WO2012068774A1 - 基于铁锂电池的变电站直流电源应急系统 - Google Patents

基于铁锂电池的变电站直流电源应急系统 Download PDF

Info

Publication number
WO2012068774A1
WO2012068774A1 PCT/CN2011/001495 CN2011001495W WO2012068774A1 WO 2012068774 A1 WO2012068774 A1 WO 2012068774A1 CN 2011001495 W CN2011001495 W CN 2011001495W WO 2012068774 A1 WO2012068774 A1 WO 2012068774A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
air switch
battery
inverter
power
Prior art date
Application number
PCT/CN2011/001495
Other languages
English (en)
French (fr)
Inventor
李晶
曹永兴
丁丹一
Original Assignee
四川电力试验研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川电力试验研究院 filed Critical 四川电力试验研究院
Priority to KR1020137016380A priority Critical patent/KR101304397B1/ko
Publication of WO2012068774A1 publication Critical patent/WO2012068774A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to an emergency system for a DC power supply for a power system substation, in particular to a substation DC power supply emergency system based on a lithium iron phosphate battery pack, which satisfies a substation DC power supply in the event of a major power grid accident or a major natural disaster. And the need to check the power supply of the test instrument, under normal circumstances as a temporary backup battery pack in the single-group configuration of the substation battery, to meet the requirement that the battery pack needs to be disconnected from the DC bus for periodic check-up discharge.
  • the DC power supply for power system substation is the working power supply for protection and control and communication of power transmission and transformation equipment.
  • the battery pack is used for substation protection, control, accident lighting and other accidents.
  • a temporary power transmission scheme will be adopted.
  • necessary testing of the power transmission and transformation equipment is required, and at the same time Protection and control and communication require a DC power supply to provide power to it.
  • DL/T724-2000 "Technical Regulations for Operation and Maintenance of Battery DC Power Supply for Power System”
  • the verification discharge requirement for a single battery cannot be withdrawn, and a backup battery pack is required for the full capacity discharge test. , to complete the capacity test.
  • the system and method have been applied by the inventors to the verification discharge test and the accident emergency plan drill for a single battery of a substation.
  • the object of the present invention is to provide a substation DC power emergency system based on lithium iron phosphate battery pack, which is intended to be used for major accidents in the power grid, especially DC emergency power supply during major natural disasters and as a single battery configuration in normal time. Backup power supply for the verification of the discharge test.
  • Iron lithium battery unit composed of lithium iron phosphate battery;
  • Power distribution control unit It consists of 160A air switch K3 and 25A air switch K4.
  • the two inlets of air switch K3 are used to connect the positive and negative outputs of the iron-lithium battery unit through the quick-swap cable.
  • the two inlet ends of the switch K4 are respectively connected to the two outlet ends of the air switch K3, and the two outlet ends of the air switch K3 are used for outputting direct current through the quick plugging and unplugging cable;
  • the inverter unit is composed of an inverter, and the two input ends of the inverter are respectively connected to the two outlets of the air switch K4 in the power distribution control switch unit through the quick plugging and unplugging cable; the two output ends of the inverter Used to output 220V AC by quick plugging and unplugging cable;
  • Charging control unit It consists of 32A AC air switch Kl, 63 ⁇ air switch ⁇ 2, rectifier and monitor of built-in battery management system; the inlet of AC air switch K1 is used to input 220V AC through quick-plug cable, AC air switch K1 The output end is connected to the input end of the rectifier, and the positive and negative output ends of the rectifier are respectively connected to the two inlet ends of the air switch ⁇ 2, and the two output ends of the air switch ⁇ 2 are used as the lithium-ion battery unit by the quick plugging and unplugging cable respectively.
  • the positive and negative output terminals are connected, and the monitor is connected to the rectifier through a communication line on the one hand, and is connected to the iron-lithium battery unit through a four-core quick-plug communication line on the other hand through a serial port;
  • a DC contactor JZ1 serving as a discharge protection is also connected in series to an inlet end of the air switch ⁇ 3 in the power distribution control switch unit; and an outlet end of the air switch ⁇ 2 in the charging control unit is further connected in series for charging protection A DC contactor JZ2.
  • the above lithium iron phosphate battery model is FP3291152
  • the rectifier model is HD22020-3
  • the monitor model is BMJ-FPC
  • the inverter model is TP630E-N-U.
  • the above-mentioned iron-lithium battery unit, the power distribution control switch unit, the inverter unit, and the charging control unit all adopt a frame type structure, and the top of the iron-lithium battery unit frame has a protruding pin and the bottom has a matching with the protruding pin. A recessed hole is provided; and a power box for inserting and installing all of the above-mentioned unit inserts is also provided.
  • the invention relates to a substation DC power emergency system and a using method thereof based on a lithium iron battery, which is composed of a lithium iron phosphate battery pack, a CAN bus monitoring system, a high frequency switching power supply rectification charging module/inverter module and a quick plug cable.
  • the portable unit is formed by a modular split structure, which is formed into a frame structure according to the charging inverter, the battery pack, and the power distribution control.
  • the emergency use is mainly a battery pack (battery enclosure), a power distribution control unit (switch frame), and Quickly plug in cables for quick on-site assembly based on functional requirements.
  • Substation DC power system is widely used as protection, control and communication for power transmission and transformation equipment in power engineering.
  • accidents such as accidents, accident lighting, etc.
  • the loss of DC power for the station will directly affect the safe operation of the power system, especially in the case of major power grid accidents or major natural disasters.
  • major power grid accidents or major natural disasters For example, after the 512 Wenchuan earthquake occurred, some power transmission and transformation can still be used.
  • the battery pack is damaged and cannot provide the DC power required for protection control. As a result, the temporary power transmission cannot be urgently restored in the shortest time to provide power for disaster relief.
  • substations of the power system l lOkV and the following voltage levels are only equipped with a set of batteries according to the typical design, and the battery pack cannot be separated according to DL/T724-2000 "Technical Regulations for Operation and Maintenance of Battery DC Power Supply Devices for Power Systems".
  • the DC bus is tested for full capacity verification discharge. Under the protection of the parallel connection measures of the system, the DC system of the substation is connected to the DC power supply for the starting station, so that the original battery pack can safely complete the 10-hour nuclear capacity test.
  • the method meets the requirements of emergency repair, realizes convenient transportation and quick installation on site, and meets the needs of substation and power plant DC power supply emergency.
  • the invention has the beneficial effects that the invention overcomes the problems of large volume, heavy equipment, short service life, long charging time, inconvenient transportation and delay in repairing time by using lead-acid batteries and other methods, so that the invention has high integration and high speed. Intelligent, long life, small size, fast charging, high rate discharge, simple and clear wiring, etc., to meet the emergency requirements of power system accidents, and to meet the backup power supply for on-site maintenance of substation DC power supply equipment. .
  • the invention has the advantages of compact structure, convenient transportation, easy operation, can save accident repair time and work under various bad conditions, and the system has high cost performance, and large-scale application can achieve high economic benefits and generate large social benefits.
  • FIG. 1 is a block diagram showing the hardware structure of the emergency system of the present invention.
  • FIG 2-1 is a wiring diagram of the battery unit of the emergency system of the present invention.
  • Figure 2-2 is a wiring diagram of the dual battery pack of the emergency system of the present invention.
  • Fig. 3-1 and Fig. 3-2 are respectively appearance views of the combined structure (two kinds of power supply boxes) of the emergency system of the present invention.
