衣料製品の実用耐久性を損なう。好ましくは1.5以下である。 The polyamide multifilament of the present invention has a flatness CV value of 2.0 or less. A flatness of 6.1 to 15.0 indicates a high flatness in terms of shape, so that it emits a strong luster due to the scattering and reflection of light. On the other hand, because of its shape, it is easy to bend and twist in the longitudinal direction. Therefore, the appearance of the fabric surface tends to look like streaks, and uneven gloss tends to occur. In addition, it has a very delicate shape that is prone to damage and fluffing at places where it is twisted and stressed. By setting the flatness CV value to 2.0 or less, a clothing product excellent in aesthetics can be obtained. The flatness CV value referred to here indicates the variation in flatness of each single yarn, and is a value obtained by dividing the standard deviation value of flatness of all filaments by the average value of flatness. Aesthetics is an expression that indicates the cleanness of the overall appearance of the surface of the fabric, free from product defects such as fluff, streaks, and gloss unevenness. If it exceeds 2.0, streaks, uneven luster, or fuzz may occur, or a combination thereof, resulting in poor aesthetics. In addition, the abrasion resistance is also inferior, impairing the practical durability of clothing products. It is preferably 1.5 or less.
 なお、本発明の実施形態に係るポリアミドマルチフィラメントの断面形状は、扁平型を有していれば特に限定されず、表面形態も特に限定されるものではない。例えば、本発明の実施形態に係るポリアミドマルチフィラメントは、レンズ型断面、ビーンズ型断面、3~8個の凸部と同数の凹部を有する異形断面を有していてもよい。特に好ましい形態は、図4(1)に例示するフラット扁平である。 The cross-sectional shape of the polyamide multifilament according to the embodiment of the present invention is not particularly limited as long as it has a flat shape, and the surface shape is not particularly limited. For example, a polyamide multifilament according to embodiments of the present invention may have a lens-shaped cross-section, a bean-shaped cross-section, a modified cross-section having 3-8 convexes and the same number of concaves. A particularly preferred form is the flat flat shape illustrated in FIG. 4(1).
 本発明のポリアミドマルチフィラメントは、扁平平滑率が1.5%以下であることが好ましい。ここでいう扁平平滑率とは、単糸の扁平短軸の均一性を示し、単糸断面の短径aNの内、最大短径aMと最小短径amについて、(aM-am)/a×100を算出し、全フィラメントの平均値を扁平平滑率とした。数値が小さい程フラットタイプの扁平断面であることを示し、数値が大きいほど、レンズ型断面、ビーンズ型断面、3~8個の凸部と同数の凹部を有する異形断面のような凹凸がある扁平断面であることを示している。扁平平滑率1.5%以下とすることで、図4に例示する凹凸の小さいフラットタイプの扁平断面となる。フラットタイプの扁平断面とすることで、織物としたとき、単糸が同方向に積層しやすく扁平度が高い程薄い織物となり、ソフトな風合いが向上する。また、織物表面が平滑となり、強い光沢感が得られ、光沢ムラを抑制し審美性が向上する。より好ましくは1.0%以下である。 The polyamide multifilament of the present invention preferably has a flatness smoothness of 1.5% or less. The flat smoothness ratio as used herein indicates the uniformity of the flat minor axis of the single yarn, and of the short diameter aN of the cross section of the single yarn, the maximum minor diameter aM and the minimum minor diameter am are expressed as (aM-am)/ax 100 was calculated, and the average value of all filaments was taken as the flatness/smoothness ratio. The smaller the number, the flatter the flatness of the cross section. The higher the number, the flatter the shape is, such as a lens-shaped cross section, a bean-shaped cross section, and an irregular cross-section with 3 to 8 convex parts and the same number of concave parts. It shows that it is a cross section. By setting the flatness/smoothness to 1.5% or less, a flat-type flat cross section with small irregularities as illustrated in FIG. 4 is obtained. By making the cross section of the flat type, when it is made into a woven fabric, the single yarns are easily laminated in the same direction, and the higher the flatness, the thinner the woven fabric, and the softer the texture is improved. In addition, the surface of the woven fabric becomes smooth, a strong glossy feeling is obtained, uneven gloss is suppressed, and aesthetics is improved. More preferably, it is 1.0% or less.
 次に本発明のポリアミドマルチフィラメントの製造方法の一例を、具体的に説明する。図1は本発明のポリアミドマルチフィラメントの製造方法に好ましく用いる製造装置の一実施形態を示すものである。 Next, one example of the method for producing the polyamide multifilament of the present invention will be specifically described. FIG. 1 shows one embodiment of a production apparatus preferably used in the method for producing polyamide multifilament of the present invention.
 本発明のポリアミドマルチフィラメントは、ポリアミドを溶融し、ポリアミドポリマーをギヤポンプにて計量・輸送し、紡糸口金1に設けられた吐出孔から最終的に押し出され、各フィラメントを形成する。このようにして紡糸口金1から吐出された各フィラメントを、図1に示すがごとく、紡糸口金の経時汚れを抑制するために蒸気を吹き出す気体供給装置2、徐冷するために全周に囲繞するように加熱筒3が設けられ、冷却装置4にて糸条を室温まで冷却固化する。その後、給油装置5で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体ノズル装置6で集束し、引き取りローラ7、延伸ローラ8において、延伸された後、巻取装置9で巻き取る。 For the polyamide multifilament of the present invention, the polyamide is melted, the polyamide polymer is weighed and transported by a gear pump, and finally extruded from the discharge hole provided in the spinneret 1 to form each filament. As shown in FIG. 1, each filament discharged from the spinneret 1 in this way is surrounded by a gas supply device 2 for blowing out steam to suppress contamination of the spinneret over time, and for slow cooling. A heating cylinder 3 is provided as shown in FIG. After that, the multifilament is formed by applying an oil agent by the lubricating device 5 and by bundling each filament to form a multifilament. .
 本発明のポリアミドマルチフィラメントの製造において、用いるポリアミド樹脂チップの98%硫酸相対粘度が2.5~4.0の範囲であることが好ましい。98%硫酸相対粘度が高くなるほど高扁平度が得られやすい一方、高扁平になるほど強伸度積は低下する。かかる範囲とすることにより、扁平度と強伸度積を得ることができる。また、製糸性の観点から、3.5以下であると、紡糸時の溶融ポリマーの押出圧およびその経時の上昇速度を抑制でき、生産設備への過剰な負荷や口金の交換周期の延長が図れ、生産性が確保できるため、さらに好ましい
 本発明のポリアミドマルチフィラメントの製造において、溶融温度は、ポリアミドの融点(Tm)に対して20℃高い温度(Tm+20℃)以上、かつTmに対して95℃高い温度(Tm+95℃)以下の範囲で溶融することが好ましい。かかる範囲とすることで、溶融紡糸に適した溶融粘度となるため、安定した製糸が可能となる。
