WO2020107839A1 - 一种热水器出水温度控制方法 - Google Patents

一种热水器出水温度控制方法 Download PDF

Info

Publication number
WO2020107839A1
WO2020107839A1 PCT/CN2019/088935 CN2019088935W WO2020107839A1 WO 2020107839 A1 WO2020107839 A1 WO 2020107839A1 CN 2019088935 W CN2019088935 W CN 2019088935W WO 2020107839 A1 WO2020107839 A1 WO 2020107839A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
water
power
water pipe
controlled
Prior art date
Application number
PCT/CN2019/088935
Other languages
English (en)
French (fr)
Inventor
季伟源
胡楚友
王乾
袁周红
周君
吴涛
Original Assignee
江苏索尔新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏索尔新能源科技股份有限公司 filed Critical 江苏索尔新能源科技股份有限公司
Publication of WO2020107839A1 publication Critical patent/WO2020107839A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply

Definitions

  • the invention relates to the field of water heaters, in particular to a method for controlling the water outlet temperature of a water heater.
  • the water temperature cannot be kept constant. For example, if the water flow is turned off, the temperature becomes higher, or the temperature of the outlet water is getting lower and lower, resulting in a bad user experience.
  • the present invention provides a water heater outlet temperature control method, the technical solution is as follows:
  • the invention provides a water heater outlet temperature control method, which is suitable for a water heater including a battery, a central processor, a charger, a MOS tube, a first heating tube and a water tube; wherein the first heating tube and the central processor are controlled by the central processor
  • a water heater including a battery, a central processor, a charger, a MOS tube, a first heating tube and a water tube; wherein the first heating tube and the central processor are controlled by the central processor
  • There are multiple MOS tubes in one-to-one correspondence multiple first heating tubes are arranged in parallel at both ends of the battery, and the MOS tubes are respectively arranged on the branch where each first heating tube is located; the first heating The pipe is arranged outside the water pipe and provides heat for the water in the water pipe.
  • the control method of the central processor includes:
  • the duty ratio of the MOS tube is controlled to be greater than or equal to 60%; if the inlet temperature of the water pipe is higher than the preset high temperature threshold, the duty ratio of the MOS tube is controlled Less than or equal to 40%; if the inlet temperature of the water pipe is between the low temperature threshold and the high temperature threshold, the duty ratio of the MOS tube is controlled to be between 40% and 60%;
  • the water heater further includes one or more second heating tubes and a thyristor thyristor corresponding to the second heating tube in one-to-one relationship, the thyristor thyristor controls the corresponding second heating tube and the external of the water heater On and off of AC power, the thyristor is controlled by the central processor;
  • the MOS tube is controlled and at least one thyristor thyristor is closed; or,
  • the MOS tube is controlled and at least one thyristor thyristor is closed; or,
  • the MOS transistor and the thyristor thyristor are controlled to be closed or opened at the same time.
  • At least one thyristor thyristor is controlled to be closed.
  • controlling the charger to charge the battery includes: detecting whether the charger is connected to CAN communication, and if so, controlling the first relay on the line between the charger and the battery to close the loop between the charger and the battery, Otherwise, after checking or repairing the connection line between the charger and the external AC power supply, check the CAN communication signal of the charger again.
  • the central processor controls the second relay connected to one end of the power supply to pull in and close in advance.
  • the central processor controls the alarm device of the water heater to issue an alarm message.
  • the central processor obtains the estimated battery life corresponding to the current remaining battery power according to the relationship between the water heater usage time and the battery power reduction rate, and displays the estimated battery life to the user.
  • the duty ratio of some or all of the MOS tubes is adjusted to be increased, and/or one or more thyristors are closed; if the water flow in the water pipe is detected If it becomes smaller, some or all of the MOS transistors are adjusted to reduce the duty ratio or be turned off, and/or the thyristor is controlled to be turned off.
  • the duty ratio of the MOS tube is controlled to be 80%; if the inlet temperature of the water pipe is higher than 30°C, the duty ratio of the MOS tube is controlled to be 20%; if When the inlet temperature of the water pipe is between 15°C and 30°C, the duty ratio of the MOS pipe is controlled to be equal to 50%.
  • the water flow information in the water pipe is obtained. If the water flow is zero, it is simultaneously detected whether the battery power is lower than a preset charging power threshold, and if so, the charger is controlled to charge the battery.
  • the output power of the high-rate lithium iron phosphate battery can reach enough power to make the water heater hot when it is turned on, and it does not need to bear the risk of high power trip;
  • the central processor manages and controls the DC power output and the AC power output to coordinate the total output power stability, even if the household input line voltage is unstable, it can still achieve constant temperature effluent;
  • the central processor adjusts the total output power to achieve constant temperature water outlet under different water outlet conditions.
  • FIG. 1 is a schematic diagram of the internal structure of a water heater provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an external structure of a water heater provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of a water heater outlet temperature control method provided by an embodiment of the present invention.
  • the reference signs are: 1-battery, 2-central processor, 3-charger, 4-MOS tube, 5-thyristor thyristor, 601-first heating tube, 602-second heating tube, 7- Water pipe, 8-high voltage management unit, 801-first relay, 802-second relay, 803-fuse, 9-flow sensor, 10-DC-DC unit, 11-temperature sensor.
  • the present invention is based on a water heater that uses an energy storage battery to supply power to a heating tube in a water heater.
