WO2013023415A1 - 液流电池系统及其控制方法和装置 - Google Patents
液流电池系统及其控制方法和装置 Download PDFInfo
- Publication number
- WO2013023415A1 WO2013023415A1 PCT/CN2011/081971 CN2011081971W WO2013023415A1 WO 2013023415 A1 WO2013023415 A1 WO 2013023415A1 CN 2011081971 W CN2011081971 W CN 2011081971W WO 2013023415 A1 WO2013023415 A1 WO 2013023415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery system
- flow battery
- temperature
- flow
- adjusting
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04731—Temperature of other components of a fuel cell or fuel cell stacks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- a liquid flow battery system is a system for electrochemical reaction of redox oxidation of metal ion electrolytes in different valence states, which can efficiently realize mutual conversion between chemical energy and electric energy.
- This type of battery system has the advantages of long service life, high energy conversion efficiency, good safety and environmental friendliness. It can be used in large-scale energy storage systems for wind power generation and photovoltaic power generation. It is the main factor for power grid peak clipping and balance load. Choose one.
- the flow battery system has gradually become the focus of research on large-capacity energy storage batteries.
- the battery system uses vanadium ions V2+/V3+ and V4+/V5+ as the positive and negative oxide redox pairs of the battery, and the positive and negative electrolytes are respectively stored in the two stock solutions.
- the active electrolyte is driven by the acid-resistant liquid pump to the reaction site (battery stack) and then returned to the liquid storage tank to form a circulating liquid flow circuit to realize the charging and discharging process.
- the performance of the battery stack determines the charge and discharge performance of the entire system, especially the charge and discharge power and efficiency.
- the battery stack is formed by stacking a plurality of single cells in series and pressing them in series.
- the conventional single-chip flow battery includes a liquid flow frame, a current collecting plate 2', an electrode 3', and a diaphragm 4', and the battery stack 5' is formed by stacking a single liquid flow battery.
- the electrolyte solubility of different valence states varies with temperature.
- V5+ is easy to precipitate and precipitate crystals at high temperatures, and other valence vanadium ions are at low temperature. It is easy to precipitate and precipitate crystals. These precipitates may cause clogging of graphite felts, pipes, and liquid pumps, which may reduce the charging and discharging efficiency of the battery system, and may even cause the battery to malfunction.
- the rate of corrosion and side reactions of the battery material increases, and the requirements for sealing and anticorrosion of the battery are higher.
- a primary object of the present invention is to provide a flow battery system and a control method and apparatus thereof for solving the problem of low charge and discharge efficiency of a flow battery system.
- a control method of a flow battery system is provided.
- the control method of the flow battery system comprises: monitoring the temperature of the flow battery system; determining whether the temperature of the flow battery system exceeds a preset temperature value range; and when the temperature of the flow battery system exceeds a preset temperature value range The temperature of the flow battery system is adjusted such that the temperature of the flow battery system is within a preset temperature range. Further, monitoring the temperature of the flow battery system includes: monitoring an external temperature of the flow battery system prior to operation of the flow battery system; and monitoring an internal temperature of the flow battery system during operation of the flow battery system. Further, monitoring the internal temperature of the flow battery system includes: monitoring the temperature of the battery stack of the flow battery system; and/or monitoring the temperature of the electrolyte flowing out of the battery stack.
- adjusting the temperature of the flow battery system comprises: adjusting an input quantity of the electrolyte of the flow battery system; and/or adjusting the temperature control medium, wherein the flow battery system is internally provided with a medium flow path, and the temperature control medium is located in the medium In the flow path.
- adjusting the input amount of the electrolyte of the flow battery system includes adjusting by any one or more of the following: adjusting the electrolyte flow rate of the flow battery system; and adjusting the inlet or outlet tube of the electrolyte of the flow battery system path. Further, when the temperature of the flow battery system is adjusted by adjusting the input amount of the electrolyte of the flow battery system, the ambient temperature of the flow battery system is lower than a preset temperature value.
- the preset temperature value is a boundary value of the preset temperature value range.
- adjusting the temperature control medium such that the temperature of the flow battery system is within a preset temperature range comprises: adjusting a temperature of the temperature control medium; and/or adjusting a flow rate of the temperature control medium in the medium flow path.
- the temperature control medium comprises any one of the following: water, ethanol, antifreeze, cooling oil, air, and nitrogen.
- the control device of the flow battery system comprises: a monitoring device for monitoring the temperature of the flow battery system; a determining device for determining whether the temperature of the flow battery system exceeds a preset temperature value range; and adjusting means, When the temperature of the flow battery system exceeds a preset temperature range, the temperature of the flow battery system is adjusted such that the temperature of the flow battery system is within a preset temperature range.
- the monitoring device comprises: a first monitoring sub-device for monitoring an external temperature of the flow battery system before the flow battery system is operated; and a second monitoring sub-device for monitoring the operation of the flow battery system The internal temperature of the flow battery system.
- the adjusting device comprises: a first adjusting sub-device for adjusting an input quantity of the electrolyte of the flow battery system; and/or a second adjusting sub-device for adjusting the temperature control medium, wherein the internal flow battery system A medium flow path is provided, and the temperature control medium is located in the medium flow path.
- the first regulator device is configured to adjust the input amount of the electrolyte of the flow battery system by using any one or more of the following methods: adjusting the electrolyte flow rate of the flow battery system; and adjusting the electrolyte of the flow battery system Inlet or outlet pipe diameter.
- the ambient temperature of the flow battery system is lower than a preset temperature value.
- the preset temperature value is a boundary value of the preset temperature value range.
- the second regulating sub-device is configured to adjust the temperature control medium by any one of the following: adjusting the temperature of the temperature control medium; and/or adjusting the flow rate of the temperature control medium in the medium flow path.
- the medium flow path is disposed in the current collecting plate or the liquid flow frame.
- the flow battery system comprises: a control device for any of the flow battery systems provided by the present invention.
- a control method of a flow battery system comprising the steps of: monitoring the temperature of the flow battery system; determining whether the temperature of the flow battery system exceeds a preset temperature range; and when the temperature of the flow battery system exceeds When the temperature value range is set, the temperature of the flow battery system is adjusted so that the temperature of the flow battery system is within a preset temperature range, so that the flow battery system operates within a preset temperature range, thereby solving the problem due to the flow battery If the system temperature is too high or too low, the electrolyte in the system will precipitate and crystallize, thereby reducing the charge and discharge efficiency, thereby improving the charge and discharge efficiency of the flow battery system.
- FIG. 1 is a schematic diagram of an all-vanadium redox flow battery system according to the related art
- 2 is a block diagram of a control device of a flow battery system according to an embodiment of the present invention
- FIG. 3 is a structural view of a flow battery system according to an embodiment of the present invention
- FIG. 4 is a flow battery according to a first embodiment of the present invention.