  • FIG 4 is a power line connection diagram of the emergency system of the present invention (the back of the power box shown in Figure 3-1).
  • FIG 5 is a communication line connection diagram of the emergency system of the present invention (the back side of the power box shown in Figure 3-1). DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to Figure 1, the following portable split structure unit is composed, and the portable split structure units are connected by a quick plug connection;
  • Iron lithium battery unit composed of lithium iron phosphate battery
  • Power distribution control switch unit It consists of 160A air switch K3 and 25A air switch K4.
  • the two inlets of air switch K3 are used to connect the positive and negative output terminals of the iron-lithium battery unit through the quick-swap cable.
  • the two inlet ends of the K4 are respectively connected to the two outlet ends of the air switch K3, and the two outlet ends of the air switch K3 are used for outputting direct current through the quick plugging and unplugging cable;
  • the inverter unit is composed of an inverter, and the two input ends of the inverter are respectively connected to the two outlets of the air switch K4 in the power distribution control switch unit through the quick plugging and unplugging cable; the two output ends of the inverter Used to output 220V AC by quick plugging and unplugging cable;
  • Charging control unit It consists of 32A AC air switch Kl, 63 ⁇ air switch ⁇ 2, rectifier and monitor of built-in battery management system; the inlet of AC air switch K1 is used to input 220V AC through quick-plug cable, AC air switch K1 The output end is connected to the input end of the rectifier, and the positive and negative output ends of the rectifier are respectively connected to the two inlet ends of the air switch ⁇ 2, and the two output ends of the air switch ⁇ 2 are used as the lithium-ion battery unit by the quick plugging and unplugging cable respectively.
  • the positive and negative output terminals are connected, and the monitor is connected to the rectifier through a communication line on the one hand, and is connected to the iron-lithium battery unit through a four-core quick-plug communication line on the other hand through a serial port;
  • a DC contactor JZ1 serving as a discharge protection is also connected in series to an inlet end of the air switch ⁇ 3 in the above-mentioned power distribution control unit; an outlet of the air switch ⁇ 2 in the above charging control unit is also connected in series for charging protection.
  • Another DC contactor JZ2 (see Figure 2-1, diode D in parallel with the DC contactor).
  • the iron-lithium battery unit, the power distribution control unit, the inverter unit, and the charging control unit all adopt a frame structure, and the top of the iron-lithium battery unit frame has a protruding pin and the bottom has a suitable fit with the protruding pin. A recessed hole is provided; and a power box 1 for inserting and mounting all of the above unit plugs is also provided.
  • a substation DC power supply emergency system based on lithium iron phosphate battery pack works and uses: Follow the steps below:
  • the iron-lithium battery unit, the power distribution control switch unit, the inverter unit, and the charging control unit are respectively made into a sub-frame, and the unit sub-frames are connected and combined by a quick-plug cable and a quick-plug communication line.
  • the routine maintenance and management of the battery pack is performed on the one hand as a backup DC power supply, and on the other hand as an emergency power supply (Fig. 3-1, Fig. 3-2, Fig. 4 and Fig. 5,
  • the power box 1 has a battery enclosure 2, a switch enclosure 3, and an inverter enclosure 4; the rectifier enclosure 5 has a rectifier enclosure 6, a monitor enclosure 7 and an AC input and DC output interface 8).
  • the stable structure of the olivine structure of the positive electrode material of the lithium iron ion battery itself even in the case of strong collision, it does not burn or explode.
  • the system has soft and hardware protection in the charging circuit and the discharge circuit, so it is used in emergency. It is especially safe.
  • the daily measurement, monitoring and maintenance management of the two sets of batteries can be performed.
  • the two sets of batteries can be used in parallel or separately at different substations or locations.
  • the whole system is placed in the substation straight Next to the streaming power supply.
  • the AC power supply connects to the AC power supply, start the emergency system operation, set the operating parameters according to the specific substation requirements.
  • the inverter connects to the substation DC bus according to the polarity through the substation DC system feed screen. load.
  • the original substation battery pack is taken out of operation, and the discharge nuclear capacity is separately processed, that is, it can meet the safety test requirements of the DL/T724-2000 "Technical Regulations for Operation and Maintenance of Battery DC Power Supply Devices for Power Systems" for a single battery configuration substation.
  • the small fuel generator can be connected to the AC input of the system, and the qualified power supply is provided for the electric load through the "filtering and voltage regulation" function of the battery pack.
  • the emergency system consists of two major components: a charging device and a battery pack, and a controlled battery box.
  • the charging unit is responsible for the monitoring, protection, maintenance and management of the emergency DC power system.
  • the battery pack in the battery box section is the emergency DC power supply provider.
  • the inverter module mainly supplies AC power to the test instrument, and the power distribution control unit functions as DC load control and protection. (See Figure 1)
  • the monitor of the charging device adopts liquid crystal Chinese character display, embedded battery management system (BMS), battery data collection, charging control and parameter setting of various parts of the system, and alarm functions such as battery over-voltage and charging over-current.
  • BMS embedded battery management system
  • the rectification charging device of the emergency power system adopts dual modules.
  • the 20Ah battery pack When the 20Ah battery pack is configured, it is N+ 1 redundant backup.
  • the charging module can be hot plugged, with charging protection function and intermittent charging mode.
  • the charging module uses autonomous current sharing technology, and the maximum unbalance of the output current between modules is less than 3%.
  • a charging device When two sets of batteries are configured, a charging device is used for charging control and management, and the battery pack has measures to prevent parallel connection. The two sets of batteries can simultaneously meet the emergency use of DC power supply of two substations. (See Figure 2-2)
  • the monitor of the charging device communicates with the battery management system (BMS) by means of the CAN bus, realizes the collection and judgment of the battery data, and controls the high-frequency switching rectifier module to perform supplementary charging and floating charging on the iron-lithium battery pack. Keep the battery pack in standby state at full capacity. The battery pack is charged at a rate of 0.5 to 1 (0.5 to 1 C, .), and the battery recovery time is short after discharge. Press 1C. Charge the battery for 1 hour to fully charge the battery.
  • BMS battery management system
  • All units are designed for outdoor operation and have good sealing properties.
  • the live parts are insulated and the conductors are not exposed.
  • the connecting cable uses a quick-swap connector for quick connection and removal.
  • High-performance lithium iron phosphate battery pack and high-frequency switch module and inverter The combination method, in the case of major power grid accidents or major natural disasters, meets the DC power supply of the original substation DC power supply system, and solves the power supply requirements for the test equipment for the substation equipment before commissioning, and acts as a substation battery under normal conditions.
  • the temporary backup battery pack in the single-group configuration meets the requirements for the battery pack to be disconnected from the DC bus for periodic check-up discharge.
  • AC input voltage 220V or 380V
  • BMS BMS based on CAN bus
  • System protection AC input protection, DC output protection.
  • Termination voltage 2. 55V / monomer
  • Self-discharge amount standing for 28 days ⁇ 3% (20°0;
  • Lithium iron phosphate battery Model FP3291152, Harbin Coslight Group
  • High frequency switching rectifier module Model HD22020-3, Emerson Power Supply
  • BMS Model BMJ-FPC, Harbin Coslight Power Company
  • Inverter TP630E-N-U, Harbin Institute of Cosmos
  • DC open K2, ⁇ 3 and ⁇ 4: 5SJ5, Siemens; DC contactor: G9EA-1 (-B) 400V/200A;
  • Protective diode ie D in Figure 2-1: MDK2-300A/600V; shunt (FL in Figure 2-1): 200A/75mV, class 0.5.

