WO2012071832A1 - 信道估计方法及系统 - Google Patents

信道估计方法及系统 Download PDF

Info

Publication number
WO2012071832A1
WO2012071832A1 PCT/CN2011/071916 CN2011071916W WO2012071832A1 WO 2012071832 A1 WO2012071832 A1 WO 2012071832A1 CN 2011071916 W CN2011071916 W CN 2011071916W WO 2012071832 A1 WO2012071832 A1 WO 2012071832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
frequency domain
estimation
point
domain response
Prior art date
Application number
PCT/CN2011/071916
Other languages
English (en)
French (fr)
Inventor
聂远飞
胡刚
Original Assignee
澜起科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澜起科技(上海)有限公司 filed Critical 澜起科技(上海)有限公司
Priority to US13/819,276 priority Critical patent/US8923456B2/en
Publication of WO2012071832A1 publication Critical patent/WO2012071832A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • the invention relates to a method and system for estimating ramps, and in particular to a method and system for estimating ramps including the £J super K path. Background technique
  • the transmission transmitted by the transmitting end may arrive at the receiving end through different transmission paths (ie, ramps) of r ⁇ i. Therefore, the receiving end needs to detect the super K path to obtain an accurate channel estimation.
  • the existing super long diameter test there are two methods for the existing super long diameter test -
  • /7 /7 . + ⁇ , P. For the position label of the first spreading pilot, ⁇ is the M-space of the adjacent pilot, which is the pilot number, then the response at the pilot is:
  • : Can be out, if there is a super diameter satisfying ' ⁇ + " > () , then use the spread
  • the ramp estimate made by the pilot will be blurred, because the sum of ⁇ in the I: equation corresponds to the same result. That is to say, in the channel estimation method using the scattered pilot, the estimated range does not exceed that shown in FIG. 1.
  • the scatter is utilized.
  • the pilot performs the channel estimation, there is an aliasing component in the frequency domain response of the channel, which causes the channel estimation to be ambiguous. At this time, the method of channel estimation based only on the scattered pilot will be effective.
  • the purpose of the wood invention is to provide a method and system for estimating roads.
  • the channel estimation method provided by the present invention includes the following steps: 1) extracting each pilot signal from the received multipath information, and then, each channel guide. In the frequency spectrum, the channel and the second pilot are included; 2) based on the estimation of the delay of each pilot signal and the extracted pilot, the first estimated channel frequency domain is obtained.
  • the channel estimation system of the present invention includes: an extraction module, configured to extract each pilot signal from the received multipath signal, wherein each pilot ⁇ - - - - - - - - - - - - - - - - - a second pilot; a frequency domain response estimation module for obtaining a channel frequency domain response of the initial estimation by using an estimate of the delay of each pilot signal and the extracted pilot frequency; And calculating, by using the channel frequency domain response of the first estimate of the frequency domain, an estimated frequency domain response of each pilot point in the second pilot, and obtaining, according to the extracted second pilot, each derivative in the second pilot The actual value of the frequency point, and then calculate the deviation between the frequency domain response estimate of each pilot point and the 3 ⁇ 4 interval; the detection module, whether there is an aliasing component in the channel frequency domain response of the initial estimation of the Chuan detection; After determining the presence of the aliasing component by using the ⁇ 3 ⁇ 4 detecting module, determining the position of each aliasing point
  • the advantage of the ramp estimation method and system of the present invention is that the super K transmission path can be detected, thereby avoiding aliasing interference caused by signals transmitted by the ultra long transmission path, thereby obtaining more For superior performance.
  • m i is the existing base f spread pilot iw f channel estimates the intent of the if ⁇ j time domain response.
  • m 2 is a flowchart of Embodiment 1 of the i ⁇ j channel estimation method of the present invention.
  • 1*1 3 is the estimated original intent of the channel estimation method.
  • 1*1 4 is the small-intention of the cluster center position of the time domain correlation/style estimation adopted by the channel estimation method of the present invention.
  • m 5 is a flowchart of Embodiment 2 of the channel estimation method according to the present invention.
  • m 6 is a schematic structural diagram of the channel estimation system of the present invention.
  • the channel estimation method of bursting will be described in detail below with reference to the accompanying drawings.
  • the wood yim method ⁇ playing the communication system with the first-to-pilot and the second pilot, for example, a system using OFDM transmission technology, specifically, supporting the digital terrestrial television broadcasting system standard (ie, DVB-T) Or a system for mobile multimedia broadcast (ie, C), etc., wherein the first pilot is usually a spread pilot, and the second pilot may be a continuous pilot or system transmission information (ie, TPS, etc.) It can also be a continuous pilot: a total combination of the system and the transmission, and so on.
  • step S1 after receiving the multipath ⁇ , the receiving end extracts each pilot from the multipath nickname, where each pilot signal includes ⁇ _ # ⁇ and second pilot.
  • the receiving end may extract a pilot signal from the multipath signal by using a tap; the receiving end includes but is not limited to: a mobile station, a base station, and the like:
  • step S2 the receiving end obtains the first estimated channel frequency domain response based on the estimated delay of each pilot debit and the extracted first frequency, for example, the estimated by the receiver
  • the delay of the first signal transmitted by a transmission path is ⁇ ...
  • the estimated delay of the first transmission path ft is 3 ⁇ 4 ⁇
  • aliasing occurs based on the frequency domain estimation of the pilot containing the pilot from the superpath, as shown in Figure 3.
  • the frequency domain response ff ⁇ J technique is estimated, such as ft interpolation, transform domain method, etc. It is known to those skilled in the art and will not be described in detail herein.
  • step S3 the receiver calculates a frequency domain response estimation value of each pilot point in the second pilot according to the initially estimated channel frequency domain response, and obtains the second pilot based on the extracted second pilot.
  • the actual value of each pilot point in the two pilots, and then the deviation between the frequency domain response estimate of each pilot point and the 3 ⁇ 4 interval is calculated.
  • the second pilot obtained by the receiver obtains the actual value of each pilot point, that is, according to the impulse response obtained by the tap, and converts it into the frequency domain, for example, performing FFT transformation, and then obtaining the symbol pair
  • the 3 ⁇ 4 value of each pilot point of the two pilots For example, for ⁇ Second Pilot Set:
  • the tap response is noise, the tap response of the missed check, and /'" are additive noise, 'and the delay of the missed tap corresponding to the delay and the human, respectively, and nj is regarded as additive noise.
  • the noise can be ⁇ small ⁇ ⁇ ⁇ , , , , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • step S4 the receiving end detects whether the initial estimated channel frequency domain response has an aliasing component, and the detecting method includes but is not limited to:
  • the first type of detection method is: performing statistics on the characteristics of the deviations of the pilot points, and comparing the statistical result with the estimated energy and noise of the frequency response of the second pilot to detect the first time Whether there is aliasing ⁇ in the estimated channel frequency domain response.
  • the system nJ is based on the eigenvalues of the deviations of the partial pilot points, and nJ is based on the eigenvalues of the deviations of all the pilot points.
  • the feature values include, but are not limited to, a norm, and the like. For example, the deviation of each pilot point represents
  • the second detection method is: the sequence number of each pilot point is used, that is, the deviation of each pilot point is divided into two groups of parity, and the eigenvalues of the two groups are compared (for example, norm) to detect It is estimated that there is an aliasing in the frequency domain response. Because, under certain pilot distributions, if the deviation is ⁇ even, the value will not contain the total number of aliases. Thus, the subscripts in the difference are evenly divided into two sets, and the two subsets are divided into two sets. After the eigenvalues of the components of the ⁇ are statistically compared, it is also possible to determine whether or not aliasing exists.
  • step S5 if the result of the detection indicates that there is a ⁇ 1 ⁇ 2 overlap display, the position of each aliasing component is determined according to each deviation.
  • each aliasing component can be regarded as a forbidden first, so that the center position of the pilot point can be determined according to the deviation of each pilot point, and the deviation for the pilot point is:
  • the number of elements which is the set of the elements corresponding to F marked with the number of turns in ⁇ ; then, in the de: except the center delay, the aliasing delay is limited to x /2 x s 2 )', where ⁇ F rounding;
  • the conjugate gradient algorithm can be used to estimate the aliasing components. In the present embodiment, as shown in Fig. 3, after the processing is described, the position of an aliasing component can be obtained.