- FIG. 5 is a perspective view of a current collecting plate of a flow battery system according to a first embodiment of the present invention
- Figure 6 is a current collecting plate of a flow battery system according to a first embodiment of the present invention
- 7 is a perspective view of a current collecting plate of a flow battery system according to a second embodiment of the present invention
- FIG. 8 is a flow chart of a control method of the flow battery system according to an embodiment of the present invention.
- the flow battery system includes a control device for monitoring and controlling the temperature of the flow battery system, by which the temperature of the flow battery system can be adjusted efficiently and quickly to ensure that the battery operating temperature is at a suitable temperature value. Scope, to avoid the precipitation and crystallization of the electrolyte due to the temperature of the flow battery system being too high or too low during the charging and discharging process, thereby improving the charging and discharging efficiency and the service life of the battery.
- the control device of the flow battery system provided by the embodiment of the present invention will be described below. 2 is a block diagram of a control device of a flow battery system according to an embodiment of the present invention.
- the control device of the flow battery system includes: a monitoring device 20 for monitoring the temperature of the flow battery system; and a determining device 40 for determining Whether the temperature of the flow battery system exceeds a preset temperature value range; and adjusting means 60 for adjusting the temperature of the flow battery system to make the flow battery system when the temperature of the flow battery system exceeds a preset temperature range
- the temperature is within the preset temperature range.
- it is first necessary to monitor its temperature. In this embodiment, the temperature of the flow battery system is monitored by the monitoring device 20 in real time, and the monitoring result is fed back to the determining device 40 according to the temperature monitoring result.
- the feedback control may be manually implemented or automatically controlled, and the determining device 40 determines The temperature monitored by the monitoring device 20 is within a preset temperature range, where the preset temperature range refers to a temperature range in which the flow battery system is in a good working state, and can be determined according to specific conditions of use of the flow battery system.
- the adjusting device 60 adjusts the temperature of the liquid battery system to make the liquid
- the temperature of the flow battery system is within the preset temperature range, so that the flow battery system can work continuously under suitable temperature conditions, and the graphite plug, the pipeline and the liquid pump are not precipitated due to excessive or too low temperature.
- the flow battery system has low charge and discharge efficiency and prolongs the service life of the flow battery system.
- the monitoring device 20 comprises: a first monitoring sub-device 22 for monitoring an external temperature of the flow battery system before operation of the flow battery system; and a second monitoring sub-device 24 for operating in the flow battery system Medium, monitor the internal temperature of the flow battery system.
- the external temperature of the flow battery system may refer to the ambient temperature at which the flow battery system is located, and the internal temperature may refer to the operating temperature of the flow battery system, for example, the temperature of the battery stack.
- the first monitoring sub-device 22 monitors the external temperature of the system before the system is operated, and can know the ambient temperature of the system before use in real time. Optionally, when the external temperature is low, the system is properly temperature-controlled to make the system in good use.
- the second monitoring sub-device 24 monitors the internal temperature of the system during system operation, and can know the temperature change of the system during use in real time.
- the battery pack can be directly measured, or the temperature of the electrolyte just flowing out of the battery pack can be performed.
- FIG. 3 is a structural diagram of a flow battery system according to an embodiment of the present invention. As shown in FIG. 3, the direction of the arrow indicates the flow direction of the electrolyte under working conditions, and the flow battery system includes the positive electrode of the stack 1, and the positive liquid storage tank.
- the first control device 11 is further included, according to the temperature measured by the first temperature measuring device 7 and the third temperature measuring device 9, determining whether the temperature exceeds the optimal temperature range of the system operation, and the system temperature exceeds the optimal temperature for its operation.
- the adjusting device 60 comprises: a first adjusting sub-device 62 for adjusting the input amount of the electrolyte of the flow battery system; and/or a second adjusting sub-device 64 for adjusting the temperature-controlled medium, wherein the liquid flow
- the battery system is internally provided with a medium flow path, and the temperature control medium is located in the medium flow path.
- the input amount of the electrolyte of the flow battery system can be adjusted by the first regulator device, when the temperature of the flow battery system is too high , to increase the input of the electrolyte, to achieve the cooling effect of the battery through the cooling effect of the electrolyte, of course, to improve the input of the electrolyte to ensure the normal operation of the system.
- the temperature adjustment medium can also be adjusted by the second adjusting sub-device to adjust the temperature of the liquid battery system to a preset temperature value range, and the temperature control medium brings in or brings out heat, thereby heating or cooling.
- the first regulator device is configured to adjust the input of the electrolyte of the flow battery system by any one or more of the following: adjusting the electrolyte flow rate of the flow battery system; and adjusting the electrolyte of the flow battery system Inlet or outlet pipe diameter.
- the manner of changing the input amount of the electrolyte includes changing the flow rate of the electrolyte in all or part of the battery pack and the stack, the inlet or outlet diameter of the electrolyte, etc., but the flow of the positive and negative electrolytes in the battery is ensured. Match.
- the second regulating sub-device is adapted to adjust the temperature control medium in any one of the following ways: adjusting the temperature of the temperature-controlled medium; and/or adjusting the flow rate of the temperature-controlled medium in the medium flow path.
- the temperature of the temperature control medium is adjusted, for example, the temperature control medium is heated reasonably before the operation of the flow battery system, so that the temperature of the temperature control medium rises, thereby The flow battery system is in good use, or before the flow battery system is operated, the temperature control medium is first heated, and then the flow rate of the temperature control medium in the medium flow path is increased to make the flow battery system in good use.
- the battery pack can achieve rapid cooling, and the liquid The flow battery system is in good use, or the flow rate of the temperature control medium in the medium flow path is increased to make the flow battery system in good use.
- the heat from the temperature control medium can also be utilized by appropriate methods.
- the medium flow path is disposed in the current collecting plate or the liquid flow frame.
- the medium flow channel can be set in the current collecting plate or the liquid flow frame of the single battery to control the temperature, and the medium flow channel is used partially or completely in the built battery stack according to the use requirements and operating conditions. Single battery.
- the cells with the medium flow channel can be evenly distributed inside the battery stack, or can be non-uniformly distributed inside the battery pack. If the battery is non-uniform, the single cell with the medium flow channel can be located in the battery stack. Anywhere.
- a temperature control medium such as a circulating cooling liquid
- the cooling liquid used is water, ethanol, antifreeze, cooling oil, air, and nitrogen to realize the battery pack. Cooling control.
- a more typical way is to uniformly arrange the medium flow channel in a single current collecting plate inside the unit cell, the structure of which is shown in FIG. 4 to FIG.
- the single current collecting plate is provided with three medium flow channels: the first medium flow a channel A, a second medium flow path B and a third medium flow path C, wherein the medium flow path is obtained inside the current collecting plate by various methods such as a molding method, and further, when the material used for the current collecting plate has good thermal conductivity
- the medium flow path can provide sufficient cooling efficiency only through a part of the position of the current collecting plate.
- the structure is as shown in FIG. 7, and the fifth medium flow path D, the sixth medium flow path E, and the seventh medium flow path F pass only.