Description

基于铁锂电池的变电站直流电源应急系统 技术领域
本发明涉及电力系统变电站用直流电源的应急系统, 具体来说是一种基于磷 酸亚铁锂离子电池组的变电站直流电源应急系统, 以在电网重大事故或重大自然 灾害时, 满足变电站对直流电源和检査测试仪器用电源的需求, 在正常情况下作 为变电站蓄电池单组配置时的临时备用电池组, 满足对蓄电池组需要脱离直流母 线进行定期核对性放电的要求。
背景技术
电力系统变电站用直流电源是输变电设备的保护和控制及通信的工作电源, 其蓄电池组供变电站保护、 控制、 事故照明等事故用电。 但在电网重大事故, 特 别是重大自然灾害时, 会造成蓄电池组无法正常工作, 为使电网尽快恢复会采取 临时送电方案, 这时要求对输变电设备进行必要的检测, 同时这些设备的保护和 控制及通信是需要直流电源为其提供电源。 另外 DL/T724-2000 《电力系统用蓄电 池直流电源装置运行与维护技术规程》 中, 对单组蓄电池的核对性放电要求不能 退出运行, 为了进行全容量的放电测试也需要有后备电池组临时替代, 使其完成 容量测试。 该系统及方法已被本发明人运用到对变电站单组蓄电池的核对性放电 测试和事故应急预案演练中。
国内目前有质子交换膜燃料电池的变电站应急电源系统, 但基于燃料电池的 技术成熟性、 运行维护等因素, 在电力系统开展应用存在难度。 其他基本为 UPS、 EPS电源和照明应急电源, 尚不能作为电力系统变电站的直流电源应急系统。 发明内容
本发明的目的是提供一种基于磷酸亚铁锂离子电池组的变电站直流电源应急 系统, 旨在能用于电网重大事故, 特别是重大自然灾害时的直流应急电源以及正 常时作为单组蓄电池配置的核对性放电测试时的后备电源。
本发明的目的是这样实现的:
一种基于磷酸亚铁锂离子电池组的变电站直流电源应急系统, '由以下便携式 分体结构单元组成, 且便携式分体结构单元之间采用快速插接方式连接; 铁锂电池组单元: 由磷酸亚铁锂离子电池组成;
配电控制幵关单元: 由 160A空气开关 K3和 25A空气开关 K4组成, 空气开关 K3的两个进端用作通过快速插拔电缆分别与铁锂电池组单元的正、负输出端连接, 空气开关 K4的两个进端分别与空气开关 K3的两个出端连接,空气幵关 K3的两个 出端用作通过快速插拔电缆输出直流电;
逆变器单元: 由逆变器组成, 逆变器的两个输入端分别通过快速插拔电缆与 配电控制开关单元中空气开关 K4的两个出端连接;逆变器的两个输出端用作通过 快速插拔电缆输出 220V交流电;
充电控制单元: 由 32A交流空气开关 Kl、 63Α空气开关 Κ2、 整流器以及内置 电池管理系统的监控器组成;交流空气开关 K1的进端用作通过快速插拔电缆输入 220V交流电, 交流空气开关 K1的出端与整流器的输入端连接, 整流器的正、负输 出端分别与空气开关 Κ2的两个进端连接, 空气开关 Κ2的两个出端用作通过快速 插拔电缆分别与铁锂电池组单元的正、 负输出端连接, 监控器一方面通过通讯线 与整流器连接, 另一方面以串口方式通过四芯快速插拔通讯线与铁锂电池组单元 连接;
上述配电控制开关单元中空气开关 Κ3的一个进端上还串接有用作放电保护的 直流接触器 JZ1 ; 上述充电控制单元中空气开关 Κ2的一个出端上还串接有用作充 电保护的另一直流接触器 JZ2。
上述磷酸亚铁锂电池型号为 FP3291152, 整流器型号为 HD22020-3, 监控器型 号为 BMJ- FPC, 逆变器型号为 TP630E- N- U。
上述铁锂电池组单元、 配电控制开关单元、 逆变器单元以及充电控制单元均 采用插框式结构, 且铁锂电池组单元插框的顶部有凸销以及底部有与该凸销相适 配的凹孔; 还具有供上述所有单元插框对应插入安装的电源箱。
本发明基于铁锂电池的变电站直流电源应急系统及使用方法, 是以磷酸亚铁 锂离子电池组、基于 CAN总线监测系统、 高频开关电源整流充电模块 /逆变模块及 快速插接电缆等组成, 采用积木式的分体结构, 按充电逆变、 电池组、 配电控制 形成插框结构的便携式单元, 应急使用主要是电池组(电池插框)、 配电控制单元 (开关插框) 及快速插接电缆, 根据功能需求实现现场快速组装。
变电站直流电源系统被广泛地用作电力工程中输变电设备的保护、 控制、 通 讯、 事故照明等事故用电, 作为电力、 通讯等领域的工作或后备电源, 其重要性 不言而喻。 站用直流电源的丧失会直接影响电力系统的安全运行, 特别是在 电网重大事故或重大自然灾害时, 例如在 512汶川特大地震发生后, 部分输变电 尚可使用的情况下, 由于原有蓄电池组被损坏, 无法提供保护控制需要的直流电 源, 造成不能在最短时间内紧急恢复临时送电, 给抢险救灾提供电力。 此时深感 变电站应急直流电源的重要性, 也是发明人提出该研制项目的重要原因。 另 外, 电力系统 l lOkV及以下电压等级的变电站, 按照典型设计只配置了一组蓄电 池,而按照 DL/T724-2000《电力系统用蓄电池直流电源装置运行与维护技术规程》 规定, 蓄电池组不能脱离直流母线进行全容量核对性放电测试。 采用本系统在防 止电池并联措施的保护下, 接入变电站直流系统承担起站用直流电源, 使原蓄电 池组安全地完成 10小时的核容测试。