In the production of the polyamide multifilament of the present invention, it is preferable that the polyamide resin chips used have a relative viscosity of 2.5 to 4.0 in 98% sulfuric acid. The higher the 98% sulfuric acid relative viscosity, the easier it is to obtain a high flatness, while the higher the flatness, the lower the strength and elongation product. By setting it as such a range, the flatness and the strength and elongation product can be obtained. Also, from the viewpoint of spinning properties, if it is 3.5 or less, the extrusion pressure of the molten polymer during spinning and its rising speed over time can be suppressed, and an excessive load on production equipment and an extension of the spinneret replacement cycle can be achieved. , It is more preferable because productivity can be ensured. In the production of the polyamide multifilament of the present invention, the melting temperature is 20 ° C. higher than the melting point (Tm) of the polyamide (Tm + 20 ° C.) or higher, and 95 ° C. with respect to Tm. It is preferable to melt at a high temperature (Tm+95° C.) or lower. By setting the viscosity within such a range, the melt viscosity is suitable for melt spinning, so that stable spinning becomes possible.
 本発明のポリアミドマルチフィラメントの製造において、所望する扁平度と扁平度CV値を実現させるためには、紡糸口金の吐出孔を適正化し、剪断速度を適正値に設定する。図3に紡糸口金の吐出孔の孔形状の一実施態様を示した。吐出孔は両端の丸孔部分がスリット部分で繋がれた構造をしており、扁平度6.1~15.0に制御するには、紡糸口金1の吐出孔幅H(mm)を極小化する。加えて、扁平度CV値を2.0以下に制御するには、吐出孔壁(周)でポリマーにかかる応力を小さくするために、ずり速度を下げる。すなわち、吐出孔のアスペクト比(図3に示す、吐出孔長さN/吐出孔幅H)を15~30とする。かかる範囲とすることで、高く均一な扁平度、優れた生産性を両立することが可能である。好ましくは、アスペクト比18~27である。 In the production of the polyamide multifilament of the present invention, in order to achieve the desired flatness and flatness CV value, the spinneret ejection holes are optimized and the shear rate is set to an appropriate value. FIG. 3 shows one embodiment of the shape of the ejection holes of the spinneret. The discharge hole has a structure in which the circular holes at both ends are connected by slits, and in order to control the flatness to 6.1 to 15.0, the discharge hole width H (mm) of the spinneret 1 is minimized. do. In addition, in order to control the flatness CV value to 2.0 or less, the shear rate is lowered in order to reduce the stress applied to the polymer on the discharge hole wall (circumference). That is, the aspect ratio of the ejection hole (ejection hole length N/ejection hole width H shown in FIG. 3) is set to 15-30. By setting the thickness within such a range, it is possible to achieve both high and uniform flatness and excellent productivity. Preferably, the aspect ratio is 18-27.
 また、吐出孔幅Hを0.060~0.080mmとする。さらに好ましくは0.065~0.075mmである。吐出ポリマーが安定吐出させる範囲にて吐出孔孔幅を極小化することにより扁平度が達成可能である。さらに、本発明での単糸繊度、扁平率、扁平平滑率を満足する扁平断面繊維を効率よく得るためには、図3に示す丸孔部直径Dは、1.4H<D<1.6Hとなることが好ましい。 Also, the discharge hole width H is set to 0.060 to 0.080 mm. More preferably, it is 0.065 to 0.075 mm. Flatness can be achieved by minimizing the width of the ejection hole within the range in which the polymer is stably ejected. Furthermore, in order to efficiently obtain a flat cross-section fiber that satisfies the single filament fineness, flatness, and flatness/smoothness of the present invention, the diameter D of the round hole shown in FIG. It is preferable that
 ただし、吐出孔のアスペクト比15~30は高い値であり、このような吐出孔形状では、各吐出孔内および各吐出孔間での冷却プロフィールに差が生じやすい。そのために、繊維断面の形成差や固化点差による単糸間のバラツキが発生(扁平度CV値が増大)することから、吐出孔長さ方向に対して垂直に冷却風があたる孔配置とすることで、各吐出孔間での冷却プロフィールを均一化し、単糸間バラツキ(扁平度CV値)を抑制することが可能になる。環状冷却装置の場合を図5で例示すると、口金中心点と吐出孔長さ中心点(N/2)を結ぶ線分と吐出孔長さの線分が垂直に交わる孔配置である。 However, the aspect ratio of the discharge holes is a high value of 15 to 30, and with such a discharge hole shape, differences in the cooling profile within each discharge hole and between each discharge hole are likely to occur. For this reason, variations between single yarns occur due to differences in the formation of fiber cross sections and differences in solidification points (flatness CV value increases). Therefore, it is possible to uniformize the cooling profile between the discharge holes and suppress the variation (flatness CV value) between the single yarns. FIG. 5 illustrates the case of an annular cooling device. The hole arrangement is such that a line segment connecting the center point of the mouthpiece and the length center point (N/2) of the discharge holes intersects perpendicularly with the line segment of the length of the discharge holes.
 本発明のポリアミドマルチフィラメントの製造において、所望する扁平度と強伸度積を実現させるためには、マルチフィラメントの単糸繊度にもよるが、口金下に雰囲気温度を高温に保つ徐冷域を設置し、ポリマーの配向緩和を充分に促進させた後で、冷却域で急激に固化させ、繊維断面形状を固定する。図2に紡糸口金および加熱筒を示す概略断面モデル図を示した。 In the production of the polyamide multifilament of the present invention, in order to achieve the desired flatness and strength product, depending on the single filament fineness of the multifilament, a slow cooling area is installed under the spinneret to keep the ambient temperature at a high temperature. , After sufficiently accelerating the relaxation of the polymer orientation, it is rapidly solidified in the cooling zone to fix the cross-sectional shape of the fiber. FIG. 2 shows a schematic cross-sectional model diagram showing the spinneret and the heating tube.
