WO2012071942A1 - 一种具有水热管理能力的燃料电池模块 - Google Patents
一种具有水热管理能力的燃料电池模块 Download PDFInfo
- Publication number
- WO2012071942A1 WO2012071942A1 PCT/CN2011/080474 CN2011080474W WO2012071942A1 WO 2012071942 A1 WO2012071942 A1 WO 2012071942A1 CN 2011080474 W CN2011080474 W CN 2011080474W WO 2012071942 A1 WO2012071942 A1 WO 2012071942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- module
- cell stack
- hydrogen
- cooling medium
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04731—Temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
- H01M8/04164—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04358—Temperature; Ambient temperature of the coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04552—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04723—Temperature of the coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/0488—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention belongs to the field of fuel cells, and in particular to a fuel cell module.
- a conventional fuel cell module typically includes only a fuel cell stack, a hydrogen distribution unit, an air distribution unit, a cooling medium distribution unit, a single cell voltage detecting unit, and a power output unit.
- the shortcoming of the traditional fuel cell module is that the module does not have a hydrothermal management function inside, which is not suitable for the ideal working state as soon as the fuel cell is used.
- a fuel cell module having hydrothermal management capability comprising a fuel cell stack, a distribution unit, a single cell voltage detecting unit and a power output unit disposed in the outer packaging sub-module
- the outer packaging sub-module comprises Air inlet, air outlet, hydrogen inlet, hydrogen outlet, cooling medium inlet, cooling medium outlet, communication interface, negative electrode interface of fuel cell stack and positive electrode interface of fuel cell stack provided on packaging shell and packaging shell; cooling medium inlet, cooling a medium outlet, an air inlet, an air outlet, a hydrogen inlet, and a hydrogen outlet are respectively connected to the fuel cell stack; a negative electrode interface of the fuel cell stack and a positive electrode interface of the fuel cell stack are connected to an output end of the fuel cell stack, and the distribution unit includes a hydrogen distribution unit, An air distribution unit and a cooling medium distribution unit, characterized in that the fuel cell module having hydrothermal management capability further comprises a power management unit, a step-down heating sub-module and a liquid water management sub-module
- the outer package sub-module further includes an energy controller, an energy storage unit, an electric heating unit, a hydrogen discharge port, a ventilation air inlet pipe interface, and a ventilation air outlet pipe interface, wherein the inner wall of the packaging shell is provided with an insulating material, the hydrogen gas
- the discharge port, the ventilation air inlet pipe interface and the ventilation air outlet pipe interface are arranged on the package casing, and the ventilation air inlet pipe is connected with the air compressor/fan outlet of the fuel cell power generation system, the ventilation air outlet pipe and the fuel cell system
- the discharge port is connected;
- the energy controller is in the package casing, and the energy controller input end is divided Not connected to the positive and negative poles of the fuel cell stack, the output ends of the energy controller are respectively connected with the energy storage unit and the electric heating unit, and the electric heating elements of the electric heating unit are arranged on the surface of the insulating material on the inner wall of the packaging shell;
- the communication interface and power management The electronic control unit module of the unit is connected; the hydrogen discharge port of the fuel cell module
- the power management unit includes an electronic control unit module, an air temperature sensor, an air pressure sensor, a hydrogen temperature sensor, a hydrogen pressure sensor, a cooling medium temperature sensor, a cooling medium pressure sensor, a voltage sensor, a current sensor and a connection harness, an air temperature sensor, and
- the air pressure sensor is connected to the fuel cell stack air inlet passage
- the hydrogen temperature sensor and the hydrogen pressure sensor are connected to the fuel cell stack hydrogen inlet passage
- the cooling medium temperature sensor and the cooling medium pressure sensor are connected to the fuel cell stack cooling medium inlet passage.
- the voltage sensor and the current sensor are connected to the fuel cell stack output line, and the air temperature sensor, the air pressure sensor, the hydrogen temperature sensor, the hydrogen pressure sensor, the cooling medium temperature sensor, the cooling medium pressure sensor, the voltage sensor, and the current sensor signal line Electronic control unit module connection;
- the step-down heating sub-module comprises an inlet check valve, an outlet check valve, a heating water tank, a resistor and a circulation pump, and the heating water tank outlet is connected to a cooling medium inlet of the fuel cell stack cooling medium distribution unit, and the heating water tank inlet is unidirectional through the inlet
- the valve is connected to the fuel cell module cooling medium inlet on the package, the outlet check valve inlet is connected to the cooling medium outlet of the fuel cell stack cooling medium distribution unit, and the outlet check valve outlet is connected to the fuel cell module cooling medium outlet on the package casing
- the circulation pump outlet is connected to the heating water tank, and the circulation pump inlet is connected to the cooling medium outlet of the fuel cell stack cooling medium distribution unit, and the circulation pump control switch is connected with the electronic control unit module, and the heating water tank is provided with a resistor, and the resistance end is connected to the fuel.
- the anode of the battery stack is connected to the anode of the fuel cell stack through an electronic control unit module;
- the liquid water management sub-module is composed of a hydrogen water separator, an air water separator, a liquid water drainer and a pulse solenoid valve, and the package shell
- the fuel cell module air inlet on the water is divided by air Connected to the air inlet of the air distribution unit of the fuel cell stack, the fuel cell module air outlet on the package casing is connected to the air outlet of the air distribution unit of the fuel cell stack, and the fuel cell module hydrogen inlet on the package casing passes through the hydrogen water separator Connected to the hydrogen inlet of the hydrogen distribution unit of the fuel cell stack, the hydrogen outlet of the fuel cell module on the package is connected to the hydrogen outlet of the hydrogen distribution unit of the fuel cell stack, and one end of the liquid water drain is connected to the hydrogen outlet of the fuel cell module on the package, and One end is passed through the pulse solenoid valve and the package
- the fuel cell module is connected to the hydrogen discharge port,
- the fuel cell module with hydrothermal management capability is characterized in that the electronic control unit module comprises a single cell voltage collecting circuit, a temperature collecting circuit, a pressure collecting circuit, a current collecting circuit, a total voltage collecting circuit,
- the resistor switch driving circuit, the pulse solenoid valve driving circuit, the circulating pump switch driving circuit, the communication circuit and the digital core are composed, and the single cell voltage collecting circuit, the temperature collecting circuit, the pressure collecting circuit, the current collecting circuit and the total voltage collecting circuit are respectively a fuel cell stack unit, an air temperature sensor, a hydrogen temperature sensor, a cooling medium temperature sensor, an air pressure sensor, a hydrogen pressure sensor, a cooling medium pressure sensor, a voltage sensor, and a current sensor are connected by a signal line, the resistance switch driving circuit Electrically connecting with the resistor of the step-down heating sub-module to control the on-off of the resistor of the step-down heating sub-module, the pulse solenoid valve driving circuit is connected with the controller of the pulse solenoid valve of the liquid water management sub-modul
- the invention relates to a fuel cell module with hydrothermal management capability, characterized in that the liquid water drainer is composed of a water separator, a heat preservation box and a PTC thermistor, and the water separator is placed in the heat preservation box, PTC The thermistor is placed outside the water collecting portion of the water separator in the incubator, and the PTC thermistor is connected to the load line of the fuel cell.
- the fuel cell module with hydrothermal management capability is characterized in that the energy controller of the outer package sub-module comprises an energy controller digital core, a voltage converter, a charging switch, a heating switch, an energy controller Voltage acquisition module and energy controller temperature acquisition module, the voltage converter is a voltage converter composed of a step-down constant current output circuit, the digital core of the energy controller is connected with the voltage converter, and the signal line is respectively connected with the energy controller voltage acquisition module And the energy controller temperature collecting module is connected, the voltage converter input end is respectively connected to the positive pole and the negative pole of the fuel cell module, the voltage converter output end is connected to the energy storage unit through the charging switch, and the energy controller voltage collecting module is connected with the energy storage unit
- the energy storage unit is connected to the electric heating unit through a heating switch;
- the outer packaging sub-module energy storage unit is a super capacitor, a lithium ion battery or a nickel hydrogen battery; and the electric heating element of the electric heating unit of the outer packaging submodule is a heating wire, Electric heating or electric heating tube.
- a fuel cell module having hydrothermal management capability is characterized in that The air inlet duct interface and the ventilation outlet duct interface are respectively placed on a pair of opposite vertical façades of the package shell, and the height is located at 1/5 of the top of the package casing.