本方法针对抢修应急的要求, 实现了便捷运输、 现场快速安装, 满足了 变电站及电厂直流电源应急的需求。
本发明的有益效果是: 本发明克服采用铅酸蓄电池及其他方式的体积大、 设 备沉重、 寿命短、 充电时间过长, 运输不方便、 延误抢修时间等问题, 使其具有 高集成度、 高智能化、 寿命长、 体积小、 快速充电、 高倍率放电、 接线简单明了 等特点, 最大限度地满足了电力系统事故抢险应急要求, 同时能满足作为变电站 直流电源设备现场维护时的备用电源之用。
本发明结构紧凑, 便于运输, 易于操作, 能节约事故抢修时间和适用各种恶 劣条件下工作, 系统性价比高, 大规模应用能实现较高的经济效益和产生较大的 社会效益。
附图说明
图 1是本发明应急系统的硬件结构框图。
图 2-1是本发明应急系统单电池组接线图。
图 2-2是本发明应急系统双电池组接线图。
图 3-1和图 3- 2分别是本发明的应急系统的组合结构 (两种电源箱) 的外观 图。
图 4是本发明应急系统的动力线连接图 (图 3-1所示电源箱的背面)。
图 5是本发明应急系统的通讯线连接图 (图 3-1所示电源箱的背面)。 具体实施方式 参见图 1, 由以下便携式分体结构单元组成,且便携式分体结构单元之间采用 快速插接方式连接;
铁锂电池组单元: 由磷酸亚铁锂离子电池组成;
配电控制开关单元: 由 160A空气开关 K3和 25A空气开关 K4组成, 空气开关 K3的两个进端用作通过快速插拔电缆分别与铁锂电池组单元的正、负输出端连接, 空气开关 K4的两个进端分别与空气开关 K3的两个出端连接,空气幵关 K3的两个 出端用作通过快速插拔电缆输出直流电;
逆变器单元: 由逆变器组成, 逆变器的两个输入端分别通过快速插拔电缆与 配电控制开关单元中空气开关 K4的两个出端连接;逆变器的两个输出端用作通过 快速插拔电缆输出 220V交流电;
充电控制单元: 由 32A交流空气开关 Kl、 63Α空气开关 Κ2、 整流器以及内置 电池管理系统的监控器组成;交流空气开关 K1的进端用作通过快速插拔电缆输入 220V交流电, 交流空气开关 K1的出端与整流器的输入端连接, 整流器的正、负输 出端分别与空气开关 Κ2的两个进端连接, 空气开关 Κ2的两个出端用作通过快速 插拔电缆分别与铁锂电池组单元的正、 负输出端连接, 监控器一方面通过通讯线 与整流器连接, 另一方面以串口方式通过四芯快速插拔通讯线与铁锂电池组单元 连接;
上述配电控制幵关单元中空气开关 Κ3的一个进端上还串接有用作放电保护的 直流接触器 JZ1 ; 上述充电控制单元中空气开关 Κ2的一个出端上还串接有用作充 电保护的另一直流接触器 JZ2 (参见图 2-1, 二极管 D与直流接触器并联)。
铁锂电池组单元、 配电控制幵关单元、 逆变器单元以及充电控制单元均采用 插框式结构, 且铁锂电池组单元插框的顶部有凸销以及底部有与该凸销相适配的 凹孔; 还具有供上述所有单元插框对应插入安装的电源箱 1。
一种基于磷酸亚铁锂离子电池组的变电站直流电源应急系统的工作方式与使 用方法: 按以下步骤进行:
a)、 将铁锂电池组单元、 配电控制开关单元、 逆变器单元以及充电控制单元 分别制作为插框, 单元插框之间通过快速插拔电缆和快速插拔通讯线连接并组合 在一起, 进行电池组的日常维护和管理, 一方面作后备直流电源组合在一起使用, 另一方面作为应急电源而分开使用 (图 3-1、 图 3-2、 图 4以及图 5中, 电源箱 1中有 电池插框 2, 开关插框 3, 逆变器插框 4; 整流箱 5中有整流器插框 6,. 监控器插框 7 以及交流输入与直流输出接口 8)。
b )、 维护使用时, 由交流输入端接 AC220V电源, 通过 32A空气开关 K1合闸送入 整流器, 整流器输出直流到 63A直流空气开关 K2进端, 空气开关 K2出端通过快速插 拔电缆至各电池框电气连接端, 同时并联输出到 160A直流空开进线端。 平时维护 时合上 160A直流空开, 完成电池组的充电和浮充电工作, 此时监控器采集直流电 压、 电流和电池状况, 其内嵌的 BMS (电池管理系统软件) 通过 RS485对高频开关 模块和电池组进行日常测量、 监控和维护管理。 除憐酸亚铁锂离子电池自身正极 材料橄榄石型结构的稳定结构, 即使在强烈碰撞也不燃烧、 爆炸外, 本系统在充 电回路和放电回路都设置了软、 硬件保护, 故在应急使用时特别安全。
c )、 当采用双电池组(见图 2-2应急系统双电池组接线图) 时, 仅多配置了 一个电池箱 (包括电池框、 配电控制单元框, 逆变器为可选单元) , 只需将 此电池箱个单元按接线图将动力线和通讯线连接好,调整监控器的相关参数
(电池组数、 充电电流、 充电电压等) 即可进行两组电池的日常测量、 监控和 维护管理。 使用时即可将两组电池并联使用, 也可分开在不同的变电站或场所使 用。 '