 本発明のポリアミドマルチフィラメントの製造において、冷却装置4の上部には、各フィラメントを全周に囲繞するように加熱筒3が設けられている。加熱筒3を冷却装置4の上部に設置し、加熱筒内の雰囲気温度を280~310℃の範囲内とすることにより、紡糸口金1から吐出されたポリアミドポリマーは配向緩和を向上させることができる。口金面から加熱筒下面までの徐冷域で配向緩和を促進させることで、所望する強伸度積を実現することができる。加熱筒を設置しない場合、上記徐冷域がなくなり、口金面から冷却までの配向緩和が足りないため、所望する強伸度積を実現することが得にくい。 In the production of the polyamide multifilament of the present invention, a heating cylinder 3 is provided above the cooling device 4 so as to surround each filament on its entire circumference. The orientation of the polyamide polymer discharged from the spinneret 1 can be improved by placing the heating cylinder 3 above the cooling device 4 and setting the atmospheric temperature in the heating cylinder within the range of 280 to 310°C. . A desired strength and elongation product can be achieved by promoting the relaxation of the orientation in the slow cooling zone from the mouthpiece surface to the bottom surface of the heating cylinder. If the heating cylinder is not installed, the slow cooling region is lost, and the orientation relaxation from the die surface to cooling is insufficient, so it is difficult to achieve the desired strength and elongation product.
 加熱筒長さLは、マルチフィラメントの単糸繊度にもよるが、30~80mmであることが好ましい。加熱筒長さを30mm以上とすることで、ポリマー配向緩和を促進するのに充分な距離となり、所望する強伸度積を達成する。また、80mm以下とすることで、所望する扁平度を実現する。さらに好ましくは、40~70mmである。 The length L of the heating cylinder is preferably 30 to 80 mm, although it depends on the single filament fineness of the multifilament. By setting the length of the heating cylinder to 30 mm or more, the distance becomes sufficient to promote the relaxation of polymer orientation, and the desired strength and elongation product is achieved. A desired flatness is achieved by setting the thickness to 80 mm or less. More preferably, it is 40 to 70 mm.
 また、加熱筒は多層であることが好ましい。衣料用途に主に使用される本発明のポリアミドマルチフィラメントの総繊度領域においては、加熱筒内での温度分布が一定であると、熱対流が乱れた状態になり易く、各フィラメントの固化状態に影響し、U%を悪化させる要因となる。その為、加熱筒を多層にして上層から下層にかけて段階的に温度設定を下げることで、上層から下層への熱対流を意図的に作り出し、糸の随伴流と同方向の下降気流とすることで、加熱筒内での熱対流の乱れを抑制し、糸揺れも小さく、U%の小さいマルチフィラメントが得られる。多層加熱筒は2層以上から構成されることがさらに好ましく、多層加熱筒の単層長さL1は、10~25mmの範囲が好ましい。 Also, the heating cylinder is preferably multi-layered. In the total fineness range of the polyamide multifilament of the present invention, which is mainly used for clothing applications, if the temperature distribution in the heating cylinder is constant, the heat convection tends to be disturbed, and the solidification state of each filament. and become a factor that worsens U%. Therefore, by making the heating cylinder multi-layered and gradually lowering the temperature setting from the upper layer to the lower layer, it is possible to intentionally create a heat convection from the upper layer to the lower layer, creating a downdraft in the same direction as the accompanying flow of the yarn. , the turbulence of heat convection in the heating cylinder is suppressed, yarn swaying is small, and a multifilament with a small U% can be obtained. More preferably, the multilayer heating cylinder is composed of two or more layers, and the single layer length L1 of the multilayer heating cylinder is preferably in the range of 10 to 25 mm.
 本発明のポリアミドマルチフィラメントの製造において、冷却装置4は、単糸一本一本を均一に冷却させることが肝要であり、環状冷却装置にて冷却する。その方式を例示すると、外周側から中心側に向けて冷却整流風を吹き出す環状冷却装置、あるいは中心側から外周に向けて冷却整流風を吹き出す環状冷却装置のいずれか用いる。 In the production of the polyamide multifilament of the present invention, it is important for the cooling device 4 to uniformly cool each single yarn, and cooling is performed by an annular cooling device. For example, an annular cooling device that blows rectified cooling air from the outer peripheral side toward the center or an annular cooling device that blows rectified cooling air from the center toward the outer periphery is used.
 一方方向から冷却整流風を吹き出すユニフロー冷却装置の場合、吹き出し口の手前側の単糸と奥側の単糸では冷却に差が生じることから、扁平度CV値が増大する。 In the case of a uniflow cooling device that blows rectified cooling air from one direction, the flatness CV value increases due to the difference in cooling between the single yarn on the front side and the single yarn on the back side of the outlet.
 所望する扁平度を実現するためには、ポリマーの固化点を高くする。これは、ポリマーに働く弾性力が外側を向いており、表面積を最小する方向に働くため、その仕事時間を短くするためである。すなわち、加熱筒下面を出て、冷却域に入ってきたポリマーは可能な限り、固化点を冷却域上端に近づける。紡糸口金の下面から冷却装置4の冷却風吹出し部の上端部までの鉛直方向距離LS(以下、冷却開始距離LSと称す)は30~100mmである。 In order to achieve the desired flatness, the solidification point of the polymer is raised. This is because the elastic force acting on the polymer is directed outward and acts in the direction that minimizes the surface area, thereby shortening the working time. That is, the solidification point of the polymer coming out of the lower surface of the heating cylinder and entering the cooling zone is brought as close to the upper end of the cooling zone as possible. The vertical distance LS from the lower surface of the spinneret to the upper end of the cooling air blowing portion of the cooling device 4 (hereinafter referred to as cooling start distance LS) is 30 to 100 mm.
 さらに、高扁平を維持しつつ所望する扁平度CV値を実現するためには、冷却域に入ってきたポリマーは可能な限り、均一に急冷させる。冷却装置4の冷却風吹出し部の上端部から糸条群までの水平方向距離LF(以下、冷却開始点-糸条間距離LFと称す)は、7~15mmである。かかる範囲とすることにより、整流にて均一に冷却でき、風速バラツキの影響を受けにくいため、均一な扁平度が達成可能である。なお、糸条群は、冷却風吹き出し部から一番遠い位置を基点とする。Lは加熱筒長さ、LFは口金孔配置などで任意に調整可能である。 Furthermore, in order to achieve the desired flatness CV value while maintaining high flatness, the polymer entering the cooling zone is rapidly cooled as uniformly as possible. The horizontal distance LF from the upper end of the cooling air blowing portion of the cooling device 4 to the yarn group (hereinafter referred to as the cooling start point-to-yarn distance LF) is 7 to 15 mm. By setting it to such a range, uniform cooling can be achieved by rectification, and since it is less susceptible to wind speed variations, a uniform flatness can be achieved. The base point of the yarn group is the farthest position from the cooling air blowing portion. L can be arbitrarily adjusted by the length of the heating cylinder and LF by the arrangement of the mouthpiece holes.