  • ⁇ ⁇ Determining the cluster center position is performed in the frequency domain, ⁇ ⁇ , those skilled in the art should understand that it can also be observed in the time domain to obtain the cluster core position, such as The frame structure of the cyclic prefix, i 'to pass the loop correlation, the statistics one The correlation of the fixed length, by determining the corresponding amplitude is low to determine the received multipath signal 3 ⁇ 4 ⁇ ⁇ has the signal of the £J super K path, and determines the position of the ⁇ of the J ⁇ ⁇ , Small, ., "1" In the range of one OFDM, it is detected that the effective component exceeding N norm exists, and the position of the symbol to the heart can be regarded as the cluster heart.
  • step S6 the receiver corrects the initially estimated channel frequency domain response according to the determined position of the aliasing.
  • the obtained aliasing component is ⁇ ( , ), , ⁇ ,''',( , ⁇ ,
  • the corrected channel frequency domain is estimated as: ' , where
  • step S7 if the initially estimated channel frequency domain response ⁇ there is no aliasing component, the initially estimated channel frequency domain response is directly used as the final channel estimation result.
  • Example 2 - See circle 5 this embodiment differs from the first embodiment in that the order of the steps is different, that is, after steps S1 and S2 are performed, and then, in step S3', the receiver detects the initial estimate. There is aliasing in the channel frequency domain response.
  • the receiver can detect by using the third checking method described above; then, in step S4', the detection result indicates that there is an aliasing component, according to the Calculating the frequency domain response estimates of the pilot points in the second pilot in the initial estimated channel frequency domain response of the ⁇ symbol, and then calculating the frequency domain response estimates of the respective pilot points and the extracted second pilot based on The deviation between the obtained values of the pilot points is the same, and then steps S5 to S7 are the same as the embodiment, and will not be described here.
  • FIG. 6 is a schematic diagram of the structure of the channel estimation system of the present invention.
  • the channel estimation system includes: an extraction module 11, a channel frequency domain response estimation block 12, a deviation estimation block 13, a detection module 14, a positioning block 15, and a correction module 16, which can be installed in the receiver.
  • the receiver may transmit and receive signals by using an OFDM transmission technology, including but not limited to: a mobile station, a base station, and the like.
  • the extraction module n ⁇ extracts each pilot signal from the multipath ,, wherein each pilot (each channel includes a first pilot and a second pilot.
  • the extraction module Extracting a pilot signal from the multipath signal; the first pilot is usually a spreading pilot, and the second pilot may be a continuous pilot or a system f transmission total (, TPS, etc.) It is also possible to combine continuous pilot and system transmission, and the like.
  • the multiplier frequency domain sounds M estimates the block 12 ⁇ [ ⁇ based on the estimation of the delay of each pilot signal and the extracted pilot frequency, to obtain the first estimated if channel frequency domain response, for example, the track frequency domain * It should be estimated that the delay of the first signal transmitted by the first transmission path estimated by the module 12 is ⁇ ..., and the estimated signal delay transmitted by the estimated transmission path is ⁇ , etc., thereby obtaining the first time
  • the channel frequency domain response estimation block 12 includes the frequency domain estimation of the pilot of the super K path, and aliasing occurs, as shown in FIG.
  • the estimation of the frequency domain response ff ⁇ J technique according to the first pilot, such as the interpolation method, the transform domain method, etc., is known to those skilled in the art, and therefore will not be described in detail herein.
  • the deviation estimation module 13 calculates the frequency domain response estimation value of each pilot point in the second pilot according to the obtained first estimated frequency channel frequency domain, and further calculates the frequency domain of each pilot point.
  • the response between the estimated value and the base the deviation between the pilot points and the actual ⁇ obtained by the extracted second pilot.
  • the deviation estimation correction block 13 obtains the actual value of each pilot point based on the extracted second pilot, that is, the impulse obtained according to the tap is converted into the frequency domain, for example, performing FFT transformation.
  • the actual value of each pilot point of the second pilot is obtained, and a deviation between the second actual frequency domain response values can be obtained.
  • the pilot point, the frequency range of each pilot point estimated by the deviation meter 13 is:
  • ⁇ , ⁇ ⁇ , p(-/2nkT l ⁇ N)
  • the detecting module 14 detects whether there is an aliasing component in the initially estimated channel frequency domain response.
  • the verification block 1-1 may include a unified unit (the figure is not small), a first unit: a unit (not shown), and a first comparison unit (not shown).
  • the statistical unit is configured to perform statistics on the eigenvalues of the deviations of the pilot points;
  • the first unit is used to estimate the frequency domain response of the second pilot of the ⁇ 1 ⁇ 4 energy and the noise variance;
  • the element compares the statistical result of the statistical unit with the calculation result of the first calculating unit to detect whether there is an overlapping component in the first estimated channel frequency domain response.
  • 3 ⁇ 4 eigenvalue statistics can also be calculated based on the eigenvalues of the deviations of all pilot points.
  • the special value includes ⁇ not limited to: a norm, and the like.
  • the deviation table of each pilot point is small -
  • 111 is a q -th order norm, th & a threshold according to the noise power and the estimation precision
  • the detection block may include: a group u (not shown), a second calculation unit (not shown), and a second comparison unit (not shown).
  • the grouping unit uses the sequence number of each pilot point, that is, the deviation of each pilot point is divided into two groups; the second bill counts the characteristics of the parity group (for example, norm); the second comparison unit The eigenvalues of the statistical parity groups are compared to detect whether there is an aliasing component in the first estimated channel frequency domain response. Because, under certain pilot distributions, if the values are even, the value will not contain the aliasing information. Thus, the subscripts in the deviation are divided into two subsets by the f, and the two subsets will be After the special & statistical comparison, the comparison can also be judged Broken is ⁇ ⁇ There is aliasing.
  • the detection block may be: a correlation detection element (the picture is not small).
  • the correlation detecting unit detects whether or not the aliasing component exists based on the temporal correlation of the cyclic prefix of each of the received multipath apostrophes.
  • the positioning module 15 determines the position of each alias based on each deviation after determining that the correction block has an aliasing component.
  • the positioning module 15 nJli includes: cluster center estimation ⁇ (not shown), and - positioning unit (not shown). ⁇ , cluster center estimation ⁇
  • Each aliasing component is treated as a cluster, and the cluster core position is determined according to the deviation of each pilot point. The deviation from each pilot point is:
  • ⁇ ,' ⁇ ⁇ ⁇ - ⁇ (-/2 ⁇ / ( I ⁇ )) exp(— ./2 / ⁇ ) + ⁇ + ⁇ + ⁇ m
  • the cluster core estimate is the cluster core position JL: ⁇ arg(.) is the phase operation, II is the number of elements in the set, and is a subset of the elements corresponding to the -F flag.
  • the sub-positioning unit removes the center delay, and the aliasing delay is limited to ⁇ ' ⁇ ⁇ ⁇ , and the sub-positioning unit uses the conjugate-like gradient algorithm to estimate the aliasing components.
  • the position of an aliasing component can be obtained.
  • ... 1 The estimation of the center position of the cluster by the estimation unit of the center is performed in the frequency domain, : ' ji: real... It should be understood by those skilled in the art that it can also Processing in the time domain, to the center position of the cluster, for example, for a frame structure containing a cyclic prefix, it is possible to determine the correlation of a certain length by cyclic correlation, and determine whether the received multipath signal is determined by determining the corresponding amplitude to be low.
  • the letter from the super long path determines the position of the ⁇ of the ⁇ of the extra long path, tm shows, "i in the range of OFDM symbols, the effective component of the 3 ⁇ 4 over range is detected, and the obtained center position can be Think of it as a center.
  • the correction module 16 corrects the channel frequency domain response of the initial estimation according to the determined position of the aliasing ⁇ , for example, the aliasing component obtained by the sub-positioning unit is " ⁇ , ⁇ ) ⁇ 5 "),..., ( , ⁇ , correspondingly, the modified module 16 is modified
  • the channel frequency domain is estimated as: ' , where, If: fe ⁇ NJn, J:
  • the received channel frequency domain response eliminates aliasing.
  • the correction module 16 directly uses the initial estimated channel frequency domain response as the final channel estimation result.
  • Summary 1 the method of estimating the channel A and the system Lichuan transmission parameter command (TPs) or the discontinuous pilot to detect the super long path, and using the information to correct the transform domain channel estimation result r ⁇ i This can be more accurate performance.
  • TPs system Lichuan transmission parameter command
  • TPs discontinuous pilot