d )、 作为直流应急电源使用时, 先关闭交流电源, 撤除连接电缆, 将电池组 的电池插框和配电控制插框抽出, 放入专配铝合金手提箱, 以小体积便携方式运 至变电站需要提供直流电源的地方, 就地插入电池箱架(也可叠放组装), 并保证 上面电池插框底凸销放进下面电池插框顶的凹孔(包括配电控制和逆变插框), 按 色标和编号对应连接快速插接电缆, 完成全部组装, 将 160A直流空开直流输出按 极性接入变电站直流馈电屏的动力母线 (合母), 检査无误后合上 160A直流空开, 供变电站站用直流负荷, 直流电源应急系统进入工作状态。
e )、 当作为现场检测变电设备的仪器用应急交流电源时, 将整个系统安置于 变电站待检测设备旁, 检测仪器的交流电源接至本系统逆变电源输出, 检査无误 后, 合上逆变器 25A直流空开, 逆变器就可为测试用仪器提供交流电源。
f )、 作为配置单组蓄电池变电站放电核容时, 将本系统整体安置在变电站直 流电源设备旁。 接入交流电源, 启动应急系统运行, 根据具体变电站要求设置好 运行参数, 待运行正常且符合该站要求后, 按极性通过变电站直流系统馈电屏连 接到变电站直流母线上, 供站用直流负荷。 然后将原变电站蓄电池组退出运行, 单独进行放电核容, 即能满足 DL/T724-2000 《电力系统用蓄电池直流电源装置运 行与维护技术规程》 对单组电池配置变电站的安全测试要求。
g)、 在现场有小功率燃油发电机时, 可将小型燃油发电机接入本系统的交流 输入, 通过电池组的 "过滤稳压"作用, 为用电负荷提供合格的电源。
应急系统分为两大部分组成: 充电装置和电池组、 控制的电池箱。 充电装置 部分负责应急直流电源系统的监控、 保护、 维护和管理。 电池箱部分的电池组为 应急直流电源提供者, 逆变模块主要为检测仪器提供交流电源, 配电控制单元起 直流负荷控制和保护作用。 (见附图 1 )
充电装置的监控器采用液晶汉字显示, 内嵌电池管理系统 (BMS ), 进行电池 组的数据采集、 充电控制及系统各个部分的参数设置, 设有电池过欠压和充电过 流等告警功能。
应急电源系统的整流充电装置采用双模块, 配置 20Ah电池组时为 N+ 1冗余 备份, 充电模块可以带电热插拔, 具备充电保护功能和间歇式充电方式。 充电模 块采用自主均流技术, 模块间输出电流最大不平衡度小于 3%。 (见附图 2-1 ) 配置两组电池时, 采用一套充电装置分别进行充电控制与管理, 电池组具有 防止并联的措施。 两组电池可同时满足两个变电站的直流电源应急使用。 (见附图 2-2 )
平时接入交流电源, 充电装置的监控器采用 CAN总线方式与电池管理系统 (BMS )通讯, 实现电池数据的采集和判断, 控制高频开关整流模块对铁锂电池组 进行补充充电和浮充电, 使电池组时刻处于满容量的备用状态。蓄电池组按 0. 5〜 1倍率(0. 5〜1C,。)进行充电, 放电后电池容量恢复时间短, 按 1C,。充电 1小时即可 将电池充满容量。
所有单元按户外工作方式设计, 具备良好的密封性, 带电部分进行绝缘保护, 导电体无任何暴露。 连接电缆采用快速插拔接头, 实现快速连接与拆除。
本应急系统的主要功能与技术指标:
主要功能: 采用高性能磷酸亚铁锂离子电池组与高频开关模块及逆变装置 的组合方式, 在电网重大事故或重大自然灾害时, 满足代替原变电站直流电源系 统提供直流电源, 并解决投运前对变电设备测试检査用仪器的电源需求, 在正常 情况下作为变电站蓄电池单组配置时的临时备用电池组, 满足对蓄电池组需要脱 离直流母线进行定期核对性放电的要求。
变电站直流应急系统技术指标:
系统容量: 20- 40Ah;
交流输入电压: 220V或 380V;
交流输入电流: 32-63A;
直流输出电流: 32- 63A;
逆变输出功率: 2- 3kVA
逆变输出电压: 220V
浮充电压: 242- 252V;
充电电流: 10A-40A (0. 5-lCo)
电池数量: 70只 /组;
蓄电池组: 1-2组;
监测管理: 基于 CAN总线的 BMS;
系统保护: 交流输入保护、 直流输出保护。
磷酸亚铁锂离子电池技术指标:
额定电压: 3. 2V/单体;
额定容量: 20- 40Ah/单体;
浮充电压: 3. 45-3. 6V/单体 (20°0;
终止电压: 2. 55V/单体;
自放电量: 静置 28天〈3% ( 20°0;
循环寿命: 1500次。
主要装置与设备的参数:
磷酸亚铁锂离子电池: 型号 FP3291152, 哈尔滨光宇集团; 高频开关整流模块: 型号 HD22020-3, 艾默生电源公司;
监控器(内置 BMS): 型号 BMJ-FPC,哈尔滨光宇电源公司;
逆变器: TP630E-N- U, 哈尔滨光宇研究所;
直流空开 (K2、 Κ3和 Κ4 ): 5SJ5,西门子公司; 直流接触器: G9EA- 1(-B)400V/200A;
保护用二极管 (即图 2-1中 D): MDK2-300A/600V; 分流器 (图 2-1中的 FL): 200A/75mV, 0.5级。