 また、ヌッセルト熱交換式の観点から、固化点を上端に近づける有効な方法として、冷却風速を速くすることが好ましく、その範囲はマルチフィラメントの単糸繊度にもよるが、冷却域下端面で4.0~6.0m/分の範囲にあることが好ましい。4.0m/分以上とすることで、ポリマーの熱交換速度が速くなり、固化点が冷却域上端面に近づくため、所望する扁平度を実現する。一方で、操業性の観点から、6.0m/分以下が好ましい。また、上記同様に冷却域における冷却風温も熱交換における重要な因子であり、冷却風温は20℃以下であることが好ましい。20℃以下とすることで、ポリマーの熱交換速度が速くなり、固化点が冷却域上端面に近づくため、所望する扁平度を実現する。 Also, from the viewpoint of the Nusselt heat exchange system, it is preferable to increase the cooling wind speed as an effective method of bringing the solidification point closer to the upper end. It is preferably in the range of .0 to 6.0 m/min. When the velocity is 4.0 m/min or more, the heat exchange rate of the polymer increases and the solidification point approaches the upper end surface of the cooling zone, thereby realizing the desired flatness. On the other hand, from the viewpoint of operability, 6.0 m/min or less is preferable. Also, the temperature of the cooling air in the cooling zone is also an important factor in heat exchange, and the temperature of the cooling air is preferably 20° C. or less. When the temperature is 20° C. or lower, the heat exchange rate of the polymer increases and the solidification point approaches the upper end surface of the cooling zone, thereby realizing the desired flatness.
 本発明のポリアミドマルチフィラメントの製造において、給油装置5の位置、すなわち図1における紡糸口金下面から給油装置5の給油ノズル位置までの鉛直方向距離Lg(以下、給油位置Lgと称す)は、単糸繊度および冷却装置からのフィラメントの冷却効率にもよるが、800~1500mmが好ましく、より好ましくは1000~1300mmである。800mm以上である場合にはフィラメント温度が油剤付与時に適切な程度に下がり、1500mm以下である場合には下降気流による糸揺れも小さく、U%の低いマルチフィラメントが得られる。また、1500mm以下である場合には、固化点から給油位置までの距離が短くなることで随伴流が低減し、紡糸張力が低下することで紡糸配向が抑制され、延伸性に優れるため、高強度化の点から好ましい。800mm以上である場合には、口金から給油ガイドまでの糸屈曲が適正となり、ガイドでの擦過による影響を受けにくく、高強度化の低減が少なくなる。 In the production of the polyamide multifilament of the present invention, the position of the lubricating device 5, that is, the vertical distance Lg from the lower surface of the spinneret in FIG. It is preferably 800 to 1,500 mm, more preferably 1,000 to 1,300 mm, depending on the fineness and cooling efficiency of the filaments from the cooling device. When the length is 800 mm or more, the filament temperature drops to an appropriate level when the oil is applied, and when the length is 1500 mm or less, yarn sway due to downdraft is small, and a multifilament with a low U% can be obtained. In addition, when it is 1500 mm or less, the distance from the solidification point to the oiling position is shortened, which reduces the accompanying flow, and the spinning tension is reduced, which suppresses the spinning orientation, and the drawability is excellent, so the strength is high. It is preferable from the point of view of conversion. When the length is 800 mm or more, the bending of the yarn from the mouthpiece to the lubricating guide becomes appropriate, the influence of rubbing on the guide is less likely to occur, and the increase in strength is less reduced.
 以下、実施例により本発明をさらに詳細に説明する。 The present invention will be described in more detail below with reference to examples.
 A.強伸度積
 JIS L1013(2010)引張強さ及び伸び率に準じて繊維試料を測定し、引張強さ-伸び曲線を描く。試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/分にて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。
A. Strength and Elongation Product A fiber sample is measured according to JIS L1013 (2010) Tensile Strength and Elongation, and a tensile strength-elongation curve is drawn. As for the test conditions, the type of tester was a constant speed elongation type, the grip interval was 50 cm, and the tensile speed was 50 cm/min. When the tensile strength at break was smaller than the maximum strength, the maximum tensile strength and elongation at that time were measured.
 強度、強伸度積は、下記式にて求めた。
伸度=切断時の伸長(%)
強度=切断時の引張強さ(cN)/繊度(dtex)
強伸度積={強度(cN/dtex)}×{伸度(%)+100}/100
 B.総繊度
 1.125m/周の検尺器に繊維試料をセットし、500回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせの質量を量り、公定水分率を乗じた値から繊度を算出した。なお、公定水分率は4.5%とした。
The strength and strength/elongation product were determined by the following formulas.
Elongation = elongation at break (%)
Strength = tensile strength at break (cN) / fineness (dtex)
Strength and elongation product = {strength (cN / dtex)} × {elongation (%) + 100} / 100
B. A fiber sample is set on a measuring scale with a total fineness of 1.125 m/circumference, rotated 500 times to create a loop-shaped skein, dried with a hot air dryer (105 ± 2 ° C. x 60 minutes), and then weighed. The fineness was calculated from the value obtained by weighing the skein and multiplying it by the official moisture content. The official moisture content was 4.5%.
 C.硫酸相対粘度(ηr)
 ポリアミドチップ試料0.25gを、濃度98質量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
C. Sulfuric acid relative viscosity (ηr)
0.25 g of a polyamide chip sample was dissolved to 1 g in 100 ml of sulfuric acid having a concentration of 98% by mass, and the flowing time (T1) at 25° C. was measured using an Ostwald type viscometer. Subsequently, the flow-down time (T2) of sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, ie, T1/T2, was defined as the sulfuric acid relative viscosity.
 D.扁平度
 繊維の任意の位置にて横断面方向に薄切片を切り出し、透過顕微鏡で繊維横断面を全フィラメント撮影し、倍率1000倍でプリントアウト(三菱電機社製SCT-P66)した後、スキャナ(エプソン社製GT-5500WINS)を用いて取り込み(白黒写真、400dpi)、ディスプレー上で1500倍に拡大した状態で、画像処理ソフト(WINROOF)を用いた。単糸断面の長径bを測定し、長径bを示す線分を6等分した5点から、長径bに対して垂直な直線を描いた後、その直線と繊維外形との交点間の線分を短径aNとし、5本の短径aNを測定した平均値(短径a)より扁平度=b/aを算出する。全フィラメントについて扁平度を測定し、得られた値の数平均値を扁平度とした。