  • the high power output of the battery achieves a high heating efficiency, so that the water heater can be turned on and heated when the water is discharged.
  • the embodiments of the present invention provide a The control method of its outlet temperature.
  • the water heater includes a battery 1, a central processor 2, a charger 3, a DC power control unit, a water pipe 7, and a plurality of first heaters corresponding to the DC power control unit
  • the number of the first heating tubes 601 is four.
  • the first heating tubes 601 are disposed outside the water tube 7 and provide heat for the water in the water tube 7.
  • Four first heating tubes 601 are arranged in parallel at both ends of the battery 1, the DC power control unit corresponds to the first heating tube 601, see FIG.
  • the central processor 2 can control each MOS tube 4 in the DC power control unit, specifically: sending a square wave to the MOS tube 4, a square wave
  • the duty cycle determines the on-off and switching frequency of the MOS tube 4, the more the number of MOS tubes turned on, the faster the heating efficiency of the water heater; the higher the switching frequency of the MOS tube 4, the higher the first heating tube 601 The greater the power.
  • the battery 1 is a high-rate lithium iron phosphate battery, and each group of high-rate lithium iron phosphate batteries is composed of a plurality of battery cells connected in series to form a battery pack.
  • the number of battery packs and each battery The number of batteries in the package can be adjusted according to the needs of the application. It should be noted that high rate is a professional term in the lithium battery industry. "Rate” actually refers to the current value output by the battery when it discharges its rated capacity within a specified time. The value is equal to a multiple of the rated capacity. Generally high Rate lithium battery supports 2 times (2C) charge and discharge. Ideally, the output power of the battery 1 depends on the number of battery packs and the number of battery slices in each battery pack.
  • the output power of the battery 1 can be very large.
  • the output power of the battery 1 is greater than 6 kW. Due to such a large power output, the water outlet temperature of the water heater can quickly reach a preset temperature value, achieving "open and heat".
  • the battery management system (BATTERY MANAGEMENT SYSTEM, BMS) is the link between the battery and the user.
  • the main object is the secondary battery, mainly to improve the battery utilization rate and prevent the battery from overcharging and overdischarging.
  • the core component in the battery management system is the central processor 2, which mainly implements the following functions:
  • SOC state of charge
  • the central processor 2 is also connected to an external battery sensor.
  • a temperature sensor 11 is provided at the inlet and/or outlet of the water pipe 7, and the water pipe 7
  • a flow sensor 9 is provided at the water inlet and/or water outlet. The temperature sensor 11 and the flow sensor 9 are both connected to the input end of the central processor 2.
  • the water heater further includes a DC-DC unit 10, an input end of the DC-DC unit 10 is connected to the battery 1, an output end is connected to the central processing unit 2, a charger 3, a DC power control unit, and AC power control The unit is connected, and the DC-DC unit 10 is used to provide DC power to the central processor 2, the charger 3, the DC power control unit, and the AC power control unit, that is, to convert the DC power of the battery 1 input at the input end to the circuit
  • the power supply voltage of the board is 12V.
  • the water heater further includes a high-voltage management unit 8, which includes a first relay 801, a second relay 802, and a fuse 803. As shown in FIG. 2, the first relay 801 and the fuse 803 are connected in series.
  • the first relay 801 is used to control the on-off of the battery 1 to the power supply circuit of the first heating tube 601, and the second relay 802 is provided on the main road to control the on-off of the charging circuit of the battery 1 by the charger 3.
  • the first relay 801 and the second relay 802 may be controlled by the central processor 2: For example, when the flow sensor 9 detects water flow information and sends a message to the central processor 2, the central processor 2 Send a command to the first relay 801, the first relay 801 closes after receiving the command, and at the same time the central processor 2 controls the DC power control unit (MOS tube 4) to close, the circuit between the battery 1 and the first heating tube 601 is turned on, and the DC When the power supply works, the water heater will heat the water.
  • the central processor 2 controls the DC power control unit (MOS tube 4) to close, the circuit between the battery 1 and the first heating tube 601 is turned on, and the DC When the power supply works, the water heater will heat the water.
  • MOS tube 4 DC power control unit
  • the water heater further includes an AC power control unit, and one or more second heating tubes 602 corresponding to the AC power control unit, as shown in FIG. 2, there are two second heating tubes 602; the second heating tube 602 It is connected to an AC power supply external to the water heater.
  • the AC power supply may be a single-phase AC power supply or a three-phase AC power supply; the AC power control unit is provided on the branch where the second heating tube 602 is located, optionally
  • the AC power control unit includes a MOS tube 4 or a thyristor thyristor 5 corresponding one-to-one with the second heating tube 602.
  • the central processing unit 2 controls part or all of the thyristor thyristor 5 to be closed at the same time, then the external AC power supply powers the second heating tube 602.
  • the water pipe 7 is made of a thermally conductive material
  • the first heating pipe 601 and the second heating pipe 602 are both spiral, and are wound around the outer wall of the water pipe 7.
  • the central processing unit 2 controls the on and off of the MOS tube 4 of the DC power control unit to control the output power of the first heating tube 601, and controls the on and off of the thyristor thyristor 5 of the AC power control unit.
  • the charger 3 charges the battery 1 (external AC The power source is converted into electric energy of the battery 1).
  • the battery 1, the central processing unit 2, the charger 3, the DC power control unit, the AC power control unit, the heating element and the water pipe 7 are provided in the water heater housing.