- the management control method for a fuel cell module having hydrothermal management capability is characterized in that the management control method comprises a power management control method, a step-down heating management control method, a fuel cell stack heat preservation control method, and a liquid state
- the power management control method is: the electronic control unit module analyzes the output state of the fuel cell on-line according to the set fuel cell stack polarization curve, the attenuation characteristic, and the online detection of the output voltage and output current of the fuel cell module.
- the buck heating management control method is: the electronic control unit module detects the total voltage of the fuel cell module and the temperature of the cooling medium through the voltage sensor and the cooling medium temperature sensor, and controls the working state of the buck heating sub-module and the outside The working state of the energy management unit of the packaging sub-module;
- the fuel cell stack insulation control method is: the energy controller detects the temperature of the cooling medium of the fuel cell module through the cooling medium temperature sensor, and controls heating and heat preservation of the fuel cell module;
- the water management control method is: the electronic control unit module detects the fuel cell stack cell voltage, the fuel cell stack operating temperature, and the fuel cell module output current through the internal cell voltage detecting unit, the cooling medium temperature sensor, and the current sensor, and controls the liquid water manager. Module working status.
- the method for managing and controlling a fuel cell module having hydrothermal management capability is characterized in that the operation state control of the step-down heating sub-module comprises a resistance on-off state control and a circulation pump start-stop state control:
- the resistance on/off state is controlled as follows:
- the digital core collects the temperature T of the cooling medium through the temperature acquisition circuit.
- the resistance switch is used to control the on-resistance, and when the temperature T is higher than the set value T2
- the digital core collects the output voltage V of the fuel cell stack from the voltage collecting circuit, when the fuel cell stack output voltage V exceeds the set value VI, the on-resistance is controlled by the resistance switch driving circuit, when the fuel cell stack output voltage V
- the low voltage setting value V2 controls the breaking resistance through the resistance switch driving circuit; the start and stop state of the circulating pump is controlled as follows:
- the digital core collects the temperature T of the cooling medium through the temperature collecting circuit, when the temperature T is lower than the set value ⁇ Controlling the circulation pump through the circulating pump switch drive circuit to make the cooling medium inside the fuel cell module
- the fuel cell module is heated and kept warm.
- the circulation pump is driven to turn off the circulation pump to circulate the cooling medium and the cooling medium of the fuel cell system outside the fuel cell module. Reduce stack temperature.
- a management and control method for a fuel cell module having hydrothermal management capability is characterized in that the fuel cell stack insulation control of the outer package sub-module is: the digital core of the energy controller charges the energy storage unit by controlling the output current of the voltage converter, and the digital core of the energy controller collects the voltage of the energy storage unit in real time through the voltage acquisition module.
- Ven if Ven exceeds the set value Venset, the energy controller digital core controls to disconnect the charging switch, stop charging the energy storage unit, and the energy controller digital core collects the fuel cell stack cooling medium temperature Tmod through the temperature acquisition module, when Tmod is low At the set value Tmodset, the digital core of the energy controller controls the heating switch to be turned on, and the fuel cell module is heated and insulated by the electric heating element.
- the method for managing and controlling a fuel cell module with hydrothermal management capability is characterized in that the working state of the liquid water management sub-module is controlled as follows:
- the digital core of the electronic control unit module is based on the lowest cell voltage and the stack Temperature and current integration control the pulse solenoid valve switching cycle and duty cycle through the pulse solenoid valve drive circuit.
- Vcel lmin of the fuel cell stack is lower than the set value Vcel lminset, it is continuously discharged N times, and the discharge cycle is Tcel l , the duty cycle is 50 %.
- the discharge duty cycle is constant DRnorm
- the discharge cycle Tdr is based on the cooling medium temperature and the fuel cell stack output current integral. determine.
- the method for managing and controlling a fuel cell module with hydrothermal management capability is characterized in that the pulse solenoid valve driving circuit is an electronic driving circuit, and the structure thereof is: a signal and a resistor of a digital core of an electronic control unit module One end of I is connected, the other end of the resistor I is connected to the base of the transistor I, one end of the resistor II is connected to the collector of the transistor I, the other end is connected to the input end of the optocoupler, the emitter of the transistor I is grounded, and the output end of the optocoupler is respectively Connected to the base and collector of the transistor II, the emitter of the transistor II is grounded, the line connecting the optocoupler output end and the collector of the transistor II is connected to the pulse solenoid valve, and the collector of the transistor II is grounded through the diode.
- the principle of the invention is: by providing air in and out of the packaging shell, the hydrogen leaking in the module can be eliminated in time, by establishing a cooling water circulation in the packaging shell and communicating with the cooling water of the fuel cell system outside the packaging shell, The battery stack in the module can reach the ideal working temperature in a short time. At the same time, a resistor is arranged in the cooling water tank in the package shell, and the resistance establishes a connection relationship with the output of the battery stack, so that the average voltage of the fuel cell stack is lower than 0.
- the temperature inside the package can be controlled and adjusted by providing insulation materials and heating units in the package, so that the fuel cell module has more stable performance.
- the invention has the beneficial effects that: the fuel cell module can be quickly entered into an ideal working state, which is beneficial to improving the stability, safety and the like of the module.
- the present invention has a total of nine figures, wherein
- Figure 1 is a schematic view showing the structure of a fuel cell module of the present invention
- Figure 2 is a schematic diagram of the structure of the power management unit
- Figure 3 is a schematic diagram showing the structure of a pulse solenoid valve driving circuit
- Figure 4 is a flow chart of the pulse solenoid valve control
- Figure 5 is a schematic view of the hydrogen side drainage structure
- Figure 6 is a schematic view of the structure of the drain
- Figure 7 is a schematic view of the outer packaging structure of the fuel cell module
- Figure 8 is a schematic diagram of the structure of the energy manager
- Figure 9 is a schematic view showing the connection of a 40kw fuel cell module fuel cell stack
- a fuel cell stack 001, a fuel cell stack I, 1002, a fuel cell stack II, 210, an air inlet on a package, 220, an air outlet on the package, 230, an air distribution unit, 2301
- An embodiment is a 40kw fuel cell module with hydrothermal management capabilities.
- 1001 and 1002 are respectively a fuel cell stack, and the fuel cell stack 1001 air inlet 2301 passes through the air distribution unit 230 and the fuel cell stack 1002 air path.
- the inlet 2302 is connected to the fuel cell stack 1001.
- the air outlet 2303 is connected to the fuel cell stack 1002 airway outlet 2304 through the air distribution unit 230.
- the fuel cell stack 1001 hydrogen inlet 3301 is connected to the fuel cell stack 1002 hydrogen channel inlet 3302 through the hydrogen distribution unit 330.
- the fuel cell stack 1001 hydrogen outlet 3303 is connected to the fuel cell stack 1002 airway outlet 3304 through a hydrogen distribution unit 330.
- the fuel cell stack 1001 cooling medium inlet 4301 is connected to the fuel cell stack 1002 cooling medium inlet 4302 via a cooling medium distribution unit 430.
- the stack 1001 cooling medium outlet 4303 is connected to the fuel cell stack 1002 cooling medium outlet 4304 through a cooling medium distributing unit 430, 6101 is the anode of the fuel cell stack 1001, 6102 is the anode of the fuel cell stack 1001, and 6103 is the anode of the fuel cell stack 1002.
- 6104 is the negative of the fuel cell stack 1002 Liquid water drain 350 is shown in Figure 6.
- baffle baffle
- 3502 water dividing box
- 3503 incubator
- 3504 hydrogen inlet port
- 3505 hydrogen exhaust port
- 3506 PTC thermistor (operating voltage: 150-300V, heating temperature: 150-250 °C, rated power: 300W)
- pulse solenoid valve 360 caliber is ⁇ 5mm.
- the heating water tank 450 is a self-made stainless steel water tank with a size of 200X300mm, a step-down heating resistor 460 of 5000W/18 ⁇ , a circulating water pump 470 flow rate of 6L/min, and a check valve 440 and 480 caliber of ⁇ 25 ⁇ .
- the power management unit 510 is a controller with a single chip MC9S12DP256 as the core.
- the air temperature sensor 520, the hydrogen temperature sensor 540, and the cooling medium temperature sensor 560 are ⁇ 000, the air pressure sensor 530, the hydrogen pressure sensor 550, and the cooling medium pressure sensor 570 have a range of 0 to 100 kPa, the output signal is 1 to 5 V, and the voltage sensor 580 ranges.
- the current sensor 590 has a range of 0 ⁇ 300A.
- the 7201 is a buck type step-down circuit.
- the output control is output in the constant current mode through the digital core 7200, and the 7202 and 7203 are the switching relay GV50.