- the upper part of the current collecting plate Another way is to arrange the medium flow path between the plurality of current collecting plates, using a combined current collecting plate, which is composed of two or more components, and these components are fitted together After the current collecting plate, a corresponding medium flow path can be formed inside.
- the current collector plate can be made of materials including, but not limited to, graphite sheets, conductive polymers, conductive composite materials, conductive ceramics, and corrosion-resistant metal sheets.
- the shaping of the medium flow channel in the collecting plate can be placed before, during or after the preparation of the current collecting plate according to the selection of the material and the processing method.
- the parameters such as the position and shape of the opening of the medium flow path, the shape, the position, the distribution, the form and the material of the channel can be arbitrarily adjusted or combined under the conditions of use and requirements.
- the media flow paths inside the current collecting plate may be uniformly distributed or non-uniformly distributed as needed.
- the two surfaces of the current collecting plate having the medium flow path may be flat plates, and the corresponding electrolyte flow path design may be selected on the surface according to the battery structure design.
- the portion with the medium flow channel can be installed or assembled inside the battery stack, or can be separately exposed to the outside of the battery, thereby facilitating the management of the coolant.
- Step S102 monitoring the temperature of the flow battery system.
- monitoring the temperature of the flow battery system comprises: monitoring an external temperature of the flow battery system prior to operation of the flow battery system; and monitoring an internal temperature of the flow battery system during operation of the flow battery system.
- monitor the external temperature of the system Before the system is running, monitor the external temperature of the system to know the ambient temperature of the system before use.
- the system is properly temperature-controlled to make the system in good use.
- the internal temperature of the system is monitored, and the temperature change of the system during use can be known in real time.
- the battery pack When monitoring the internal temperature of the flow battery system, the battery pack can be directly measured, that is, the temperature of the battery stack of the flow battery system can be monitored, and the temperature of the electrolyte just flowing out of the battery pack can also be measured.
- Step S104 determining whether the temperature of the flow battery system exceeds a preset temperature value range, where the preset temperature value range is a temperature value range when the flow battery system operates in an optimal state.
- step S106 is performed, otherwise, the process returns to step S102.
- the preset temperature range refers to the temperature range when the flow battery system is in a good working state, and can be determined according to the specific use conditions of the flow battery system or manually determined.
- Step S106 adjusting the temperature of the flow battery system such that the temperature of the flow battery system is within a preset temperature value range.
- adjusting the temperature of the flow battery system comprises: adjusting an input quantity of the electrolyte of the flow battery system; and/or adjusting the temperature control medium, the liquid flow battery system is internally provided with a medium flow path, and the temperature control medium is located in the medium flow path .
- the input of the electrolyte of the flow battery system can be adjusted.
- the temperature of the flow battery system is too high, the input of the electrolyte is increased.
- the cooling effect of the electrolyte achieves a cooling effect on the battery pack.
- adjusting the input amount of the electrolyte of the flow battery system comprises adjusting by any one or more of the following: adjusting the electrolyte flow rate of the flow battery system; and adjusting the inlet or outlet tube of the electrolyte of the flow battery system path.
- adjusting the temperature control medium such that the temperature of the flow battery system is within a preset temperature range comprises: adjusting a temperature of the temperature control medium; and/or adjusting a flow rate of the temperature control medium in the medium flow path.
- the temperature of the temperature control medium is adjusted, for example, the temperature control medium is heated reasonably before the operation of the flow battery system, so that the temperature of the temperature control medium rises, so that the flow battery system is at Good use, or increase the flow rate of the temperature control medium in the medium flow channel before the flow battery system is operated to make the flow battery system in good use; when the temperature of the flow battery system rises rapidly during use Adjusting the temperature of the temperature control medium, for example, the temperature control medium is reasonably cooled during the operation of the flow battery system, the battery pack can achieve rapid cooling, the flow battery system is in good use, or the temperature control medium is added to the medium.
- the flow rate in the flow path is such that the flow battery system is in good condition.
- the heat from the temperature control medium can also be utilized by appropriate methods.
- the internal components of the flow battery system are provided with a medium flow channel, and the temperature control medium is located in the medium flow channel, and the temperature control medium comprises any one of the following media: water, ethanol, antifreeze, cooling oil, air and nitrogen.
- the temperature of the flow battery system is monitored and adjusted in real time, so that the flow battery system continues to operate under suitable temperature conditions, and the flow battery system performs charging and discharging in the most suitable internal and external temperature environment, thereby making the liquid
- the flow battery system works in an optimal state, which improves the charging and discharging efficiency of the flow battery system and prolongs the service life of the flow battery system.
- Example 1 An all-vanadium redox flow battery system with novel temperature control technology is prepared.
- a highly conductive porous graphite felt is used as an electrode material
- a conductive composite material is used as a current collecting plate
- a Nafion film is used as an ion exchange membrane
- a coolant passage is prepared in the middle of the current collecting plate, and the cooling liquid is steamed water.
- the battery temperature before the measurement work is 20 degrees Celsius.
- the temperature control system automatically starts the liquid pump to drive the cooling water to start circulating, and cools the battery pack.
- Example 2 An all-vanadium redox flow battery system with a novel temperature control technique was prepared. A highly conductive porous graphite felt is used as an electrode material, a conductive composite material is used as a current collecting plate, and a Nafion film is used as an ion exchange membrane, and a temperature control medium flow channel is prepared in the middle of the current collecting plate, and the temperature control medium is an antifreeze liquid.
- the battery temperature before the measurement is -10 degrees Celsius.
- the antifreeze is heated after starting the battery system. After the antifreeze temperature is maintained at 20 degrees Celsius, the liquid pump is started to start the antifreeze cycle.
- Example 3 An all-vanadium redox flow battery system with a novel temperature control technique was prepared. High conductivity porous graphite felt is used as the electrode material, graphite plate is used as the current collecting plate, Nafion film is used as the ion exchange film, and the temperature is set at 30 degrees Celsius for the battery system, when the ambient temperature is lower than the set value, and After the operating temperature is higher than the set value, the electrolyte flow rate can be adjusted to reduce the temperature of the stack.
- the set value may be any one of the preset temperature value ranges, and of course, may be a boundary value or a minimum value of the preset temperature value range, and the measured ambient temperature is 20 degrees Celsius, when the battery pack temperature rises When it is greater than 10 degrees Celsius, increase the electrolyte flow rate by 3 ⁇ 15% to enhance its cooling effect; when the temperature rise falls back to within 5 degrees Celsius, adjust the electrolyte flow rate to return to normal.
- the measured ambient temperature is 26 degrees Celsius. When the temperature of the battery pack rises to 5 degrees Celsius, the electrolyte flow rate is increased by 3 to 15% to enhance the cooling effect.
- the flow battery system can be continuously operated in the most suitable temperature environment, the charging and discharging efficiency of the flow battery system is improved, and the liquid flow is prolonged.
