WO2012070316A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012070316A1
WO2012070316A1 PCT/JP2011/072920 JP2011072920W WO2012070316A1 WO 2012070316 A1 WO2012070316 A1 WO 2012070316A1 JP 2011072920 W JP2011072920 W JP 2011072920W WO 2012070316 A1 WO2012070316 A1 WO 2012070316A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
circuit
line
internal node
Prior art date
Application number
PCT/JP2011/072920
Other languages
English (en)
French (fr)
Inventor
中野 文樹
上田 直樹
山内 祥光
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180056691.1A priority Critical patent/CN103229229B/zh
Priority to US13/989,492 priority patent/US8947418B2/en
Publication of WO2012070316A1 publication Critical patent/WO2012070316A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3618Control of matrices with row and column drivers with automatic refresh of the display panel using sense/write circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/088Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements using a non-linear two-terminal element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • the present invention relates to an active matrix display device.
  • a portable terminal such as a mobile phone or a portable game machine generally uses a liquid crystal display device as its display means.
  • a liquid crystal display device As its display means.
  • mobile phones and the like are driven by a battery, reduction of power consumption is strongly demanded. For this reason, some information that needs to be constantly displayed, such as time and remaining battery level, is displayed on the reflective sub-panel.
  • time and remaining battery level is displayed on the reflective sub-panel.
  • both the normal display by the full color display and the continuous display by the reflection type are compatible on the same main panel.
  • FIG. 38 shows an equivalent circuit of a pixel circuit of a general active matrix type liquid crystal display device.
  • FIG. 39 shows a circuit arrangement example of an active matrix liquid crystal display device with m ⁇ n pixels. Note that m and n are both integers of 2 or more.
  • a switch element made of a thin film transistor is provided at each intersection of m source lines SL1, SL2,..., SLm and n scanning lines GL1, GL2,. .
  • each source line SL1, SL2,..., SLm is represented by the source line SL, and similarly, each scanning line GL1, GL2,. .
  • the liquid crystal capacitive element Clc and the auxiliary capacitive element Cs are connected in parallel via the TFT.
  • the liquid crystal capacitive element Clc has a laminated structure in which a liquid crystal layer is provided between the pixel electrode 20 and the counter electrode 80.
  • the counter electrode is also called a common electrode.
  • the auxiliary capacitor Cs has one end (one electrode) connected to the pixel electrode 20 and the other end (the other electrode) connected to the auxiliary capacitor line CSL, and stabilizes the voltage of the pixel data held in the pixel electrode 20.
  • the auxiliary capacitor Cs has the following characteristics: the capacitance of the liquid crystal capacitor Clc varies between black display and white display due to the leakage current of the TFT and the dielectric anisotropy of the liquid crystal molecules, and the parasitic capacitance between the pixel electrode and the peripheral wiring. This has the effect of suppressing the fluctuation of the voltage of the pixel data held in the pixel electrode due to the voltage fluctuation or the like generated through the pixel electrode.
  • the TFT connected to one scanning line becomes conductive, and the voltage of pixel data supplied to each source line is written to the corresponding pixel electrode in units of scanning lines.
  • the power consumption for driving the liquid crystal display device is almost governed by the power consumption for driving the source line by the source driver, and is generally expressed by the following relational expression (1).
  • P power consumption
  • f refresh rate (number of refresh operations for one frame per unit time)
  • C load capacity driven by the source driver
  • V drive voltage of the source driver
  • n The number of scanning lines
  • m indicates the number of source lines.
  • the refresh operation refers to an operation of applying a voltage to the pixel electrode through the source line while maintaining display contents.
  • the refresh frequency during the constant display is lowered.
  • the pixel data voltage held in the pixel electrode varies due to the leakage current of the TFT.
  • the voltage fluctuation becomes a fluctuation in display brightness (liquid crystal transmittance) of each pixel and is observed as flicker.
  • the average potential in each frame period also decreases, there is a possibility that display quality may be deteriorated such that sufficient contrast cannot be obtained.
  • Patent Document 1 in the continuous display of still images such as the remaining battery level and time display, as a method for simultaneously solving the problem that the display quality deteriorates due to the decrease in the refresh frequency and the reduction in power consumption, for example, Patent Document 1 below.
  • liquid crystal display with both transmissive and reflective functions is possible, and a pixel circuit in a pixel region capable of reflective liquid crystal display has a memory unit.
  • This memory unit holds information to be displayed on the reflective liquid crystal display unit as a voltage signal.
  • the pixel circuit reads out the voltage held in the memory portion, thereby displaying information corresponding to the voltage.
  • Patent Document 1 since the memory unit is configured by an SRAM and the voltage signal is statically held, a refresh operation is not required, and display quality can be maintained and power consumption can be reduced at the same time.
  • the liquid crystal display device used in a mobile phone or the like in the case of adopting the above configuration, in addition to the auxiliary capacitance element for holding the voltage of each pixel data as analog information during normal operation, It is necessary to provide a memory unit for storing pixel data for each pixel or each pixel group. As a result, the number of elements and the number of signal lines to be formed on the array substrate (active matrix substrate) constituting the display unit in the liquid crystal display device increases, and the aperture ratio in the transmission mode decreases. Further, when a polarity inversion driving circuit for alternating current driving of the liquid crystal is provided together with the memory unit, the aperture ratio is further reduced. As described above, when the aperture ratio decreases due to the increase in the number of elements and the number of signal lines, the luminance of the display image in the normal display mode decreases.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a pixel circuit and a display device that can prevent deterioration of liquid crystal and display quality with low power consumption without causing a decrease in aperture ratio.
  • the refresh operation can be performed while suppressing an increase in the number of elements and the number of signals.
  • a pixel circuit includes: A display device having a pixel circuit array in which a plurality of pixel circuits are arranged in a row direction and a column direction,
  • the pixel circuit includes a display element unit including a unit display element, an internal node that constitutes a part of the display element unit and holds a voltage of pixel data applied to the display element unit, a first switch circuit, a second switch circuit, A control circuit including a switch circuit and a first capacitor; One end of the second switch circuit is connected to the internal node, and the second switch circuit includes a series circuit of a first transistor element and a diode element.
  • the control circuit includes a series circuit of the first capacitor element and a second transistor element, the first terminal of the second transistor element is connected to the internal node, and the second terminal of the second transistor element is the An output node is formed by connecting to a control terminal of the first transistor and one end of the first capacitor element,
  • the first switch circuit has a configuration in which one end is connected to the internal node and includes a third transistor element. Of the terminals of the unit display element, the first switch circuit is common to a terminal opposite to the terminal connected to the internal node.
  • the electrodes are connected, In the pixel circuits arranged in the same column, the other end of the first switch circuit and the other end of the second switch circuit are connected to a common data signal line, In the pixel circuits arranged in the same row, the control terminal of the third transistor element is connected to a common scanning signal line, In the pixel circuits arranged in the same row or the same column, the control terminals of the second transistor elements are connected to a common first control line, In the pixel circuits arranged in the same row or the same column, the other end of the first capacitive element is connected to a common second control line, A data signal line driving circuit for driving the data signal lines; a control line driving circuit for driving the first and second control lines; and a scanning line driving circuit for driving the scanning signal lines.
  • the internal node of each pixel circuit in the pixel circuit array is configured to be able to hold one voltage state among a plurality of discrete voltage states, and multiple gradations are realized by different voltage states,
  • the scanning signal line driving circuit applies a predetermined voltage to the scanning signal lines connected to all the pixel circuits in the pixel circuit array to make the third transistor element non-conductive;
  • the data signal line driving circuit performs a refresh target voltage corresponding to a voltage state of a target gradation for performing a refresh operation on the data signal line to a predetermined first voltage corresponding to a voltage drop in the second switch circuit.
  • the control line driving circuit has a refresh isolation voltage defined by an intermediate voltage between a voltage state of one level lower than the target gradation and a voltage state of the target gradation with respect to the first control line.
  • a boost voltage having a predetermined amplitude is applied to the second control line in a state where a refresh reference voltage to which a predetermined second adjustment voltage corresponding to the voltage drop between the first control line and the internal node is applied is applied.
  • the diode element is connected to the data signal line.
  • the data signal line and the internal node are not connected to each other, and the voltage state of the internal node is lower than the refresh isolation voltage.
  • the first transistor element becomes non-conductive, the data signal line and the internal node do not conduct, and the voltage state of the internal node is
  • the refresh isolation voltage is greater than or equal to the refresh target voltage and less than the refresh target voltage
  • the diode element is in a forward bias state from the data signal line toward the internal node, and the potential variation of the output node is not suppressed
  • One transistor element is turned on, the refresh target voltage is applied to the internal node, and a refresh operation is performed on the pixel circuit including the internal node indicating the voltage state of the target gradation;
  • the refresh reference voltage applied to the first control line is changed after changing the refresh reference voltage applied to the first control line while the boost voltage is continuously applied and the target gradation is increased by one step, and the refresh applied to the data signal line
  • the refresh input voltage the internal node and the output node caused by the parasitic capacitance of the second transistor element generated by changing the voltage applied to the first control line and the second control line It is preferable to set the voltage value to which a predetermined marginal voltage is further added in consideration of the potential fluctuation.
  • the other end of the second switch circuit included in the pixel circuit arranged in the same column is connected to a common voltage supply line instead of the common data signal line,
  • Each of the voltage supply lines is configured to be driven separately by the control line driving circuit,
  • the refresh input voltage is applied by the control line drive circuit to the voltage supply line instead of being applied to the data signal line by the data signal line drive circuit.
  • the second switch circuit may be configured by a series circuit of the first transistor element, the diode element, and a fourth transistor element having a control terminal connected to the second control line.
  • the second switch circuit includes a series circuit of the first transistor element, the diode element, and a fourth transistor element.
  • the control terminals of the fourth transistor elements are connected to a common third control line, and the third control line can be driven individually by the control line driving circuit.
  • the control line driving circuit applies the boost voltage to the second control line in a state where a predetermined voltage for turning on the fourth transistor element is applied to the third control line. It is good to do.
  • the second switch circuit includes a series circuit of the first transistor element, the diode element, and a fourth transistor element.
  • the control terminals of the fourth transistor elements are connected to a common third control line, and the third control line can be driven individually by the control line driving circuit. Configured, During the self-refresh operation, a predetermined voltage is applied to the third control line to make the fourth transistor element conductive while the control line driving circuit applies the boost voltage to the second control line. It is good to do.
  • the diode element may be a MOS transistor having a gate and a source connected to each other.
  • an operation for returning the absolute value of the voltage across the display element unit to the value at the previous write operation can be executed without using the write operation.
  • an operation for returning the absolute value of the voltage across the display element unit to the value at the previous write operation can be executed without using the write operation.
  • the self-refresh operation can be performed under the condition that the multi-level voltage state is held in the internal node.
  • the refresh operation can be collectively executed for each of the held voltage states with respect to the plurality of arranged pixels. For this reason, the number of times of driving the driver circuit required from the start to the end of the refresh operation can be greatly reduced, and low power consumption can be realized.
  • the aperture ratio is not greatly reduced as in the prior art.
  • the potential of the internal node varies due to the parasitic capacitance of the transistor.
  • the application of the boost voltage to the second control line is stopped once the second transistor element is turned off.
  • the potentials of the internal node and the output node in the pixel circuit of each gradation are lowered a little in advance, and then the voltage applied to the first control line is increased to make the potentials of both nodes equal.
  • FIG. 3 is a circuit diagram illustrating a first type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a second type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a third type circuit configuration example of the pixel circuit of the present invention.
  • FIG. 3 is a circuit diagram showing a third type circuit configuration example of the pixel circuit of the present invention.