- the energy storage unit is a nickel-hydrogen battery 24V/40Ah, and the heating belt power is 200W.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
一种具有水热管理能力的燃料电池模块,由燃料电池电堆、分配单元、电源管理单元、降压加热子模块、液态水管理子模块、外包装子模块等部分构成。分配单元将进入模块的氢气、空气和冷却介质分配至各单堆中;电源管理单元对模块进行状态检测及管理,控制电力输出的导通与切断,降压加热模块实现燃料电池堆的温度调节和输出电压控制;液态水管理模块对进入燃料电池堆模块的氢气和空气进行液态水分离,将氢气侧的液态水排出;外包装子模块实现电堆模块的防水防尘、保温和将包装模块内部的氢气和水蒸气排出。本发明的优点是燃料电池模块可快速进入理想的工作状态,有利于提高燃料电池模块的性能、稳定性、安全性等。
Description
说 明 书 一种具有水热管理能力的燃料电池模块
技术领域
本发明属于燃料电池领域, 特别涉及燃料电池模块。
背景技术
传统的燃料电池模块通常仅包括燃料电池堆、 氢气分配单元、 空气分配单 元、 冷却介质分配单元、 单池电压检测单元和电力输出单元。 传统的燃料电池 模块的不足是模块内部不具有水热管理功能,不利于燃料电池使用时尽快进入 理想工作状态。
发明内容
本发明的目的是提供一种具有水热自管理能力的燃料电池模块结构,使燃 料电池模块能快速进入理想的工作状态。
本发明的技术方案是: 一种具有水热管理能力的燃料电池模块, 包括置于 外包装子模块内的燃料电池堆、分配单元、单池电压检测单元和电力输出单元, 外包装子模块包括包装壳和包装壳上设置的空气进口、 空气出口、 氢气进口、 氢气出口、 冷却介质进口、 冷却介质出口、 通讯接口、 燃料电池堆的负极接口 和燃料电池堆的正极接口; 冷却介质入口、 冷却介质出口、 空气入口、 空气出 口、氢气入口和氢气出口分别与燃料电池堆连接; 燃料电池堆的负极接口和燃 料电池堆的正极接口与燃料电池堆的输出端相连, 分配单元包括氢气分配单 元、 空气分配单元和冷却介质分配单元, 其特征在于所述具有水热管理能力的 燃料电池模块还包括置于外包装子模块内的电源管理单元、降压加热子模块和 液态水管理子模块;
所述外包装子模块还包括能量控制器、 储能单元、 电加热单元、 氢气排放 口、 通风进风管路接口和通风出风管路接口, 所述包装壳内壁敷设保温材料, 所述氢气排放口、通风进风管路接口和通风出风管路接口设置在包装壳上, 通 风进风管路与燃料电池发电系统的空压机 /风机出口连接, 通风出风管路和燃 料电池系统的排放口相连; 所述能量控制器在包装壳内, 能量控制器输入端分
别与燃料电池堆的正负极相连,能量控制器输出端分别与储能单元和电加热单 元相连, 电加热单元的电热元件布置在包装壳内壁的保温材料表面; 所述通讯 接口与电源管理单元的电子控制单元模块相连;所述燃料电池模块的氢气排放 口经过液态水排水器和脉冲电磁阀与燃料电池堆的氢气出口相连,所述燃料电 池堆通过端板固定在包装壳上;
所述电源管理单元包括电子控制单元模块、 空气温度传感器、 空气压力传 感器、 氢气温度传感器、 氢气压力传感器、 冷却介质温度传感器、 冷却介质压 力传感器、 电压传感器、 电流传感器和连接线束, 空气温度传感器和空气压力 传感器连接在燃料电池堆空气进口通道上,氢气温度传感器和氢气压力传感器 连接在燃料电池堆氢气进口通道上,冷却介质温度传感器和冷却介质压力传感 器连接在燃料电池堆冷却介质进口通道上, 电压传感器和电流传感器连接在燃 料电池堆电输出线路上,空气温度传感器、空气压力传感器、氢气温度传感器、 氢气压力传感器、 冷却介质温度传感器、 冷却介质压力传感器、 电压传感器和 电流传感器用信号线与电子控制单元模块连接;
所述降压加热子模块包括进口单向阀、 出口单向阀、 加热水箱、 电阻和循 环泵, 加热水箱出口与燃料电池堆冷却介质分配单元的冷却介质入口相连, 加 热水箱入口通过进口单向阀与包装壳上的燃料电池模块冷却介质入口相连, 出 口单向阀入口与燃料电池堆冷却介质分配单元的冷却介质出口相连, 出口单向 阀出口与包装壳上的燃料电池模块冷却介质出口相连,循环泵出口与加热水箱 相连, 循环泵入口与燃料电池堆冷却介质分配单元的冷却介质出口相连, 循环 泵的控制开关与电子控制单元模块相连, 加热水箱内设有电阻, 电阻一端连至 燃料电池堆的负极, 另一端通过电子控制单元模块连至燃料电池堆的正极; 所述液态水管理子模块由氢气分水器、 空气分水器、 液态水排水器和脉冲 电磁阀组成,包装壳上的燃料电池模块空气入口通过空气分水器与燃料电池堆 的空气分配单元的空气入口相连,包装壳壳上的燃料电池模块空气出口与燃料 电池堆的空气分配单元的空气出口相连,包装壳上的燃料电池模块氢气入口通 过氢气分水器与燃料电池堆氢气分配单元的氢气入口相连,包装壳上燃料电池 模块氢气出口与燃料电池堆氢气分配单元的氢气出口相连,液态水排水器一端 与包装壳上的燃料电池模块氢气出口相连,另一端通过脉冲电磁阀与包装壳上
燃料电池模块氢气排放口相连, 液态水排水器置于燃料电池模块的最低点, 脉 冲电磁阀与电源管理单元的电子控制单元模块相连。
本发明所述的一种具有水热管理能力的燃料电池模块,其特征在于所述电 子控制单元模块由单电池电压采集电路、 温度采集电路、 压力采集电路、 电流 采集电路、 总电压采集电路、 电阻开关驱动电路、 脉冲电磁阀驱动电路、 循环 泵开关驱动电路、 通讯电路和数字核心组成, 所述单电池电压采集电路、 温度 采集电路、 压力采集电路、 电流采集电路、 总电压采集电路分别与燃料电池堆 单电池、 空气温度传感器、 氢气温度传感器、 冷却介质温度传感器、 空气压力 传感器、 氢气压力传感器、 冷却介质压力传感器、 电压传感器、 电流传感器用 信号线通过接口连接, 所述电阻开关驱动电路与降压加热子模块电阻电连接, 控制降压加热子模块电阻的通断,所述脉冲电磁阀驱动电路与液态水管理子模 块的脉冲电磁阀的控制器连接, 控制脉冲电磁阀的通断, 所述循环泵开关驱动 电路与降压加热子模块循环泵电连接, 控制降压加热子模块循环泵的启停, 所 述通讯电路通过通讯接口与燃料电池发电系统控制单元连接。
本发明所述的一种具有水热管理能力的燃料电池模块,其特征在于所述液 态水排水器由分水器、保温盒和 PTC热敏电阻组成,分水器置于保温盒内, PTC 热敏电阻置于保温盒内分水器集水部分的外部, PTC热敏电阻与燃料电池的负 载线连接。
本发明所述的一种具有水热管理能力的燃料电池模块,其特征在于所述外 包装子模块的能量控制器包括能量控制器数字核心、 电压变换器、 充电开关、 加热开关、 能量控制器电压采集模块和能量控制器温度采集模块, 电压变换器 是降压型恒电流输出电路构成的电压变换器,能量控制器数字核心与电压变换 器连接,通过信号线分别与能量控制器电压采集模块和能量控制器温度采集模 块连接, 电压变换器输入端分别与燃料电池模块的正极和负极相连, 电压变换 器输出端通过充电开关与储能单元连接,能量控制器电压采集模块与储能单元 连接, 储能单元通过加热开关与电加热单元连接; 所述外包装子模块储能单元 是超级电容器、锂离子电池或镍氢电池; 所述外包装子模块电加热单元的电热 元件是电热丝、 电热带或电热管。
本发明所述的一种具有水热管理能力的燃料电池模块,其特征在于所述通
风进风管路接口和通风出风管路接口分别置于包装壳一对相对立的竖立面上, 高度位于距包装壳顶部 1/5处。
本发明所述的一种具有水热管理能力的燃料电池模块的管理控制方法,其 特征在于所述管理控制方法包括电源管理控制方法、 降压加热管理控制方法、 燃料电池堆保温控制方法和液态水管理控制方法, 所述电源管理控制方法为: 电子控制单元模块根据设定燃料电池堆出厂极化曲线、衰减特性和在线检测燃 料电池模块的输出电压和输出电流,在线分析燃料电池的输出状态和当前的最 大输出能力; 所述降压加热管理控制方法为: 电子控制单元模块通过电压传感 器和冷却介质温度传感器检测燃料电池模块总电压和冷却介质温度,控制降压 加热子模块工作状态和外包装子模块的能量管理单元的工作状态;所述燃料电 池堆保温控制方法为:能量控制器通过冷却介质温度传感器检测燃料电池模块 冷却介质温度, 控制燃料电池模块的加热保温; 所述液态水管理控制方法为: 电子控制单元模块通过内部单电池电压检测单元、冷却介质温度传感器和电流 传感器检测燃料电池堆单电池电压、燃料电池堆工作温度和燃料电池模块输出 电流, 控制液态水管理子模块工作状态。
本发明所述的一种具有水热管理能力的燃料电池模块的管理控制方法,其 特征在于所述降压加热子模块工作状态控制包括电阻通断状态控制和循环泵 启停状态控制: 所述电阻通断状态控制为: 数字核心通过温度采集电路采集冷 却介质的温度 T, 当温度 T低于设定值 Π时,通过电阻开关驱动电路控制接通 电阻, 当温度 T高于设定值 T2时, 数字核心对电压采集电路采集燃料电池堆 的输出电压 V进行判断, 当燃料电池堆输出电压 V超过设定值 VI,则通过电阻 开关驱动电路控制接通电阻,当燃料电池堆输出电压 V低压设定值 V2 ,则通过 电阻开关驱动电路控制断开电阻; 所述循环泵启停状态控制为: 数字核心通过 温度采集电路采集冷却介质的温度 T, 当温度 T低于设定值 Π时,通过循环泵 开关驱动电路控制接通循环泵, 使冷却介质在燃料电池模块内部循环, 便于燃 料电池模块升温和保温, 当温度 T高于设定值 Π时, 通过循环泵开关驱动电 路控制断开循环泵,使冷却介质与燃料电池模块外部的燃料电池系统的冷却介 质循环, 便于降低电池堆温度。