  • the water heater housing A display screen is provided, which is used to display the working status of the water heater, such as water temperature information, remaining battery power information, and so on.
  • a hot water system including a water inlet system, a water tap, an AC power supply, and a water heater as described above.
  • the water pipe 7 inlet of the water heater is connected to the water inlet system.
  • the outlet of the water pipe 7 of the water heater is connected to the outlet faucet, the charger 3 of the water heater, the AC power control unit, and the second heating pipe 602 are connected to the AC power supply, the AC power supply includes a single-phase AC power supply and a three-phase AC
  • the working process and working principle of the power supply and water heater are as described above, and will not be repeated here.
  • control method includes the following processes:
  • the second relay connected to one end of the power supply is controlled by the central processor in advance, which is equivalent to closing the main circuit switch;
  • the preset undervoltage value such as 10% power value
  • the duty ratio of the MOS tube is controlled to be greater than or equal to 60% (preferably 80%); if the inlet temperature of the water pipe is higher than the preset high temperature Threshold (preferably 30°C), then control the duty cycle of the MOS tube to be less than or equal to 40% (preferably 20%); if the inlet temperature of the water pipe is between the low temperature threshold and the high temperature threshold, then control the The duty ratio of the MOS tube is between 40% and 60% (preferably 50%);
  • a water outlet temperature range for example, preferably 35-60°C
  • real-time detection of the outlet temperature of the water pipe if it is lower than the preset water outlet temperature (the lowest value of the water outlet temperature range, namely 35°C), then adjust the duty of part or all of the MOS tube
  • the ratio becomes larger, if it is higher than the preset outlet temperature (the highest value of the outlet temperature range, namely 60 °C), then adjust part or all of the MOS tube to reduce the duty ratio or disconnect.
  • the AC power supply mode can be added as assistance, and there are several ways to choose from:
  • Method 1 If the inlet temperature of the water pipe is lower than the preset low temperature threshold, control the MOS tube and at least one thyristor thyristor to close at the same time. This mode is suitable for winter (such as room temperature below 10°C). In winter, The temperature of the water entering the home water pipe may be only 5-10°C, and the discharge activity of the lithium battery is also affected by the low temperature. If the water heater is turned on and hot, it is necessary to increase the AC power supply immediately during the water discharge stage;
  • Method 2 If the outlet temperature of the water pipe is lower than the preset outlet temperature, control at least one thyristor thyristor at the same time to control the MOS tube.
  • This mode is suitable for the battery has been used for a period of time, in order to avoid the duty cycle of the MOS tube If it is too large, it is necessary to increase the AC power supply when it is detected that the battery power supply can only barely maintain the temperature range of the outlet water or even the water temperature drops.
  • Method 3 Control the MOS tube and the thyristor thyristor to be closed or open at the same time. It is suitable for the situation that the water consumption time is too long or the battery loss is large (such as the remaining battery power ratio is less than 30%). For water, increase the AC power supply at the beginning of water use to maximize the battery life of the DC power supply.
  • Manner 4 If it is detected that the battery power decreases to a preset power-saving power threshold (preferably a power value of 40%-60%), then at least one thyristor thyristor is controlled to be closed. On the other hand, if it is detected that the power of the battery is lower than the alarm threshold (for example, preferably 20% power), the central processor controls the alarm device of the water heater to issue an alarm message to remind the user to stop using water as soon as possible. Preferably, in this case, once the water flow is detected to be 0 (indicating that the user stops using the water heater), the central processor controls the first relay and the second relay to close, and the charger is turned on to charge the battery of the water heater.
  • a preset power-saving power threshold preferably a power value of 40%-60%
  • a preset charging power threshold (60%-80% power value)
  • the battery power is less than 60% when the water heater does not discharge water . Then start the charger, until the power rises to 80%, then stop charging to prevent battery performance damage caused by overcharging.
  • Method 5 If the water flow in the water pipe is detected to be large, adjust the duty ratio of some or all of the MOS tubes to become large, and/or control one or more thyristors to close; if the water flow in the water pipe is detected If it becomes smaller, some or all of the MOS transistors are adjusted to reduce the duty ratio or be turned off, and/or the thyristor is controlled to be turned off.
  • the central processor obtains the estimated battery life corresponding to the current battery remaining power according to the relationship between the water heater usage time and the battery power reduction rate, and displays the estimated battery life to the user For example, in the past ten minutes, the power consumption has been reduced from 40% to 32%. It can be estimated that the remaining battery life should be less than and close to 40 minutes. For example, the user can be reminded that the remaining battery life is in the range of 25-35 minutes.
  • the water heater of the invention realizes the separation of water and electricity, and improves the purity and safety of water; it uses high-power battery power supply to achieve instant water heating, which can output water at a constant temperature under the condition of unstable AC power, and will not affect the user's use of hot water due to external power failure To improve user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种热水器出水温度控制方法,包括检测电池(1)电量是否低于欠压值,若是,则控制充电机(3)为电池(1)充电,直至达到预设的工作电量值;获取水管(7)中的水流流量信息,若水流流量为零,则控制全部MOS管(4)处于断开状态,否则:若水管(7)入口温度低于预设的低温阈值,则控制MOS管(4)的占空比为80%;若水管(7)入口温度高于预设的高温阈值,则控制MOS管(4)的占空比为20%;若水管(7)入口温度介于低温阈值与高温阈值之间,则控制MOS管(4)的占空比为50%;实时检测水管(7)出口温度,若低于预设的出水温度,则调节MOS管(4)的占空比变大,若高于预设的出水温度,则调节MOS管(4)减小占空比或者断开。该控制方法能够在交流电不稳定的情况下恒温出水,提高用户体验。