  • Timing chart of self-refresh operation of second embodiment by first and third type pixel circuits Another timing chart of the self-refresh operation of the second embodiment by the first and third type pixel circuits
  • Timing diagram of self-refresh operation of second embodiment by second type pixel circuit Another timing chart of the self-refresh operation of the second embodiment by the second type pixel circuit
  • Timing chart of self-refresh operation of third embodiment by second type pixel circuit Another timing chart of the self-refresh operation of the third embodiment by the second type pixel circuit
  • a display device of the present invention (hereinafter simply referred to as “display device”) and a pixel circuit constituting the display device will be described.
  • FIG. 1 shows a schematic configuration of the display device 1.
  • the display device 1 includes an active matrix substrate 10, a counter electrode 80, a display control circuit 11, a counter electrode drive circuit 12, a source driver 13, a gate driver 14, and various signal lines to be described later.
  • the pixel circuit 2 is displayed in blocks in order to avoid the drawing from becoming complicated.
  • the active matrix substrate 10 is illustrated on the upper side of the counter electrode 80 for convenience.
  • the display device 1 is configured to perform screen display in two display modes, the normal display mode and the constant display mode, using the same pixel circuit 2.
  • the normal display mode is a display mode in which a moving image or a still image is displayed in a full color display, and a transmissive liquid crystal display using a backlight is used.
  • the constant display mode of the present embodiment a plurality of gradations of 3 gradations or more are displayed for each pixel circuit, and three adjacent pixel circuits 2 are assigned to each of the three primary colors (R, G, B). For example, if the number of gradations is 3 gradations, 27 colors are displayed, and if the gradation is 4 gradations, 64 colors are displayed. However, the assumed number of gradations is smaller than that in the normal display mode.
  • the constant display mode it is possible to increase the number of display colors by area gradation by combining a plurality of sets of three adjacent pixel circuits.
  • the constant display mode of the present embodiment is a technique that can be used for both transmissive liquid crystal display and reflective liquid crystal display.
  • the minimum display unit corresponding to one pixel circuit 2 is referred to as “pixel”, and “pixel data” written to each pixel circuit is displayed in color by three primary colors (R, G, B). In this case, gradation data for each color is obtained.
  • the luminance data is also included in the pixel data.
  • FIG. 2 is a schematic cross-sectional structure diagram showing the relationship between the active matrix substrate 10 and the counter electrode 80, and shows the structure of the display element unit 21 (see FIG. 4) which is a component of the pixel circuit 2.
  • the active matrix substrate 10 is a light transmissive transparent substrate, and is made of, for example, glass or plastic.
  • a pixel circuit 2 including each signal line is formed on the active matrix substrate 10.
  • the pixel electrode 20 is illustrated as a representative of the components of the pixel circuit 2.
  • the pixel electrode 20 is made of a light transmissive transparent conductive material, for example, ITO (indium tin oxide).
  • a light-transmitting counter substrate 81 is disposed so as to face the active matrix substrate 10, and a liquid crystal layer 75 is held in the gap between the two substrates.
  • Polarizing plates (not shown) are attached to the outer surfaces of both substrates.
  • the liquid crystal layer 75 is sealed with a sealing material 74 at the peripheral portions of both substrates.
  • a counter electrode 80 made of a light transmissive transparent conductive material such as ITO is formed so as to face the pixel electrode 20.
  • the counter electrode 80 is formed as a single film so as to spread over the counter substrate 81 substantially on one surface.
  • a unit liquid crystal display element Clc (see FIG. 4) is formed by one pixel electrode 20, the counter electrode 80, and the liquid crystal layer 75 sandwiched therebetween.
  • a backlight device (not shown) is arranged on the back side of the active matrix substrate 10 and can emit light in a direction from the active matrix substrate 10 toward the counter substrate 81.
  • a plurality of signal lines are formed in the vertical and horizontal directions on the active matrix substrate 10. Then, m source lines (SL1, SL2,..., SLm) extending in the vertical direction (column direction) and n gate lines (GL1, GL2,..., SL extending in the horizontal direction (row direction).
  • a plurality of pixel circuits 2 are formed in a matrix at a location where GLn) intersects. m and n are both natural numbers of 2 or more.
  • Each source line is represented by “source line SL”
  • each gate line is represented by “gate line GL”.
  • the source line SL corresponds to the “data signal line”
  • the gate line GL corresponds to the “scanning signal line”.
  • the source driver 13 corresponds to a “data signal line driving circuit”
  • the gate driver 14 corresponds to a “scanning signal line driving circuit”
  • the counter electrode driving circuit 12 corresponds to a “counter electrode voltage supply circuit”.
  • a part of the control circuit 11 corresponds to a “control line driving circuit”.
  • the display control circuit 11 and the counter electrode drive circuit 12 are illustrated so as to exist separately from the source driver 13 and the gate driver 14, respectively, but the display control circuit is included in these drivers. 11 and the counter electrode drive circuit 12 may be included.
  • a signal line for driving the pixel circuit 2 in addition to the above-described source line SL and gate line GL, a reference line REF, an auxiliary capacitance line CSL, and a boost line BST are provided.
  • a configuration further including a selection line SEL is possible. The configuration of the display device in this case is shown in FIG.
  • the reference line REF, the boost line BST, and the selection line SEL correspond to “first control line”, “second control line”, and “third control line”, respectively, and are driven by the display control circuit 11.
  • the auxiliary capacitance line CSL corresponds to a “fourth control line” or a “fixed voltage line” and is driven by the display control circuit 11 as an example.
  • each of the reference line REF, the boost line BST, and the auxiliary capacitance line CSL is configured to be used in common by the plurality of pixel circuits 2.
  • the selection line SEL may be provided similarly to the boost line BST.
  • the display control circuit 11 is a circuit that controls each writing operation in a normal display mode and a constant display mode, which will be described later, and a self-refresh operation in the constant display mode.
  • the display control circuit 11 receives the data signal Dv representing the image to be displayed and the timing signal Ct from the external signal source, and based on the signals Dv and Ct, the image is displayed on the display element unit 21 ( As the signals to be displayed in FIG. 4), the digital image signal DA and the data side timing control signal Stc given to the source driver 13, the scanning side timing control signal Gtc given to the gate driver 14, and the counter electrode drive circuit 12 are given.
  • the counter voltage control signal Sec, the reference line REF, the boost line BST, the auxiliary capacitance line CSL, and each signal voltage to be applied to the selection line SEL if present are generated.
  • the source driver 13 is a circuit that applies a source signal having a predetermined voltage amplitude at a predetermined timing to each source line SL during a write operation and a self-refresh operation under the control of the display control circuit 11.
  • the source driver 13 applies a voltage that corresponds to the voltage level of the counter voltage Vcom corresponding to the pixel value for one display line represented by the digital signal DA based on the digital image signal DA and the data side timing control signal Stc.
  • Source signals Sc1, Sc2,..., Scm are generated every horizontal period (also referred to as “1H period”).
  • the voltage is assumed to be a multi-gradation voltage in both the normal display mode and the constant display mode, but in the present embodiment, the constant display mode has a smaller number of gradations. ) Voltage. Then, these source signals are applied to the corresponding source lines SL1, SL2,.
  • the source driver 13 applies the same voltage at the same timing to all the source lines SL connected to the target pixel circuit 2 under the control of the display control circuit 11 ( Details will be described later).
  • the gate driver 14 is a circuit that applies a gate signal having a predetermined voltage amplitude to each gate line GL at a predetermined timing during a write operation and a self-refresh operation under the control of the display control circuit 11.
  • the gate driver 14 may be formed on the active matrix substrate 10 as in the pixel circuit 2.
  • the gate driver 14 uses the gate line in each frame period of the digital image signal DA to write the source signals Sc1, Sc2,..., Scm to each pixel circuit 2 based on the scanning side timing control signal Gtc.
  • GL1, GL2,..., GLn are sequentially selected almost every horizontal period.
  • the gate driver 14 applies the same voltage to all the gate lines GL connected to the target pixel circuit 2 at the same timing under the control of the display control circuit 11 (details are given) Will be described later).
  • the counter electrode drive circuit 12 applies a counter voltage Vcom to the counter electrode 80 via the counter electrode wiring CML.
  • the counter electrode drive circuit 12 alternately switches and outputs the counter voltage Vcom between a predetermined high level (5 V) and a predetermined low level (0 V) in the normal display mode and the constant display mode.
  • driving the counter electrode 80 while switching the counter voltage Vcom between the high level and the low level is referred to as “counter AC driving”.
  • Counter AC drive in the normal display mode switches the counter voltage Vcom between a high level and a low level every horizontal period and every frame period.
  • the voltage polarity between the counter electrode 80 and the pixel electrode 20 changes in two adjacent horizontal periods.
  • the voltage polarity between the counter electrode 80 and the pixel electrode 20 changes in the two adjacent frame periods.
  • the same voltage level is maintained during one frame period, but the voltage polarity between the counter electrode 80 and the pixel electrode 20 is changed by two successive writing operations.
  • the pixel circuit 2 includes a display element unit 21 including a unit liquid crystal display element Clc, a first switch circuit 22, a second switch circuit 23, a control circuit 24, and an auxiliary capacitance element Cs, which are common to all circuit configurations. It is.
  • the auxiliary capacitive element Cs corresponds to a “second capacitive element”.
  • the basic circuit configurations shown in FIGS. 4, 5, and 6 are common circuit configurations including basic circuit configurations belonging to first to third types described later.
  • the unit liquid crystal display element Clc has already been described with reference to FIG. 2 and will not be described.
  • the pixel electrode 20 is connected to each end of the first switch circuit 22, the second switch circuit 23, and the control circuit 24 to form an internal node N1.
  • the internal node N1 holds the voltage of pixel data supplied from the source line SL during the write operation.
  • the auxiliary capacitance element Cs has one end connected to the internal node N1 and the other end connected to the auxiliary capacitance line CSL.
  • the auxiliary capacitance element Cs is additionally provided so that the internal node N1 can stably hold the voltage of the pixel data.
  • the first switch circuit 22 has one end on the side that does not constitute the internal node N1 connected to the source line SL.
  • the first switch circuit 22 includes a transistor T3 that functions as a switch element.
  • the transistor T3 indicates a transistor whose control terminal is connected to the gate line, and corresponds to a “third transistor element”. At least when the transistor T3 is off, the first switch circuit 22 is in a non-conductive state, and the conduction between the source line SL and the internal node N1 is cut off.
  • the second switch circuit 23 has one end on the side that does not constitute the internal node N1 connected to the source line SL.
  • the second switch circuit 23 is configured by a series circuit of a transistor T1 and a diode D1.
  • the transistor T1 indicates a transistor whose control terminal is connected to the output node N2 of the control circuit 24, and corresponds to a “first transistor element”.
  • the diode D1 has a rectifying action in the direction from the source line SL toward the internal node N1, and corresponds to a “diode element”.
  • the diode D1 is formed by a PN junction, but may be formed by a Schottky junction or a MOSFET diode connection (a MOSFET having a drain or a source connected to the gate).
  • a configuration in which the second switch circuit 23 is configured by a series circuit of a transistor T1 and a diode D1 and does not include the transistor T4 is hereinafter referred to as a first type.
  • the second switch circuit 23 may be formed of a series circuit including a transistor T4 in addition to the transistor T1 and the diode D1.
  • the pixel circuit type (second type) shown in FIG. 5 includes a selection line SEL different from the boost line BST, and the control terminal of the transistor T4 is connected to the selection line SEL.
  • the pixel circuit type (third type) shown in FIG. 6 has a configuration in which the control terminal of the transistor T4 is connected to the boost line BST.
  • the selection line SEL does not exist in the first type.
  • the transistor T4 corresponds to a “fourth transistor element”.
  • the second switch circuit 23 conducts in the direction from the source line SL toward the internal node N1.
  • the source line SL is directed to the internal node N1.