Claims

杈 利 要 求 书
1、一种基于磷酸亚铁锂离子电池组的变电站直流电源应急系统,其特征是: 由以下便携式分体结构单元组成,且便携式分体结构单元之间采用快速插接方式 连接;
铁锂电池组单元: 由磷酸亚铁锂离子电池组成;
配电控制开关单元: 由 160A空气幵关 K3和 25A空气开关 K4组成, 空气开 关 K3的两个进端用作通过快速插拔电缆分别与铁锂电池组单元的正、 负输出端 连接, 空气开关 K4的两个进端分别与空气开关 K3 的两个出端连接, 空气开关 K3的两个出端用作通过快速插拔电缆输出直流电;
逆变器单元: 由逆变器组成,逆变器的两个输入端分别通过快速插拔电缆与 配电控制开关单元中空气开关 K4的两个出端连接; 逆变器的两个输出端用作通 过快速插拔电缆输出 220V交流电;
充电控制单元: 由 32A交流空气开关 Kl、 63Α空气开关 Κ2、 整流器以及内 置电池管理系统的监控器组成; 交流空气开关 K1的进端用作通过快速插拔电缆 输入 220V交流电,交流空气开关 K1的出端与整流器的输入端连接,整流器的正、 负输出端分别与空气幵关 Κ2的两个进端连接,空气开关 Κ2的两个出端用作通过 快速插拔电缆分别与铁锂电池组单元的正、负输出端连接, 监控器一方面通过通 讯线与整流器连接,另一方面以串口方式通过四芯快速插拔通讯线与铁锂电池组 单元连接;
上述配电控制开关单元中空气开关 Κ3的一个进端上还串接有用作放电保护 的直流接触器 JZ1 ; 上述充电控制单元中空气开关 Κ2的一个出端上还串接有用 作充电保护的另一直流接触器 JZ2。
2、 根据权利要求 1所述的基于磷酸亚铁锂离子电池组的变电站直流电源应 急系统, 其特征是: 所述磷酸亚铁锂电池型号为 FP3291152 , 整流器型号为 HD22020-3, 监控器型号为 BMJ- FPC, 逆变器型号为 TP630E- N-U。
3、 根据权利要求 1或 2所述的基于磷酸亚铁锂离子电池组的变电站直流电 源应急系统, 其特征是: 所述铁锂电池组单元、 配电控制开关单元、逆变器单元 以及充电控制单元均采用插框式结构,且铁锂电池组单元插框的顶部有凸销以及 底部有与该凸销相适配的凹孔;还具有供上述所有单元插框对应插入安装的电源 箱 (1 )。
PCT/CN2011/001495 2010-11-24 2011-09-02 基于铁锂电池的变电站直流电源应急系统 WO2012068774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137016380A KR101304397B1 (ko) 2010-11-24 2011-09-02 리튬철 전지 기반의 변전소 직류전원 비상 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010557222.5 2010-11-24
CN2010105572225A CN102035249B (zh) 2010-11-24 2010-11-24 基于铁锂电池的变电站直流电源应急系统