- the life of the battery system can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
- they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供了一种液流电池系统及其控制方法和装置。该液流电池系统的控制方法包括:监测液流电池系统的温度;判断液流电池系统的温度是否超出预设温度值范围;以及当液流电池系统的温度超出预设温度值范围时,调节液流电池系统的温度以使液流电池系统的温度在预设温度值范围内。通过本发明,能够使液流电池系统在预设的温度值范围内运行,从而提高液流电池系统充放电效率。
Description
液流电池系统及其控制方法和装置 技术领域 本发明涉及液流电池领域, 具体而言, 涉及一种液流电池系统及其控制方法和装 置。 背景技术 液流电池系统是一种以不同价态的金属离子电解液进行氧化还原的电化学反应的 系统, 能够高效地实现化学能与电能之间的相互转化。该类电池系统具有使用寿命长, 能量转化效率高, 安全性好, 环境友好等优点, 能用于风能发电和光伏发电配套的大 规模储能系统, 是电网削峰填谷、 平衡负载的主要选择之一。 因此, 近年来液流电池 系统逐渐成为大容量储能电池研究的重点。 以全钒氧化还原液流电池系统为例, 该电池系统分别以钒离子 V2+/V3+和 V4+/V5+作为电池的正负极氧化还原电对,将正负极电解液分别存储于两个储液罐中, 由耐酸液体泵驱动活性电解液至反应场所 (电池堆) 再回至储液罐中形成循环液流回 路, 以实现充放电过程。 在全钒氧化还原液流电池储能系统中, 电池堆性能的好坏决 定着整个系统的充放电性能, 尤其是充放电功率及效率。 电池堆是由多片单电池依次 叠放压紧, 串联而成。 其中, 如图 1所示, 传统的单片液流电池包括液流框 Γ, 集流 板 2', 电极 3', 隔膜 4', 通过 Ν个单片液流电池的堆叠组成电池堆 5'。 在液流电池系统中, 不同价态的电解质溶解度随温度的变化趋势有所不同, 如全 钒氧化还原液流电池系统中, V5+在高温下易沉淀析出结晶, 其他价态的钒离子在低 温下易沉淀析出结晶。 这些析出物可能引起石墨毡、 管道及液体泵等的堵塞, 降低电 池系统的充放电效率, 甚至导致电池无法正常工作。 另外, 伴随温度的升高, 电池材 料腐蚀及副反应产生的速度会加快, 对电池的密封以及防腐等要求更高。 针对相关技术中由于液流电池系统温度过高或过低,导致系统中电解液析出结晶, 进而降低充放电效率的问题, 目前尚未提出有效的解决方案。 发明内容 本发明的主要目的在于提供一种液流电池系统及其控制方法和装置, 以解决液流 电池系统充放电效率低的问题。
为了实现上述目的, 根据本发明的一个方面, 提供了一种液流电池系统的控制方 法。 根据本发明的液流电池系统的控制方法包括: 监测液流电池系统的温度; 判断液 流电池系统的温度是否超出预设温度值范围; 以及当液流电池系统的温度超出预设温 度值范围时,调节液流电池系统的温度以使液流电池系统的温度在预设温度值范围内。 进一步地, 监测液流电池系统的温度包括: 在液流电池系统运行前, 监测液流电 池系统的外部温度; 以及在液流电池系统运行中, 监测液流电池系统的内部温度。 进一步地, 监测液流电池系统的内部温度包括: 监测液流电池系统的电池堆的温 度; 和 /或监测流出电池堆的电解液的温度。 进一步地,调节液流电池系统的温度包括: 调节液流电池系统的电解液的输入量; 和 /或调节温控介质, 其中, 液流电池系统内部设置有介质流道, 温控介质位于介质流 道中。 进一步地, 调节液流电池系统的电解液的输入量包括采用以下任意一种或多种方 式调节: 调节液流电池系统的电解液流速; 以及调节液流电池系统的电解液的入口或 出口管径。 进一步地, 在通过调节液流电池系统的电解液的输入量调节液流电池系统的温度 时, 液流电池系统所处的环境温度低于预设温度值。 进一步地, 预设温度值为预设温度值范围的边界值。 进一步地,通过调节温控介质以使液流电池系统的温度在预设温度值范围内包括: 调节温控介质的温度; 和 /或调节温控介质在介质流道中的流速。 进一步地, 温控介质包括以下任意一种介质: 水、 乙醇、 防冻液、 冷却油、 空气 以及氮气。 为了实现上述目的, 根据本发明的另一方面, 提供了一种液流电池系统的控制装 置。 根据本发明的液流电池系统的控制装置包括: 监测装置,用于监测液流电池系统 的温度; 判断装置, 用于判断液流电池系统的温度是否超出预设温度值范围; 以及调 节装置, 用于当液流电池系统的温度超出预设温度值范围时, 调节液流电池系统的温 度以使液流电池系统的温度在预设温度值范围内。
进一步地, 监测装置包括: 第一监测子装置, 用于在液流电池系统运行前, 监测 液流电池系统的外部温度; 以及第二监测子装置, 用于在液流电池系统运行中, 监测 液流电池系统的内部温度。 进一步地, 调节装置包括: 第一调节子装置, 用于调节液流电池系统的电解液的 输入量; 和 /或第二调节子装置, 用于调节温控介质, 其中, 液流电池系统内部设置有 介质流道, 温控介质位于介质流道中。 进一步地, 第一调节子装置用于采用以下任意一种或多种方式调节液流电池系统 的电解液的输入量: 调节液流电池系统的电解液流速; 以及调节液流电池系统的电解 液的入口或出口管径。 进一步地, 在通过调节液流电池系统的电解液的输入量调节液流电池系统的温度 时, 液流电池系统所处的环境温度低于预设温度值。 进一步地, 预设温度值为预设温度值范围的边界值。 进一步地, 第二调节子装置用于采用以下任意一种方式调节温控介质: 调节温控 介质的温度; 和 /或调节温控介质在介质流道中的流速。 进一步地, 介质流道设置于集流板或液流框中。 为了实现上述目的, 根据本发明的另一方面, 提供了一种液流电池系统。 根据本发明的液流电池系统包括:本发明提供的任一种液流电池系统的控制装置。 通过本发明, 采用包括以下步骤的液流电池系统的控制方法: 监测液流电池系统 的温度; 判断液流电池系统的温度是否超出预设温度值范围; 以及当液流电池系统的 温度超出预设温度值范围时, 调节液流电池系统的温度以使液流电池系统的温度在预 设温度值范围内, 使得液流电池系统在预设的温度值范围内运行, 解决了由于液流电 池系统温度过高或过低, 导致系统中电解液析出结晶, 进而降低充放电效率的问题, 进而提高了液流电池系统充放电效率。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据相关技术的全钒氧化还原液流电池系统的示意图;
图 2是根据本发明实施例的液流电池系统的控制装置的框图; 图 3是根据本发明实施例的液流电池系统的结构图; 图 4是根据本发明第一实施例的液流电池系统的集流板的主视图; 图 5是根据本发明第一实施例的液流电池系统的集流板的立体图; 图 6是根据本发明第一实施例的液流电池系统的集流板的侧视图; 图 7是根据本发明第二实施例的液流电池系统的集流板的立体图; 以及 图 8是根据本发明实施例的液流电池系统的控制方法的流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 首先介绍本发明实施例所提供的液流电池系统。 该液流电池系统包括一种用于监测和控制液流电池系统温度的控制装置, 通过该 控制装置, 可以高效快速的对液流电池系统的温度进行调整, 确保电池工作温度处于 适宜的温度值范围, 避免在充放电过程中, 由于液流电池系统温度过高或过低而导致 电解液析出结晶, 从而提高电池的充放电效率和使用寿命。 以下对本发明实施例所提供的液流电池系统的控制装置进行描述。 图 2是根据本发明实施例的液流电池系统的控制装置的框图, 该液流电池系统的 控制装置包括: 监测装置 20, 用于监测液流电池系统的温度; 判断装置 40, 用于判断 液流电池系统的温度是否超出预设温度值范围; 以及调节装置 60, 用于当液流电池系 统的温度超出预设温度值范围时, 调节液流电池系统的温度以使液流电池系统的温度 在预设温度值范围内。 要实现对电池组的温度控制, 首先需要对其温度进行监测。 在该实施例中, 通过 监测装置 20 实时的监测液流电池系统的温度, 根据温度的监测结果反馈给判断装置 40, 这种反馈控制可以是手动实现, 也可以为自动控制, 判断装置 40 判断监测装置 20监测到的温度是否在预设的温度范围之内, 此处的预设温度范围是指液流电池系统 处于良好工作状态时的温度范围, 可以根据液流电池系统的具体使用条件测定或人为