  • the second switch circuit 23 becomes conductive.
  • the control circuit 24 is composed of a series circuit of a transistor T2 and a boost capacitor element Cbst.
  • a first terminal of the transistor T2 is connected to the internal node N1, and a control terminal is connected to the reference line REF.
  • the second terminal of the transistor T2 is connected to the first terminal of the boost capacitor Cbst and the control terminal of the transistor T1 to form an output node N2.
  • the second terminal of the boost capacitor element Cbst is connected to the boost line BST.
  • the transistor T2 corresponds to a “second transistor element”.
  • auxiliary capacitance the capacitance of the auxiliary capacitance element
  • liquid crystal capacitance the capacitance of the liquid crystal capacitance element
  • Clc the capacitance of the liquid crystal capacitance element
  • the boost capacitor element Cbst is set so that Cbst ⁇ Cp is established if the electrostatic capacity of the element (referred to as “boost capacitor”) is described as Cbst.
  • the output node N2 holds a voltage corresponding to the voltage level of the internal node N1 when the transistor T2 is on, and maintains the original holding voltage even when the voltage level of the internal node N1 changes when the transistor T2 is off.
  • the on / off state of the transistor T1 of the second switch circuit 23 is controlled by the holding voltage of the output node N2.
  • Each of the four types of transistors T1 to T4 is a thin film transistor such as a polycrystalline silicon TFT or an amorphous silicon TFT formed on the active matrix substrate 10, and one of the first and second terminals is a drain electrode, The other corresponds to the source electrode and the control terminal corresponds to the gate electrode. Furthermore, each of the transistors T1 to T4 may be composed of a single transistor element. However, when there is a high demand for suppressing the leakage current when the transistor is off, a plurality of transistors are connected in series, and the control terminal is shared. May be configured. In the following description of the operation of the pixel circuit 2, it is assumed that the transistors T1 to T4 are all N-channel type polycrystalline silicon TFTs and have a threshold voltage of about 2V.
  • the diode D1 is also formed on the active matrix substrate 10 in the same manner as the transistors T1 to T4.
  • the diode D1 is realized by a PN junction made of polycrystalline silicon.
  • the pixel circuit 2A shown in FIGS. 7 to 8 is assumed according to the configuration of the first switch circuit 22.
  • FIG. 1 the pixel circuit 2A shown in FIGS. 7 to 8 is assumed according to the configuration of the first switch circuit 22.
  • the first switch circuit 22 is composed of only the transistor T3.
  • the second switch circuit 23 is configured by a series circuit of a diode D1 and a transistor T1, and as an example, the first terminal of the transistor T1 is connected to the internal node N1, and the second terminal of the transistor T1 is A configuration example is shown in which the cathode terminal of the diode D1 is connected and the anode terminal of the diode D1 is connected to the source line SL.
  • the arrangement of the transistor T1 and the diode D1 in the series circuit may be interchanged as shown in FIG. A circuit configuration in which the transistor T1 is sandwiched between the two diodes D1 is also possible.
  • a pixel circuit 2B shown in FIGS. 9 to 11 and a pixel circuit 2C shown in FIGS. 12 to 15 are assumed depending on the configuration of the first switch circuit 22.
  • the first switch circuit 22 includes only the transistor T3. Similar to the first type, in the configuration of the second switch circuit 23, a modified circuit corresponding to the arrangement of the diode D1 can be realized (for example, see FIGS. 10 and 11). In these circuits, the arrangement of the transistors T1 and T4 can be switched.
  • the first switch circuit 22 includes a series circuit of a transistor T3 and a transistor T4.
  • a modified circuit as shown in FIG. 13 is realized by changing the arrangement location of the transistor T4. Further, by providing a plurality of transistors T4, a modified circuit as shown in FIG. 14 can be realized.
  • the third type pixel circuit has a configuration in which the control terminal of the transistor T4 is connected to the boost line BST and the selection line SEL is not provided in the second type pixel circuit. Accordingly, the pixel circuit 2B shown in FIGS. 9 to 11 and the pixel circuit corresponding to the pixel circuit 2C shown in FIGS. 12 to 15 can be realized.
  • FIG. 16 shows a pixel circuit 2D corresponding to the pixel circuit 2B in FIG. 9, and FIG. 17 shows a pixel circuit 2E corresponding to the pixel circuit 2C in FIG.
  • the self-refresh operation is an operation in the constant display mode, and the first switch circuit 22, the second switch circuit 23, and the control circuit 24 are operated in a predetermined sequence for the plurality of pixel circuits 2, and the potential of the pixel electrode 20 is determined. (This is also the potential of the internal node N1) is restored to the gradation potential written in the previous writing operation, and all the gradation pixel circuits are restored simultaneously for each gradation. Is done.
  • the self-refresh operation is an operation peculiar to the present invention by the above-described pixel circuits 2A to 2E. Compared with the “external refresh operation” in which the normal write operation is performed to restore the potential of the pixel electrode 20 as in the prior art. Thus, low power consumption can be achieved. Note that “simultaneously” in the above “collectively” means “simultaneously” having a time width of a series of self-refresh operations.
  • all the pixel circuits are set to the same voltage application state.
  • the internal node N1 is set to a specific one under this voltage state. Only the pixel circuit showing the gradation voltage state is automatically selected, and the potential of the internal node N1 is restored (refreshed). That is, although voltage is applied to all the pixel circuits, there are actually pixel circuits in which the potential of the internal node N1 is refreshed and pixel circuits that are not refreshed at the time of the voltage application. .
  • the word “self-refresh (operation)” and the word “refresh (operation)” are consciously distinguished.
  • the former is used in a broad concept indicating a series of operations for restoring the potential of the internal node N1 of each pixel circuit.
  • the latter is used in a narrow concept indicating an operation of actually restoring the potential of the pixel electrode (the potential of the internal node).
  • the self-refresh operation in the present embodiment, only the internal node showing the voltage state of one specific gradation is automatically “refreshed” by setting all the pixel circuits to the same voltage state. It is a configuration.
  • the “self-refresh operation” in the present embodiment is configured to perform the “refresh operation” for each gradation.
  • All gate lines GL, source lines SL, reference lines REF, auxiliary capacitance lines CSL, boost lines BST, and counter electrodes 80 connected to the pixel circuit 2 to be subjected to the self-refresh operation are all subjected to voltage application at the same timing. Is called.
  • voltage is similarly applied to the selection line SEL.
  • the same voltage is applied to all the gate lines GL, the same voltage is applied to all the reference lines REF, and the same voltage is applied to all the auxiliary capacitance lines CSL.
  • the same voltage is applied to all boost lines BST.
  • the timing control of the voltage application is performed by the display control circuit 11 shown in FIG. 1, and each voltage application is performed by the display control circuit 11, the counter electrode drive circuit 12, the source driver 13, and the gate driver 14.
  • the potential VN1 (which is also the potential of the pixel electrode 20) held in the internal node N1 indicates three voltage states of the first to third voltage states.
  • the first voltage state high voltage state
  • the second voltage state medium voltage state
  • the third voltage state low voltage state
  • the refresh operation for all the pixel circuits can be performed by performing the voltage application process based on the same sequence regardless of the voltage state of the pixel electrode 20 written. Can be executed. This will be described with reference to timing diagrams and circuit diagrams.
  • the voltage (high level voltage) in the first voltage state is written in the immediately preceding write operation, and the case where the high level voltage is restored is referred to as “case H”.
  • the voltage state (medium level voltage) is written, and the case where the medium level voltage is restored is called “Case M”, and the third voltage state (low level voltage) is written in the previous write operation.
  • the case where the low level voltage is restored is called “Case L”.
  • the threshold voltage of each transistor is set to 2V.
  • the turn-on voltage of the diode D1 is 0.6V.
  • FIG. 18 shows a timing chart of the first type self-refresh operation. As shown in FIG. 18, the self-refresh operation is broken down into two steps S1 and S2, and step S1 further includes two phases P1 and P2.
  • FIG. 18 shows voltage waveforms of all the gate lines GL, source lines SL, boost lines BST, reference lines REF, auxiliary capacitance lines CSL, and boost lines BST connected to the pixel circuit 2A to be subjected to the self-refresh operation. The voltage waveform of the counter voltage Vcom is illustrated. In this embodiment, all the pixel circuits in the pixel circuit array are targeted for self-refresh operation.
  • waveforms indicating changes in the potential (pixel voltage) VN1 of the internal node N1 and the potential VN2 of the output node N2 in each of cases H, M, and L, and in each step and each phase of the transistors T1 to T3. Indicates an on / off state.
  • VN1 (H) is a waveform indicating a change in potential VN1 in case H.
  • the potential VN1 of the internal node N1 varies with the occurrence of a leakage current of each transistor in the pixel circuit.
  • VN1 was 5 V immediately after the write operation, but this value is lower than the initial value as time elapses.
  • VN1 was 3V immediately after the write operation, but this value is lower than the initial value as time elapses.
  • the potential of the internal node N1 gradually decreases with time mainly because a leak current flows toward a low potential (for example, a ground line) through an off-state transistor.
  • the potential VN1 was 0 V immediately after the write operation, but it may rise slightly with time. This is because, for example, when a write voltage is applied to the source line SL during a write operation to another pixel circuit, even in a non-selected pixel circuit, the internal line is connected to the internal node via the non-conductive transistor. This is because a leak current flows toward N1.
  • VN1 (H) is displayed slightly lower than 5V
  • VN1 (M) is displayed slightly lower than 3V
  • VN1 (L) is displayed slightly higher than 0V.
  • Step S1 corresponds to a “refresh step”
  • step S2 corresponds to a “standby step”.
  • step S1 a refresh operation for case H and case M is directly executed by applying a pulse voltage.
  • step S2 the refresh operation for case L is indirectly executed by applying a constant voltage over a longer time (eg, 10 times or more) than in step S1.
  • execution directly means that the internal node N1 and the source line SL are brought into conduction through the second switch circuit 23, whereby the voltage applied to the source line SL is applied to the internal node N1, and the internal node N1 is electrically connected. This indicates that the node potential VN1 is set to a target value.
  • “Indirectly executed” means that the internal node N1 and the source line SL are not electrically connected via the second switch circuit 23, but the internal node N1 and the source line are not electrically connected via the non-conductive first switch circuit 22. This indicates that the potential VN1 of the internal node N1 is brought close to the target value by using a leak current that flows slightly with respect to the SL.
  • each phase P1, P2 is different in which case H or case M is refreshed.
  • case H high voltage write
  • case M medium voltage write
  • phase P1 In phase P1 started from time t1, a voltage is applied to the gate line GL so that the transistor T3 is completely turned off. Here, it is -5V. Since the transistor T3 is always off during the self-refresh operation, the voltage applied to the gate line GL may be unchanged during the self-refresh operation.
  • the counter voltage Vcom applied to the counter electrode 80 and the voltage applied to the storage capacitor line CSL are set to 0V. This is not limited to 0V, and the voltage value at the time prior to time t1 may be maintained as it is. Note that these voltages may be unchanged during the execution of the self-refresh operation.
  • a voltage obtained by adding the turn-on voltage Vdn of the diode D1 to the target voltage of the internal node N1 to be restored by the refresh operation is applied to the source line SL.
  • the target voltage of internal node N1 is 5V. Accordingly, when the turn-on voltage Vdn of the diode D1 is 0.6V, 5.6V is applied to the source line SL.
  • the target voltage of the internal node N1 corresponds to the “refresh target voltage”
  • the turn-on voltage Vdn of the diode D1 corresponds to the “first adjustment voltage”
  • ⁇ refresh input voltage refresh target voltage + first adjustment voltage>.
  • the refresh input voltage is 5.6V.
  • the transistor T2 becomes non-conductive and refreshes.