本发明所述的一种具有水热管理能力的燃料电池模块的管理控制方法,其
特征在于所述外包装子模块燃料电池堆保温控制为:能量控制器数字核心通过 控制电压变换器的输出电流给储能单元充电,能量控制器数字核心通过电压采 集模块实时采集储能单元的电压 Ven, 如果 Ven超过设定值 Venset , 则能量控 制器数字核心控制断开充电开关, 停止向储能单元充电, 能量控制器数字核心 通过温度采集模块采集燃料电池堆冷却介质温度 Tmod, 当 Tmod 低于设定值 Tmodset时, 则能量控制器的数字核心控制接通加热开关, 通过电加热元件给 燃料电池模块加热保温。
本发明所述的一种具有水热管理能力的燃料电池模块的管理控制方法,其 特征在于所述液态水管理子模块工作状态控制为: 电子控制单元模块数字核心 根据最低单电池电压、电堆温度和电流积分通过脉冲电磁阀驱动电路控制脉冲 电磁阀开关周期和占空比, 当燃料电池堆某单体电池电压 Vcel lmin低于设定 值 Vcel lminset时, 则连续排放 N次, 排放周期为 Tcel l , 占空比为 50 % , 当 燃料电池堆单体电池电压都高于设定值 Vcel lminset 时, 排放占空比为常数 DRnorm, 排放周期 Tdr根据冷却介质温度和燃料电池堆输出电流积分确定。
本发明所述的一种具有水热管理能力的燃料电池模块的管理控制方法,其 特征在于所述脉冲电磁阀驱动电路是电子驱动电路, 其结构为: 电子控制单元 模块数字核心的信号与电阻 I一端相连, 电阻 I的另一端与三极管 I的基极相 连, 电阻 II的一端与三极管 I的集电极连接, 另一端与光耦输入端相连, 三极 管 I的发射极接地, 光耦输出端分别与三极管 II基极和集电极相连, 三极管 II 的发射极接地, 光耦输出端与三极管 II集电极连接的线路与脉冲电磁阀连通, 三极管 II集电极通过二极管接地。
本发明的原理是: 通过在包装壳上设置空气进出管路, 使模块内泄漏的氢 气能及时排除,通过建立包装壳内的冷却水循环及其与包装壳外的燃料电池系 统的冷却水连通, 使模块内的电池堆能在短时间达到理想是工作温度, 同时, 在包装壳内的冷却水箱内设置电阻, 电阻与电池堆的输出建立连接关系, 使燃 料电池堆的平均电压低于 0. 85V, 通过在包装壳内电池堆的氢气侧设置液态水 排水器,并利用热敏电阻对液态水排水器中的液态水加热使之气化后排入氢气 出口, 使得氢气测排水更完全、 便捷, 通过在包装壳内设置保温材料和加热单 元, 使包装壳内的温度可控可调, 从而使燃料电池模块具有更稳定的性能。
本发明的有益效果是: 可以使燃料电池模块快速进入理想的工作状态, 有 利于提高模块的稳定性、 安全性等。
附图说明
本发明共有附图 9幅, 其中
附图 1是本发明的燃料电池模块构成示意图
附图 2是电源管理单元构成示意图
附图 3是脉冲电磁阀驱动电路构成示意图
附图 4是脉冲电磁阀控制流程图
附图 5是氢气侧排水结构示意图
附图 6是排水器结构示意图
附图 7是燃料电池模块外包装结构示意图
附图 8是能量管理器结构示意图
附图 9是实施例 40kw燃料电池模块燃料电池堆连接示意图
附图中, 100、 燃料电池堆, 1001、 燃料电池堆 I, 1002、 燃料电池堆 II, 210、 包装壳上的空气进口, 220、包装壳上的空气出口, 230、 空气分配单元, 2301、 燃料电池堆 I空气入口, 2302、 燃料电池堆 II空气路入口, 2303、 燃料电池堆 I空气出口, 2304、 燃料电池堆 II空气路出口, 240、 氢气分水器, 310、 包装 壳上的氢气进口, 320、 包装壳上的氢气出口, 330、 氢气分配单元, 3301燃料 电池堆 I氢气入口, 3302、燃料电池堆 II氢气路入口, 3303燃料电池堆 I氢气 出口, 3304、 燃料电池堆 II氢气路出口, 340、 空气分水器, 350、 液态水排水 器, 3501、 隔板, 3502、 液态水排水器分水器, 3503、 液态水排水器保温盒, 3504、 液态水排水器进水口, 3505、 液态水排水器出水口, 3506、 PTC热敏电 阻, 360、脉冲电磁阀, 370氢气排放口, 410、包装壳上的冷却介质进口, 420、 包装壳上的冷却介质出口, 430、 冷却介质分配单元, 4301、 燃料电池堆 I冷 却介质入口, 4302、 燃料电池堆 II冷却介质入口, 4303、 燃料电池堆 I冷却介 质出口, 4304、 燃料电池堆 II冷却介质出口, 440、 进口单向阀, 450、 加热水 箱, 460、 电阻, 470、 循环泵, 480、 出口单向阀, 510、 电子控制单元模块, 520、 空气温度传感器, 530、 空气压力传感器, 540氢气温度传感器, 550、 氢 气压力传感器, 560、 冷却介质温度传感器, 570、 冷却介质压力传感器,
580、 电压传感器, 590、 电流传感器, 591、 592、 包装壳上的通讯接口, 5110、 单电池电压采集电路, 5111、 温度采集电路, 5112、 压力采集电路, 5113、 电 流采集电路, 5114、 总电压采集电路, 5115、 电阻开关驱动电路, 5116、 脉冲 电磁阀驱动电路, 51161、 电阻 I, 51162、三极管 I, 51163、 电阻 II, 51164、 光耦, 51165、 三极管 II, 51166、 二极管, 5117、 循环泵开关驱动电路, 5118、 通讯电路, 5119、数字核心, 610、包装壳上的燃料电池堆的正极接口, 620、 包装壳上的燃料电池堆的负极接口, 6101、 燃料电池堆 I的正极, 6102、 燃料 电池堆 I的负极, 6103、 燃料电池堆 II的正极, 6104、 燃料电池堆 II的负极, 710、 包装壳, 720、 能量控制器, 7200、 能量控制器数字核心, 7201、 电压 变换器, 7202、 充电开关, 7203、 加热开关, 7204、 能量控制器电压采集模块, 7205、 能量控制器温度采集模块, 730、 储能单元, 740、 电加热单元, 750、 通风进风管路接口, 760、 通风出风管路接口, 800、 燃料电池发电系统的空压 具体实施方式
实施例是具有水热管理能力的 40kw燃料电池模块。
有两个 20kw燃料电池堆,每个电池堆节数为 150节,操作压力低于 lOOkpa, 其衰减速率 Vt为 10mV/h, 空气侧阻力指标为 20kpa@50Nm3/h, 氢气侧阻力指 标为 25kpa@10Nm3/h。
空气路、 氢气路和冷却介质路并联, 电力输出为并联, 如图 9所示, 1001 和 1002分别为燃料电池堆, 燃料电池堆 1001空气入口 2301通过空气分配单 元 230与燃料电池堆 1002空气路入口 2302相连, 燃料电池堆 1001空气出口 2303通过空气分配单元 230与燃料电池堆 1002空气路出口 2304相连,燃料电 池堆 1001氢气入口 3301通过氢气分配单元 330与燃料电池堆 1002氢气路入 口 3302相连, 燃料电池堆 1001氢气出口 3303通过氢气分配单元 330与燃料 电池堆 1002空气路出口 3304相连,燃料电池堆 1001冷却介质入口 4301通过 冷却介质分配单元 430与燃料电池堆 1002冷却介质入口 4302相连,燃料电池 堆 1001冷却介质出口 4303通过冷却介质分配单元 430与燃料电池堆 1002冷 却介质出口 4304相连, 6101为燃料电池堆 1001的正极, 6102为燃料电池堆 1001的负极, 6103为燃料电池堆 1002的正极, 6104为燃料电池堆 1002的负
液态水排水器 350如附图 6所示。 3501: 挡板, 3502: 分水盒, 3503: 保 温盒, 3504: 氢气进气接口, 3505: 氢气排气接口, 3506: PTC热敏电阻 (工 作电压: 150-300V, 加热温度: 150-250°C, 额定功率: 300W), 脉冲电磁阀 360 口径为 Φ 5mm。
加热水箱 450为自制不锈钢水箱, 尺寸为 200X300mm, 降压加热电阻 460 为 5000W/18 Ω,循环水泵 470流量为 6L/min,单向阀 440和 480口径为 Φ25πιπι。
电源管理单元 510为以单片机 MC9S12DP256为核心的控制器。空气温度传 感器 520、氢气温度传感器 540和冷却介质温度传感器 560为 ΡΠ000, 空气压 力传感器 530、 氢气压力传感器 550和冷却介质压力传感器 570量程为 0〜 lOOkpa, 输出信号为 1〜5V, 电压传感器 580量程为 0〜500V, 电流传感器 590 量程为 0〜300A。
能量管理器 720中 7201为 buck型降压电路,输出控制通过数字核心 7200 以恒电流模式输出, 7202和 7203 为开关继电器 GV50。 储能单元为镍氢电池 24V/40Ah, 加热带功率为 200W。