D. Flatness Cut out a thin piece in the cross-sectional direction at an arbitrary position of the fiber, photograph the fiber cross-section of all filaments with a transmission microscope, print out at a magnification of 1000 (Mitsubishi Electric Co., Ltd. SCT-P66), and then use a scanner ( Epson's GT-5500WINS) was used to take in (black-and-white photographs, 400 dpi), and image processing software (WINROOF) was used while being magnified 1500 times on the display. Measure the major diameter b of the single yarn cross section, divide the line segment showing the major diameter b into 6 equal parts, draw a straight line perpendicular to the major diameter b from 5 points, and then draw a line segment between the intersection points of the straight line and the fiber outline. is the minor axis aN, and the flatness = b/a is calculated from the average value (minor axis a) of five measured minor axes aN. The flatness of all filaments was measured, and the numerical average of the obtained values was taken as the flatness.
 E.扁平度CV値(%)
 上記で測定した全フィラメントの扁平度の標準偏差を算出し、扁平度の平均値で除した値を扁平度CV値とした。
E. Flatness CV value (%)
The flatness CV value was obtained by calculating the standard deviation of the flatness of all the filaments measured above and dividing it by the average value of the flatness.
 F.扁平平滑率
 扁平度測定について、単糸断面の短径aNの内、最大短径aMと最小短径amについて、(aM-am)/a×100を算出し、全フィラメントの平均値を扁平平滑率とした。
F. Flatness/Smoothness For measurement of flatness, (aM-am)/a×100 is calculated for the maximum minor diameter aM and the minimum minor diameter am of the minor diameter aN of the single filament cross section, and the average value of all filaments is the flatness and smoothness. rate.
 G.布帛評価
 (a)引裂強力
 実施例1同様の製法で作成した織物製品について、JIS L-1096(2010)(8.17 A法)に準じて、任意の3ヶ所の引裂強度を測定し、その平均値を測定した。次の基準で4段階評価した。
S:4.5N以上
A:4.1N4.5N未満
B:3.7N4.1N未満
C:3.7N未満。
G. Fabric evaluation (a) Tear strength For the woven product produced by the same method as in Example 1, the tear strength was measured at any three points according to JIS L-1096 (2010) (8.17 A method). Mean values were measured. Four grades were evaluated according to the following criteria.
S: 4.5N or more A: 4.1N or less than 4.5N B: 3.7N or less than 4.1N C: less than 3.7N.
 (b)摩耗強さ
 実施例1同様の製法で作成した織物製品について、JIS L-1076(2012)(8.1.1 A法)に準じて、任意の3ヶ所のピリング摩耗強さを測定し、その平均値を測定した。
S:5級
A:4級
B:3級
C:2級以下
 引裂強力および摩耗強さがどちらもSABを耐久性合格とした。
(b) Abrasion strength For the textile product produced by the same manufacturing method as in Example 1, measure the pilling abrasion strength at any three points according to JIS L-1076 (2012) (8.1.1 A method). and the average value was measured.
S: Grade 5 A: Grade 4 B: Grade 3 C: Grade 2 or lower Both tear strength and abrasion strength made SAB acceptable for durability.
 (c)風合い
 実施例1同様の製法で作成した織物製品について、風合い評価経験豊富な検査者(5人)によって、ソフト性を、比較例9の従来技術レベルの扁平断面ナイロン6マルチフィラメントを使用し、実施例1と同様の製法で作成した織物を基準として相対評価した。その結果は、各検査者の評価点をとり、検査者5人の平均値(小数点以下は四捨五入)が、5をS、4をA、3をB、1~2をCとした。SABを風合い合格とした。
5点:非常に優れる
4点:やや優れる
3点:普通
2点:やや劣る
1点:劣る。
(c) Feel The softness of the woven product produced by the same manufacturing method as in Example 1 was evaluated by inspectors (5 people) with extensive experience in evaluating the feel of the fabric. Then, a relative evaluation was made using a woven fabric prepared by the same manufacturing method as in Example 1 as a reference. The results were evaluated by each examiner, and the average value of the five examiners (rounded off to the nearest whole number) was 5 for S, 4 for A, 3 for B, and 1 to 2 for C. SAB was judged to have passed the texture.
5 points: very excellent 4 points: somewhat excellent 3 points: normal 2 points: somewhat inferior 1 point: inferior.
 (d)審美性
 実施例1同様の製法で作製した織物製品について、外観検査経験豊富な検査者(5人)によって、製品欠点となる毛羽、スジ、光沢ムラなどのない総合的に見た布帛表面の外観について、以下の基準によって判定した。その結果は、各検査者の評価点をとり、検査者5人の平均値(小数点以下は四捨五入)が、5をS、4をA、3をB、1~2をCとした。SABを審美性合格とした。
5点:毛羽・スジ・光沢ムラがない
4点:毛羽・スジがない
3点:毛羽がない
2点:スジがない
1点:光沢ムラがない。
(d) Aesthetics Regarding the textile products produced by the same manufacturing method as in Example 1, inspectors (5 people) with extensive experience in appearance inspections comprehensively viewed the fabric without fluff, streaks, gloss unevenness, etc., which are product defects. The appearance of the surface was judged according to the following criteria. The results were evaluated by each examiner, and the average value of the five examiners (rounded off to the nearest whole number) was 5 for S, 4 for A, 3 for B, and 1 to 2 for C. SAB was considered aesthetically acceptable.
5 points: No fluff, streaks, or uneven gloss 4 points: No fluff or streaks 3 points: No fluff 2 points: No streaks 1 point: No uneven gloss.
 〔実施例1〕
 ポリアミドとして、硫酸相対粘度(ηr)が3.3、融点225℃、酸化チタンを含まないナイロン6チップを水分率0.03質量%以下となるよう常法にて乾燥した。得られたナイロン6チップを紡糸温度(溶融温度)298℃にて溶融し、紡糸口金より吐出させた(吐出量39.2g/分)。紡糸口金は、ホール数が68、2糸条/口金であり、図3に示すとおり、スリットの両端に丸孔を有する吐出孔(アスペクト比N/H=19.7、H=0.07mm)、のものを使用した。
[Example 1]
As a polyamide, nylon 6 chips having a sulfuric acid relative viscosity (ηr) of 3.3, a melting point of 225° C. and containing no titanium oxide were dried by a conventional method so as to have a moisture content of 0.03% by mass or less. The obtained nylon 6 chips were melted at a spinning temperature (melting temperature) of 298° C. and discharged from a spinneret (discharge rate: 39.2 g/min). The spinneret had 68 holes, 2 threads per spinneret, and as shown in FIG. , was used.