  • the voltage state (gradation) lower than the target voltage state (gradation) is shown, a voltage that makes the transistor T2 conductive is applied.
  • the refresh target is the case H (first voltage state), and there is no voltage state higher than this, so the internal node N1 is in the first voltage state (case H) with respect to the reference line REF. Only in such a case, a voltage is applied so that the transistor T2 becomes non-conductive, and the transistor T2 becomes conductive in the second voltage state (case M) and the third voltage state (case L).
  • the transistor T2 in the case H is a target in the phase P1 becomes conducting. Therefore, a voltage between 5V and 7V may be applied to the reference line REF.
  • the transistor T2 When applying 6.5V to the reference line REF, the potential VN1 of the internal node N1 is in the pixel circuit described above 4.5V, the transistor T2 becomes non-conductive. On the other hand, in the pixel circuit in which VN1 is lower than 4.5V, the transistor T2 becomes conductive.
  • the internal node N1 of case H written to 5V in the immediately preceding write operation executes this self-refresh operation within a time period that does not drop by 0.5V or more due to the occurrence of leakage current, thereby realizing VN1 of 4.5V or more. Therefore, the transistor T2 becomes nonconductive.
  • the internal node N1 of the case M written to 3V by the previous write operation and the internal node N1 of the case L written to 0V do not become 4.5V or more over time.
  • the transistor T2 becomes conductive.
  • the value obtained by subtracting the threshold voltage Vt2 of the transistor T2 from the voltage Vref applied to the reference line REF is equal to the internal node potential VN1 in the case H that is the target of the refresh operation in this phase. It is necessary to be located between internal node potential VN1 in case M where the stepped voltage state is low.
  • the voltage Vref applied to the reference line REF needs to be a value that satisfies the condition of 3V ⁇ (Vref ⁇ Vt2) ⁇ 5V.
  • the voltage of Vref ⁇ Vt2 corresponds to “refresh isolation voltage”
  • Vt2 corresponds to “second adjustment voltage”
  • Vref corresponds to “refresh reference voltage”.
  • the “refresh reference voltage” applied to the reference line REF in the phase P1 is equal to the voltage state (grayscale) that is the object of the refresh operation and one more than that. This corresponds to a voltage value obtained by adding a “second adjustment voltage” corresponding to the threshold voltage of the transistor T2 to the “refresh separation voltage” defined by the intermediate voltage between the lower voltage states (grayscales).
  • the boost line BST is within the range where the transistor T1 is turned on in the case H where the transistor T2 is turned off as described above, and the transistor T1 is turned off in the cases M and L where the transistor T2 is turned on. Apply a voltage of.
  • the boost line BST is connected to one end of the boost capacitor element Cbst. Therefore, when a high level voltage is applied to the boost line BST, the potential at the other end of the boost capacitor element Cbst, that is, the potential VN2 at the output node N2 is pushed up. In this way, raising the potential of the output node N2 by increasing the voltage applied to the boost line BST is hereinafter referred to as “boost pushing up”.
  • the potential fluctuation amount of the node N2 due to boost boosting is determined by the ratio of the boost capacitance Cbst and the total capacitance parasitic on the node N2. As an example, if this ratio is 0.7, if one electrode of the boost capacitor increases by ⁇ Vbst, the other electrode, that is, the node N2, increases by approximately 0.7 ⁇ Vbst.
  • the potential VN1 (H) of the internal node N1 at the time t1 is approximately 5V. If a potential higher than the threshold voltage 2V than VN1 (H) is applied to the gate of the transistor T1, that is, the output node N2, the transistor T1 is turned on. In the present embodiment, the voltage applied to the boost line BST at time t1 is 10V. In this case, the potential of the output node N2 rises by 7V. As will be described later in the fifth embodiment, in the write operation, since the transistor T2 is turned on, the node N2 has substantially the same potential (5 V) as the node N1 immediately before the time t1. As a result, the potential of the node N2 shows about 12V by boosting up. Therefore, since a potential difference equal to or higher than the threshold voltage is generated between the gate and the node N1 in the transistor T1, the transistor T1 is turned on.
  • the output node N2 and the internal node N1 are electrically connected.
  • the potential fluctuation amount of the output node N2 due to boost boosting is affected by the total parasitic capacitance of the internal node N1 in addition to the boost capacitance Cbst and the total parasitic capacitance of the node N2.
  • One end of the auxiliary capacitive element Cs and one end of the liquid crystal capacitive element Clc are connected to the internal node N1, and the total capacitance Cp parasitic on the internal node N1 is substantially represented by the sum of the liquid crystal capacitance Clc and the auxiliary capacitance Cs.
  • the boost capacitance Cbst is much smaller than the liquid crystal capacitance Cp. Therefore, the ratio of the boost capacity to the total capacity is extremely small, for example, a value of about 0.01 or less.
  • the potential VN2 (M) shows almost 3V just before the time t1. Further, in case L, VN2 (L) shows almost 0V just before time t1. Therefore, in both cases, even if boost boosting is performed at time t1, a potential sufficient to make the transistor conductive is not applied to the gate of the transistor T1. That is, unlike the case H, the transistor T1 is still non-conductive.
  • the potential of the output node N2 immediately before time t1 does not necessarily have to be 3V and 0V, respectively, taking into account slight potential fluctuations accompanying application of the pulse voltage to the boost line BST.
  • any potential may be used as long as the transistor T1 does not conduct.
  • the potential of the node N1 immediately before the time t1 is not necessarily 5 V, and the transistor T1 is considered in consideration of potential fluctuation caused by boost boosting under the non-conducting state of the transistor T2. Any potential may be used as long as it is conductive.
  • the transistor T1 is turned on by boost boosting.
  • VN1 (H) of the internal node N1 is slightly lowered from 5 V, there is a diode between the source line SL and the internal node N1.
  • a potential difference equal to or higher than the turn-on voltage Vdn of D1 is generated. Therefore, the diode D1 becomes conductive in the direction from the source line SL toward the internal node N1, and a current flows from the source line SL toward the internal node N1.
  • the potential VN1 (H) of the internal node N1 rises.
  • the refresh operation is performed on the pixel circuit in which the potential of the internal node N1 is not less than the refresh isolation voltage and not more than the refresh target voltage.
  • phase P1 voltage application to the source line SL, boost line BST, and reference line REF is temporarily stopped. Thereafter, the process proceeds to the next phase P2 from time t2.
  • Step S1 / Phase P2 In phase P2 started from time t2, case M (medium voltage write node) is the refresh target.
  • 3.6 V is applied to the source line SL as the refresh input voltage.
  • This 3.6V is a value obtained by adding the turn-on voltage Vdn of the diode D1 to the refresh target voltage (3V) of the internal node N1 in the phase P2.
  • the transistor T2 When the reference node REF indicates a voltage state (case M) in which the internal node N1 is to be refreshed and a voltage state higher than that (case H), the transistor T2 becomes non-conductive, When the voltage state (case L) is lower than the voltage state (case M), a voltage is applied so that the transistor T2 becomes conductive. Considering the same as in the case of the phase P1, the transistor T2 in the case L can be turned on by applying a voltage higher than 2V to the reference line REF. On the other hand, when a voltage higher than 5 V is applied to the reference line REF, the transistor T2 in the case M is also turned on. Therefore, formally, a voltage between 2 V and 5 V may be applied to the reference line REF.
  • 4.5 V is applied here as an example.
  • This 4.5V corresponds to the refresh reference voltage in the phase P2
  • 2.5V which is a value reduced by the threshold voltage of the transistor T2 corresponds to the refresh isolation voltage.
  • the transistor T2 becomes non-conductive.
  • the transistor T2 becomes conductive in the pixel circuit in which VN1 is lower than 2.5V. That is, in the case H written in 5V and the case M written in 3V by the immediately preceding write operation, VN1 is 2.5V or more in both cases, so that the transistor T2 becomes non-conductive.
  • the transistor T2 becomes conductive because VN1 is lower than 2.5V.
  • the boost line BST is applied with a voltage within a range in which the transistor T1 is turned on in the cases H and M where the transistor T2 is turned off and the transistor T1 is turned off in the case L where the transistor T2 is turned on. To do. Here, it is set to 10 V similarly to the phase P1. In cases H and M, the potential at the output node N2 is boosted by boost boost, so that the transistor T1 is turned on. In case L, the potential VN2 (L) of the output node N2 hardly changes even when boost boost is performed. Transistor T1 does not conduct. This principle is the same as in phase P1, and detailed description thereof is omitted.
  • the transistor T1 is turned on by boost boosting. However, 3.6 V is applied to the source line SL. Even if the potential VN1 (H) of the internal node N1 slightly decreases from 5V, the decrease is less than 1V. Then, the source line SL is in a reverse bias state from the source line SL toward the internal node N1, and the source line SL and the internal node N1 are not conducted by the rectifying action of the diode D1. That is, the potential VN1 (H) of the internal node N1 is not affected by the voltage applied to the source line SL.
  • the transistor T1 is turned on by boost boosting. Since 3.6 V is applied to the source line SL, if the potential VN1 (M) of the internal node N1 is slightly lowered from 3 V, the diode D1 is connected between the source line SL and the internal node N1. A potential difference equal to or higher than the turn-on voltage Vdn is generated. Therefore, the diode D1 becomes conductive in the direction from the source line SL toward the internal node N1, and a current flows from the source line SL toward the internal node N1.
  • the source line SL and the internal node N1 are not conductive. Therefore, the voltage applied to the source line SL does not affect the potential of VN1 (L) of the internal node N1.
  • the potential VN1 of the internal node N1 is 2.5V to 3V. Only, that is, only in case M, the operation of refreshing the potential VN1 to 3V is performed.
  • Step S2 In step S2 started from time t3, a voltage is applied to the reference line REF so that the transistor T2 is always turned on regardless of the potential VN1 of the internal node N1. Here, it is set to 10V. The other signal lines continue to be in the same voltage state as at the end of phase P2.
  • This step S2 maintains the same voltage state for a sufficiently longer time than step S1.
  • a leakage current is generated in the direction from the internal node N1 toward the source line SL via the non-conductive transistor T3.
  • VN1 (L) is slightly higher than 0V at time t1
  • VN1 (L) gradually approaches 0V over the period of this standby step S2.
  • the refresh operation of Case L is performed “indirectly”.
  • the occurrence of this leakage current is not limited to the case L, but also occurs in the case H and case M.
  • VN1 is refreshed to 5 V and 3 V, respectively, immediately after step S1, but VN1 gradually decreases in step S2. Therefore, it is desirable to execute the refresh operation for each of the cases H and M again by executing the refresh step S1 again when the voltage state of the standby step S2 has elapsed for a certain time.
  • the potential VN1 of the internal node N1 can be returned to the previous write state for each of the cases H, M, and L.
  • each source line SL needs to be charged and discharged a maximum of n times. To do.
  • the pulse voltage is applied in two steps in the refresh step S1, and the voltage state of the internal node N1 is only maintained in the subsequent standby step.
  • the potential of the internal node N1 that is, the voltage of the pixel electrode 20
  • the control content can be simplified. .
  • the power consumption of the gate driver 14 and the source driver 13 can be greatly reduced.
  • the turn-on voltage Vdn is more than the number of diodes D1 in the second switch circuit 23 from the source line SL toward the internal node N1. If there is no potential difference, the source line SL and the internal node N1 do not conduct. Therefore, for example, in the case where two diodes D1 are provided in the second switch circuit 23, the refresh input voltage applied to the source line SL is set to a refresh target voltage for each case that is twice the turn-on voltage Vdn. It is necessary to apply a voltage having a magnitude added as the first adjustment voltage. In other respects, the self-refresh operation can be executed in the same manner as in FIG.
  • step S1 and step S2 are not a meaningful discussion considering that steps S1 and S2 are repeated.