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信道估计方法及系统,其首先自接收的多径信号中提取各路包含的导频信号,其中,各导频信号中包括第一导频和第二导频,随后再基于提取的第一导频,获得初次估计的信道频域响应,接着再根据所获得的初次估计的信道频域响应计算第二导频中各导频点的频域响应估计值,进而计算出各导频点的频域响应估计值与基于提取的第二导频所获得的各导频点的实际值之间的偏差,当检测到初次估计的信道频域响应中存在混叠分量,则根据该偏差来确定各混叠分量的中心位置,进而确定各混叠分量的位置估计值,最后再根据各混叠分量的位置估计值修正初次估计的信道频域响应,由此获得准确的信道估计响应。

Description

信道估计 法及系统 技术领域
木发明涉及一种佶道估讣方法及系统, 特别涉及 包含来 £J超 K路径佶 的佶道估计 方法及系统。 背景技术
现 通信系统中, 发送端所发送的佶 可能会经 r†i不同的^输路径 (即佶道) 到达接收 端, 因此, 接收端需要对超 K路径进行检测, 以获符准确的信道估讣, 现有的超长径检测有 两种 法-
1- 利用循环前缀与 OFDM符 的相关性, 31长时^地观测相关和来判断 否有超长径, 优点是 i«J靠性好, 缺点 只能确定超 K径人致的分布位置, 信道估计的噪声抵消性能 较差;
2. 利用频域的所有数据和导频, 采用二险矩做盲估计, 缺点是复杂度较髙, 具体可参见 论文: Husen, Λ, Beggen , Fil ippi etal, bl i rid estimation οΓ maximum delay spread in OFDM systems, vtc— 2006 f¾ll。 在美国专利申 W US200801989 2 屮, 描述了佶道长度人于导频数 H乘以符 率条件下, 选择窗位置来消除多径的混叠千扰,其原理如― F: 基亍离散信道模型为: ' , 其中 A和 ^分别为第 i 条传输路径对应的响应
Hk =
Figure imgf000003_0001
- exp (- βτάτ: IN)
和迟延, 对应的频域响应为: ' , 中, ^为系统对应的 FFT点数。 如果散布导频频点标号集合为^=^|/7 = /7+ ^ , P。为第一个散布导频的位置标号, Δ为 相邻导频的 M隔, 为导频编号, 则导频处响应即为:
ff =∑a ΙΝ、 = Υι'' exp(-./2^( 0 + Δ)^ IN) 不失一般性, 假定 ^ =0, 则有
HP(I) = Hp =^a exp(-.2^Ar, /N) =∑ ;- exp(-.2^r; l{N p)) 其中, ΝΡ =ΝΙί 从 |:式可以 出, 如果存在超^径满足 ' =^+" >(), 那么利用散布 导频所作的佶道估讣就会出现模糊, 因为 I:式中的 和 ^ 对应相同的结果。 也就是说, 在这 种利用散布导频的信道估计方式中, 其估计的范围不超过 如图 1所示, 一旦接收端所接 收的多径佶 中有经过超 K路径到达 , 则在利用散布导频进行佶道估讣时, 佶道的频域响 应中就会存在混叠分量, 导致信道估计模糊, 此时仅仅根据散布导频来进行信道估计的方法 就会火效。
园此, 极有必要对现有基亍散布导频来对信道进行估计的方法进行改进。 发明内容
木发明的目的在 提供 佶道估讣 A法及系统。
为了达到 ......1::述目的及其他目的, 本发明提供的信道估计方法, 包括步骤: 1 ) 自接收的多 径信 中提取各路导频信 , 其屮, 各路导频佶 中^ ·路都 lii括第 ·导频和第二导频; 2 ) 基亍对各路导频信号的时延的估计及提取的第 · ·导频, 获得初次估计的信道频域响应; 3 )根 据所获得的初次估计的佶道频域响应讣算第二导频屮各导频点的频域响应估计忸, 基于提 取的第二导频获得第二导频中各导频点的实际值, 进而计算出各导频点的频域响应估计值与 实际忸之间的偏差; 4 ) 检测初次估计的佶道频域响应屮 存在混叠分≤; 5) 如果存在混 叠分量, 则根据第二导频中各导频点的偏差来确定各¾叠分 的位置; 以及 6)根据所确定的 混叠分量的位置修正初次估讣的佶道频域响应, 以获符 终的佶道频域估讣。
此外, 本发明的信道估计系统, 包括: 提取模块, 用亍自接收的多径信号中提取各路导 频信 , 其中, 各路导频佶号屮^-一路都包括第-一导频和第二导频; 佶道频域响应估计模块, 用亍基亍对各路导频信号的时延的估计及提取的第 · ·导频, 获得初次估计的信道频域响应; 偏差估计校块, 用于根据所^符的初次估讣的信道频域响应计算第二导频中各导频点的频域 响应估计值, 并基亍提取的第二导频获得第二导频中各导频点的实际值, 进而计算出各导频 点的频域响应估计值与¾际忸之间的偏差; 检测模块, 川 检测初次估讣的信道频域响应中 是否存在混叠分量; 定位模块, 用亍 ¾检测模块确定存在混叠分量后, 根据第二导频中各导 频点的偏差来确定各混叠分 的位置; 以及修正模块, 川 根据所确定的混叠分量的位置修 正初次估计的信道频域响应, 以获得最终的信道频域估计。
综 I:所述, 本发明的佶道估计 A法及系统的优点在 可对超 K 输路径进行检测, 由 此避免由超长传输路径传输至的信号引起的混叠千扰, 进而获得更为优越的性能。 附图说明
m i为现有基 f散布导频 iw f道估计对应 if^j时域响应的 意图。
m 2为本发明 i^j信道估计方法实施例一的流程图。
1*1 3为本发 的信道估计 法的估计原 意图。
1*1 4为本发 的信道估计 法所采 的时域相关 /式估计的簇中心位置小意图。
m 5为本发明 ½信道估计方法实施例二的流程图。
m 6为本发明 ½信道估计系统的结构示意图。
具体实施方式