 紡糸機は、図1に示す態様の紡糸機を用いて紡糸した。加熱筒は、加熱筒長さL50mmを用い、加熱筒の雰囲気温度を290℃となるように温度設定した。紡糸口金から吐出された各フィラメントを、冷却開始距離LS60mm、冷却開始点-糸条間距離LF10mm、風温18℃、風速5.0m/分、外周側から中心側に向けて冷却整流風を吹き出す環状冷却装置4を通過させて糸条を室温まで冷却固化した。その後、口金面からの給油位置Lgを1300mmの位置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体ノズル装置6で収束性を付与した。収束性付与は、装置6内で走行糸条に高圧空気を噴射することにより行った。噴射する空気の圧力は0.2MPa(流量30L/分)とした。その後、引き取りローラ7と延伸ローラ8の間の延伸倍率が1.8倍となるように延伸し、巻き取り機9にて3500m/分で巻き取り、56dtex、34フィラメント、扁平型断面形状を有するナイロン6マルチフィラメントを得た。 The spinning machine was spun using the spinning machine shown in FIG. A heating cylinder having a length of L50 mm was used, and the ambient temperature of the heating cylinder was set to 290°C. Each filament discharged from the spinneret is cooled from the outer circumference to the center with a cooling start distance LS of 60 mm, a cooling start point-to-yarn distance LF of 10 mm, a wind temperature of 18 ° C., and a wind speed of 5.0 m / min. The yarn was passed through an annular cooling device 4 to cool and solidify to room temperature. After that, the oil solution was applied at a position Lg of 1300 mm from the face of the nozzle, and each filament was bundled to form a multifilament. Convergence was imparted by injecting high-pressure air onto the running yarn in the device 6 . The pressure of the injected air was 0.2 MPa (flow rate 30 L/min). After that, it is drawn so that the drawing ratio between the take-up roller 7 and the drawing roller 8 is 1.8 times, and it is wound by the winder 9 at 3500 m/min. A nylon 6 multifilament was obtained.
 得られたマルチフィラメントを経糸と緯糸に用い、経密度188本/2.54cm、緯密度155本/2.54cm、平組織にて製織した。得られた生機を、以下(a)~(e)にて染色加工を実施し、経密度200本/2.54cm、緯密度160本/2.54cmの織物を得た。
(a)精錬:ノイゲン WS 5ml/L、水酸化ナトリウム5g/L、浴比1:50、95℃×60分、
(b)中間セット:180℃×1分
(c)染色:酸性染料(Nylosan Blue-GFL167%(サンドス社製)1.0%owf、98℃×60分
(d)固着処理:合成タンニン(ナイロンフィックス501 センカ社製)3g/l、80℃×20分
(e)仕上げセット:200℃×1分
 得られた扁平ナイロン6マルチフィラメント、織物について評価した結果を表1に示す。
The obtained multifilaments were used for warp and weft, and woven in a plain weave with a warp density of 188/2.54 cm and a weft density of 155/2.54 cm. The obtained gray fabric was dyed in the following (a) to (e) to obtain a fabric with a warp density of 200/2.54 cm and a weft density of 160/2.54 cm.
(a) Refining: Neugen WS 5 ml/L, sodium hydroxide 5 g/L, liquor ratio 1:50, 95°C x 60 minutes,
(b) Intermediate set: 180 ° C. x 1 minute (c) Dyeing: Acid dye (Nylosan Blue-GFL 167% (manufactured by Sandos) 1.0% owf, 98 ° C. x 60 minutes (d) Fixing treatment: Synthetic tannin (nylon Fix 501 (manufactured by Senka Co., Ltd.) 3 g/l, 80° C.×20 minutes (e) Finishing set: 200° C.×1 minute Table 1 shows the evaluation results of the obtained flat nylon 6 multifilament and woven fabric.
 〔実施例2、3〕〔比較例1,2〕
 加熱筒長さL、冷却開始距離LSを表1に記載のとおり変更した以外は実施例1と同様の方法で、56dtex、34フィラメントの扁平ナイロン6マルチフィラメントを得て、織物を得た。評価結果を表1に示す。
[Examples 2 and 3] [Comparative Examples 1 and 2]
A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the heating cylinder length L and the cooling start distance LS were changed as shown in Table 1 to obtain a woven fabric. Table 1 shows the evaluation results.
 〔実施例4、5〕
 ポリアミドの硫酸相対粘度(ηr)を表1に記載のとおり変更した以外は実施例1と同様の方法で、56dtex、34フィラメントの扁平ナイロン6マルチフィラメントを得、織物を得た。評価結果を表1に示す。
[Examples 4 and 5]
A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the sulfuric acid relative viscosity (ηr) of the polyamide was changed as shown in Table 1 to obtain a woven fabric. Table 1 shows the evaluation results.
 〔実施例6、7〕〔比較例3、4〕
 図3に示す紡糸口金の吐出孔のアスペクト比を表2に記載のとおり変更した以外は実施例1と同様の方法で、56dtex、34フィラメントの扁平ナイロン6マルチフィラメントを得、織物を得た。評価結果を表1に示す。
[Examples 6 and 7] [Comparative Examples 3 and 4]
A flat nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the aspect ratio of the discharge hole of the spinneret shown in FIG. 3 was changed as shown in Table 2, and a woven fabric was obtained. Table 1 shows the evaluation results.
 〔実施例8〕
 紡糸口金を、ホール数が48、2糸条/口金であり、図3に示す紡糸口金の吐出孔のアスペクト比を表2のとおり、吐出量を54.6g/分に変更した以外は実施例1と同様の方法で、78dtex、24フィラメント、扁平ナイロン6マルチフィラメントを得て、織物を得た。
[Example 8]
The number of holes of the spinneret was 48, two threads per spinneret, and the aspect ratio of the ejection holes of the spinneret shown in FIG. A 78 dtex, 24 filament, flat nylon 6 multifilament was obtained in the same manner as in 1 to obtain a woven fabric.
 〔実施例9〕
 紡糸口金を、ホール数が48、2糸条/口金であり、図3に示す紡糸口金の吐出孔のアスペクト比を表2のとおり、吐出量を70.0g/分に変更した以外は実施例1と同様の方法で、100dtex、24フィラメント、扁平ナイロン6マルチフィラメントを得て、織物を得た。
[Example 9]
The number of holes of the spinneret was 48, two threads per spinneret, and the aspect ratio of the ejection holes of the spinneret shown in FIG. A 100 dtex, 24 filament, flat nylon 6 multifilament was obtained in the same manner as in 1 to obtain a woven fabric.
 〔比較例5〕
 冷却装置4を一方向に冷却整流風を吹き出すユニフロー方式に変更した以外は実施例1と同様の方法で、56dtex、34フィラメント、扁平ナイロン6マルチフィラメントを得て、織物を得た。評価した結果を表2に示す。
[Comparative Example 5]
A 56 dtex, 34 filament, and a flat nylon 6 multifilament were obtained in the same manner as in Example 1, except that the cooling device 4 was changed to a uniflow system that blows cooling rectified air in one direction to obtain a woven fabric. Table 2 shows the evaluation results.
 〔比較例6〕
 紡糸口金について、図6に示すように扁平断面の長径方向に平行に冷却風が当たる孔配列に変更した以外は実施例1と同様の方法で、56dtex、34フィラメントのナイロン6マルチフィラメントを得て、織物を得た。評価した結果を表2に示す。
[Comparative Example 6]
A nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the spinneret was changed to a hole arrangement in which the cooling air hit in parallel with the major axis direction of the flat cross section as shown in FIG. , a woven fabric was obtained. Table 2 shows the evaluation results.
 〔比較例7、8〕
 冷却開始点-糸条間距離LFを表2のとおり変更した以外は実施例1と同様の方法で、56dtex、34フィラメントのナイロン6マルチフィラメントを得て、織物を得た。評価した結果を表2に示す。
[Comparative Examples 7 and 8]
A nylon 6 multifilament of 56 dtex and 34 filaments was obtained in the same manner as in Example 1 except that the cooling start point-to-yarn distance LF was changed as shown in Table 2 to obtain a woven fabric. Table 2 shows the evaluation results.
 〔比較例9〕
 紡糸口金を、図3に示す紡糸口金の吐出孔幅Hを表2のとおり、変更した以外は実施例1と同様の方法で、56dtex、34フィラメント、扁平ナイロン6マルチフィラメントを得て、織物を得た。評価した結果を表2に示す。
[Comparative Example 9]
A 56 dtex, 34 filament, flat nylon 6 multifilament was obtained in the same manner as in Example 1 except that the spinneret shown in FIG. Obtained. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1:紡糸口金
2:気体供給装置
3:加熱筒
4:冷却装置
5:給油装置
6:流体ノズル装置
7:引き取りローラ
8:延伸ローラ
9:巻取装置
L:加熱筒長さ
LS:冷却開始距離
LF:冷却開始点-糸条間距離
Lg:給油位置
N:吐出孔長さ
H:吐出孔幅
D:丸孔部直径
a:扁平断面短径
b:扁平断面長径
 