Publications (1)

Publication Number Publication Date
WO2012068774A1 true WO2012068774A1 (zh) 2012-05-31

Family

ID=43887749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001495 WO2012068774A1 (zh) 2010-11-24 2011-09-02 基于铁锂电池的变电站直流电源应急系统

Country Status (3)

Country Link
KR (1) KR101304397B1 (zh)
CN (1) CN102035249B (zh)
WO (1) WO2012068774A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849298A (zh) * 2017-03-16 2017-06-13 福建省电力勘测设计院 用于变电站预制舱的分布式交直流电源模块
CN107069931A (zh) * 2017-04-14 2017-08-18 国网江苏省电力公司无锡供电公司 移动式变电站直流负荷转移装置
CN109088187A (zh) * 2018-08-31 2018-12-25 苏州德锐朗智能科技有限公司 一种便携式电站的输电端口结构
CN110011408A (zh) * 2019-05-21 2019-07-12 国网福建省电力有限公司宁德供电公司 一种移动应急电源系统及其工作方法
CN110021984A (zh) * 2019-05-20 2019-07-16 国网福建省电力有限公司宁德供电公司 一种磷酸铁锂蓄电池间断性浮充电方法
CN112467831A (zh) * 2020-11-18 2021-03-09 江苏为恒智能科技有限公司 蓄电池组远程式在线核容管理系统
CN113013991A (zh) * 2021-03-26 2021-06-22 北京国电光宇机电设备有限公司 一种在线式蓄电池智能管理系统
CN113381502A (zh) * 2021-06-09 2021-09-10 宁夏坤正生物科技有限公司 一种变频器用抗晃电结构及方法
CN113507162A (zh) * 2020-06-10 2021-10-15 国网浙江省电力有限公司温州供电公司 一种变电站直流供电系统的自动核容装置及核容方法
CN114374264A (zh) * 2021-12-10 2022-04-19 国网湖北省电力有限公司宜昌供电公司 直流系统馈电屏馈电单元插框不停电更换方法
CN116345604A (zh) * 2022-11-17 2023-06-27 平高集团储能科技有限公司 一种应急电源系统及使用该系统的储能舱

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035249B (zh) * 2010-11-24 2013-06-19 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统
CN102324757B (zh) * 2011-05-20 2013-01-23 中国广东核电集团有限公司 核电站应急动力电源之蓄能系统的监控方法和系统
CN102201691B (zh) * 2011-05-20 2013-05-22 中国广东核电集团有限公司 用于核电站动力应急电源之蓄能系统模块
CN102610776B (zh) * 2012-03-13 2015-01-21 华为技术有限公司 一种锂电池连接结构
CN102664454B (zh) * 2012-05-10 2014-05-07 四川电力科学研究院 一种基于铁锂电池的非浮充式变电站直流电源系统
CN105356593A (zh) * 2015-08-06 2016-02-24 谢宗洺 锂离子电池作为储能器件的变电所直流电源装置
CN107846149B (zh) * 2016-09-20 2019-10-08 维谛技术有限公司 一种双工况嵌入式通信电源升级插框
CN106787140A (zh) * 2016-12-28 2017-05-31 双登集团股份有限公司 交直流一体化后备电源系统
CN107196408A (zh) * 2017-06-22 2017-09-22 国家电网公司 一种变电站便携式交直流系统
CN109066833A (zh) * 2018-07-12 2018-12-21 国网山西省电力公司电力科学研究院 抑制过电流产生的磷酸铁锂备用蓄电池组充电方法
CN112491131A (zh) * 2020-11-23 2021-03-12 安徽南瑞继远电网技术有限公司 基于金属空气电池的变电站移动应急电源系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262478A (ja) * 2001-03-05 2002-09-13 Meidensha Corp 電源装置
CN2870245Y (zh) * 2006-01-16 2007-02-14 天津海飞特电源科技有限公司 一种变电站一体化电源装置
WO2010063326A1 (en) * 2008-12-05 2010-06-10 Areva T&D Uk Ltd Electricity substation standby power supply system
CN102035249A (zh) * 2010-11-24 2011-04-27 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统
CN201887528U (zh) * 2010-11-24 2011-06-29 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634577B2 (ja) * 1987-01-29 1994-05-02 サンケン電気株式会社 電源装置
JPH0439088U (zh) * 1990-07-26 1992-04-02
CN2289338Y (zh) * 1996-10-29 1998-08-26 青海省新能源研究所 便携式交直流两用太阳能电源装置
KR19990010383A (ko) * 1997-07-16 1999-02-18 김광호 직류전원 및 교류전원 겸용 충전장치
KR20040013093A (ko) * 2002-04-12 2004-02-11 미쓰비시덴키 가부시키가이샤 금속폐쇄형 배전반
CN201113480Y (zh) * 2007-09-04 2008-09-10 熊君华 不间断电源变频调速器
JP5033697B2 (ja) * 2008-03-31 2012-09-26 株式会社日立製作所 家庭用充放電装置及びその制御方法
CN201383681Y (zh) * 2009-04-13 2010-01-13 浙江三辰电器有限公司 矿用隔爆型直流电源屏