  • step S2 a high level voltage (10 V) was applied to the reference line REF from time t3 to t4. This voltage application is performed only to make the potential VN2 of the output node N2 equal to the potential VN1 of the internal node N1. Therefore, the high level voltage may be applied to the reference line REF at any timing within the period of step S2.
  • the source line SL and the reference line REF are once lowered to a low level (0 V), and then the refresh operation of the phase P2 is performed.
  • the voltage applied to these lines does not necessarily have to be lowered to a low level.
  • the source line SL and the reference line REF are applied in the phase P2 during the phases P1 and P2, that is, while the level of the boost line BST is lowered to the low level (0 V). It may be set to a power value. By doing in this way, compared with the case of FIG. 18, the fluctuation range of the applied voltage to the source line SL and the reference line REF can be reduced.
  • a refresh operation is performed on the node N1 of the case H (P1), and after passing through the standby step S2, the node N1 of the case M is refreshed in the next refresh step S1 of the term T2.
  • a refresh operation is performed (P2). In this way, the gradation to be refreshed may be changed for each term.
  • the source line SL and the internal node N1 are made conductive through the second switch circuit 23 only during the refresh step S1.
  • the diode D1 or the transistor T1 is controlled so that only the case subject to the refresh operation is turned on. In other cases, the diode D1 is reverse-biased or the transistor T1 is turned off. As a result, the second switch circuit 23 is turned off. In this respect, there is no change in the second type.
  • a transistor T4 is provided, but a selection line SEL for controlling the conduction state of the transistor T4 is provided separately from the boost line BST. Therefore, if a voltage is applied to the selection line SEL so that the transistor T4 is always in a conducting state during the refresh step S1, the same voltage state as that of the first type can be realized.
  • a timing chart in this case is shown in FIG.
  • the voltage applied to the selection line SEL is 10V.
  • the voltage may be applied in a pulsed manner to the selection line SEL at the same timing as the boost voltage is applied to the boost line BST.
  • a timing chart in this case is shown in FIG.
  • Each pixel circuit belonging to the third type has a configuration in which, for each pixel circuit belonging to the second type, the connection destination of the control terminal of the transistor T4 is changed to the boost line BST and the selection line SEL is not provided. Therefore, unlike the second type pixel circuit, the conduction control of the transistor T4 depends on the boost line BST.
  • the self-refresh operation can be executed also for the pixel circuit 2D in FIG. This also applies to the pixel circuit 2E in FIG. Detailed explanation is omitted.
  • step S1 it is necessary to apply a pulse voltage to the boost line BST in the phase P1 and the phase P2.
  • step S1 a high level voltage is applied to the boost line BST from phase P1 to phase P2. This reduces the number of changes in voltage applied to the boost line BST is in step S1, is that it is possible to reduce the power consumption of the self refresh operation.
  • this operation will be described in detail.
  • Step S1 / Phase P1 In the phase P1, the write node N1 (M) in the case M (medium voltage state) is to be refreshed.
  • step S1 started from time t1, a voltage is applied to the gate line GL so that the transistor T3 is completely turned off. Here, it is -5V. Since the transistor T3 is always off during the self-refresh operation, the voltage applied to the gate line GL may be unchanged during the self-refresh operation.
  • the counter voltage Vcom applied to the counter electrode 80 and the voltage applied to the storage capacitor line CSL are set to 0V. This is not limited to 0V, and the voltage value at the time prior to time t1 may be maintained as it is. Note that these voltages may be unchanged during the execution of the self-refresh operation.
  • the transistor T2 becomes non-conductive and refreshes. It applies a voltage such that the transistor T2 is conductive to indicate the low state (low gradation) than voltage state (gradation) of interest.
  • the refresh target is the second voltage state (case M)
  • the transistor when the internal node N1 is in the second voltage state (case M) and the first voltage state (case H) with respect to the reference line REF. A voltage is applied so that T2 becomes non-conductive and the transistor T2 becomes conductive in the third voltage state (case L).
  • the transistor T2 in the case L can be turned on by applying a voltage higher than 2V to the reference line REF.
  • a voltage higher than 5 V is applied to the reference line REF
  • the transistor T2 in the case M that is the target in the phase P1 is also turned on. Therefore, a voltage between 2V and 5V may be applied to the reference line REF. In the example of FIG. 23, 4.5 V is applied to the reference line REF.
  • the transistor T2 When applying 4.5V to the reference line REF, the potential VN1 of the internal node N1 is in the pixel circuit described above 2.5V, the transistor T2 becomes non-conductive. On the other hand, in the pixel circuit in which VN1 is lower than 2.5V, the transistor T2 becomes conductive.
  • the internal node N1 of the case M written to 3V in the immediately preceding write operation performs this self-refresh operation within a time that does not drop by 0.5V or more due to the occurrence of leakage current, thereby realizing VN1 of 2.5V or more. Therefore, the transistor T2 becomes nonconductive. Further, the internal node N1 of case H written to 5V in the immediately preceding write operation realizes VN1 of 2.5V or more for the same reason, so that the transistor T2 becomes non-conductive. On the other hand, the internal node N1 of the case L written to 0V by the immediately preceding write operation does not become 2.5V or more over time, and the transistor T2 becomes conductive.
  • a voltage obtained by adding the turn-on voltage Vdn of the diode D1 to the target voltage of the internal node N1 to be restored by the refresh operation is applied to the source line SL (time t2).
  • the refresh target is case M, so the target voltage of the internal node N1 is 3V.
  • the turn-on voltage Vdn of the diode D1 is 0.6V, 3.6V is applied to the source line SL.
  • the time t1 at which 4.5 V is applied to the reference line REF and the time t2 at which 3.6 V is applied to the source line SL may be the same time.
  • the target voltage of the internal node N1 corresponds to the “refresh target voltage”
  • the turn-on voltage Vdn of the diode D1 corresponds to the “first adjustment voltage”
  • the voltage actually applied to the source line SL in the refresh step S1 is “ Corresponds to the "refresh input voltage”.
  • this refresh input voltage is 3.6V.
  • the boost line BST has a range in which the transistor T1 is turned on in the case M and the case H in which the transistor T2 is turned off as described above, and the transistor T1 is turned off in the case L in which the transistor T2 is turned on. Is applied (time t3).
  • the boost line BST is connected to one end of the boost capacitor element Cbst. Therefore, when applying a high level voltage to the boost line BST, the potential of the other end of the boost capacitor element Cbst, that is, the potential of the output node N2 pushed up.
  • the transistor T2 is non-conductive in the phase P1.
  • the potential fluctuation amount of the node N2 due to boost boosting is determined by the ratio of the boost capacitance Cbst and the total capacitance parasitic on the node N2. As an example, if this ratio is 0.7, if one electrode of the boost capacitor increases by ⁇ Vbst, the other electrode, that is, the node N2, increases by approximately 0.7 ⁇ Vbst.
  • the potential VN1 (M) of the internal node N1 at the time t1 is approximately 3V.
  • VN1 (M) a potential higher than the threshold voltage 2V by VN1 (M) is applied to the gate of the transistor T1, that is, the output node N2, the transistor T1 becomes conductive.
  • the voltage applied to the boost line BST at time t1 is 10V.
  • the output node N2 rises by 7V.
  • the node N2 since the transistor T2 is turned on, the node N2 has substantially the same potential (about 3 V) as the node N1 at a time immediately before the time t1. Thereby, the node N2 shows about 10V by boosting up. Therefore, since a potential difference equal to or higher than the threshold voltage is generated between the gate and the node N1 in the transistor T1, the transistor T1 is turned on.
  • the transistor T1 is turned on.
  • the output node N2 and the internal node N1 are electrically connected.
  • the potential fluctuation amount of the output node N2 due to boost boosting is affected by the total parasitic capacitance of the internal node N1 in addition to the boost capacitance Cbst and the total parasitic capacitance of the node N2.
  • One end of the auxiliary capacitive element Cs and one end of the liquid crystal capacitive element Clc are connected to the internal node N1, and the total capacitance Cp parasitic on the internal node N1 is substantially represented by the sum of the liquid crystal capacitance Clc and the auxiliary capacitance Cs. It is.
  • the boost capacitance Cbst is much smaller than the liquid crystal capacitance Cp. Therefore, the ratio of the boost capacity to the total capacity is extremely small, for example, a value of about 0.01 or less.
  • VN2 (L) shows almost 0V just before time t1. Therefore, even if boost boosting is performed at time t1, a potential sufficient to make the transistor conductive is not applied to the gate of the transistor T1. That is, unlike the case M, the transistor T1 is still non-conductive.
  • boost push-up causes transistor T1 to conduct.
  • VN1 (M) of the internal node N1 is slightly lowered from 3 V, there is a diode between the source line SL and the internal node N1.
  • a potential difference equal to or higher than the turn-on voltage Vdn of D1 is generated. Therefore, the diode D1 becomes conductive in the direction from the source line SL toward the internal node N1, and a current flows from the source line SL toward the internal node N1.
  • the potential VN1 (M) of the internal node N1 rises.
  • the boost is pushed up so that the transistor T1 becomes conductive.
  • 3.6 V is applied to the source line SL.
  • the potential VN1 (H) of the internal node N1 slightly decreases from 5V, the decrease is less than 1V.
  • the source line SL is in a reverse bias state from the source line SL toward the internal node N1, and the source line SL and the internal node N1 are not conducted by the rectifying action of the diode D1. That is, the potential VN1 (H) of the internal node N1 is not affected by the voltage applied to the source line SL.
  • phase P1 a refresh operation is performed on a pixel circuit in which the potential of the internal node N1 is equal to or higher than the refresh isolation voltage and equal to or lower than the refresh target voltage.
  • Step S1 / Phase P2 In phase P2, the write node N1 (H) in case H (high voltage state) is to be refreshed.
  • the applied voltage to the boost line BST is continuously 10V from the phase P1.
  • the transistor T2 in the case M can be turned on.
  • the transistor T2 in the case L is also in a conductive state.
  • the transistor T2 becomes non-conductive.
  • the transistor T2 becomes conductive in the pixel circuit in which VN1 is lower than 4.5V. That is, in the case H where 5V is written by the immediately preceding write operation, the transistor T2 becomes non-conductive because VN1 is 4.5V or more.
  • the transistor T2 becomes conductive because VN1 is lower than 4.5V.
  • a voltage obtained by adding the turn-on voltage Vdn of the diode D1 to the target voltage of the internal node N1 to be restored by the refresh operation is applied to the source line SL (time t5).
  • the target voltage of the internal node N1 is 5V. Accordingly, when the turn-on voltage Vdn of the diode D1 is 0.6V, 5.6V is applied to the source line SL.
  • the time t5 at which 5.6 V is applied to the source line SL needs to be later than the time t4 at which 6.5 V is applied to the reference line REF.
  • the transistor T2 continues to be in a non-conductive state from the phase P1, and the potential of the internal node N2 maintains the state of the phase P1, so that the transistor T1 becomes conductive.
  • VN1 (H) of the internal node N1 is slightly lowered from 5 V
  • a diode D1 is interposed between the source line SL and the internal node N1.
  • a potential difference equal to or higher than the turn-on voltage Vdn is generated. Therefore, the diode D1 becomes conductive in the direction from the source line SL toward the internal node N1, and a current flows from the source line SL toward the internal node N1.
  • the potential VN2 (M) of the node N2 is about 12 V, and VN1 (M) is 3 V.
  • the transistor T2 conducts in the direction from the node N2 toward N1, and a current is generated in this direction.
  • the parasitic capacitance of the node N1 is much larger than the parasitic capacitance of the node N2, the potential of the node N2 is lowered by this current generation, while the potential of the node N1 is not changed.