以下将结合附图对氺发 ^的信道估讣方法进行详细说明。 木发 yim方法 ι(耍应川于具有 第 - -导频和第二导频的通信系统 例如, 采用 OFDM传输技术的系统, 具体的, 如支持数宇地 面电视广播系统标准 (即 DVB-T) 或中 W移动多媒体广播 (即 C腾) 的系统等。 其中, 所述 第一导频通常为散布导频, 而第二导频可以是连续导频或系统传输信息 (即 TPS等), 也可以 是连续导频:和系统 ½输信总的组合等等。
实施例一;
请参阅图 2 , 首先, 在歩骤 S1中, 接收端接收到多径佶 后, 自所述多径佶号中提取 各路导频 , 其中, 各路导频信号中毎 ·路都包括第 _ #频和第二导频。 通常, 接收端可 采用抽头从所述多径信号中提取导频信号; 所述接收端包括但不限于: 移动台、 基站等:。 接着, 在歩骤 S2中, 接收端基于所估计的各路导频借号的时延及所提取的第」一 频, 获得初次估计的信道频域响应, 例如, 接收机所估计的由第一条传输路径传输至的第一路信 号时延为 ^… · ,估计的第 条 输路径 ft输至的信¾~时延为 等,接收机基】:所估计的时延, 可以对第一导频进行频域变换, 例如离散傅里叶变换(即 FFT )等, 由此:获得初次估计的信道 频域响应, 例如为: ή k = Κ αφ(- ί27Μ, ίΝ、 + 1 + rf , 其中, = ηκ 1 ,Λ^), 为釆用 的 FFT点数,. 为估计的第 ^条传输路径的时延, = + 为估计的抽头响应, 《,为噪声, ί 为所有漏检的抽头响应和, 为加性噪 。 由亍根据第 ··········· ·导频所能估计的范]圈为 ^
{ Νρ =Ν Α ^ 因此对 接收端基于包含来自超 路径的导频的频域估计, 会发生混叠, 如 图 3所 。 而根据第 ·导频来估计佶道频域响应 ff<J技术, 如 ft插法, 变换域法等, 已为本领 域技术人员所知悉, 故在此不再详述。
接着, 在步骤 S3中, 接收机根据所^符的初次估讣的信道频域响应计算第二导频中各 导频点的频域响应估计值, 并基亍提取的第二导频获得第二导频中各导频点的实际值, 进而 计算出各导频点的频域响应估讣值与¾际忸之间的偏差。 ^接收机基 捣取的第二导频获得 各导频点的实际值, 也就是根据抽头所获取的冲激响应, 将其变换为频域, 例如, 进行 FFT 变换, 即可获符对第二导频的各导频点的 ¾际值。 例如对 ί·第二导频集:
Sp = I G scP U stps , ssp、, :中, (ssp、 scp ! stps分别 ― 0F M符 .块的第— ·导频、 迮续 导频与系统^输信息所在的频率集合, 基 I:述初次估的佶道频域响应, 各导频点的频域响
H, =Τ α;■ exp (- βτάίτί IN) + I + n
应为 : ' ' ' , 而 ^符 的各导频点 的 实 际值为 -
H¾
Figure imgf000006_0001
, 故 讣 算 出 各 导 频 点 的 偏 差 表 示 为 :
Δ; = H) -H) = (ά: - a, exp (- jldt / Δ)) exp (― τύ^ I Ν) + Γ+η' ' '
' ' ' . . , 其中, Ν、 = , Δ为
= ^α;(1- exp(— / Δ )) exp(-/2 ^ ΙΝ) + Ι '+ ' '+η' ' '
ί:τ,>Νρ
相邻导频点的间隔, ^为采用的 FFT点数, ;为获符的第 ^条传输路径的第二导频的导频点的 冲激响应实际值, ^=«,+ 为估讣的抽头响应, 为噪声, 为所 漏检的抽头响应和, 和/'"均为加性噪声, '和 分别对应迟延小于 和人于 的漏检抽头误差, 也 nj以看作为 加性噪声, 这些噪声能≤小』 ^效的佶 能 , 处观屮只 影响精度。 ^要说明的 , I二述 所示的第二导频集包括迮续导频和系统^输佶息, 1:, 本领域技术人员应¾理解, 第二 导频集并非以此为限, 例如, 其 i«J以仅仅 lii括迮续导频, 或 仅仅 lii括系统 ^输信总等。
接着, 在步骤 S4屮, 接收端检测所述初次估计的佶道频域响应屮 否存在混叠分量, 其 检测的方法包括但不限亍:
第 ·种检测方式: 对各导频点的偏差的特征忸进行统计, 将所述统计结果与估计的第 二导频的频域响应的能量及噪 j ^方差进行比较, 以检测所述初次估计的信道频域响应中是否 存在混叠分≤。 其中, 统讣 nJ基于部分导频点的偏差的特征值进行, 也 nJ基于全部导频点的 偏差的特征值进行。 此外, 所述特征值包括但不限于: 范数等。 例如, 各导频点的偏差表示
Δ¾ = 2 t (1 -
Figure imgf000006_0002
/ N) + /'+/"+ " '"
为- ' , 对 部分特征值的统讣结 ∑ A
果为: M lgn , 中, if为 q 阶范数, th-i 寸根据噪卢功率与估计精度预 置的门限, 将该结果与估计的所述第二导频的频域响应的能量及噪 j ^ ^方差, 即 M = ,/( ¾,σ) 比较, 可以判断出是否存在混叠分盘, 其中, ¾^=/( , '以采 不同的组合, 例如 f(Hl (j) = Alg(H ) + Xa2 或/( ,<7) = »^( ^(^),12(72)等等, 4和 为常数, (·) 为 提取 if道响应特征 数, 如信道能量和、 或 Φ.径的 S大能量值等。
第二种检测方式: 基予各导频点的序号, 即 将各导频点的偏差分为奇偶两组, 将所述 竒偶两组的特征值统计后 (例如范数) 进行比较以检测所述初次估讣 ½ 道频域响应屮是否 存在混叠分显。 因为,在某些导频分布下,各偏差中, 如^ 为偶数, 其值不会包含混叠信总, 这样, 将 ^差中下标按 偶分为两个了集, 将两子集屮的各分量的特征值统计后进行比对也 可以判断是否存在混叠。