Description

一种热水器出水温度控制方法 技术领域
本发明涉及热水器领域,特别涉及一种热水器出水温度控制方法。
背景技术
现有技术中主要有两种热水器,一种是燃气热水器,另一种是电热水器。关于前者,一般一户家庭中只装有一个燃气热水器,家中水龙头离燃气热水器有远有近,离得远的水龙头必须要排出大量的冷水之后,才能出热水,无法做到即开即热。
为此,很多家庭加装了电热水器,利用外部交流电源对水箱内的电热丝加热,这种电热水器要实现出水即开即热,功率必须要达到6kW以上,要求电源线在2.5平方毫米以上且家中需要布置独立的线路,普通的家庭用电线路根本无法实现,且一旦家庭用电线路断开,则热水器无法工作。
另一方面,电热水器工作时,无法保持水温恒定,比如,水流关小一点,温度就变高了,或者用着用着出水温度越来越低,造成恶劣的用户体验。
现有技术中没有一种即开即热的热水器,更没有一套完整的保持出水温度稳定的控制策略。
发明内容
为了解决现有技术的问题,本发明提供了一种热水器出水温度控制方法,技术方案如下:
本发明提供了一种热水器出水温度控制方法,适用于包括电池、中央处理器、充电机、MOS管、第一加热管及水管的热水器;其中,所述第一加热管与受中央处理器控制的MOS管为多个且一一对应,多个第一加热管并联设置在所述电池的两端,所述MOS管分别设置在每一个第一加热管所在的支路上;所述第一加热管设置在水管的外侧并为所述水管内的水提供热量,所述中央处理器 的控制方法包括:
检测电池电量是否低于预设的欠压值,若是,则控制充电机为电池充电,直至电池电量达到预设的工作值;
获取水管中的水流流量信息,若水流流量为零,则控制全部MOS管处于断开状态,否则,根据水管入口温度控制相应的MOS管的占空比,包括:
若水管入口温度低于预设的低温阈值,则控制所述MOS管的占空比大于或等于60%;若水管入口温度高于预设的高温阈值,则控制所述MOS管的占空比小于或等于40%;若水管入口温度介于所述低温阈值与高温阈值之间,则控制所述MOS管的占空比处于40%-60%之间;
实时检测水管出口温度,若低于预设的出水温度,则调节部分或全部MOS管的占空比变大,若高于预设的出水温度,则调节部分或全部MOS管减小占空比或者断开。
进一步地,所述热水器还包括一个或多个第二加热管及与所述第二加热管一一对应的可控硅晶闸管,所述可控硅晶闸管控制对应的第二加热管与热水器外部的交流电源的通断,所述可控硅晶闸管受中央处理器控制;
若水管入口温度低于预设的低温阈值,则控制MOS管的同时控制至少一个可控硅晶闸管闭合;或者,
若水管出口温度低于预设的出水温度,则控制MOS管的同时控制至少一个可控硅晶闸管闭合;或者,
控制MOS管和可控硅晶闸管同时闭合或同时断开。
进一步地,若检测到电池电量降低到预设的节电电量阈值时,则控制至少一个可控硅晶闸管闭合。
进一步地,控制充电机为电池充电之前包括:检测充电机是否连接CAN通讯,若是,则控制充电机与电池之间线路上的第一继电器吸合以导通充电机与电池之间的回路,否则检查或修复充电机与外部交流电源的连接线路后,再次检测充电机的CAN通讯信号。
进一步地,在控制MOS管打开之前,预先由所述中央处理器控制与电源一端连接的第二继电器吸合。
进一步地,若检测到电池的电量低于警报阈值,则所述中央处理器控制热 水器的警报装置发出警报信息。
进一步地,所述中央处理器根据热水器使用时间与电池电量降低速率的关系,得到当前电池剩余电量所对应的预估续航时间,并将所述预估续航时间向用户进行显示。
进一步地,若检测到水管中的水流流量变大,则调节部分或全部MOS管的占空比变大,和/或控制一个或多个可控硅晶闸管闭合;若检测到水管中的水流流量变小,则调节部分或全部MOS管减小占空比或者断开,和/或控制可控硅晶闸管断开。
优选地,若水管入口温度低于15℃,则控制所述MOS管的占空比等于80%;若水管入口温度高于30℃,则控制所述MOS管的占空比等于20%;若水管入口温度介于15℃与30℃之间,则控制所述MOS管的占空比等于50%。
进一步地,获取水管中的水流流量信息,若水流流量为零,则同时检测电池电量是否低于预设的充电电电量阈值,若是,则控制充电机对所述电池进行充电。
本发明能够产生以下有益效果:
a.利用高倍率磷酸铁锂电池为加热管提供电源,在停电的情况下仍然可以使用热水;
b.高倍率磷酸铁锂电池输出功率能够达到足够的功率,使热水器出水即开即热,且不必承担大功率跳闸的风险;
c.中央处理器管理控制直流功率输出和交流功率输出,协调总输出功率稳定,即使家庭输入线路电压不稳定的情况下依旧能够实现恒温出水;
d.通过出水口的温度和流量的检测值,中央处理器调节总输出功率,实现在不同出水量情况下的恒温出水。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的热水器的内部结构示意图;
图2是本发明实施例提供的热水器的外部结构示意图;
图3是本发明实施例提供的热水器出水温度控制方法流程图。
其中,附图标记为:1-电池,2-中央处理器,3-充电机,4-MOS管,5-可控硅晶闸管,601-第一加热管,602-第二加热管,7-水管,8-高压管理单元,801-第一继电器,802-第二继电器,803-保险丝,9-流量传感器,10-DC-DC单元,11-温度传感器。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明基于一种采用储能电池为热水器中加热管供电的热水器,通过电池的高功率输出,达到很高的加热效率,以实现热水器出水即开即热,本发明实施例提供了一种对其出水温度的控制方法。