Claims
1、 一种具有水热管理能力的燃料电池模块, 包括置于外包装子模块内的 燃料电池堆、 分配单元、 单池电压检测单元和电力输出单元, 外包装子模块包 括包装壳 (710) 和包装壳上设置的空气进口 (210)、 空气出口 (220)、 氢气 进口 (310)、 氢气出口 (320)、 冷却介质进口 (410)、 冷却介质出口 (420)、 通讯接口 (591、 592)、 燃料电池堆的负极接口 (620) 和燃料电池堆的正极接 口 (610); 冷却介质入口 (410)、 冷却介质出口 (420)、 空气入口 (210)、 空 气出口 (220)、 氢气入口 (310) 和氢气出口 (320) 分别与燃料电池堆 (100) 连接; 燃料电池堆的负极接口 (620)和燃料电池堆的正极接口 (610) 与燃料 电池堆的输出端相连,分配单元包括氢气分配单元(330)、空气分配单元(230) 和冷却介质分配单元(430), 其特征在于所述具有水热管理能力的燃料电池模 块还包括置于外包装子模块内的电源管理单元、降压加热子模块和液态水管理 子模块;
所述外包装子模块还包括能量控制器(720)、 储能单元(730)、 电加热单 元 (740)、 氢气排放口 (370)、 通风进风管路接口 (750) 和通风出风管路接 口 (760), 所述包装壳 (710) 内壁敷设保温材料, 所述氢气排放口 (370)、 通风进风管路接口 (750) 和通风出风管路接口 (760) 设置在包装壳 (710) 上, 通风进风管路 (750) 与燃料电池发电系统的空压机或风机 (800) 出口连 接,通风出风管路(760)和燃料电池系统的排放口相连;所述能量控制器(720) 在包装壳 (710) 内, 能量控制器 (720) 输入端分别与燃料电池堆 (100) 的 正负极 (610、 620) 相连, 能量控制器 (720) 输出端分别与储能单元 (730) 和电加热单元(740)相连, 电加热单元(740)的电热元件布置在包装壳(710) 内壁的保温材料表面; 所述通讯接口 (591、 592) 与电源管理单元的电子控制 单元模块(510)相连; 所述燃料电池模块的氢气排放口 (370)经过液态水排 水器(350) 和脉冲电磁阀 (360) 与燃料电池堆的氢气出口相连, 所述燃料电 池堆 (100) 通过端板固定在包装壳上;
所述电源管理单元包括电子控制单元模块(510)、空气温度传感器(520)、 空气压力传感器 (530)、 氢气温度传感器 (540)、 氢气压力传感器 (550)、 冷 却介质温度传感器 (560)、 冷却介质压力传感器 (570)、 电压传感器 (580)、 电流传感器( 590 )和连接线束,空气温度传感器( 520 )和空气压力传感器( 530 ) 连接在燃料电池堆空气进口通道上, 氢气温度传感器 (540) 和氢气压力传感 器(550)连接在燃料电池堆氢气进口通道上, 冷却介质温度传感器 (560)和 冷却介质压力传感器 (570) 连接在燃料电池堆冷却介质进口通道上, 电压传 感器(580) 和电流传感器 (590)连接在燃料电池堆电输出线路上, 空气温度 传感器 (520)、 空气压力传感器 (530)、 氢气温度传感器 (540)、 氢气压力传 感器 (550)、 冷却介质温度传感器 (560)、 冷却介质压力传感器 (570)、 电压 传感器 (580) 和电流传感器 (590) 用信号线与电子控制单元模块 (510) 连 接;
所述降压加热子模块包括进口单向阀 (440)、 出口单向阀 (480)、 加热水 箱 (450)、 电阻 (460) 和循环泵 (470), 加热水箱 (450) 出口与燃料电池堆 冷却介质分配单元(430) 的冷却介质入口相连, 加热水箱(450)入口通过进 口单向阀 (440) 与包装壳 (710) 上的燃料电池模块冷却介质入口 (410) 相 连, 出口单向阀 (480) 入口与燃料电池堆冷却介质分配单元(430) 的冷却介 质出口相连, 出口单向阀 (480) 出口与包装壳 (710) 上的燃料电池模块冷却 介质出口 (420) 相连, 循环泵 (470) 出口与加热水箱 (450) 相连, 循环泵 (470)入口与燃料电池堆冷却介质分配单元(430) 的冷却介质出口相连, 循 环泵 (470) 的控制开关与电子控制单元模块 (510) 相连, 加热水箱 (450) 内设有电阻 (460), 电阻 (460) —端连至燃料电池堆的负极 (620), 另一端 通过电子控制单元模块 (510) 连至燃料电池堆的正极 (610);
所述液态水管理子模块由氢气分水器(240)、 空气分水器(340)、 液态水 排水器 (350) 和脉冲电磁阀 (360) 组成, 包装壳 (710) 上的燃料电池模块 空气入口 (210)通过空气分水器 (240) 与燃料电池堆的空气分配单元(230) 的空气入口相连, 包装壳 (710)上的燃料电池模块空气出口 (220) 与燃料电 池堆的空气分配单元(230) 的空气出口相连, 包装壳 (710)上的燃料电池模 块氢气入口 (310)通过氢气分水器 (340) 与燃料电池堆氢气分配单元(330) 的氢气入口相连, 包装壳 (710)上燃料电池模块氢气出口 (320) 与燃料电池 堆氢气分配单元(330) 的氢气出口相连, 液态水排水器(350)—端与包装壳 (710)上的燃料电池模块氢气出口(320)相连,另一端通过脉冲电磁阀(360) 与包装壳上燃料电池模块氢气排放口 (370)相连, 液态水排水器(350)置于 燃料电池模块的最低点, 脉冲电磁阀 (360) 与电源管理单元的电子控制单元 模块 (510) 相连。
2、 根据权利要求 1所述的一种具有水热管理能力的燃料电池模块, 其特 征在于所述电子控制单元模块(510) 由单电池电压采集电路(5110)、 温度采 集电路 (5111)、 压力采集电路 (5112)、 电流采集电路 (5113)、 总电压采集 电路 (5114)、 电阻开关驱动电路 (5115)、 脉冲电磁阀驱动电路 (5116)、 循 环泵开关驱动电路 (5117)、 通讯电路 (5118) 和数字核心 (5119) 组成, 所 述单电池电压采集电路(5110)、温度采集电路(5111)、压力采集电路(5112)、 电流采集电路 (5113)、 总电压采集电路 (5114) 分别与燃料电池堆 (100) 单 电池、 空气温度传感器(520)、 氢气温度传感器(540)、 冷却介质温度传感器
(560)、 空气压力传感器 (530)、 氢气压力传感器 (550)、 冷却介质压力传感 器 (570)、 电压传感器 (580)、 电流传感器 (590) 用信号线通过接口连接, 所述电阻开关驱动电路 (5115) 与降压加热子模块电阻 (460) 电连接, 控制 降压加热子模块电阻 (460) 的通断, 所述脉冲电磁阀驱动电路 (5116) 与液 态水管理子模块的脉冲电磁阀 (360) 的控制器连接, 控制脉冲电磁阀 (360) 的通断, 所述循环泵开关驱动电路 (5117) 与降压加热子模块循环泵 (470) 电连接, 控制降压加热子模块循环泵 (470) 的启停, 所述通讯电路 (5118) 通过通讯接口 (591/592) 与燃料电池发电系统控制单元连接。
3、 根据权利要求 1所述的一种具有水热管理能力的燃料电池模块, 其特 征在于所述液态水排水器由分水器 (3502)、 保温盒 (3503) 和 PTC热敏电阻
(3506)组成, 分水器(3502 )置于保温盒(3503)内, PTC热敏电阻(3506) 置于保温盒 (3503) 内分水器集水部分的外部, PTC热敏电阻 (3506) 与燃料 电池的负载线连接。
4、 根据权利要求 1所述的一种具有水热管理能力的燃料电池模块, 其特 征在于所述外包装子模块的能量控制器 (720) 包括能量控制器数字核心
(7200)、 电压变换器 (7201)、 充电开关 (7202)、 加热开关 (7203)、 能量控 制器电压采集模块 (7204) 和能量控制器温度采集模块 (7205), 电压变换器 (7201) 是降压型恒电流输出电路构成的电压变换器, 能量控制器数字核心 (7200)与电压变换器(7201)连接, 通过信号线分别与能量控制器电压采集 模块 (7204) 和能量控制器温度采集模块 (7205) 连接, 电压变换器 (7201) 输入端分别与燃料电池模块的正极(610)和负极(620)相连,电压变换器(7201) 输出端通过充电开关 (7202) 与储能单元 (730) 连接, 能量控制器电压采集 模块(7204)与储能单元(730)连接, 储能单元(730)通过加热开关(7203) 与电加热单元(740)连接; 所述外包装子模块储能单元(730)是超级电容器、 锂离子电池或镍氢电池; 所述外包装子模块电加热单元 (740) 的电热元件是 电热丝、 电热带或电热管。
5、 根据权利要求 1所述的一种具有水热管理能力的燃料电池模块, 其特 征在于所述通风进风管路接口 (750)和通风出风管路接口 (760)分别置于包 装壳一对相对立的竖立面上, 高度位于距包装壳顶部 1/5处。