  • the node N2 is lowered in potential until it becomes the same potential as the node N1 (that is, 3 V), and then the potential drop is stopped. At this time, since the refresh operation is already performed in the phase P1 in the case M, the potential VN2 (M) of the node N2 becomes the same potential as VN1 (M) after the refresh operation.
  • the transistor T1 When the potential of the node N2 falls below a voltage obtained by adding the threshold voltage (2V) of the transistor T1 to the potential of the node N1 (that is, 5V), the transistor T1 becomes non-conductive. As described above, since the node N2 becomes the same potential as the node N1 and stops changing the potential, the transistor T1 continues to be non-conductive thereafter. Therefore, even if 5.6 V is applied to the source line SL under this state, this voltage is not supplied to the node N1 (M) via the transistor T1. That is, the voltage (5.6 V) applied to the source line SL in the phase P2 does not affect the potential VN1 (M) of the internal node N1.
  • the transistor T1 when 5.6 V is applied to the source line SL at time t5, in order to prevent this voltage from being supplied to the internal node N1 of the case M, the transistor T1 is turned off at time t5.
  • the condition is that it is conductive.
  • the transistor T1 of the case M In the stage immediately before applying 6.5V to the reference line REF, the transistor T1 of the case M is conductive. To make this non-conductive, after applying 6.5V to the reference line REF, the node N2
  • the condition is that the potential VN2 is at least below 5V.
  • the refresh operation is performed on the pixel circuit in which the potential of the internal node N1 is equal to or higher than the refresh isolation voltage and equal to or lower than the refresh target voltage.
  • time t6 voltage application to the boost line BST is stopped (time t6), a high voltage (here, 10V) is applied to the reference line REF, and the transistor T2 is turned on in each case H, M, and L. (Time t7). Then, voltage application to the source line SL is stopped (time t8). Note that the order of the times t6 to t8 is not limited to this order, and may be executed at the same time.
  • Step S2 After time t8, the process proceeds to step S2 in which the standby state is maintained in the voltage state (time t8 to t9). At this time, since a high voltage is applied to the reference line REF, the potentials of the nodes N1 and N2 indicate the same potential in each case H, M, and L. The point that the standby step S2 is secured for a sufficiently longer time than the reference step S1 is the same as in the second embodiment.
  • the number of voltage fluctuations to the boost line BST can be suppressed as compared with the case of the second embodiment shown in FIG. It is possible to further reduce power consumption.
  • the above description applies to the modified pixel circuit shown in FIG. 8 in addition to the pixel circuit 2A shown in FIG.
  • the order of the refresh operation of the case H and the case M can be switched.
  • the number of voltage fluctuations to the boost line BST is one.
  • the case H needs to be refreshed after the case M refresh operation and cannot be performed in the reverse order. This is because, if 10 V is first applied to the boost line BST to perform the refresh operation of case H, the potential of the node N2 of case M does not rise, so that the refresh operation of case M is performed again to the boost line BST. This is because it is necessary to cause voltage fluctuation.
  • 10 V voltage at which the transistor T2 is turned on regardless of the cases H, M, and L
  • 10 V voltage at which the transistor T2 is turned on regardless of the cases H, M, and L
  • the transistor T2 may be turned off by applying 0 V to the reference line REF.
  • a voltage as in the present embodiment fluctuations in the voltage applied to the reference line REF can be suppressed.
  • ⁇ Type 2> In the case of the second type pixel circuit 2B shown in FIG. 9, the transistor T4 is provided, but a selection line SEL for controlling the conduction state of the transistor T4 is provided separately from the boost line BST. Therefore, if a voltage is applied to the selection line SEL so that the transistor T4 is always in a conducting state during the refresh step S1, the same voltage state as that of the first type can be realized.
  • a timing chart in this case is shown in FIG.
  • the voltage applied to the selection line SEL is 10V.
  • the voltage may be applied in a pulsed manner to the selection line SEL at the same timing as the boost voltage is applied to the boost line BST.
  • a timing chart in this case is shown in FIG.
  • the pixel circuits 2D and 2E belonging to the third type have a configuration in which, with respect to the pixel circuits belonging to the second type, the connection destination of the control terminal of the transistor T4 is changed to the boost line BST and the selection line SEL is not provided. . Therefore, unlike the second type pixel circuit, the conduction control of the transistor T4 depends on the boost line BST.
  • the self-refresh operation can be performed also on the pixel circuit 2D in FIG. This also applies to the pixel circuit 2E in FIG. Detailed explanation is omitted.
  • the self-refresh operation can be performed also by the method of the third embodiment, but if this method is repeatedly executed, the following problems may be caused.
  • problems that can be assumed when the self-refresh operation is executed by the method of the third embodiment can be solved.
  • FIG. 26 is a timing diagram exaggerating the problems that may occur when the self-refresh operation exactly the same as that in FIG. 23 is performed.
  • the voltage applied to the reference line REF or the boost line BST is raised or lowered.
  • potential fluctuations at the nodes N1 and N2 may occur due to the parasitic capacitance of the transistor (particularly T2) in the pixel circuit.
  • this potential variation becomes a level that cannot be ignored, and as a result, there may be a case where the refresh is not correctly performed. This point will be described below.
  • the applied voltage to the source line SL is set to 3.6 V at time t2
  • the applied voltage to the boost line BST is increased to 10 V at time t3.
  • the potential of the node N2 is greatly increased.
  • the voltage applied to the reference line REF is increased to 6.5V.
  • the potential values of the nodes N1 and N2 slightly increase in each case.
  • the nodes N1 and N2 are both at an intermediate potential between VN1 (M) and VN2 (M) at the time immediately before time t4.
  • the parasitic capacitance of the node N1 is sufficiently larger than that of the node N2, it is actually attracted to the potential VN1 (M) of the node N1, but the time t4
  • the value slightly increases from the value of VN1 (M) at the previous time point. That is, after time t4, VN1 (M) and VN2 (M) show values slightly increased from 3V.
  • the voltage applied to the boost line BST is reduced to 0V.
  • the potential of the node N2 is greatly pushed down.
  • the non-conducting transistor T2 functions as a capacitor, so that the potential of the node N1 (H) is slightly lowered.
  • the voltage applied to the reference line REF is increased to 10V.
  • the potential of the node N1 slightly increases.
  • the transistor T2 is turned on by applying 10 V to the REF line, the potential of the node N2 becomes equal to the potential of the node N1.
  • VN1 (M) slightly rises at time t4 even though VN1 (M) is refreshed to 3V at time t3. Thereafter, VN1 (M) decreases as the voltage applied to the BST line at time t6 decreases, but VN1 (M) increases slightly again as the voltage applied to the REF line increases at time t7. As a result, at the end of the refresh, VN1 (M) becomes a potential slightly higher than 3V (see arrow E1 in FIG. 26).
  • the self-refresh operation in the present embodiment applies a voltage in a sequence that is partially different from that in the third embodiment.
  • FIG. 27 is a timing chart showing the self-refresh operation of this embodiment. Similarly to FIG. 26, a case where a self-refresh operation is performed on the pixel circuit 2A of FIG. 7 will be described as an example.
  • the REF line changes in potential fluctuations at the nodes N1 and N2 due to the parasitic capacitance accompanying the change in the voltage applied to the BST line. Is considered.
  • the voltage applied to the source line SL is slightly increased as compared with the case of FIG. Here, 5.7V, which is 0.1V higher.
  • VN1 (H) shows a value that is reduced from 5.7V by the turn-on voltage (here, 0.6V) of the diode D1, that is, 5.1V. That is, the potential is slightly higher than the refresh target voltage of 5V.
  • VN2 (H) and the potentials of the nodes N1 and N2 in other cases are the same as those in FIG.
  • the voltage applied to the REF line is reduced from 6.5V to 0V.
  • the potentials of the nodes N1 and N2 slightly decrease, and the transistor T2 is turned off.
  • VN1 (H) of the node N1 slightly decreases for the opposite reason that VN1 (H) increases at time t3.
  • VN2 (H) of the node N2 is greatly pushed down as the voltage applied to the BST line is lowered because the transistor T2 is non-conductive at the time t6.
  • VN2 (H) drops to a potential slightly lower than 5V at time t7.
  • VN2 (M) indicated 3V at time t7, and thus when the BST line decreases by 10V, a negative potential lower than 0V is indicated.
  • the transistor T2 becomes conductive from the node N1 to the node N2, and VN2 (M) rises.
  • the threshold voltage of the transistor T2 is 2V
  • the potential of VN2 (M) rises to -2V, which is 2V lower than the applied voltage 0V to the REF line, which is the gate potential. This is maintained.
  • Case L shows the same behavior as Case M for both the potentials of nodes N1 and N2.
  • VN1 (L) of the node N1 it decreases slightly for the same reason as VN1 (H), and becomes a value slightly lower than 0V.
  • VN2 (L) of the node N2 although the potential decreases instantaneously, the transistor T2 becomes conductive after that and VN2 (L) increases.
  • VN2 (M) after the potential rises to ⁇ 2V, which is 2V lower than the applied voltage 0V to the REF line, which is the gate potential, this is maintained.
  • VN1 (H) which was slightly lower than 5V at the time immediately before time t8, rose to 5V
  • VN1 (M) which was slightly lower than 3V, increased to 3V
  • VN1 (L) which was slightly lower than 0V (L ) rises to 0V.
  • the increase in the voltage applied to the REF line causes the transistor T2 to conduct in each case H, M, and L, and the potential VN2 of the node N2 changes in the direction of the potential VN1 of the node N1. That is, VN2 also rises to a potential equal to VN1.
  • the voltage applied to the REF line is once lowered at time t6 in the previous stage of time t8 when the operation of increasing the voltage applied to the REF line is performed. While T2 is in a non-conducting state, an operation is performed to reduce the voltage applied to the BST line at time t7. For this reason, VN1 (M) shows a potential slightly lower than the refresh target voltage 3V at the time immediately before the voltage applied to the REF line is increased at time t8, and therefore the voltage applied to the REF line at time t8. Increases, VN1 (M) increases slightly to reach the target of 3V.
  • the voltage applied to the source line SL at time t5 is set to a value slightly higher than the value obtained by adding the diode turn-on voltage to the refresh target voltage in case H (here, 5.6 V). .
  • VN1 (H) is set to be slightly higher than the target potential in advance in anticipation that VN1 (H) decreases as the voltage applied to the REF line is decreased from 6.5V to 0V at time t6. It is to keep.
  • the pixel data for one frame is divided into display lines in the horizontal direction (row direction), and each pixel data for one display line is divided into the source line SL in each column for each horizontal period.
  • a voltage corresponding to is applied.
  • the pixel data is assumed to have three gradations. That is, a high level voltage (5 V), a medium level voltage (3 V), or a low level voltage (0 V) is applied to the source line SL.
  • the selected row voltage 8V is applied to the gate line GL of the selected display line (selected row), and the first switch circuits 22 of all the pixel circuits 2 in the selected row are turned on, and the source of each column
  • the voltage of the line SL is transferred to the internal node N1 of each pixel circuit 2 in the selected row.
  • a non-selected row voltage of ⁇ 5 V is applied to the gate lines GL other than the selected display line (non-selected row) in order to turn off the first switch circuits 22 of all the pixel circuits 2 in the selected row.
  • the display control circuit 11 controls the voltage application timing of each signal line in the write operation described below. The individual voltage application is performed by the display control circuit 11, the counter electrode drive circuit 12, the source driver 13, and the gate. This is done by the driver 14.
  • FIG. 28 shows a timing diagram of a write operation using the first type pixel circuit 2A (FIG. 7).
  • voltage waveforms of two gate lines GL1, GL2, two source lines SL1, SL2, reference line REF, auxiliary capacitance line CSL, boost line BST and voltage waveform of the counter voltage Vcom in one frame period Is illustrated.