接着, 在歩骤 S5中, 1检测结果表明存在 ί½叠分显, 则裉据各偏差来确定各混叠分量的 位置。 具体的, 可先将各混叠分量视为一禁, 由此可先根据各导频点的偏差来确定鍈中心位 置, 对于导频点的偏差为:
Δ, = , (1 - ex (- ίΐπΐ I Δ)) ex (- ίΐπΐτ, ί Ν) + Γ+Ι "+ m
可 将 J L: 改 ^ 为 : = 1,
Figure imgf000007_0001
其中' ί. 包 性 噪 等 ,. ft. it 中 心 位 置 估 计 为
Figure imgf000007_0002
» 其屮 arg(.) 为取相位 算, π表示集合中
Q1
元素个数, 为^中对应 F标为竒数的元素钩成的于集; 接着, 在去:除中心迟延, 可得到 混叠迟延被限制在 x /2 xs 2)', 其中 为向― F取整; 菌后, 可以再采 用类共轭梯度算法估计出各混叠分量。 在本实施例中, 如图 3所示, 经过 ...... h述处理, 可莸得 一混叠分量的位置。
此外, .....1::述确定簇中心位置是在频域进行, ~ \ , 本领域技术人员应该理解, 也可在 时域进行处观, 来获得簇屮心位置, 如对含循环前缀的帧结构, i '以通过循环相关, 统计一 定长度的相关和, 通过判断对应的幅度 低来确定接收的多径信 屮 ¾ϊ ^有来 £J超 K路径的 信号, 并确定来 £J超长路径的佶 的屮心位置, 如图 4所小, .、《1在一个 OFDM符 范围内, 检 测到超过 N 范 的有效分量存在, 符到的屮心位置即可视为簇屮心。 接着,在步骤 S6中,接收机根据所确定的混叠分 的位置修正初次估计的信道频域响应, 例如, 经过 ......1::述处理后, 得到的混叠分量为 {( , ), ,^,''',( , }, 相应的, 修正后的信 道频域估计为: ' , 其中,
如果: ( ≤ )门(( +^) = ^?。, -■■,¾}), 贝 al = at - a j
如 : fe≤ ^ )Π (( + Νρ)ί ■ -, ¾}) j 贝^: αιι 如果: > ΝΡ)^ ¥' = fj e { , ,'■■,¾}),则: at = a} 由图 3可见, 经过 t述修正后, 获得的信道频域响应淌除了混叠。
后, 在步骤 S7屮, 如果初次估讣的信道频域响应屮不存在混叠分量, 则直接将初次估 计的信道频域响应作为最终的信道估计结果。
¾施例二 - 请参见圈 5, 本实施例和实施例一不同在于各歩骤的顺序不同, 即执行步骤 S1和 S2后, 接着, 在步骤 S3'中, 接收机检测所述初次估讣的信道频域响应中 存在混叠分 在此实 施例中, 接收机可采用前述的第三种检查方式进行检测; 接着, 在歩骤 S4' 中, ¾检测结果 表明存在混叠分量, 根据所^符的初次估讣的信道频域响应计算第二导频中各导频点的频域 响应估计值, 进而计算出各导频点的频域响应估计值与基于提取的第二导频所获得的各导频 点的 ¾际值之间的偏差, 随后, 步骤 S5至 S7与 ¾施例 ^相同, 在此不再 述。
再请参见图 6, 其为本发明的信道估计系统结构示意圈。所述信道估计系统包括: 提取模 块 11、 信道频域响应估讣校块 12、 偏差估讣校块 13、 检测模块 14、 定位校块 15、 及修正模 块 16, 其可装设在接收机中, 所述接收机可采用 OFDM传输技术收发信号, 其包括但不限亍: 移动台、 基站等。 所述提取模块 n ϋ所述多径佶 中提取各路导频信 ,其中, 各路导频 (¾ "中每 ·路都 包括第一导频和第二导频。 通常, 所述提取模块 ^采 柚头从所述多径信 屮提取导频信 ; 所述第一导频通常为散布导频, ^第二导频可以是连续导频或系统 f 输信总(, TPS等), 也 可以 连续导频和系统传输 ^息的组合等等。
所述倍道频域响 M估计校块 12 }[\基于対各路导频信号的时延的估计及提取的第 导 频,获得初次估计的 if道频域响应, 例如所述 道频域 *应估讣模块 12所估讣的由第一条传 输路径传输至的第一路信号时延为 ^……, 估计的第 ^条传输路径传输至的信号时延为 ^等, 从而获得初次估计的佶道濒域响 为: = H e pi-jlTik , !N) + I + f , 其中, =ηιοά(Γ;,^) , 为釆川的 FFT点数, 为估计的第 ^条传输路径的时延, 4= + 为估 计的抽头响应, 为噪声, /为所有漏检的抽头响应和, 为加性噪 。 由于根据第 · 频 所能 计的范围为 , 因此所述信道频域响应估计校块 12基 包含来 超 K路径的导频的 频域估计, 会发生混叠, 如图 3 所小。 而根据第 ·导频来估计佶道频域响应 ff<J技术, 如內插 法:, 变换域法等, 己为本领域技术人员所知悉, 故在此不再详述。
所述偏差估计模块 13川于根据所获得的初次估讣的倍道频域晌应计算第二导频中.各导频 点的频域响应估计值, 进而计 出各导频点的频域响应估计值与基』:提取的第二导频所获得 的各导频点 if^J实际忸之间的偏差。 例如, 所述偏差估计校块 13基于提取的第二导频获得各导 频点 ½实际值, 也就是根据抽头所获取的冲激响 将 变换为频域, 倒如, 进行 FFT变换, 即可获得对第二导频的各导频点的实际值, 迸而可以获 ¾所述第二 实际的频域响应值之间的偏差。 側如对 f第二导频集合: =
Figure imgf000009_0001
导 频 点 , 所述 偏差 计 榄 块 13 估计 的 各 导 频 点 ½ 频 域 响 应 为 :
H, =T - exp (- j2 tTl ίΝ) + Ι + η"
' · , 而 各 导 频 点 的 真 实 的 频 域 响 应 为 ;
Η, = αί , p(-/2nkTl ί N)
' > ' , 故所述偏差估讣模块 Ϊ3 计算 ^各导频点的偏差表示为:
Δί; = H - = ^ (at - at exp(- j2 it M))exp(— ./2n¾ I N) + Γ+η'"
= ,
Figure imgf000009_0002
7ν/Δ, Δ为 相邻#频的 隔, N为采川的 FFT点数, ^为获得的第 ^条 输路径的导频冲激响应实际忸, 和" '"均为加性噪 , ^和尸分别对应迟延小 和大 Λ^的漏检抽头误差, 也 1 看作为加性噪声, 这 噪 能≤小 有效的信 能量, 处理中只:是影响精度。
所述检测模块 14检测所述初次估计的信道频域响应中是否存在混叠分量。
作为一神优选方式, 所述检滅校块 1-1 可包括统讣 ^元 (图未小 ·)、 第一讣§:单元 (图未 示)及第一比较单元(圈未示)。 其中,:所述统计单元用于对各导频点的偏差的特征值进行统 计; 第- 单元用于讣筧估讣的第二导频的频域响 l¾能量及噪 方差; 第一比较^.元用 亍将所述统计单元的统计结果与第一计算单元的计算结果进行比较, 以检测所述初次估计的 信道频域响应中是否存在 ί 叠分量。 中, 统计单兀 W基 部分导频点的偏差! ¾特征值进行 统计 也可基亍全部导频点的偏差的特征值迸行统计。 此外, 所述特 £值包括伹不限于: 范 数 等 。 例 如 , 各 导 频 点 的 偏 差 表 小 为 -
Δζ, = ∑ ! Ν) +1 '+ 1 "+ η m
' ' , 统计 Ι^ 对其部分特征值的统计 结果为:
Figure imgf000010_0001
, 其中, 111 为 q 阶范数, th &一个根据噪 ^功率与估计精度 置的门限, 第一计算单元计算估计的所述第二导频的频域响应的能量及噪声方差, 例如为 -
Figure imgf000010_0002
较 可以判断出是否存在混叠分量, 其中, ^^ = (^^ ' 可以采用不 '同的组合, 例如 ,σ) = ^g(H ) + σ2; 或/0^, = ]1½^0^( ;),4 2)等等, 和 为常数, , (·) 为 提取佶道响 特征的 数, 如信道能量和、 或 径的 ¾大能 忸等。
作为另 ·种优选 式: 所述检测校块可包括: 分组 u (图未不)、 第二计算单兀 (图未 示)及第二比较单元 ( 未示)。 所述分组单元用子基于各导频点的序号, 即 将各导频点 的偏差分为 偶两组; 第二计 单 统计所述奇偶两组的特征忸(例如范数); 第二比较单元 将统计的奇偶两组的特征值 . 行比较, 以检测所述初次估计的信道频域响应中是否存在混叠 分量。 因为, 在某些导频分布下, 各偏差中, 如果 为偶数, 其值不会包含混叠信息, 这样, 将偏差中下标按竒偶分为两个子集 f 将两'子集中的各分 的特 &统计后进行比对也可以判 断是 Ϊ ^存在混叠。
作为另一种优选 式: 所述检测校块可 lii括: 相关性检测 元 (图未小)。 所述相关性 检测单元川 基于接收的多径佶号中各路佶 的循环前缀的时间相关性来检测 否存在混叠 分量。
所述定位模块 15川于 1检测校块确定存在混叠分量后, 根据各偏差来确定各混叠分 的 位置。 作为 ·种优选 A式, 所述定位模块 15 nJli括: 簇中心估计 φ·兀 (图未示)、 及了 -定位 单元 (图未示)。 屮, 簇中心估计 兀将各混叠分量视为-一簇, 来根据各导频点的偏差来确 定簇屮心位置, 对 各导频点的偏差为:
Δ,' = ^ α ΐ- βχρ(-/2π/( I Δ)) exp(— ./2 / ΙΝ) + Γ+Γ+η m
' , 可 将 其 改 写 为 : I N) οκρ(-]2πίτ0 /Ν) + Ι,
Figure imgf000011_0001
包括漏检抽头误差及加性噪 等, r†i此, 簇屮心估讣 元估讣的簇屮心位置为
Figure imgf000011_0002
JL:屮 arg(. ) 为取相位运算, I I表示集合中 元素个数, 为 中对应 - F标为竒数的元素构成的子集。 而子定位单元在去除中心迟延, 可得到混叠迟延被限制在 ^'χ ^^χ ^^, 由此子定位单元再采用类共轭梯度 算法估计出各混叠分量。 在本实施例中, 如图 3所示, 经过 ......1::述处理, 可获得一混叠分量的 位置。
此外, ......1::述饞中心估计单元对簇中心位置的估计是在频域进行, :' ji:实 ......匕 本领域技术人 员应该理解, 其也可在时域进行处理, 来 ^符簇中心位置, 如对含循环前缀的帧结构, 可以 通过循环相关, 统计一定长度的相关和, 通过判断对应的幅度髙低来确定接收的多径信号中 是否 来自超长路径的信 并确定来 超长路径的佶 的屮心位置, tm 所示, 、《i在 - 个 OFDM符号范围内, 检测到 ¾过 范围的有效分量存在, 得到的中心位置即可视为饞中心。 所述修正模块 16根据所确定的混叠分≤的位置修正初次估讣的信道频域响应, 例如, 子 定位单元得到的混叠分量为" ^,^)^^5"),…, ( , }, 相应的, 所述修正模块 16修正后的
H, =∑ ; .exp(-/2^/N)
信道频域估计为: ' , 其中, 如果: fe≤NJn 贝, J :
如果: > Λϋ门 ( e ,则:
由图 3可见, 经过所述修正模块 16的修正后, 获符的信道频域响应消除了混叠。
而如果检测模块 14 检测的结果表明初次估讣的信道频域响应中不存在混叠分量, 则所 述修正模块 16直接将初次估讣的佶道频域响应作为 终的佶道估讣结果。
综 1::所述, 本发 m的佶道估讣 A法及系统利川传输参数佶令 (TPs)或迮续导频来检测超长 径, 用该佶息来修正变换域信道估计结 r†i此可^符更为精确的性能。
1 :述¾施例仅列小性说明本发明的原繩及功效, ^非用于限制木发明。 仆何熟悉此项技 术的人员均 i«J在不违背木发明的精神及范 1霄卜, 对 1 :述¾施例进行修改。 因此, 本发明的权 利保护范围, 应如权利要求书所列。