首先对热水器的结构进行说明:参见图1,所述热水器包括电池1、中央处理器2、充电机3、直流功率控制单元、水管7及与所述直流功率控制单元对应的多个第一加热管601,参见图2,比如,所述第一加热管601的数量为四个,具体地,所述第一加热管601设置在水管7的外侧并为所述水管7内的水提供热量,四个第一加热管601并联设置在所述电池1的两端,所述直流功率控制单元对应于第一加热管601,参见图2,比如优选包括4个MOS管4,每一个第一加热管601所在的支路上设置有一个MOS管4;所述中央处理器2可以控制 所述直流功率控制单元中的每一个MOS管4,具体为:向所述MOS管4发送方波,方波的占空比决定着MOS管4的通断及开关频率,导通的MOS管的数量越多,热水器的加热效率越快;MOS管4的开关频率越高,所述第一加热管601的功率就越大。
在本发明的一个优选实施例中,所述电池1为高倍率磷酸铁锂电池,每一组高倍率磷酸铁锂电池由多个电池片串联形成一个电池包,电池包的数量及每个电池包内电池片的数量可以视应用场合的需求而调整。需要说明的是,高倍率是锂电池行业内的专业术语,“倍率”实际上是指电池在规定的时间内放电其额定容量时所输出的电流值,数值上等于额定容量的倍数,一般高倍率锂电池支持2倍率(2C)充放电。理想状态来看,所述电池1的输出功率取决于电池包的个数和每个电池包内电池片的数量,只要电池片够多,则电池1的输出功率可以达到很大,在本实施例中,所述电池1的输出功率大于6kW,由于如此大的功率输出,热水器出水温度可以很快达到预设的温度值,实现“即开即热”。
电池管理系统(BATTERY MANAGEMENT SYSTEM,BMS)是电池与用户之间的纽带,主要对象是二次电池,主要就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电。电池管理系统中的核心部件为中央处理器2,其主要实现以下几个功能:
(1)准确估测SOC:准确估测动力电池组的荷电状态(State of Charge,即SOC),即电池剩余电量,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池造成损伤,即监控储能电池的荷电状态;
(2)动态监测:在电池充放电过程中,实时采集蓄电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象。同时能够及时给出电池状况,挑选出有问题的电池,保持整组电池运行的可靠性和高效性,使剩余电量估计模型的实现成为可能。除此以外,还要建立每块电池的使用历史档案,为进一步优化和开发新型电、充电器、电动机等提供资料,为离线分析系统故障提供依据;
(3)电池间的均衡:即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。
在本发明的一个优选实施例中,所述中央处理器2还接入了电池外部传感器,比如,所述水管7的进水端和/或出水端设有温度传感器11,所述水管7的进水端和/或出水端设有流量传感器9,所述温度传感器11、流量传感器9均与所述中央处理器2的输入端连接。
所述热水器还包括DC-DC单元10,所述DC-DC单元10的输入端与所述电池1连接,输出端与所述中央处理器2、充电机3、直流功率控制单元、交流功率控制单元连接,所述DC-DC单元10用于为所述中央处理器2、充电机3、直流功率控制单元、交流功率控制单元提供直流电源,即将输入端输入的电池1的直流电转化为给电路板的比如12V供电电压。
所述热水器还包括高压管理单元8,所述高压管理单元8包括第一继电器801、第二继电器802和保险丝803,如图2所示,所述第一继电器801与保险丝803串联连接,所述第一继电器801用于控制电池1对第一加热管601的供电回路的通断,所述第二继电器802设置在总路上,用于控制充电机3对电池1的充电回路的通断。显然,所述第一继电器801和第二继电器802可以受控于所述中央处理器2:比如,当所述流量传感器9检测到水流信息并发送消息至中央处理器2,则中央处理器2发送指令给第一继电器801,第一继电器801收到指令后闭合,同时中央处理器2控制直流功率控制单元(MOS管4)闭合,则电池1与第一加热管601的回路导通,直流电源工作,热水器即热出水。
随着热水器的用水时间的延长,电池片的电量降低,为了延长所述电池1的续航时间,可选地,在必要的情况下,有中央处理器2控制接入交流辅助供电系统:所述热水器还包括交流功率控制单元、以及与所述交流功率控制单元对应的一个或多个第二加热管602,如图2所示,有两个第二加热管602;所述第二加热管602与热水器外部的交流电源连接,所述交流电源可以是单相交流电源,也可以是三相交流电源;所述交流功率控制单元设置在所述第二加热管602所在的支路上,可选地,所述交流功率控制单元包括与所述第二加热管602一一对应的MOS管4或可控硅晶闸管5,以可控硅晶闸管5为例,比如当电池1的电池片的电量降低到某一电量值,则在直流供电的基础上,所述中央处理器2同时控制部分或全部可控硅晶闸管5闭合,则外部交流电源为第二加热管602供电,由于第二加热管602的协助加热,出水温度需求不变的情况下,则直流 供电的输出功率需求自然就降低了,可以减少直流功率控制单元(MOS管4)闭合的数量,即减少接入的第一加热管601的数量;亦或者可以在所述中央处理器2的控制下降低每个电池片的放电速率。优选地,所述水管7由导热材料制成,所述第一加热管601和第二加热管602均为螺旋状,且绕设在所述水管7外壁上。
综上,所述中央处理器2通过控制直流功率控制单元的MOS管4的通断以控制第一加热管601的输出功率、通过控制交流功率控制单元的可控硅晶闸管5的通断以控制第二加热管602的输出功率,以及在电量低至某一阈值时控制第二继电器802闭合(同时控制第一继电器801闭合),则所述充电机3为所述电池1充电(将外部交流电源转化为电池1的电能)。
所述电池1、中央处理器2、充电机3、直流功率控制单元、交流功率控制单元、加热元件及水管7设置在热水器壳体内,在一个优选的实施例中,所述热水器壳体上还设有显示屏,所述显示屏用于显示热水器的工作状态,比如水温信息、电池剩余电量信息等等。