1: Spinneret 2: Gas supply device 3: Heating cylinder 4: Cooling device 5: Lubricating device 6: Fluid nozzle device 7: Take-up roller 8: Stretching roller 9: Winding device L: Heating cylinder length LS: Cooling start distance LF: Cooling start point - yarn distance Lg: Oil supply position N: Discharge hole length H: Discharge hole width D: Round hole diameter a: Minor diameter of flat cross section b: Long diameter of flat cross section

Claims (4)

  1.  総繊度が4~100dtex、単糸繊度が1.1~5.0dtex、強伸度積が4.5~10.0cN/dtex、単糸断面の長径bと短径aで表される扁平度(b/a)が6.1~15.0、扁平度CV値が2.0以下であるポリアミドマルチフィラメント。 The total fineness is 4 to 100 dtex, the single yarn fineness is 1.1 to 5.0 dtex, the strength and elongation product is 4.5 to 10.0 cN/dtex, and the flatness is expressed by the major diameter b and the minor diameter a of the single yarn cross section. A polyamide multifilament having a (b/a) of 6.1 to 15.0 and a flatness CV value of 2.0 or less.
  2.  扁平平滑率が1.5%以下であることを特徴とする請求項1記載のポリアミドマルチフィラメント。
    扁平平滑率(%)=(aM-am)/a×100
    aM:最大短径
    am:最小短径
    2. The polyamide multifilament according to claim 1, wherein the flattening smoothness is 1.5% or less.
    Flatness smoothness (%) = (aM-am) / a × 100
    aM: maximum minor axis am: minimum minor axis
  3.  請求項1または請求項2に記載のポリアミドマルチフィラメントを含む織物。 A fabric containing the polyamide multifilament according to claim 1 or claim 2.
  4.  請求項1または請求項2に記載のポリアミドマルチフィラメントを含む編物。
     