6、 权利要求 1所述的一种具有水热管理能力的燃料电池模块的管理控制 方法, 其特征在于所述管理控制方法包括电源管理控制方法、 降压加热管理控 制方法、燃料电池堆保温控制方法和液态水管理控制方法, 所述电源管理控制 方法为: 电子控制单元模块 (510) 根据设定燃料电池堆出厂极化曲线、 衰减 特性和在线检测燃料电池模块的输出电压和输出电流,在线分析燃料电池的输 出状态和当前的最大输出能力; 所述降压加热管理控制方法为: 电子控制单元 模块 (510) 通过电压传感器 (580) 和冷却介质温度传感器 (570) 检测燃料 电池模块总电压和冷却介质温度, 控制降压加热子模块工作状态; 所述燃料电 池堆保温控制方法为: 能量控制器 (720)通过冷却介质温度传感器(570) 检 测燃料电池模块冷却介质温度, 控制燃料电池模块的加热保温; 所述液态水管 理控制方法为: 电子控制单元模块 (510) 通过内部单电池电压检测单元、 冷 却介质温度传感器 (570) 和电流传感器 (590) 检测燃料电池堆单电池电压、 燃料电池堆工作温度和燃料电池模块输出电流,控制液态水管理子模块工作状 态。
7、 根据权利要求 6所述的一种具有水热管理能力的燃料电池模块的管理 控制方法, 其特征在于所述降压加热子模块控制包括电阻 (460) 通断状态控 制和循环泵(470)启停控制:所述电阻(460)通断状态控制为:数字核心(5119) 通过温度采集电路 (5111) 采集冷却介质的温度 T, 当温度 T低于设定值 Π 时, 通过电阻开关驱动电路 (5115)控制接通电阻(460), 当温度 T高于设定 值 T2时, 数字核心 (5119) 对总电压采集电路 (5114) 采集燃料电池堆的输 出电压 V进行判断, 当燃料电池堆输出电压 V超过设定值 VI,则通过电阻开关 驱动电路(5115)控制接通电阻(460), 当燃料电池堆输出电压 V低压设定值 V2, 则通过电阻开关驱动电路(5115)控制断开电阻 (460); 所述循环泵断状 态控制为: 数字核心 (5119)通过温度采集电路 (5111)采集冷却介质的温度 T,当温度 T低于设定值 Π时,通过开关驱动电路 (5115)控制接通循环泵 (470), 使冷却介质在燃料电池模块内部循环, 便于燃料电池模块升温和保温, 当温度 T高于设定值 T1时, 通过开关驱动电路(5115)控制断开循环泵(470), 使冷 却介质与燃料电池模块外部的燃料电池系统的冷却介质循环,便于降低电池堆 温度。
8、 根据权利要求 6所述的一种具有水热管理能力的燃料电池模块的管理 控制方法, 其特征在于所述外包装子模块燃料电池堆保温控制为: 能量控制器 数字核心 (7200)通过控制电压变换器(7201) 的输出电流给储能单元(730) 充电, 能量控制器数字核心 (7200)通过电压采集模块 (7204) 实时采集储能 单元的电压 Ven,如果 Ven超过设定值 Venset,则能量控制器数字核心(7200) 控制断开充电开关 (7202), 停止向储能单元 (730) 充电, 能量控制器数字核 心(7200)通过温度采集模块(7205)采集燃料电池堆冷却介质温度 Tmod, 当 Tmod低于设定值 Tmodset时, 则能量控制器 (720) 的数字核心 (7200) 控制 接通加热开关 (7203), 通过电加热元件 (740) 给燃料电池模块加热保温。
9、 根据权利要求 6所述的一种具有水热管理能力的燃料电池模块的管理 控制方法,其特征在于所述液态水管理子模块控制为:电子控制单元模块(510) 数字核心(5119)根据最低单电池电压、 电堆温度和电流积分通过脉冲电磁阀 驱动电路 (5116) 控制脉冲电磁阀 (360) 开关周期和占空比, 当燃料电池堆 某单体电池电压 Vcellmin低于设定值 Vcellminset时, 则连续排放 N次, 排 放周期为 Tcell, 占空比为 50%, 当燃料电池堆单体电池电压都高于设定值 Vcellminset时, 排放占空比为常数 DRnorm, 排放周期 Tdr根据冷却介质温度 和燃料电池堆输出电流积分确定。
10、根据权利要求 9所述的一种具有水热管理能力的燃料电池模块的管理 控制方法, 其特征在于所述脉冲电磁阀驱动电路(5116) 是电子驱动电路, 其 结构为: 电子控制单元模块(510)数字核心(5119)的信号与电阻 I (51161) 一端相连, 电阻 I (51161)的另一端与三极管 I (51162 ) 的基极相连, 电阻 II (51163 )的一端与三极管 I (51162 )的集电极连接, 另一端与光耦(51164) 输入端相连, 三极管 I (51162 ) 的发射极接地, 光耦 (51164)输出端分别与 三极管 II (51165) 基极和集电极相连, 三极管 II (51165) 的发射极接地, 光 耦(51164)输出端与三极管 II (51165)集电极连接的线路与脉冲电磁阀(360) 连通, 三极管 II (51165) 集电极通过二极管 (51166) 接地。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011103046.0T DE112011103046B4 (de) | 2010-11-30 | 2011-09-30 | Brennstoffzellenmodul mit Wasser- und Wärmemanagementfunktion sowie Managementverfahren für das Brennstoffzellenmodul |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010566184.X | 2010-11-30 | ||
CN201010566184XA CN102035002B (zh) | 2010-11-30 | 2010-11-30 | 一种具有水热管理能力的燃料电池模块 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012071942A1 true WO2012071942A1 (zh) | 2012-06-07 |
Family
ID=43887578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/080474 WO2012071942A1 (zh) | 2010-11-30 | 2011-09-30 | 一种具有水热管理能力的燃料电池模块 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN102035002B (zh) |
DE (1) | DE112011103046B4 (zh) |
WO (1) | WO2012071942A1 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106532083A (zh) * | 2016-12-15 | 2017-03-22 | 新源动力股份有限公司 | 一种含水热管理结构设计的燃料电池连接模块 |
CN107978822A (zh) * | 2017-12-20 | 2018-05-01 | 新源动力股份有限公司 | 一种具有氢循环及换热功能的燃料电池系统结构 |
CN108461778A (zh) * | 2017-02-20 | 2018-08-28 | 武汉众宇动力系统科技有限公司 | 用于无人机的燃料电池 |
CN109904490A (zh) * | 2019-03-28 | 2019-06-18 | 武汉泰歌氢能汽车有限公司 | 一种采用有机工质的燃料电池冷却系统 |
CN110217076A (zh) * | 2019-07-09 | 2019-09-10 | 武汉雄韬氢雄燃料电池科技有限公司 | 一种燃料电池循环水热管理控制系统 |
CN111933988A (zh) * | 2020-09-14 | 2020-11-13 | 河南豫氢动力有限公司 | 新型燃料电池集成系统 |
CN112373353A (zh) * | 2020-10-27 | 2021-02-19 | 浙江大学 | 一种适用于燃料电池汽车热系统的协同管理系统 |
CN113363530A (zh) * | 2021-05-28 | 2021-09-07 | 四川荣创新能动力系统有限公司 | 一种氢燃料电池尾气回收处理系统及方法 |
CN113903958A (zh) * | 2021-09-30 | 2022-01-07 | 国网上海市电力公司 | 一种风光制氢燃料电池集成装置的仿真方法 |
CN113903943A (zh) * | 2021-09-22 | 2022-01-07 | 中国三峡新能源(集团)股份有限公司 | 基于磁热的燃料电池热管理系统及控制方法 |
CN114388852A (zh) * | 2021-12-09 | 2022-04-22 | 浙江大学 | 基于电阻网格的燃料电池电流分布均匀性优化分析方法 |
CN114614049A (zh) * | 2022-03-10 | 2022-06-10 | 上海重塑能源科技有限公司 | 一种燃料电池的快速冷启动系统及方法 |
CN114778764A (zh) * | 2022-03-16 | 2022-07-22 | 同济大学 | 一种燃料电池气水分离器的测试系统、方法 |