在本发明的另一个实施例中,提供了一种热水系统,包括进水系统、出水龙头、交流电源及如上所述的热水器,所述热水器的水管7进水口与进水系统连接,所述热水器的水管7出水口与出水龙头连接,所述热水器的充电机3、交流功率控制单元、第二加热管602与所述交流电源连接,所述交流电源包括单相交流电源和三相交流电源,热水器的工作过程和工作原理如上所述,在此不再赘述。
下面对具体的出水温度控制方法进行详细说明:参见图3,所述控制方法包括以下流程:
预先由所述中央处理器控制与电源一端连接的第二继电器吸合,相当于闭合电路总开关;
检测电池电量是否低于预设的欠压值(比如10%电量值),若是,则控制充电机为电池充电,直至电池电量达到预设的工作电量值(比如30%电量值),具体包括:检测充电机是否连接CAN通讯,若是,则控制充电机与电池之间线路上的第一继电器吸合以导通充电机与电池之间的回路,否则检查或修复充电机与外部交流电源的连接线路后,再次检测充电机的CAN通讯信号;
获取水管中的水流流量信息,若水流流量为零,则控制全部MOS管处于断开状态,否则,根据水管入口温度控制相应的MOS管的占空比,包括:
若水管入口温度低于预设的低温阈值(优选为15℃),则控制所述MOS管的占空比大于或等于60%(优选为80%);若水管入口温度高于预设的高温阈值(优选为30℃),则控制所述MOS管的占空比小于或等于40%(优选为20%);若水管入口温度介于所述低温阈值与高温阈值之间,则控制所述MOS管的占空比处于40%-60%之间(优选为50%);
预设一个出水温度范围,比如优选35-60℃,实时检测水管出口温度,若低于预设的出水温度(出水温度范围最低值,即35℃),则调节部分或全部MOS管的占空比变大,若高于预设的出水温度(出水温度范围最高值,即60℃),则调节部分或全部MOS管减小占空比或者断开。
在本发明的一个优选实施例中,在利用电池直流供电的同时,可以加入交流供电模式作为协助,有以下几种方式可以选择:
方式一、若水管入口温度低于预设的低温阈值,则控制MOS管的同时控制至少一个可控硅晶闸管闭合,这种模式适用于冬季(比如室温低于10℃),在冬天的时候,进入家庭水管的水温可能只有5-10℃,且锂电池放电活跃性也收到低温的影响,则如果要实现热水器即开即热,需要在放水阶段立即增加交流供电;
方式二、若水管出口温度低于预设的出水温度,则控制MOS管的同时控制至少一个可控硅晶闸管闭合,这种模式适用于电池已经使用一段时间后,为了避免MOS管的占空比过大,则在检测到电池供电仅能够勉强保持出水温度范围甚至有水温下降的趋势,则需增加交流供电;
方式三、控制MOS管和可控硅晶闸管同时闭合或同时断开,适用于用水时间过长或者电池损耗较大(比如电池剩余电量比例低于30%)的情况,为了保证长时间稳定出热水,在用水一开始即增加交流供电,以最大程度增加电池的直流供电续航时间。
方式四、若检测到电池电量降低到预设的节电电量阈值(优选40%-60%的电量值)时,则控制至少一个可控硅晶闸管闭合。另一方面,若检测到电池的电量低于警报阈值(比如优选20%电量值),则所述中央处理器控制热水器的 警报装置发出警报信息,提醒用户尽快停止用水。优选地,在这种情况下,一旦检测到水流流量为0(表示用户停止使用热水器),则中央处理器控制第一继电器和第二继电器闭合,开启充电机为热水器电池充电,优选地,在检测水流流量为0的情况下,需要判断是否需要为热水器电池充电,比如,预设一个充电电量阈值(60%-80%电量值),假如在热水器不出水的时候,电池电量低于60%,则启动充电机,直至电量上升至80%则停止充电,以防止过充造成电池性能损害。
方式五、若检测到水管中的水流流量变大,则调节部分或全部MOS管的占空比变大,和/或控制一个或多个可控硅晶闸管闭合;若检测到水管中的水流流量变小,则调节部分或全部MOS管减小占空比或者断开,和/或控制可控硅晶闸管断开。
在一个优选的实施例中,所述中央处理器根据热水器使用时间与电池电量降低速率的关系,得到当前电池剩余电量所对应的预估续航时间,并将所述预估续航时间向用户进行显示,比如统计在过去的十分钟内,电量由40%降低为32%,则可以预估剩余续航时间应该是小于且接近40分钟,比如可以向用户提醒剩余续航时间范围为25-35分钟。
本发明的热水器,实现水电分离,提高用水的纯净度和安全性;利用大功率电池供电实现出水即热,能够在交流电不稳定的情况下恒温出水,不会因为外部断电影响用户使用热水,提高用户体验。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种热水器出水温度控制方法,其特征在于,适用于包括电池(1)、中央处理器(2)、充电机(3)、MOS管(4)、第一加热管(601)及水管(7)的热水器;其中,所述第一加热管(601)与受中央处理器(2)控制的MOS管(4)为多个且一一对应,多个第一加热管(601)并联设置在所述电池(1)的两端,所述MOS管(4)分别设置在每一个第一加热管(601)所在的支路上;所述第一加热管(601)设置在水管(7)的外侧并为所述水管(7)内的水提供热量,所述中央处理器(2)的控制方法包括:
    检测电池电量是否低于预设的欠压值,若是,则控制充电机为电池充电,直至电池电量达到预设的工作值;
    获取水管中的水流流量信息,若水流流量为零,则控制全部MOS管处于断开状态,否则,根据水管入口温度控制相应的MOS管的占空比,包括:
    若水管入口温度低于预设的低温阈值,则控制所述MOS管的占空比大于或等于60%;若水管入口温度高于预设的高温阈值,则控制所述MOS管的占空比小于或等于40%;若水管入口温度介于所述低温阈值与高温阈值之间,则控制所述MOS管的占空比处于40%-60%之间;
    实时检测水管出口温度,若低于预设的出水温度,则调节部分或全部MOS管的占空比变大,若高于预设的出水温度,则调节部分或全部MOS管减小占空比或者断开。