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262478A (ja) * 2001-03-05 2002-09-13 Meidensha Corp 電源装置
CN2870245Y (zh) * 2006-01-16 2007-02-14 天津海飞特电源科技有限公司 一种变电站一体化电源装置
WO2010063326A1 (en) * 2008-12-05 2010-06-10 Areva T&D Uk Ltd Electricity substation standby power supply system
CN102035249A (zh) * 2010-11-24 2011-04-27 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统
CN201887528U (zh) * 2010-11-24 2011-06-29 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849298A (zh) * 2017-03-16 2017-06-13 福建省电力勘测设计院 用于变电站预制舱的分布式交直流电源模块
CN106849298B (zh) * 2017-03-16 2023-05-30 中国电建集团福建省电力勘测设计院有限公司 用于变电站预制舱的分布式交直流电源模块
CN107069931A (zh) * 2017-04-14 2017-08-18 国网江苏省电力公司无锡供电公司 移动式变电站直流负荷转移装置
CN109088187A (zh) * 2018-08-31 2018-12-25 苏州德锐朗智能科技有限公司 一种便携式电站的输电端口结构
CN110021984A (zh) * 2019-05-20 2019-07-16 国网福建省电力有限公司宁德供电公司 一种磷酸铁锂蓄电池间断性浮充电方法
CN110011408A (zh) * 2019-05-21 2019-07-12 国网福建省电力有限公司宁德供电公司 一种移动应急电源系统及其工作方法
CN110011408B (zh) * 2019-05-21 2024-03-08 国网福建省电力有限公司宁德供电公司 一种移动应急电源系统及其工作方法
CN113507162A (zh) * 2020-06-10 2021-10-15 国网浙江省电力有限公司温州供电公司 一种变电站直流供电系统的自动核容装置及核容方法
CN112467831A (zh) * 2020-11-18 2021-03-09 江苏为恒智能科技有限公司 蓄电池组远程式在线核容管理系统
CN113013991A (zh) * 2021-03-26 2021-06-22 北京国电光宇机电设备有限公司 一种在线式蓄电池智能管理系统
CN113013991B (zh) * 2021-03-26 2023-01-03 北京国电光宇机电设备有限公司 一种在线式蓄电池智能管理系统
CN113381502A (zh) * 2021-06-09 2021-09-10 宁夏坤正生物科技有限公司 一种变频器用抗晃电结构及方法
CN113381502B (zh) * 2021-06-09 2023-02-28 宁夏坤正生物科技有限公司 一种变频器用抗晃电结构及方法
CN114374264A (zh) * 2021-12-10 2022-04-19 国网湖北省电力有限公司宜昌供电公司 直流系统馈电屏馈电单元插框不停电更换方法
CN114374264B (zh) * 2021-12-10 2023-08-08 国网湖北省电力有限公司宜昌供电公司 直流系统馈电屏馈电单元插框不停电更换方法
CN116345604A (zh) * 2022-11-17 2023-06-27 平高集团储能科技有限公司 一种应急电源系统及使用该系统的储能舱

Also Published As

Publication number Publication date
CN102035249A (zh) 2011-04-27
KR101304397B1 (ko) 2013-09-06
CN102035249B (zh) 2013-06-19
KR20130080482A (ko) 2013-07-12

Similar Documents

Publication Publication Date Title
WO2012068774A1 (zh) 基于铁锂电池的变电站直流电源应急系统
CN102611172B (zh) 电动汽车充电设施标准设计
CN103887834B (zh) 一种蓄电池组柔性均衡充放电管理整流模块、装置及系统
CN102664454B (zh) 一种基于铁锂电池的非浮充式变电站直流电源系统
CN103219766B (zh) 非浮充锂电型站用直流电源系统
CN204990922U (zh) 纯电动汽车bms电池管理系统试验台
CN210137209U (zh) 轻便型一体化不间断交直流电源
CN102447298B (zh) 一种移动式智能直流电源装置
CN202602134U (zh) 便携式直流系统负荷转移辅助箱
CN203377670U (zh) 分散式智能直流电源
CN204131204U (zh) 智能型直流电源屏
CN203326621U (zh) 非浮充锂电型站用直流电源系统
CN201887528U (zh) 基于铁锂电池的变电站直流电源应急系统
CN204068380U (zh) 一种移动式交流应急电源装置
CN203983968U (zh) 一种磷酸铁锂电池组保护板
CN113328501B (zh) 一种能源站直流屏电池模组柔性连接装置与架构
CN202550664U (zh) 一种基于铁锂电池的非浮充式变电站直流电源系统
CN202206125U (zh) 配网系统保护装置故障后带电处理用便携式保护装置
CN103904776A (zh) 智能配电房电源系统
CN210273591U (zh) 变电站用混合型直流电源装置
CN103117665B (zh) 一种锂离子电池模组模拟系统
CN203056667U (zh) 变电站间接并联电池系统
CN205583821U (zh) 移动式模块化应急抢修交直流一体化电源
CN104467157A (zh) 一种多电压等级备用直流操作电源
CN205212498U (zh) 一种太阳能交流直流两用智能储能供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137016380

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11843740

Country of ref document: EP

Kind code of ref document: A1