    A knitted fabric comprising the polyamide multifilament according to claim 1 or claim 2.
PCT/JP2022/011230 2021-03-29 2022-03-14 Polyamide multifilament WO2022209813A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280013676.7A CN116964259A (en) 2021-03-29 2022-03-14 Polyamide multifilament yarn
JP2022521608A JPWO2022209813A1 (en) 2021-03-29 2022-03-14
EP22780034.9A EP4317550A1 (en) 2021-03-29 2022-03-14 Polyamide multifilament

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054816 2021-03-29
JP2021-054816 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209813A1 true WO2022209813A1 (en) 2022-10-06

Family

ID=83458956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011230 WO2022209813A1 (en) 2021-03-29 2022-03-14 Polyamide multifilament

Country Status (5)

Country Link
EP (1) EP4317550A1 (en)
JP (1) JPWO2022209813A1 (en)
CN (1) CN116964259A (en)
TW (1) TW202237917A (en)
WO (1) WO2022209813A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239043A (en) * 1985-04-12 1986-10-24 東レ株式会社 Polyamide fiber cloth
JP2003055861A (en) 2001-08-17 2003-02-26 Toray Ind Inc Base cloth for non-coat airbag and fiber for airbag
JP2003213574A (en) * 2002-01-16 2003-07-30 Toray Ind Inc Base fabric for coated air bag
JP2007162187A (en) * 2005-12-16 2007-06-28 Toray Ind Inc Non-coated woven fabric for airbag, coated woven fabric, method for producing the same and inflatable curtain airbag
JP2009203563A (en) 2008-02-26 2009-09-10 Toray Ind Inc Covered yarn and compression stockings using the same
JP2014101597A (en) * 2012-11-19 2014-06-05 Toyobo Stc Co Ltd Woven fabric having high transparency
JP2015221953A (en) * 2014-05-23 2015-12-10 東レ株式会社 Woven or knitted fabric
WO2019146600A1 (en) * 2018-01-25 2019-08-01 東レ株式会社 Polyamide multifilament and knitted lace manufactured using same
WO2020105637A1 (en) 2018-11-21 2020-05-28 東レ株式会社 Polyamide multifilament and covering elastic yarn

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239043A (en) * 1985-04-12 1986-10-24 東レ株式会社 Polyamide fiber cloth
JP2003055861A (en) 2001-08-17 2003-02-26 Toray Ind Inc Base cloth for non-coat airbag and fiber for airbag
JP2003213574A (en) * 2002-01-16 2003-07-30 Toray Ind Inc Base fabric for coated air bag
JP2007162187A (en) * 2005-12-16 2007-06-28 Toray Ind Inc Non-coated woven fabric for airbag, coated woven fabric, method for producing the same and inflatable curtain airbag
JP2009203563A (en) 2008-02-26 2009-09-10 Toray Ind Inc Covered yarn and compression stockings using the same
JP2014101597A (en) * 2012-11-19 2014-06-05 Toyobo Stc Co Ltd Woven fabric having high transparency
JP2015221953A (en) * 2014-05-23 2015-12-10 東レ株式会社 Woven or knitted fabric
WO2019146600A1 (en) * 2018-01-25 2019-08-01 東レ株式会社 Polyamide multifilament and knitted lace manufactured using same
WO2020105637A1 (en) 2018-11-21 2020-05-28 東レ株式会社 Polyamide multifilament and covering elastic yarn

Also Published As

Publication number Publication date
CN116964259A (en) 2023-10-27
EP4317550A1 (en) 2024-02-07
JPWO2022209813A1 (en) 2022-10-06
TW202237917A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
JP6687035B2 (en) Polyamide multifilament and lace knitting and stockings using the same
TW201945466A (en) Polyamide fiber, woven or knit fabric, and method for producing polyamide fiber
JP6879362B2 (en) Polyamide multifilament and lace knitting using it
JP4983518B2 (en) False twisting polyamide fiber and method for producing false twisting polyamide fiber
WO2022209813A1 (en) Polyamide multifilament
TWI532893B (en) Polyamide mixed fiber composite yarn for false twisting
JP7363766B2 (en) polyamide multifilament and covering elastic yarn
JP7476619B2 (en) Polyester composite fiber
JP2008208513A (en) Production apparatus and production method of polyamide monofilament
JP2018104839A (en) Polyamide multifilament for false twisting excellent in shrinkage characteristics
TW202403136A (en) Multifilament
TW202240037A (en) Crimped polyamide yarn, false twisted yarn and fabric
JP2006265758A (en) Polyamide monofilament and method for producing the same
JP2017155348A (en) Polyamide fiber and fabric made thereof
TW202237916A (en) Polyamide multifilament, method for manufacturing same, and woven/knitted article
JP2021085122A (en) Polyamide fibers, and lace and knit fabric using the same
JP2006265743A (en) Polyamide fiber for woven fabric and method for producing the same
JPH02133629A (en) Polyamide bulky yarn of spun tone and production thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022521608

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013676.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780034

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780034

Country of ref document: EP

Effective date: 20231030