确定, 当判断装置 40判断液流电池系统的温度在预设的温度范围之外, 也即液流电池 系统处于较差的工作状态时, 调节装置 60, 调节液流电池系统的温度以使液流电池系 统的温度在预设温度值范围内, 使得液流电池系统持续工作在适宜的温度条件下, 不 会由于温度过高或过低而析出结晶堵塞石墨毡、 管道及液体泵等, 提高了液流电池系 统充放电效率低, 延长液流电池系统的使用寿命。 优选地, 监测装置 20包括: 第一监测子装置 22, 用于在液流电池系统运行前, 监测液流电池系统的外部温度;以及第二监测子装置 24,用于在液流电池系统运行中, 监测液流电池系统的内部温度。 液流电池系统的外部温度可以是指液流电池系统所处 的环境温度, 内部温度, 可以是指液流电池系统的工作温度, 例如, 电池堆的温度。 在该实施例中, 第一监测子装置 22在系统运行前, 监测系统的外部温度, 能够实 时获知系统在使用前的环境温度。 可选地, 当外部温度很低时, 对系统进行合理升温 控制, 使得系统能够处于良好的使用状态。第二监测子装置 24在系统运行中, 监测系 统的内部温度, 能够实时获知系统在使用过程中的温度变化。 在监测液流电池系统的 内部温度时, 可以对电池组进行直接测量, 也可以对刚流出电池组的电解液温度进行
图 3是根据本发明实施例的液流电池系统的结构图, 如图 3所示, 图中箭头方向 表示工作状态下电解液的流向, 液流电池系统包括电池堆正极 1、 正极储液罐 4和正 极液体泵 6组成的正极循环回路, 电池堆负极 2、 负极储液罐 3和负极液体泵 5组成 的负极循环回路; 还包括第一测温装置 7和第二测温装置 8, 分别监测负极循环回路 和正极循环回路的环境温度; 还包括第三测温装置 9和第四测温装置 10, 分别监测电 池堆负极和电池堆正极流出电解液温度(该温度反映电池组温度); 还包括第一控制装 置 11, 根据第一测温装置 7和第三测温装置 9测得的温度, 判断温度是否超过系统工 作的最佳温度范围, 并且在系统温度超过其工作的最佳温度范围时, 通过调节负极液 体泵 5的输入速度, 从而调节电解液的流量, 达到控制电池组工作温度的目的; 还包 括第二控制装置 12, 根据第二测温装置 8和第四测温装置 10测得的温度, 判断各温 度是否超过系统工作的最佳温度范围,并且在系统温度超过其工作的最佳温度范围时, 通过调节正极液体泵 6的输入速度, 从而调节电解液的流量, 达到控制电池组工作温 度的目的。 优选地, 调节装置 60包括: 第一调节子装置 62, 用于调节液流电池系统的电解 液的输入量; 和 /或第二调节子装置 64, 用于调节温控介质, 其中, 液流电池系统内部 设置有介质流道, 温控介质位于介质流道中。
在该实施例中, 当液流电池系统的温度超出预设温度值范围时, 可以通过第一调 节子装置调节液流电池系统的电解液的输入量, 当液流电池系统的温度过高时, 提高 电解液的输入量, 通过电解液的冷却作用实现对电池组的降温作用, 当然, 提高电解 液的输入量需保证系统的正常运行。 也可以通过第二调节子装置调节温控介质将液流 电池系统的温度调节回预设温度值范围内, 通过温控介质带入或带出热量, 起到升温 或降温的作用。 优选地, 第一调节子装置用于采用以下任意一种或多种方式调节液流电池系统的 电解液的输入量: 调节液流电池系统的电解液流速; 以及调节液流电池系统的电解液 的入口或出口管径。 在该实施例中, 改变电解液输入量的方式, 包括改变全部或部分电池组及电堆中 电解液流速、 电解液入口或出口管径等方式得以实现, 但需保证电池中正负极电解液 流量相匹配。 优选地, 第二调节子装置用于采用以下任意一种方式调节温控介质: 调节温控介 质的温度; 和 /或调节温控介质在介质流道中的流速。 在该实施例中, 在外部温度即环境温度很低时, 调节温控介质的温度, 例如在液 流电池系统运行前对温控介质进行合理的加热, 使得温控介质的温度升高, 从而使液 流电池系统处于良好的使用状态, 或在液流电池系统运行前, 首先对温控介质进行升 温, 然后增加温控介质在介质流道中的流速以使液流电池系统处于良好的使用状态; 当液流电池系统在使用过程中的温度上升较快时, 调节温控介质的温度, 例如在液流 电池系统运行中对温控介质进行合理的降温, 电池组可以实现快速降温, 使液流电池 系统处于良好的使用状态, 或增加温控介质在介质流道中的流速以使液流电池系统处 于良好的使用状态。 在实际使用中, 温控介质带出的热量还可以通过适当的方法加以 利用。 优选地, 介质流道设置于集流板或液流框中。 在单电池的集流板或液流框中设置介质流道可以实现温度的控制, 根据使用需求 及操作条件等的不同, 在所搭建的电池堆中部分或全部使用这种具有介质流道的单电 池。 当部分使用时, 带介质流道的单电池可以均匀分布于电池堆内部, 也可以非均匀 分布在电池组内部, 若为非均匀分布时, 带介质流道的单电池可以位于电池堆中的任 意位置。
通过在集流板中设置介质流道, 在介质流道中加入温控介质, 如循环冷却液, 所 使用的冷却液为水、 乙醇、 防冻液、 冷却油、 空气以及氮气等, 实现对电池组的冷却 控制。 一种较为典型的方式, 将介质流道均匀设置于单电池内部的单个集流板中, 其 结构如图 4至图 6所示, 单个集流板设置有三个介质流道: 第一介质流道 A, 第二介 质流道 B和第三介质流道 C, 其中, 介质流道通过各种方法如模压方法等在集流板内 部获得, 此外, 当集流板所用材料导热性较好时, 介质流道仅通过集流板的部分位置 即可提供足够的冷却效率, 其结构如图 7所示, 第五介质流道 D、 第六介质流道 E、 第七介质流道 F仅通过集流板的上部;另一种方式将介质流道设置于多个集流板之间, 使用组合集流板, 这种组合集流板由两块以上的组件组成, 这些组件相互配合安装成 集流板后可在其内部形成相应的介质流道。集流板可以选用包含且不仅限于石墨板材、 导电高分子、 导电复合材料、 导电陶瓷、 耐蚀性金属板材等材料制得。 可以根据材料 的选取和加工方法的不同, 集流板中介质流道的成型可以置于集流板制备前、 制备中 或制备后。 上述介质流道的开口位置及形状、 通道形状、 位置、 分布、 形式和材质等 参数在能够满足使用条件和要求的前提下可以进行任意的调整或组合。 例如, 根据需 要集流板内部的介质流道可以均匀分布, 也可以为非均匀分布。 这种具有介质流道的 集流板的两个表面可以为平板, 也可以根据电池结构设计选择在其表面进行相应的电 解液流道设计。 在实际使用过程中, 具有介质流道的部分可以选择装装配在电池堆内 部, 也可以单独外露于电池外部, 从而方便冷却液的管理。 最后, 对本发明实施例所提供的液流电池系统的控制方法进行描述。 图 8是根据本发明实施例的液流电池系统的控制方法的流程图, 如图 8所示, 该 方法包括如下的步骤 S102至步骤 S106: 步骤 S102, 监测液流电池系统的温度。 优选地, 监测液流电池系统的温度包括: 在液流电池系统运行前, 监测液流电池 系统的外部温度; 以及在液流电池系统运行中, 监测液流电池系统的内部温度。 在系统运行前, 监测系统的外部温度, 能够实时获知系统在使用前的环境温度。 可选地, 当外部温度很低时, 对系统进行合理升温控制, 使得系统能够处于良好的使 用状态。 在系统运行中, 监测系统的内部温度, 能够实时获知系统在使用过程中的温 度变化。 在监测液流电池系统的内部温度时, 可以对电池组进行直接测量, 即监测液 流电池系统的电池堆的温度, 也可以对刚流出电池组的电解液温度进行测量。