Claims

1- 一种信道估讣方法,应川 具 第一导频和第二导频的通佶系统, 特征在于包括步 骤:
自接收的多径佶号屮捣取各路导频佶号, Ji;中,各路导频信 屮每 ·路都包括第
-导频和第二导频;
基于对各路导频信 的时延的估讣及提取的第 ·导频, ^得初次估讣的信道频域 响应;
根据所 ^符的初次估讣的佶道频域响应讣算第二导频中各导频点的频域响应估 计值, 并基 提取的第二导频^符第二导频屮各导频点的 ¾际值,进而讣算出各导频 点的频域响应估讣忸与¾际值之 M的偏差;
检测初次估讣的信道频域响应中 ¾ϊ ^存在混叠分
如果存在混叠分 则根据第二导频屮各导频点的偏差来确定各混叠分 的位置; 以及
根据所确定的混叠分 的位置修正初次估讣的佶道频域响应,以获符 终的佶道 频域估计。
2. 如权利要求 1所述的佶道估讣 Α法, 特征在 :基 对各路导频佶号的时延的估计 及捣取的第 ·导频, 进行 N点的离散傅里叶变换, 以 ^得初次估讣的信道频域响应, 其屮, N预先设定。
3- 如权利要求 1所述的佶道估讣 A法, 特征在 检测初次估计的佶道频域响应屮是 否存在混叠分量的步骤 lii括: 1 )对各导频点的偏差的特征值进行统讣; 2)讣算各导 频点的频域响应估讣值的能量及噪声 差; 及 3 )将所述统讣结果与计算出的能 及 噪 方差进行比较, 以检测是 Ϊ ^存在混叠分≤。
. 如权利要求 3所述的佶道估讣 A法, 特征在于:对各导频点的偏差的范数进行统计。
5- 如权利要求 3或 4所述的信道估计 A法, 特征在 Γ: 对第二导频屮的全部导频点的 偏差的特征忸进行统计。
6- 如权利要求 3或 4所述的信道估计 A法, 特征在 Γ: 对第二导频屮的部分导频点的 偏差的特征忸进行统计。
7- 如权利要求 1所述的佶道估讣 A法, 特征在 检测初次估计的佶道频域响应屮是 否存在混叠分量的步骤包括: 1 ) 基于各导频点的/ 将各导频点的偏差分为 偶两 组; 及 2) 统讣所述 偶两组的特征忸, 进行比较, 以检测 存在混叠分≤。
8- 如权利要求 1所述的佶道估讣 A法, 特征在 :基 j 收的多径佶号屮各路信 的 循环前缀的时间相关性来检测 否存在混叠分 ϋ。
9. 如权利要求 1所述的佶道估计方法,其特征在于:确定各混叠分显的位置的歩骤包括 :
1 )根据各导频点的偏差估讣.各混叠分量所形成的簇的簇中心位置; 2 )基 所述簇中 心位置, 采川类: ^轭梯度算法估讣出各 叠分 的位置。
10. 如权利要求 9 所述的佶道估计 -法, 其特征在子: 各导频点的偏差表示为- Δ; = a: (1 - exp(- j2^.t I Δ)) exp(-, 2^ , i N) + 1& , 则估 i I '的簇中心位置:为 -
Figure imgf000014_0001
其中 arg (.〉 为取相位运算, 鬥表示 集合中元素个数, 第二导频的导频集合为 Sp , 为^中的元素, ^ 为 中 F标为 奇数的元素构成的了集, ^ mod^ ^ ) , τ;为估计的第 i条传输路径 的时延, 为获得 ½第 ^条½输路径第二导频各导频点的实际冲激响应值, Δ为相邻 导频点的 隔, ^ ¾ 漏提取的误差及噪 , Νρ = ΝΊΑ , W为采川的 FFT点数。
1 1. 如权利要求 1所述的信道估计方法, 其特征在于; 所述第二导频包括连续导频和系统 传 If信息。
12. ―种信道估计系统,应用于具有第一导频和第二导频的通信设备中,其特征在于包括: 提取模块, 川】:自接收的多径信 中提取各路导频信^ ^中, 各路导频佶号中 '每一路都包括第一 频和第二导频;
信道频域响应估计摸块, 用于基 对各路导频信号的时延 ½估计及提取的第: .导 频, 获得初次佶计的信道频域响应;
偏差估计模块, )11』:根据所获得的初次估讣 ff^J信道频域响¾计算第二导频中各导 频点的频域响应估计值, 并基于提取的第二导频获得第二导频中各导频点的实际 值, 进 计算出各导频点的频域响应估计伹与实际忸之 的偏差;
检测模块, 用子检测初次估计的信道频域响应中是否存在混叠分量;
定位 块, 用于 M1检测校块确定存在混 ft分 后, 根据第二 频中各导频点! ¾偏 差来确定各混叠分量的位置; 以及
修正校块, 用于根据所确定的混叠分量的位置修正初次估计的信道频域晌应, 以 获得最终的信道频域估计。
13- 如权利要求 12所述的佶道估计系统, ^特征在于: 所述信道频域响应估计模块 - - 能进行 N点的离散傅里叶变换的模块,其川 基于对各路导频信 时延的估计及提 取的第一导频,进行 N点的离散傅里叶变换,以获得初次估计的信道频域响应,其中, N预先设定。
14. 如权利要求 12所述的倍道估计系统, 特征在于: 所述检测模块包括: 统计单 U, 用 对各导频点的偏差的特征值进行统讣; 第 ·计算单元, 川?计 各导频点的频域 Π向应估计忸的能 及噪卢 差; 及第 ·比较 Ίιΐ, j |j 将所述统讣结果与所述计算单 :元的计算结. 进行比较, 以检测是否存在混叠分量。
15. 如权利要求 14所述的佶道估计系统, ^特征在于: 所述统讣单兀对各导频点的偏差 的范数进行统计。
16. 如权利要求 14或 1 5所述的倍道估讣系统, 特征在 : 所述统计 7£对第二导频中 的部分导频点的偏 的特征值进行统计。
17. 如权利要求 14或 1 5所述的伯 '道估计系统, :特征在 ί-- 所述统计 Φ.元对第二导频中 的全部导频点的偏差的特征值进行统计。
18. 如权利要求 12所述的佶道估计系统, j 特征在于: Hi述检测模块包括: 分组单 , 用 基于各导频点的序 将各导频点 ½偏差分为奇偶两组; 第二计算单兀,用于统计 所述奇偶两组的特征值; 及第二比较 兀,川 将所讣算出的奇偶两组的特征值进行 比较, 来检测是否存在混叠分量。
19. 如权利要求 12所述的倍道估讣系统, 特征在 所述检测模块包括: 相关性检测 单 Λ1,用 基于接收的多径信 中各路倍号 if^J循环前缀的时 相关性来检测是否存在 混 S分量。
20. 如权利要求 12所述的倍道估计系统, 特征在于: 所述定位模块包括: 簇中心估计 单. /U, 用 根据各 频点 ½偏差 计各泥叠分量所形成的簇的簇中心位置; 及子定位 单. /! , 用: 基于所述簇中心位置, 采用类共轭梯度算法估 ih 各混叠分量的位置。
21. 如权利要求 20 所述的信道估计系统, 特征在 1各导频点的偏差表示为;
= ∑ (1— expi- πί, I Δ)) exp(_./2^¾ N) + % , 则佶 的簇中心位置为- -Q/2/ π
Figure imgf000015_0001
, 其屮 arg (. ) 为取相位运算, 1'1表示 odd
集合中元素个数, 第二导频的导频集合为 ^为 屮的兀素, ' 为1^屮下标为 竒数的元素构成的子集, W , , = mod(T, , Np ) , 为估计的第 ^条传输路径 的时延, 为获得的第 ^条传输路径第二导频各导频点的实际冲激响应值, A为相邻 导频点的 隔, 包括漏捣取的误差及嗓卢, N; = ΝΊΑ W为采用的 FFT点数。
22. 如权利要求 12所述的佶道估计系统, j 特征在于: Hi述第二导频包括迮续导频和系 统传输信息。
PCT/CN2011/071916 2010-11-30 2011-03-17 信道估计方法及系统 WO2012071832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/819,276 US8923456B2 (en) 2010-11-30 2011-03-17 Method and system for channel estimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010565349.1 2010-11-30
CN201010565349.1A CN102480441B (zh) 2010-11-30 2010-11-30 信道估计方法及系统