CN114824376A (zh) * | 2022-03-25 | 2022-07-29 | 东风汽车集团股份有限公司 | 一种燃料电池模块以及车辆 |
CN115395058A (zh) * | 2022-08-08 | 2022-11-25 | 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) | 一种具有除水淹功能的质子交换膜燃料电池电堆及控制方法 |
CN117936839A (zh) * | 2024-03-22 | 2024-04-26 | 武汉海亿新能源科技有限公司 | 一种燃料电池多路循环冷却装置及其控制方法 |
CN117936834A (zh) * | 2024-01-18 | 2024-04-26 | 杭州质子动力有限公司 | 一种适用于低温环境的氢能单兵电源 |
CN117996111A (zh) * | 2024-04-03 | 2024-05-07 | 浙江大学 | 一种阴极开放式pemfc混合能源系统及控制方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102035002B (zh) * | 2010-11-30 | 2013-01-30 | 新源动力股份有限公司 | 一种具有水热管理能力的燃料电池模块 |
WO2014026287A1 (en) * | 2012-08-14 | 2014-02-20 | Powerdisc Development Corporation Ltd. | Fuel cell components, stacks and modular fuel cell systems |
CA2919875C (en) | 2012-08-14 | 2021-08-17 | Powerdisc Development Corporation Ltd. | Fuel cell flow channels and flow fields |
CN103700870B (zh) * | 2013-12-11 | 2015-08-19 | 清华大学 | 一种燃料电池水管理闭环控制方法 |
CN104051767B (zh) * | 2014-06-16 | 2017-01-11 | 弗尔赛(上海)能源科技有限公司 | 一种氢氧燃料电池系统用控制装置 |
DE102015109502B4 (de) | 2014-06-20 | 2024-04-25 | Ford Global Technologies, Llc | Vorrichtung und Verfahren zum Erwärmen eines Brennstoffzellenstapels |
KR101628514B1 (ko) * | 2014-11-05 | 2016-06-09 | 현대자동차주식회사 | 연료전지 스택의 온도 제어 방법 |
CN104835976B (zh) * | 2015-05-07 | 2017-08-01 | 苏州弗尔赛能源科技股份有限公司 | 一种利用相变冷却的燃料电池散热系统 |
CA3016102A1 (en) | 2016-03-22 | 2017-09-28 | Loop Energy Inc. | Fuel cell flow field design for thermal management |
CN107017446A (zh) * | 2017-03-01 | 2017-08-04 | 重庆工程职业技术学院 | 电池热管理系统 |
CN106784959A (zh) * | 2017-03-27 | 2017-05-31 | 上海重塑能源科技有限公司 | 燃料电池集成系统 |
CN107039667B (zh) * | 2017-06-02 | 2023-08-29 | 苏州中氢能源科技有限公司 | 燃料电池堆发电系统的信号控制系统及控制方法 |
CN108390079A (zh) * | 2018-04-13 | 2018-08-10 | 北京汽车集团有限公司 | 燃料电池发动机系统和车辆 |
CN109216734B (zh) * | 2018-09-30 | 2023-10-31 | 河南豫氢动力有限公司 | 一种有助于燃料电池增湿和低温启动的辅助系统 |
CN111584899B (zh) * | 2020-05-13 | 2022-08-19 | 广东国鸿氢能科技有限公司 | 一种风冷燃料电池电堆的控制系统 |
DE102020212158A1 (de) | 2020-09-28 | 2022-03-31 | Ford Global Technologies, Llc | Brennstoffzellensystem |
DE102022106806B4 (de) | 2022-03-23 | 2023-11-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren, System und Computerprogrammprodukt für das Thermomanagement bei einer Traktionsbatterie |
CN114784320B (zh) * | 2022-04-27 | 2023-05-09 | 电子科技大学 | 一种抗环境扰动的空冷型燃料电池阴极控制方法 |
CN115472869B (zh) * | 2022-09-21 | 2024-09-20 | 安徽锐格新能源科技有限公司 | 燃料电池测试车间的测试台与外接管道的环岛式布局 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000012055A (ja) * | 1998-06-22 | 2000-01-14 | Osaka Gas Co Ltd | 燃料電池発電設備 |
US20090246566A1 (en) * | 2008-04-01 | 2009-10-01 | Craft Jr Thomas F | Fuel cell cabinet heat management and thermal control system |
CN101740796A (zh) * | 2009-12-17 | 2010-06-16 | 哈尔滨工程大学 | 适用auv的闭式循环燃料电池系统 |
CN201590452U (zh) * | 2009-11-24 | 2010-09-22 | 褚磊民 | 一种水冷型质子交换膜燃料电池堆控制系统 |
CN102035002A (zh) * | 2010-11-30 | 2011-04-27 | 新源动力股份有限公司 | 一种具有水热管理能力的燃料电池模块 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4186473B2 (ja) * | 2002-02-19 | 2008-11-26 | 三菱電機株式会社 | 燃料電池熱利用空気調和機 |
DE102006016001B4 (de) * | 2006-03-30 | 2009-09-03 | Elringklinger Ag | Brennstoffzellenstapel |
CN100546079C (zh) * | 2006-09-22 | 2009-09-30 | 比亚迪股份有限公司 | 一种燃料电池系统 |
CN100452512C (zh) * | 2007-04-27 | 2009-01-14 | 新源动力股份有限公司 | 一种燃料电池发电系统功率输出的控制方法和控制系统 |
DE102007039017A1 (de) * | 2007-08-17 | 2009-02-19 | J. Eberspächer GmbH & Co. KG | Brennstoffzellensystem |
DE102008051181A1 (de) * | 2008-10-14 | 2010-04-15 | J. Eberspächer GmbH & Co. KG | Brennstoffzellensystem |
-
2010
- 2010-11-30 CN CN201010566184XA patent/CN102035002B/zh active Active
-
2011
- 2011-09-30 DE DE112011103046.0T patent/DE112011103046B4/de active Active
- 2011-09-30 WO PCT/CN2011/080474 patent/WO2012071942A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000012055A (ja) * | 1998-06-22 | 2000-01-14 | Osaka Gas Co Ltd | 燃料電池発電設備 |
US20090246566A1 (en) * | 2008-04-01 | 2009-10-01 | Craft Jr Thomas F | Fuel cell cabinet heat management and thermal control system |