步骤 S104, 判断液流电池系统的温度是否超出预设温度值范围, 该预设温度值范 围为液流电池系统工作在最佳状态时的温度值范围。 当液流电池系统的温度超出预设 温度值范围时, 执行步骤 S106, 否则返回步骤 S102。 其中, 预设温度范围是指液流电池系统处于良好工作状态时的温度范围, 可以根 据液流电池系统的具体使用条件测定或人为确定。 步骤 S106,调节液流电池系统的温度以使液流电池系统的温度在预设温度值范围 内。 优选地, 调节液流电池系统的温度包括: 调节液流电池系统的电解液的输入量; 和 /或调节温控介质, 液流电池系统内部设置有介质流道, 温控介质位于介质流道中。 当工作中的液流电池系统的温度超出预设温度值范围时, 可以调节液流电池系统 的电解液的输入量, 当液流电池系统的温度过高时, 提高电解液的输入量, 通过电解 液的冷却作用实现对电池组的降温作用, 当然, 提高电解液的输入量均需保证系统的 正常运行。 也可以调节温控介质将液流电池系统的温度调节回预设温度值范围内, 通 过温控介质带入或带出热量, 起到升温或降温的作用。 优选地, 调节液流电池系统的电解液的输入量包括采用以下任意一种或多种方式 调节: 调节液流电池系统的电解液流速; 以及调节液流电池系统的电解液的入口或出 口管径。 改变电解液输入量的方式, 包括改变全部或部分电池组及电堆中电解液流速、 电 解液入口或出口管径等方式得以实现, 但需保证电池中正负极电解液流量相匹配。 优选地, 通过调节温控介质以使液流电池系统的温度在预设温度值范围内包括: 调节温控介质的温度; 和 /或调节温控介质在介质流道中的流速。 在外部温度即环境温度很低时, 调节温控介质的温度, 例如在液流电池系统运行 前对温控介质进行合理的加热, 使得温控介质的温度升高, 从而使液流电池系统处于 良好的使用状态, 或在液流电池系统运行前增加温控介质在介质流道中的流速以使液 流电池系统处于良好的使用状态; 当液流电池系统在使用过程中的温度上升较快时, 调节温控介质的温度, 例如在液流电池系统运行中对温控介质进行合理的降温, 电池 组可以实现快速降温, 使液流电池系统处于良好的使用状态, 或增加温控介质在介质 流道中的流速以使液流电池系统处于良好的使用状态。 在实际使用中, 温控介质带出 的热量还可以通过适当的方法加以利用。
其中, 液流电池系统的内部部件中设置有介质流道, 温控介质位于介质流道中, 温控介质包括以下任意一种介质: 水、 乙醇、 防冻液、 冷却油、 空气以及氮气。 在该实施例中, 实时监测并调节液流电池系统的温度, 使得液流电池系统持续工 作在适宜的温度条件下, 液流电池系统在最合适的内外温度环境中完成充放电, 从而 使液流电池系统工作在最佳状态, 提高了液流电池系统的充放电效率, 延长液流电池 系统的使用寿命。 采用本发明实施方式设计的液流电池系统, 举例如下: 例 1 : 制备具有新型温控技术的全钒氧化还原液流电池系统。 选用高导电性多孔 石墨毡作为电极材料, 导电复合材料作为集流板, 使用 Nafion膜作为离子交换膜, 在 集流板中间制备冷却液通道, 冷却液为蒸熘水。 测量工作前的电池温度为 20摄氏度, 当电池组温度大于 40摄氏度时温控系统自动启动液泵驱动冷却水开始循环,对电池组 进行降温。当电池组工作温度降低到 35摄氏度以内时,温控系统控制液泵停止冷却水 的循环。 例 2: 制备具有新型温控技术的全钒氧化还原液流电池系统。 选用高导电性多孔 石墨毡作为电极材料, 导电复合材料作为集流板, 使用 Nafion膜作为离子交换膜, 在 集流板中间制备温控介质流道,温控介质为防冻液。测量工作前的电池温度为 -10摄氏 度, 启动电池系统后先对防冻液进行加热。将防冻液温度维持于 20摄氏度后驱动液泵 启动防冻液的循环, 当电池温度高于 10摄氏度时启动电池组开始工作。 例 3 : 制备具有新型温控技术的全钒氧化还原液流电池系统。 选用高导电性多孔 石墨毡作为电极材料, 石墨板作为集流板, 使用 Nafion膜作为离子交换膜, 以 30摄 氏度为电池系统工作的设定温度值, 当环境温度低于该设定值, 且工作温度高于该设 定值后, 可以通过调整电解液流量以达到降低电池堆温度的作用。 其中, 该设定值可 以是前述预设温度值范围中的任意一个值, 当然, 也可以是预设温度值范围的边界值 或者最小值, 测量环境温度为 20摄氏度, 当电池组温度上升幅度大于 10摄氏度时, 提高电解液流速 3~15%, 以增强其冷却作用; 当温升幅度回落至 5摄氏度以内后, 调 整电解液流速恢复正常。测量环境温度为 26摄氏度, 当电池组温升为 5摄氏度时, 提 高电解液流速 3~15%, 以增强其冷却作用。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 使液流电池系统能够 持续工作在在最合适的温度环境中, 提高了液流电池系统的充放电效率, 延长了液流 电池系统的使用寿命。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种液流电池系统的控制方法, 其特征在于, 包括:
监测所述液流电池系统的温度;
判断所述液流电池系统的温度是否超出预设温度值范围; 以及 当所述液流电池系统的温度超出所述预设温度值范围时, 调节所述液流电 池系统的温度以使所述液流电池系统的温度在所述预设温度值范围内。
2. 根据权利要求 1所述的液流电池系统的控制方法, 其特征在于, 监测所述液流 电池系统的温度包括:
在所述液流电池系统运行前, 监测所述液流电池系统的外部温度; 以及 在所述液流电池系统运行中, 监测所述液流电池系统的内部温度。
3. 根据权利要求 2所述的液流电池系统的控制方法, 其特征在于, 监测所述液流 电池系统的内部温度包括:
监测所述液流电池系统的电池堆的温度; 和 /或
监测流出所述电池堆的电解液的温度。
4. 根据权利要求 1所述的液流电池系统的控制方法, 其特征在于, 调节所述液流 电池系统的温度包括:
调节所述液流电池系统的电解液的输入量; 和 /或
调节温控介质, 其中, 所述液流电池系统内部设置有介质流道, 所述温控 介质位于所述介质流道中。
5. 根据权利要求 4所述的液流电池系统的控制方法, 其特征在于, 调节所述液流 电池系统的电解液的输入量包括采用以下任意一种或多种方式调节:
调节所述液流电池系统的电解液流速; 以及
调节所述液流电池系统的电解液的入口或出口管径。
6. 根据权利要求 4所述的液流电池系统的控制方法, 其特征在于, 调节温控介质 包括:
调节所述温控介质的温度; 和 /或
调节所述温控介质在所述介质流道中的流速。
7. 根据权利要求 4所述的液流电池系统的控制方法, 其特征在于, 所述温控介质 包括以下任意一种介质:
水、 乙醇、 防冻液、 冷却油、 空气以及氮气。