Publications (1)

Publication Number Publication Date
WO2012071832A1 true WO2012071832A1 (zh) 2012-06-07

Family

ID=46092925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071916 WO2012071832A1 (zh) 2010-11-30 2011-03-17 信道估计方法及系统

Country Status (3)

Country Link
US (1) US8923456B2 (zh)
CN (1) CN102480441B (zh)
WO (1) WO2012071832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028702A1 (zh) * 2017-08-09 2019-02-14 华为技术有限公司 一种导频处理方法及装置、系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660540B (zh) * 2013-11-21 2018-11-16 展讯通信(上海)有限公司 一种lte系统的同步跟踪方法
CN110808930B (zh) * 2019-11-06 2022-06-07 紫光展锐(重庆)科技有限公司 信道估计方法、装置及存储介质
US11140014B1 (en) * 2020-11-25 2021-10-05 Silicon Laboratories Inc. System and method for efficient timing estimation and tracking in an orthogonal frequency division multiplexing (OFDM) communication system
JP2023120886A (ja) * 2022-02-18 2023-08-30 株式会社Kddi総合研究所 無線通信における高精度なチャネル推定を実行する制御装置、制御方法、及びプログラム
CN117411570B (zh) * 2023-12-15 2024-03-22 深圳捷扬微电子有限公司 一种天线射频通路状态的检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620052A (zh) * 2003-11-19 2005-05-25 松下电器产业株式会社 正交频分复用接收装置
WO2010081896A2 (en) * 2009-01-16 2010-07-22 Abilis Systems Sarl Interpolated channel estimation for mobile ofdm systems
CN101815043A (zh) * 2009-02-19 2010-08-25 华为技术有限公司 正交频分多址系统中的信道估计方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039001B2 (en) * 2002-10-29 2006-05-02 Qualcomm, Incorporated Channel estimation for OFDM communication systems
US7339999B2 (en) * 2004-01-21 2008-03-04 Qualcomm Incorporated Pilot transmission and channel estimation for an OFDM system with excess delay spread
US7609773B2 (en) * 2005-04-18 2009-10-27 Qualcomm Incorporated Method of determining the location of the FFT window and the delay spread for the platinum broadcast channel estimator
US8126066B2 (en) * 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US7630450B2 (en) * 2005-06-16 2009-12-08 Motorola, Inc. OFDM channel estimator
KR20100014317A (ko) * 2007-01-19 2010-02-10 톰슨 라이센싱 Ofdm 시스템용 보간 방법과 채널 추정 방법 및 장치
US9391813B2 (en) 2007-02-16 2016-07-12 Maxlinear, Inc. Long echo detection and channel estimation for OFDM systems
US8406319B2 (en) * 2007-03-27 2013-03-26 Motorola Mobility Llc Channel estimator with high noise suppression and low interpolation error for OFDM systems
CN101437010B (zh) * 2008-12-03 2012-10-03 华为终端有限公司 一种正交频分复用系统信道估计方法和装置
US20110103500A1 (en) * 2009-10-30 2011-05-05 Qualcomm Incorporated Methods and apparatus for estimating a sparse channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620052A (zh) * 2003-11-19 2005-05-25 松下电器产业株式会社 正交频分复用接收装置
WO2010081896A2 (en) * 2009-01-16 2010-07-22 Abilis Systems Sarl Interpolated channel estimation for mobile ofdm systems
CN101815043A (zh) * 2009-02-19 2010-08-25 华为技术有限公司 正交频分多址系统中的信道估计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028702A1 (zh) * 2017-08-09 2019-02-14 华为技术有限公司 一种导频处理方法及装置、系统

Also Published As

Publication number Publication date
CN102480441A (zh) 2012-05-30
CN102480441B (zh) 2014-07-09
US20130156138A1 (en) 2013-06-20
US8923456B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
KR102198350B1 (ko) 데이터 송수신을 위한 동기 제어 방법 및 데이터 송수신 동기를 위한 스테이션
WO2012071832A1 (zh) 信道估计方法及系统
TWI327012B (en) Method and apparatus for estimating signal-to-noise ratio, noise power, and signal power
EP1894378B1 (en) Receiver apparatus for receiving a multicarrier signal
KR101291859B1 (ko) 변화하는 채널 조건에 대한 개선된 타이밍 획득 방법 및 시스템
US8428198B2 (en) Frequency tracking which adapts to timing synchronization
US9055602B2 (en) Method for estimating channel based on IEEE 802.11ad with low complexity
CN101651648A (zh) 用于在无线通信系统中执行初始同步的系统和方法
JP5996575B2 (ja) 通信デバイス上で位相エラーを減らすこと
CN107276923B (zh) 抗混叠的信道估计装置、方法以及接收机
TW201115991A (en) Methods and systems for fourier-quadratic basis channel estimation in OFDMA systems
CN102075481B (zh) Ofdm系统中子载波间干扰消除的方法及装置
EP2140561B1 (en) A method and an apparatus for estimating a delay spread of a multipath channel
TW200926656A (en) Method and device for detecting a synchronization signal in a communication system
JP2010535452A (ja) 受信機の同期をとるための方法および装置
JP4138751B2 (ja) マルチキャリア通信システムのための過剰遅延拡散検出方法
CN101895500B (zh) 一种抵抗频偏及多径环境的符号定时方法
TW201044827A (en) Transmitting method, receiving method and receiving device for OFDM system
TWI300657B (zh)
TW200922161A (en) Channel estimation method and apparatus for long range signals in bluetooth
US9350587B1 (en) System and method for timing error estimation
KR101275852B1 (ko) UW(unique-word)를 사용하는 SC-FDE 기반의 송수신 장치 및 방법
JP2009524326A (ja) チャネルインパルス応答の長さの推定
Samal et al. Preamble-based timing synchronization for OFDM systems
CN109842577B (zh) 一种高动态情景下信道质量测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/09/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11845950

Country of ref document: EP

Kind code of ref document: A1