  2. 根据权利要求1所述的控制方法,其特征在于,所述热水器还包括一个或多个第二加热管(602)及与所述第二加热管(602)一一对应的可控硅晶闸管(5),所述可控硅晶闸管(5)控制对应的第二加热管(602)与热水器外部的交流电源的通断,所述可控硅晶闸管(5)受中央处理器(2)控制;
    若水管入口温度低于预设的低温阈值,则控制MOS管的同时控制至少一个可控硅晶闸管闭合;或者,
    若水管出口温度低于预设的出水温度,则控制MOS管的同时控制至少一个可控硅晶闸管闭合;或者,
    控制MOS管和可控硅晶闸管同时闭合或同时断开。
  3. 根据权利要求2所述的控制方法,其特征在于,若检测到电池电量降低到预设的节电电量阈值时,则控制至少一个可控硅晶闸管闭合。
  4. 根据权利要求1所述的控制方法,其特征在于,控制充电机为电池充电之前包括:检测充电机是否连接CAN通讯,若是,则控制充电机与电池之间线路上的第一继电器吸合以导通充电机与电池之间的回路,否则检查或修复充电机与外部交流电源的连接线路后,再次检测充电机的CAN通讯信号。
  5. 根据权利要求1所述的控制方法,其特征在于,在控制MOS管打开之前,预先由所述中央处理器控制与电源一端连接的第二继电器吸合。
  6. 根据权利要求1所述的控制方法,其特征在于,若检测到电池的电量低于警报阈值,则所述中央处理器控制热水器的警报装置发出警报信息。
  7. 根据权利要求1所述的控制方法,其特征在于,所述中央处理器根据热水器使用时间与电池电量降低速率的关系,得到当前电池剩余电量所对应的预估续航时间,并将所述预估续航时间向用户进行显示。
  8. 根据权利要求2所述的控制方法,其特征在于,若检测到水管中的水流流量变大,则调节部分或全部MOS管的占空比变大,和/或控制一个或多个可控硅晶闸管闭合;
    若检测到水管中的水流流量变小,则调节部分或全部MOS管减小占空比或者断开,和/或控制可控硅晶闸管断开。
  9. 根据权利要求1所述的控制方法,其特征在于,若水管入口温度低于15℃,则控制所述MOS管的占空比等于80%;若水管入口温度高于30℃,则控制所述MOS管的占空比等于20%;若水管入口温度介于15℃与30℃之间,则控制 所述MOS管的占空比等于50%。
  10. 根据权利要求9所述的控制方法,其特征在于,获取水管中的水流流量信息,若水流流量为零,则同时检测电池电量是否低于预设的充电电量阈值,若是,则控制充电机对所述电池进行充电。
  11. 一种热水器出水温度控制方法,其特征在于,所述控制方法适用于以下热水器,所述热水器包括电池(1)、中央处理器(2)、充电机(3)、直流功率控制单元、交流功率控制单元、加热元件及水管(7);所述电池(1)为多组磷酸铁锂电池,每一组磷酸铁锂电池由多个电池片串联形成一个电池包,所述电池(1)的输出功率大于6kW;
    所述加热元件包括与所述直流功率控制单元对应的多个第一加热管(601)以及与所述交流功率控制单元对应的一个或多个第二加热管(602);
    所述多个第一加热管(601)并联设置在所述电池(1)的两端,所述直流功率控制单元分别设置在每一个第一加热管(601)所在的支路上;
    所述第二加热管(602)与交流电源连接,所述交流功率控制单元设置在所述第二加热管(602)所在的支路上;
    所述热水器还包括第一继电器(801)和第二继电器(802),在所述中央处理器(2)的控制下,所述第一继电器(801)用于控制电池(1)对第一加热管(601)的供电回路的通断,所述第二继电器(802)用于控制充电机(3)对电池(1)的充电回路的通断;
    所述第一加热管(601)和第二加热管(601)均为螺旋状,且绕设在所述水管(7)外壁上,所述水管(7)由导热材料制成,所述中央处理器(2)通过直流功率控制单元控制第一加热管(601)的输出功率、通过交流功率控制单元控制第二加热管(602)的输出功率、以及控制所述充电机(3)为所述电池(1)充电;
    所述控制方法包括:
    若水管入口温度低于预设的低温阈值,且室温低于10℃,则控制直流功率控制单元的MOS管导通的同时控制交流功率控制单元的至少一个可控硅晶闸管 闭合;和/或
    在直流功率控制单元的MOS管全部导通的情况下,若水管出口温度低于预设的出水温度和/或出水温度有下降的趋势,则控制MOS管导通的同时控制交流功率控制单元的至少一个可控硅晶闸管闭合;和/或
    在电池剩余电量比例低于30%的情况下,控制直流功率控制单元的MOS管和交流功率控制单元的可控硅晶闸管同时闭合或同时断开;和/或
    若检测到电池的电量低于警报阈值,则所述中央处理器控制热水器的警报装置发出警报信息,并在检测到水流流量为0后,则中央处理器控制第一继电器和第二继电器闭合,开启充电机为电池充电;和/或
    若检测到水管中的水流流量变大,则调节直流功率控制单元的部分或全部MOS管的占空比变大,和/或控制交流功率控制单元的一个或多个可控硅晶闸管闭合;若检测到水管中的水流流量变小,则调节部分或全部MOS管减小占空比或者断开,和/或控制可控硅晶闸管断开。
PCT/CN2019/088935 2018-11-30 2019-05-29 一种热水器出水温度控制方法 WO2020107839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811450531.5A CN109489260B (zh) 2018-11-30 2018-11-30 一种热水器出水温度控制方法
CN201811450531.5 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020107839A1 true WO2020107839A1 (zh) 2020-06-04