8. 根据权利要求 4所述的液流电池系统的控制方法, 其特征在于, 在通过调节所 述液流电池系统的电解液的输入量调节所述液流电池系统的温度时, 所述液流 电池系统所处的环境温度低于预设温度值。
9. 根据权利要求 8所述的液流电池系统的控制方法, 其特征在于, 所述预设温度 值为所述预设温度值范围的边界值。
10. 一种液流电池系统的控制装置, 其特征在于, 包括:
监测装置, 用于监测所述液流电池系统的温度;
判断装置, 用于判断所述液流电池系统的温度是否超出预设温度值范围; 以及
调节装置, 用于当所述液流电池系统的温度超出所述预设温度值范围时, 调节所述液流电池系统的温度以使所述液流电池系统的温度在所述预设温度值 范围内。
11. 根据权利要求 10所述的液流电池系统的控制装置,其特征在于,所述监测装置 包括:
第一监测子装置, 用于在所述液流电池系统运行前, 监测所述液流电池系 统的外部温度; 以及
第二监测子装置, 用于在所述液流电池系统运行中, 监测所述液流电池系 统的内部温度。
12. 根据权利要求 10所述的液流电池系统的控制装置,其特征在于,所述调节装置 包括:
第一调节子装置, 用于调节所述液流电池系统的电解液的输入量; 和 /或 第二调节子装置, 用于调节温控介质, 其中, 所述液流电池系统内部设置 有介质流道, 所述温控介质位于所述介质流道中。
13. 根据权利要求 12所述的液流电池系统的控制装置,其特征在于,所述第一调节 子装置用于采用以下任意一种或多种方式调节所述液流电池系统的电解液的输 调节所述液流电池系统的电解液流速; 以及
调节所述液流电池系统的电解液的入口或出口管径。
14. 根据权利要求 12所述的液流电池系统的控制装置,其特征在于,所述第二调节 子装置用于采用以下任意一种方式调节温控介质:
调节所述温控介质的温度; 和 /或
调节所述温控介质在所述介质流道中的流速。
15. 根据权利要求 12所述的液流电池系统的控制装置,其特征在于,所述介质流道 设置于集流板或液流框中。
16. 根据权利要求 12所述的液流电池系统的控制装置,其特征在于,在通过调节所 述液流电池系统的电解液的输入量调节所述液流电池系统的温度时, 所述液流 电池系统所处的环境温度低于预设温度值。
17. 根据权利要求 16所述的液流电池系统的控制装置,其特征在于,所述预设温度 值为所述预设温度值范围的边界值。
18. 一种液流电池系统, 其特征在于, 包括权利要求 10至 17中任一项所述的液流 电池系统的控制装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/239,411 US20140199564A1 (en) | 2011-08-17 | 2011-11-09 | Flow battery system, and control method and device thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110236594A CN102306814A (zh) | 2011-08-17 | 2011-08-17 | 液流电池系统及其控制方法和装置 |
CN201110236594.2 | 2011-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013023415A1 true WO2013023415A1 (zh) | 2013-02-21 |
Family
ID=45380644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/081971 WO2013023415A1 (zh) | 2011-08-17 | 2011-11-09 | 液流电池系统及其控制方法和装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140199564A1 (zh) |
CN (1) | CN102306814A (zh) |
WO (1) | WO2013023415A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220109167A1 (en) * | 2019-02-22 | 2022-04-07 | Delectrik Systems Private Limited | Integrated flow battery stack and heat exchanger |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102593489B (zh) | 2012-03-05 | 2014-02-19 | 中国东方电气集团有限公司 | 具有监测系统的液流电池堆 |
CN102751516A (zh) * | 2012-07-04 | 2012-10-24 | 深圳市金钒能源科技有限公司 | 钒液温度自动调节机构及采用该机构的钒电堆系统 |
CN102969518B (zh) * | 2012-12-10 | 2015-07-22 | 青海百能汇通新能源科技有限公司 | 散热一体化电堆 |
CN103647094B (zh) * | 2013-12-06 | 2015-08-12 | 中国东方电气集团有限公司 | 液流电池的控制方法 |
CN105702980B (zh) * | 2014-11-26 | 2018-11-23 | 大连融科储能技术发展有限公司 | 一种在线恢复液流电池系统性能的控制方法及其系统 |
US9655285B2 (en) | 2014-11-28 | 2017-05-16 | Elwha Llc | Power supply system and method of managing the same |
CN105206857B (zh) * | 2015-09-07 | 2018-02-06 | 上海久能能源科技发展有限公司 | 一种自带电解液储存腔的液流电池储能系统 |
CN107204480B (zh) * | 2016-03-14 | 2020-04-24 | 大连融科储能技术发展有限公司 | 液流电池电解液参数确定方法及其系统、液流电池 |
KR101803825B1 (ko) * | 2017-04-10 | 2017-12-04 | 스탠다드에너지(주) | 레독스 흐름전지 |
CN108242551A (zh) * | 2017-11-29 | 2018-07-03 | 中国东方电气集团有限公司 | 加热方法、装置及系统 |
CN110048147B (zh) * | 2019-03-18 | 2021-11-05 | 中国电力科学研究院有限公司 | 一种具备混液功能的全钒液流电池管路系统 |
CN110429299A (zh) * | 2019-08-09 | 2019-11-08 | 上海电气集团股份有限公司 | 液流电池的电解液温度的控制方法及系统 |
CN114184639B (zh) * | 2021-11-29 | 2023-12-29 | 湖南省驰普新能源科技有限公司 | 一种电池系统的热扩散检测方法、系统、存储介质及智能终端 |
CN114220986A (zh) * | 2022-02-21 | 2022-03-22 | 潍坊力德电储科技有限公司 | 一种电堆结构、液流电池调温系统及其控制方法 |
CN115143416A (zh) * | 2022-07-01 | 2022-10-04 | 中国光大绿色技术创新研究院有限公司 | 一种光伏路灯装置及系统 |
CN117832548A (zh) * | 2024-01-09 | 2024-04-05 | 湖南省银峰新能源有限公司 | 一种全钒液流电池低温保护方法及系统 |