  • waveforms of the potential VN1 of the internal node N1 of the four pixel circuits 2A are displayed together.
  • These four pixel circuits 2A include a pixel circuit 2A (a) selected by the gate line GL1 and the source line SL1, a pixel circuit 2A (b) selected by the gate line GL1 and the source line SL2, and a gate line GL2, respectively.
  • the internal node potential VN1 is distinguished from each other by adding (a) to (d).
  • FIG. 28 illustrates the voltage change of the two gate lines GL1 and GL2 in the first two horizontal periods.
  • the selected row voltage 8V is applied to the gate line GL1
  • the unselected row voltage -5V is applied to the gate line GL2.
  • the selected row voltage 8V is applied to the gate line GL1.
  • a non-selected row voltage of -5V is applied, and in the subsequent horizontal period, a non-selected row voltage of -5V is applied to both gate lines GL1, GL2.
  • the voltage (5V, 3V, 0V) corresponding to the pixel data of the display line corresponding to each horizontal period is applied to the source line SL of each column.
  • two source lines SL1 and SL2 are shown on behalf of each source line SL.
  • the voltages of the two source lines SL1 and SL2 in the first two horizontal periods are divided into 5V, 3V, and 0V.
  • a ternary voltage corresponding to the pixel data is applied.
  • “D” is displayed to indicate that the voltage value depends on the data.
  • each pixel circuit 2A (a) to (d) at the time immediately before the writing operation has 2A (a) of approximately 0V (low voltage state), 2A (b) and 2A (c) of approximately 2A (a). It is assumed that 3V (medium voltage state) and 2A (d) are written to approximately 5V (high voltage state). Note that “substantially” here is a description that takes into account potential changes over time due to leakage current and the like, as described above in the second embodiment.
  • the pixel circuit 2A (a) is written from 0V to 5V
  • 2A (b) is written from 3V to 0V
  • 2A (c) is continuously written with 3V
  • 2A (d ) Is written from 5V to 3V.
  • a voltage is applied to the reference line REF so that the transistor T2 is always on regardless of the voltage state of the internal node N1.
  • it was set to 8V.
  • This voltage may be larger than the value obtained by adding the threshold voltage (2V) of the transistor T2 to the potential VN1 (5V) of the internal node N1 written in the high voltage state.
  • the output node N2 and the internal node N1 are electrically connected, and the auxiliary capacitance element Cs connected to the internal node N1 can be used for stabilizing the internal node potential VN1.
  • a low level voltage (0 V here) is applied to the boost line BST.
  • the auxiliary capacitance line CSL is fixed to a predetermined fixed voltage (for example, 0 V).
  • the counter voltage Vcom is subjected to the above-described counter AC drive, but is fixed to either the high level voltage (5 V) or the low level voltage (0 V) during one frame period. In FIG. 28, the counter voltage Vcom is fixed to 0V.
  • a selected row voltage is applied to the gate line GL1, and a voltage corresponding to the pixel data is applied to each source line SL.
  • a voltage corresponding to the pixel data is applied to each source line SL.
  • 5V is written to the pixel circuit 2A (a) and 0V is written to the pixel circuit 2A (b), so 5V is written to the source line SL1.
  • 0 V is applied to the source line SL2.
  • voltages corresponding to pixel data are applied to other source lines.
  • the transistor T3 is turned on, so that the voltage applied to the source line SL is written to the internal node N1 via the transistor T3.
  • the voltage applied to the source line SL is reduced because the transistor T3 is non-conductive. It is never given to the internal node N1 via the first switch circuit 22.
  • the potential VN1 (c) of the internal node N1 indicates approximately 3V, and the internal node N1 and the output node N2 indicate the same potential, so that the gate potential of the transistor T1 also indicates approximately 3V. Since 5 V is applied to the source line SL1, the transistor T1 becomes non-conductive. Therefore, the voltage applied to the source line SL1 through the second switch circuit 23 is not written to the internal node N1.
  • VN1 (c) still maintains the potential immediately before the write operation.
  • the potential VN1 (d) of the internal node N1 shows approximately 5V. Since 0 V is applied to the source line SL2, a reverse bias voltage is applied to the diode D1. Therefore, the voltage (0 V) applied to the source line SL2 is not applied to the internal node N1 via the second switch circuit 23.
  • VN1 (d) still maintains the potential immediately before the write operation.
  • a selected row voltage is applied to the gate line GL2 in order to write 3V to the pixel circuits 2A (c) and 2A (d), respectively, and non-selected rows are applied to the other gate lines GL.
  • a voltage is applied, 3V is applied to each of the source lines SL1 and SL2, and a voltage corresponding to the pixel data of each pixel circuit selected by the gate line GL2 is applied to the other source lines SL.
  • the voltage applied to the source line SL is applied to the internal node N1 via the first switch circuit 22.
  • the first switch circuit 22 is non-conductive, and also in the second switch circuit 23, the diode D1 is in a reverse bias state or the transistor T1 is Since the non-conduction state results in non-conduction, the voltage applied to the source line SL is not applied to the internal node N1.
  • a voltage corresponding to the pixel data is applied from the source line SL to the internal node N1 via the first switch circuit 22 only for the selected pixel circuit.
  • each pixel circuit is the pixel circuit 2A shown in FIG. 7.
  • the writing operation can be similarly realized even in the pixel circuit 2A shown in FIG. Yes.
  • the pixel circuit 2B (FIGS. 9 to 11) in which the first switch circuit 22 includes only the transistor T3, and the pixel circuit 2C (FIG. 12) that includes a series circuit of the transistors T3 and T4 (or T5). (FIG. 15) is assumed as described above.
  • FIG. 29 shows a timing chart of a write operation using the second type pixel circuit 2B (FIG. 9). In FIG. 29, ⁇ 5 V is applied to the selection line SEL in order to turn off the transistor T4 during the write operation period.
  • the first switch circuit 22 when the first switch circuit 22 is formed of a series circuit of transistors T3 and T4 (or T5), the first switch circuit 22 is turned on during the write operation. Therefore, it is necessary to make T4 (or T5) conductive in addition to the transistor T3.
  • the first switch circuit 22 includes the transistor T5. Since the transistor T5 and the control terminal are connected to each other, the transistor T5 is similar to the other pixel circuit 2C. The conduction control of the first switch circuit 22 is performed by conducting the conduction control of the transistor T4.
  • the selection lines SEL it is necessary to control not all the selection lines SEL in a lump like the pixel circuit 2B, but individually in units of rows like the gate lines GL. That is, one selection line SEL is provided for each row, the same number as the gate lines GL1 to GLn, and the selection lines SEL are sequentially selected in the same manner as the gate lines GL1 to GLn.
  • FIG. 30 shows a timing diagram of a write operation using the second type pixel circuit 2C (FIG. 12).
  • FIG. 30 illustrates voltage changes of the two selection lines SEL1 and SEL2 in the first two horizontal periods.
  • the selection voltage 8V is applied to the selection line SEL1
  • the non-selection voltage -5V is applied to the selection line SEL2.
  • the selection voltage 8V is applied to the selection line SEL1.
  • the non-selection voltage -5V is applied, and in the horizontal period thereafter, the non-selection voltage -5V is applied to both the selection lines SEL1 and SEL2.
  • the other points are the same as the timing chart of the writing operation of the first type pixel circuit 2A shown in FIG. Thereby, the same voltage state as that of the first type pixel circuit 2A shown in FIG. 28 can be realized. Detailed explanation is omitted.
  • the third type pixel circuit is different from the second type in that the selection line SEL is not provided and the boost line BST is connected to the control terminal of the transistor T4. Therefore, the voltage may be applied to the boost line BST by the same method as that applied to the selection line SEL in the second type.
  • FIG. 31 shows a timing chart of a write operation using the third type pixel circuit 2D (FIG. 16).
  • the display content obtained by the writing operation performed immediately before is maintained without performing the writing operation for a certain period.
  • a voltage is applied to the internal node N1 (pixel electrode 20) in each pixel through the source line SL by the writing operation. After that, the gate line GL becomes low level, and the transistor T3 is turned off. However, the potential VN1 of the internal node N1 is held by the presence of charges accumulated in the pixel electrode 20 by the immediately preceding write operation. That is, the voltage Vlc is maintained between the pixel electrode 20 and the counter electrode 80. Thereby, even after the writing operation is completed, a state in which a voltage necessary for displaying image data is applied to both ends of the liquid crystal capacitor Clc is continued.
  • the liquid crystal voltage Vlc depends on the potential of the pixel electrode 20. This potential fluctuates with time as the leakage current of the transistor in the pixel circuit 2 is generated. For example, when the potential of the source line SL is lower than the potential of the internal node N1, a leakage current is generated from the internal node N1 toward the source line SL, and the potential VN1 of the internal node N1 decreases with time. On the other hand, when the potential of the source line SL is higher than the potential of the internal node N1 (particularly when writing in a low voltage state), a leakage current from the source line SL to the internal node N1 occurs, and VN1 changes over time. Increase. That is, when time passes without performing an external writing operation, the liquid crystal voltage Vlc gradually changes, and as a result, the display image also changes.
  • the writing operation is executed for all the pixel circuits 2 every frame even for a still image. Therefore, the amount of charge accumulated in the pixel electrode 20 only needs to be maintained for one frame period. Since the amount of potential fluctuation of the pixel electrode 20 within one frame period is very small, the potential fluctuation during this period does not affect the displayed image data to a degree that can be visually confirmed. For this reason, in the normal display mode, the potential fluctuation of the pixel electrode 20 is not a serious problem.
  • the writing operation is not executed every frame. Therefore, it is necessary to hold the potential of the pixel electrode 20 for several frames while the potential of the counter electrode 80 is fixed. However, if the writing operation is not performed for several frame periods, the potential of the pixel electrode 20 varies intermittently due to the occurrence of the leakage current described above. As a result, the displayed image data may change to such an extent that it can be visually confirmed.
  • the self-refresh operation and the write operation are executed in combination as shown in the flowchart of FIG. To reduce power consumption.
  • step # 1 the writing operation of pixel data for one frame in the constant display mode is executed as described above in the fifth embodiment.
  • Step # 2 the self-refresh operation is executed in the manner described above in the second embodiment (Step # 2).
  • the self-refresh operation is composed of the refresh step S1 and the standby step S2.
  • step # 3 If a request for a new pixel data write operation (data rewrite), external refresh operation, or external polarity inversion operation is received during the standby step S2 (YES in step # 3), the process returns to step # 1. The writing operation of new pixel data or previous pixel data is executed. If the request is not received during the standby step S2 (NO in step # 3), the process returns to step # 2 and the self-refresh operation is executed again. Thereby, the change of the display image by the influence of leak current can be suppressed.
  • the power consumption is expressed by the relational expression shown in the above formula 1, but when the self-refresh operation is repeated at the same refresh rate, each pixel circuit
  • the variable n in Equation 1 is 2
  • the reason why the self-refresh operation and the external refresh operation or the external polarity inversion operation are used in combination is that even if the pixel circuit 2 was normally operating at first, the second switch circuit 23 is changed due to aging.
  • a problem occurs in the control circuit 24, and the writing operation can be performed without any problem, but the situation in which the self-refresh operation cannot be normally performed occurs in some of the pixel circuits 2. That is, depending on only the self-refresh operation, the display of some of the pixel circuits 2 deteriorates and is fixed, but the external polarity inversion operation is used together to prevent the display defect from being fixed. be able to.
  • pixel data for one frame is divided into display lines in the horizontal direction (row direction), and each pixel data for one display line is divided into the source line SL in each column for each horizontal period.
  • the gate line GL of the selected display line (selected row) are applied to the gate line GL of the selected display line (selected row), and the first switch of all the pixel circuits 2 in the selected row is applied.