Family

ID=65698161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088935 WO2020107839A1 (zh) 2018-11-30 2019-05-29 一种热水器出水温度控制方法

Country Status (2)

Country Link
CN (1) CN109489260B (zh)
WO (1) WO2020107839A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405270A (zh) * 2018-11-30 2019-03-01 江苏索尔新能源科技股份有限公司 一种储能型即热式热水器及热水系统
CN109489260B (zh) * 2018-11-30 2019-12-27 江苏索尔新能源科技股份有限公司 一种热水器出水温度控制方法
CN111765642A (zh) * 2019-04-02 2020-10-13 青岛经济技术开发区海尔热水器有限公司 混合供电式电热水器及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249432A (ja) * 1993-02-26 1994-09-06 Matsushita Electric Ind Co Ltd 給湯器
CN203615608U (zh) * 2013-06-06 2014-05-28 北京物资学院 一种流量驱动的即热节能装置
CN205536570U (zh) * 2016-02-15 2016-08-31 广东万家乐燃气具有限公司 一种即开即热燃气热水器循环管道控制系统
CN106352539A (zh) * 2016-11-09 2017-01-25 浙江长兴亿安贝电器有限公司 含有蜂鸣器的加热控制电路、即热型热水器
CN206145953U (zh) * 2016-08-30 2017-05-03 江苏苏美达机电有限公司 一种恒温即热式热水器
CN108021160A (zh) * 2017-12-19 2018-05-11 河南智金网络技术有限公司 一种即热式热水器附加温控电路
CN207599977U (zh) * 2017-12-08 2018-07-10 佛山市锦蓝温控器有限公司 一种电热水器
CN108571821A (zh) * 2018-06-29 2018-09-25 广东万家乐燃气具有限公司 一种即热式电加热装置及热水器
CN109489260A (zh) * 2018-11-30 2019-03-19 江苏索尔新能源科技股份有限公司 一种热水器出水温度控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2667395Y (zh) * 2002-07-27 2004-12-29 孙尧 即开即热过水式电热水器
CN101109576A (zh) * 2007-05-18 2008-01-23 海尔集团公司 即热式热水器恒温控制方法
JP5741847B2 (ja) * 2011-07-28 2015-07-01 株式会社ノーリツ 太陽熱温水装置の異常判定方法
CN204902270U (zh) * 2015-09-06 2015-12-23 上海延中水净化科技有限公司 一种即热式饮水平台控制电路
CN106482351B (zh) * 2016-11-09 2019-11-22 东阳市琰安建筑工程有限公司 含有蜂鸣器和led提示模块的控制系统、即热型热水器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249432A (ja) * 1993-02-26 1994-09-06 Matsushita Electric Ind Co Ltd 給湯器
CN203615608U (zh) * 2013-06-06 2014-05-28 北京物资学院 一种流量驱动的即热节能装置
CN205536570U (zh) * 2016-02-15 2016-08-31 广东万家乐燃气具有限公司 一种即开即热燃气热水器循环管道控制系统
CN206145953U (zh) * 2016-08-30 2017-05-03 江苏苏美达机电有限公司 一种恒温即热式热水器
CN106352539A (zh) * 2016-11-09 2017-01-25 浙江长兴亿安贝电器有限公司 含有蜂鸣器的加热控制电路、即热型热水器
CN207599977U (zh) * 2017-12-08 2018-07-10 佛山市锦蓝温控器有限公司 一种电热水器
CN108021160A (zh) * 2017-12-19 2018-05-11 河南智金网络技术有限公司 一种即热式热水器附加温控电路
CN108571821A (zh) * 2018-06-29 2018-09-25 广东万家乐燃气具有限公司 一种即热式电加热装置及热水器
CN109489260A (zh) * 2018-11-30 2019-03-19 江苏索尔新能源科技股份有限公司 一种热水器出水温度控制方法

Also Published As

Publication number Publication date
CN109489260A (zh) 2019-03-19
CN109489260B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2020107838A1 (zh) 一种储能型即热式热水器及热水系统
US20210323442A1 (en) Battery system with adjustable heating rate and control method thereof
WO2020107839A1 (zh) 一种热水器出水温度控制方法
CN106972583A (zh) 一种电池组充放电控制系统
WO2013168474A1 (ja) 電力制御装置及び電力制御方法
CN201726205U (zh) 一种交流储能柜及储能电站系统
US20150028677A1 (en) Control device, conversion device, control method, and electricity distribution system
WO2012068774A1 (zh) 基于铁锂电池的变电站直流电源应急系统
CN104348215A (zh) 充电器、电池模块、用于识别与监控充电器的系统与方法
WO2021083149A1 (zh) 充电方法和充电系统
CN207967253U (zh) 电池组低温加热装置、电池模块及车辆
CN209709744U (zh) 一种退役动力电池梯次利用的通信基站供电系统
CN104882936B (zh) 一种通信储能电源系统
CN106685012A (zh) 锂电池充电控制系统及其工作方法
CN107732332B (zh) 一种电信基站电池休眠与空调协同控制方法及系统
CN103368235B (zh) 一种不间断电源内的镍氢电池充放电电路
CN105262171A (zh) 一种电池充电保护控制系统及方法
CN210430931U (zh) 储能空调系统
CN202210696U (zh) 一种家用太阳能充放电系统
CN207968020U (zh) 一种电池梯次利用的储能装置
CN209165761U (zh) 一种储能型即热式热水器及热水系统
CN214958867U (zh) 一种无间断可在线投切的锂电池储能系统
CN115800422A (zh) 储能系统和储能系统的调节方法
CN204761067U (zh) 一种通信储能电源系统
CN108448681A (zh) 一种电池管理系统的充电器在线侦测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889448

Country of ref document: EP

Kind code of ref document: A1