CN118380605A (zh) * | 2024-04-01 | 2024-07-23 | 北京普能世纪科技有限公司 | 一种应用于液流电池系统的制冷系统及方法 |
CN118281432B (zh) * | 2024-05-30 | 2024-08-06 | 珠海科创储能科技有限公司 | 存储介质及节流方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010042895A1 (en) * | 2008-10-10 | 2010-04-15 | Deeya Energy Technologies, Inc. | Thermal control of a flow cell battery |
CN201549547U (zh) * | 2009-12-17 | 2010-08-11 | 中国电力科学研究院 | 一种液流电池的自动测温装置 |
CN201903798U (zh) * | 2010-12-20 | 2011-07-20 | 上海市电力公司 | 用于钒液流电池的温度监控装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238377Y2 (zh) * | 1984-09-19 | 1990-10-16 | ||
NZ306364A (en) * | 1995-05-03 | 1999-04-29 | Unisearch Ltd | High energy density vanadium electrolyte solutions, preparation thereof and redox cells and batteries containing the electrolyte solution |
US20060127723A1 (en) * | 2004-12-15 | 2006-06-15 | General Electric Company | Near-isothermal high-temperature fuel cell |
JP5191129B2 (ja) * | 2005-01-24 | 2013-04-24 | ヤマハ発動機株式会社 | 燃料電池システムおよびその起動方法 |
JP2008084698A (ja) * | 2006-09-27 | 2008-04-10 | Toshiba Corp | 燃料改質装置及び燃料電池システム |
-
2011
- 2011-08-17 CN CN201110236594A patent/CN102306814A/zh active Pending
- 2011-11-09 US US14/239,411 patent/US20140199564A1/en not_active Abandoned
- 2011-11-09 WO PCT/CN2011/081971 patent/WO2013023415A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010042895A1 (en) * | 2008-10-10 | 2010-04-15 | Deeya Energy Technologies, Inc. | Thermal control of a flow cell battery |
CN201549547U (zh) * | 2009-12-17 | 2010-08-11 | 中国电力科学研究院 | 一种液流电池的自动测温装置 |
CN201903798U (zh) * | 2010-12-20 | 2011-07-20 | 上海市电力公司 | 用于钒液流电池的温度监控装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220109167A1 (en) * | 2019-02-22 | 2022-04-07 | Delectrik Systems Private Limited | Integrated flow battery stack and heat exchanger |
US11721816B2 (en) * | 2019-02-22 | 2023-08-08 | Delectrik Systems Private Limited | Integrated flow battery stack and heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
CN102306814A (zh) | 2012-01-04 |
US20140199564A1 (en) | 2014-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013023415A1 (zh) | 液流电池系统及其控制方法和装置 | |
CN111211338B (zh) | 一种高压质子交换膜燃料电池动力系统 | |
CN108376810B (zh) | 动力电池热管理方法及系统 | |
CN106558713B (zh) | 一种燃料电池低温启动系统及运行方法 | |
CN209786084U (zh) | 车用燃料电池系统的冷却系统 | |
CN101127402B (zh) | 用于增加堆入口rh的系统水平调节 | |
CN201237636Y (zh) | 一种燃料电池测试系统 | |
CN111933969B (zh) | 一种均衡散热的燃料电池热管理系统及控制方法 | |
KR101795245B1 (ko) | 연료전지 스택의 제어 장치 및 그 방법 | |
CN111613813B (zh) | 一种燃料电池空气供给系统及其泄压控制方法 | |
CN114068986B (zh) | 一种固态合金储氢与多电堆燃料电池热管理系统 | |
CN102306815A (zh) | 液流电池系统 | |
CN111009670A (zh) | 一种新型燃料电池低温启动系统 | |
CN113140749A (zh) | 一种燃料电池低温快速启动控制方法及系统 | |
CN113839065B (zh) | 一种燃料电池冷却水回路热补偿温度控制系统及控制方法 | |
CN115020759B (zh) | 一种燃料电池阳极水管理控制系统及方法 | |
CN113851672A (zh) | 燃料电池冷却水系统的控制方法、燃料电池及存储介质 | |
CN206574800U (zh) | 一种基于液态有机储氢的燃料电池冷启动系统 | |
CN212783528U (zh) | 一种风冷燃料电池系统 | |
CN212323044U (zh) | 一种大功率燃料电池发动机温度管理系统 | |
CN211995250U (zh) | 集成控制器以及燃料电池 | |
CN109888335B (zh) | 一种燃料电池系统 | |
KR101394732B1 (ko) | 스택 운전온도 조절이 가능한 연료전지용 열 및 물 관리 시스템 | |
CN208400998U (zh) | 锂电池组的恒温调节装置 | |
CN113991142A (zh) | 风冷式燃料电池系统的温湿度调控方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239411 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871056 Country of ref document: EP Kind code of ref document: A1 |