CN201590452U (zh) * | 2009-11-24 | 2010-09-22 | 褚磊民 | 一种水冷型质子交换膜燃料电池堆控制系统 |
CN101740796A (zh) * | 2009-12-17 | 2010-06-16 | 哈尔滨工程大学 | 适用auv的闭式循环燃料电池系统 |
CN102035002A (zh) * | 2010-11-30 | 2011-04-27 | 新源动力股份有限公司 | 一种具有水热管理能力的燃料电池模块 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106532083B (zh) * | 2016-12-15 | 2023-07-28 | 新源动力股份有限公司 | 一种含水热管理结构设计的燃料电池连接模块 |
CN106532083A (zh) * | 2016-12-15 | 2017-03-22 | 新源动力股份有限公司 | 一种含水热管理结构设计的燃料电池连接模块 |
CN108461778A (zh) * | 2017-02-20 | 2018-08-28 | 武汉众宇动力系统科技有限公司 | 用于无人机的燃料电池 |
CN107978822A (zh) * | 2017-12-20 | 2018-05-01 | 新源动力股份有限公司 | 一种具有氢循环及换热功能的燃料电池系统结构 |
CN107978822B (zh) * | 2017-12-20 | 2023-09-22 | 新源动力股份有限公司 | 一种具有氢循环及换热功能的燃料电池系统结构 |
CN109904490A (zh) * | 2019-03-28 | 2019-06-18 | 武汉泰歌氢能汽车有限公司 | 一种采用有机工质的燃料电池冷却系统 |
CN109904490B (zh) * | 2019-03-28 | 2024-04-09 | 武汉泰歌氢能汽车有限公司 | 一种采用有机工质的燃料电池冷却系统 |
CN110217076A (zh) * | 2019-07-09 | 2019-09-10 | 武汉雄韬氢雄燃料电池科技有限公司 | 一种燃料电池循环水热管理控制系统 |
CN111933988A (zh) * | 2020-09-14 | 2020-11-13 | 河南豫氢动力有限公司 | 新型燃料电池集成系统 |
CN112373353B (zh) * | 2020-10-27 | 2023-09-22 | 浙江大学 | 一种适用于燃料电池汽车热系统的协同管理系统 |
CN112373353A (zh) * | 2020-10-27 | 2021-02-19 | 浙江大学 | 一种适用于燃料电池汽车热系统的协同管理系统 |
CN113363530A (zh) * | 2021-05-28 | 2021-09-07 | 四川荣创新能动力系统有限公司 | 一种氢燃料电池尾气回收处理系统及方法 |
CN113903943B (zh) * | 2021-09-22 | 2023-10-20 | 中国三峡新能源(集团)股份有限公司 | 基于磁热的燃料电池热管理系统及控制方法 |
CN113903943A (zh) * | 2021-09-22 | 2022-01-07 | 中国三峡新能源(集团)股份有限公司 | 基于磁热的燃料电池热管理系统及控制方法 |
CN113903958A (zh) * | 2021-09-30 | 2022-01-07 | 国网上海市电力公司 | 一种风光制氢燃料电池集成装置的仿真方法 |
CN114388852A (zh) * | 2021-12-09 | 2022-04-22 | 浙江大学 | 基于电阻网格的燃料电池电流分布均匀性优化分析方法 |
CN114388852B (zh) * | 2021-12-09 | 2024-03-29 | 浙江大学 | 基于电阻网格的燃料电池电流分布均匀性优化分析方法 |
CN114614049B (zh) * | 2022-03-10 | 2023-11-14 | 上海重塑能源科技有限公司 | 一种燃料电池的快速冷启动系统及方法 |
CN114614049A (zh) * | 2022-03-10 | 2022-06-10 | 上海重塑能源科技有限公司 | 一种燃料电池的快速冷启动系统及方法 |
CN114778764A (zh) * | 2022-03-16 | 2022-07-22 | 同济大学 | 一种燃料电池气水分离器的测试系统、方法 |
CN114778764B (zh) * | 2022-03-16 | 2023-08-29 | 同济大学 | 一种燃料电池气水分离器的测试系统、方法 |
CN114824376A (zh) * | 2022-03-25 | 2022-07-29 | 东风汽车集团股份有限公司 | 一种燃料电池模块以及车辆 |
CN115395058A (zh) * | 2022-08-08 | 2022-11-25 | 武汉船用电力推进装置研究所(中国船舶集团有限公司第七一二研究所) | 一种具有除水淹功能的质子交换膜燃料电池电堆及控制方法 |
CN117936834A (zh) * | 2024-01-18 | 2024-04-26 | 杭州质子动力有限公司 | 一种适用于低温环境的氢能单兵电源 |
CN117936839A (zh) * | 2024-03-22 | 2024-04-26 | 武汉海亿新能源科技有限公司 | 一种燃料电池多路循环冷却装置及其控制方法 |
CN117996111A (zh) * | 2024-04-03 | 2024-05-07 | 浙江大学 | 一种阴极开放式pemfc混合能源系统及控制方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112011103046B4 (de) | 2015-02-19 |
CN102035002A (zh) | 2011-04-27 |
CN102035002B (zh) | 2013-01-30 |
DE112011103046T5 (de) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012071942A1 (zh) | 一种具有水热管理能力的燃料电池模块 | |
CN209786084U (zh) | 车用燃料电池系统的冷却系统 | |
WO2020107507A1 (zh) | 一种可调加热速度的电池系统及其控制方法 | |
KR101152856B1 (ko) | 연료전지시스템 및 그 제어방법 | |
CN104836319B (zh) | 一种一体化燃料电池供电系统 | |
CN207896208U (zh) | 一种燃料电池电堆热管理装置和系统 | |
CN201590452U (zh) | 一种水冷型质子交换膜燃料电池堆控制系统 | |
CN107139738B (zh) | 一种充电均衡方法及交直流两用充电桩 | |
WO2013023415A1 (zh) | 液流电池系统及其控制方法和装置 | |
CN207426024U (zh) | 一种燃料电池三联供系统 | |
CN111180758B (zh) | 一种燃料电池系统低温启动装置及方法 | |
CN207818786U (zh) | 燃料电池增湿系统及燃料电池系统 | |
WO2021135095A1 (zh) | 一种电源系统及其阻抗测量和冷启动方法 | |
CN207967253U (zh) | 电池组低温加热装置、电池模块及车辆 | |
CN209401800U (zh) | 纯电动汽车动力电池热管理系统 | |
WO2020107839A1 (zh) | 一种热水器出水温度控制方法 | |
CN213583873U (zh) | 一种基于燃料电池的多能互补冷热电联产系统 | |
CN115020759A (zh) | 一种燃料电池阳极水管理控制系统及方法 | |
CN206388827U (zh) | 电池系统及车辆 | |
CN107139737B (zh) | 一种充电均衡方法及直流充电桩 | |
CN219419104U (zh) | 新型氢燃料电池系统集成 | |
CN102034999A (zh) | 一种燃料电池保温系统 | |
CN111162298A (zh) | 一种电源系统及其阻抗测量和冷启动方法 | |
CN201476328U (zh) | 使用下水式光伏辅助加热系统的太阳能热水器 | |
CN108954824A (zh) | 一种节能型空气能热泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11845527 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011103046 Country of ref document: DE Ref document number: 1120111030460 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11845527 Country of ref document: EP Kind code of ref document: A1 |