  • the circuit 22 is turned on and the voltage of the source line SL in each column is transferred to the internal node N1 of each pixel circuit 2 in the selected row.
  • a non-selected row voltage of ⁇ 5 V is applied to the gate lines GL other than the selected display line (non-selected row) in order to turn off the first switch circuits 22 of all the pixel circuits 2 in the selected row. .
  • the counter voltage Vcom changes every horizontal period (counter AC drive), so that the auxiliary capacitance line CSL has the same voltage as the counter voltage Vcom.
  • the pixel electrode 20 is capacitively coupled to the counter electrode 80 via the liquid crystal layer and is also capacitively coupled to the auxiliary capacitive line CSL via the auxiliary capacitive element Cs. If V is fixed, only Vcom fluctuates in Equation 2, and this induces fluctuations in the liquid crystal voltage Vlc of the pixel circuits 2 in the non-selected rows. Therefore, by driving all the auxiliary capacitance lines CSL to the same voltage as the counter voltage Vcom, the voltages of the counter electrode 80 and the pixel electrode 20 are changed in the same voltage direction, thereby canceling the influence of the counter AC drive.
  • the normal display mode is basically the same operation as the write operation in the normal display mode except that the counter AC drive is performed and that the multi-gradation analog voltage is applied from the source line SL than in the normal display mode. Therefore, the detailed explanation is omitted.
  • FIG. 33 shows a timing chart of the writing operation in the constant display mode for the first type pixel circuit 2A (FIG. 7).
  • the applied voltage is uniquely specified between the minimum value VL and the maximum value VH. Since this is not done, this is expressed by painting with diagonal lines.
  • FIG. 34 shows a timing diagram of a write operation using the second type pixel circuit 2C (FIG. 12).
  • a method of inverting the polarity of each display line for each horizontal period in the writing operation in the normal display mode is employed.
  • this is a disadvantage that occurs when the polarity is inverted in units of one frame. This is to eliminate the problem.
  • the normal display mode is a mode for displaying such high-quality still images and moving images, there is a possibility that the above-described minute changes may be visually recognized.
  • the polarity is inverted for each display line in the same frame.
  • the constant display mode that is the target of the self-refresh operation is described as having a smaller number of display colors than the normal display mode.
  • the liquid crystal display may be realized only in the constant display mode.
  • the full color display as in the normal display mode cannot be realized, it is possible to perform the display process only on the always display mode of the present invention for the screen in a mode in which the required number of displayable colors is not so large. is there.
  • the number of pulses applied in the self-refresh operation in the second embodiment that is, the number of phases in the refresh step S1 also increases.
  • the second embodiment in the case of ternary values, two phases of phases P1 and P2 can be realized. However, if the number of gradations is increased to four gradations, three phases are naturally required, and if the number is increased to five gradations, four phases are necessary. .
  • the applied voltage to the boost line BST is kept constant after the start of the phase P1, and the applied voltage to the reference line REF and the applied voltage to the source line SL are set to (gray scale). It will be changed several times.
  • ⁇ 2> With respect to the second type pixel circuit 2B (FIGS. 9 to 11), a low level voltage is applied to the reference line REF and the transistor T2 is turned off during the writing operation in the normal display mode and the constant display mode. good. As a result, the internal node N1 and the output node N2 are electrically separated, so that the potential of the pixel electrode 20 is not affected by the voltage of the output node N2 before the writing operation. Thereby, the voltage of the pixel electrode 20 correctly reflects the voltage applied to the source line SL, and the image data can be displayed without error.
  • the second switch circuit 23 and the control circuit 24 are provided for all the pixel circuits 2 configured on the active matrix substrate 10.
  • the active matrix substrate 10 is configured to include two types of pixel portions, a transmissive pixel portion for performing transmissive liquid crystal display and a reflective pixel portion for performing reflective liquid crystal display, only the pixel circuit of the reflective pixel portion is provided.
  • the second switch circuit 23 and the control circuit 24 may be provided, and the pixel circuit of the transmissive display unit may not include the second switch circuit 23 and the control circuit 24.
  • each pixel circuit 2 is configured to include the auxiliary capacitance element Cs, but may be configured not to include the auxiliary capacitance element Cs. However, in order to further stabilize the potential of the internal node N1 and to reliably stabilize the display image, it is preferable to include this auxiliary capacitance element Cs.
  • the display element unit 21 of each pixel circuit 2 includes only the unit liquid crystal display element Clc.
  • the internal node N1 and the pixel electrode 20 An analog amplifier Amp (voltage amplifier) may be provided between them.
  • the auxiliary capacitor line CSL and the power supply line Vcc are input as power supply lines for the analog amplifier Amp.
  • the voltage applied to the internal node N1 is amplified by the amplification factor ⁇ set by the analog amplifier Amp, and the amplified voltage is supplied to the pixel electrode 20. Therefore, the configuration can reflect a minute voltage change of the internal node N1 in the display image.
  • the voltage at the internal node N1 is amplified by the amplification factor ⁇ and supplied to the pixel electrode 20, so that the first and second applied to the source line SL
  • the voltages in the first and second voltage states supplied to the pixel electrode 20 can be matched with the high level and low level voltages of the counter voltage Vcom.
  • the transistors T1 to T4 in the pixel circuit 2 are assumed to be N-channel type polycrystalline silicon TFTs, but a configuration using P-channel type TFTs or amorphous silicon TFTs are used. It is also possible to adopt the configuration described above. In this case, the pixel circuit 2 can be operated in the same manner as in each of the above embodiments by inverting the magnitude relationship between the voltages and the rectifying direction of the diode D1, and the same effect can be obtained.
  • the liquid crystal display device has been described as an example.
  • the present invention is not limited to this, and has a capacity corresponding to the pixel capacity Cp for holding pixel data.
  • the present invention can be applied to any display device that displays an image based on the voltage held in the capacitor.
  • FIG. 36 is a circuit diagram showing an example of a pixel circuit of such an organic EL display device.
  • a voltage held in the auxiliary capacitor Cs as pixel data is applied to the gate terminal of the driving transistor Tdv constituted by the TFT, and a current corresponding to the voltage is supplied to the light emitting element via the driving transistor Tdv.
  • the auxiliary capacitor Cs corresponds to the pixel capacitor Cp in the above embodiments.
  • the element In the pixel circuit shown in FIG. 36, unlike a liquid crystal display device that displays an image by controlling the light transmittance by applying a voltage between the electrodes, the element itself emits light by the current flowing through the element. By doing so, the image is displayed. For this reason, due to the rectifying property of the light emitting element, the polarity of the voltage applied to both ends of the element cannot be reversed, and further, there is no need for such.
  • the second type pixel circuits 2B and 2C include a transistor T4 and a selection line SEL connected to the gate of the T4 separately from the boost line BST. Therefore, in this type of pixel circuit, the voltage application timing to the boost line BST and the conduction timing of T4 can be intentionally different.
  • the voltage application timing to the selection line SEL is set to the voltage application timing to the reference line REF and the boost line BST. It may be a little delayed.
  • the reference line REF is applied with a voltage within a range in which T2 is conducted in a pixel having a gradation lower than the gradation to be refreshed. Therefore, even if a voltage is applied to the boost line BST in this state, the potential at the node N2 of the pixel does not rise, and as a result, the transistor T1 does not conduct.
  • the parasitic capacitance of the node when the voltage is applied to the boost line BST even though the transistor T2 is conductive, the potential of the node N2 is temporarily increased. It is also assumed that In this case, the transistor T1 becomes conductive at that time, and as a result, the pixel may be rewritten with a voltage having a different gradation.
  • the transistor T4 by delaying the conduction timing of the transistor T4 slightly from the voltage application timing to the boost line BST, even if the potential of the node N2 temporarily rises and the transistor T1 becomes conductive during this time, the transistor T4 is non-conductive. Therefore, the conduction between the source line SL and the node N1 can be cut off by the transistor T4. Note that even if the potential of the node N2 temporarily rises, the charge of the node N1 is subsequently absorbed by the parasitic capacitance of the node N1, so that the potential of N2 falls.
  • the voltage application timing to the selection line SEL can be controlled independently of the voltage application timing to the boost line BST. By slightly delaying, it is possible to more reliably prevent a malfunction that is written in an incorrect gradation.
  • This method can also be applied to the timing chart shown in FIG. 25 of the third embodiment. That is, in FIG. 25, the voltage application timing to the selection line SEL may be slightly delayed from t3.
  • the refresh operation by such a method cannot be performed.
  • the refresh operation by the method described in the second embodiment is also performed. It is possible to refresh the original gradation correctly.
  • the pixel circuit is described assuming a configuration including the second switch circuit 23 to which the source line SL is connected at one end and the internal node N1 is connected to the other end.
  • the same operation is possible even if the voltage supply line VSL different from the source line SL is provided and the second switch circuit 23 is connected to the voltage supply line VSL at one end on the side not constituting the internal node N1. is there.
  • the voltage supply line VSL is also configured such that the applied voltage is controlled by the display control circuit 11 as in the case of the reference line REF and the boost line BST.
  • FIG. 37 shows an example of the configuration of the pixel circuit according to another embodiment.
  • the pixel circuit 3A has a configuration in which one end of the second switch circuit 23 is connected to the voltage supply line VSL without being connected to the source line SL with respect to the pixel circuit 2A shown in FIG.
  • the connection destination of one end of the second switch circuit 23 is changed from the source line SL to the voltage supply line VSL.
  • a similar pixel circuit can be realized.
  • the same voltage as that applied to the source line SL in each of the above-described embodiments is applied to the voltage supply line VSL, so that the same voltage state as that in each of the above-described embodiments is obtained. Can do.
  • the self-refresh operation is executed on the pixel circuit according to this embodiment according to exactly the same principle. Note that since the transistor T3 is always off during the self-refresh operation period, the voltage applied to the source line SL is irrelevant to the self-refresh operation. In terms of suppressing power consumption and eliminating the influence of leakage current, it is preferable to set the voltage applied to the source line SL to 0 V throughout the self-refresh operation period. Detailed explanation is omitted.
  • Liquid crystal display device 2 Pixel circuit 2A, 2B, 2C, 2D, 2E, 3A: Pixel circuit 10: Active matrix substrate 11: Display control circuit 12: Counter electrode drive circuit 13: Source driver 14: Gate driver 20: Pixel Electrode 21: Display element 22: First switch circuit 23: Second switch circuit 24: Control circuit 74: Sealing material 75: Liquid crystal layer 80: Counter electrode 81: Counter substrate Amp: Analog amplifier BST: Boost line Cbst: Boost capacity Element Clc: Liquid crystal display element CML: Counter electrode wiring CSL: Auxiliary capacitance line Cs: Auxiliary capacitance element Ct: Timing signal D1: Diode element DA: Digital image signal Dv: Data signal GL (GL1, GL2,..., GLn): Gate line Gtc: Scan side Imming control signal N1: Internal node N2: Output node OLED: Light emitting element P1, P2: Phase REF: Reference line S1, S2: Steps Sc1, Sc2,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 開口率の低下を招くことなく消費電力の低減を実現する表示装置を提供する。液晶容量素子Clcは画素電極20と対向電極80に挟まれることで形成される。画素電極20、第1スイッチ回路22の一端、第2スイッチ回路23の一端、第2トランジスタT2の第1端子が内部ノードN1を形成する。第1スイッチ回路22及び第2スイッチ回路23は、他端をソース線SLに接続する。第2スイッチ回路23は、トランジスタT1とダイオードD1の直列回路で構成され、トランジスタT1の制御端子、トランジスタT2の第2端子、及びブースト容量素子Cbstの一端で出力ノードN2を形成する。ブースト容量素子Csbtの他端はブースト線BSTに、トランジスタT2の制御端子はリファレンス線REFに接続される。ダイオードD1は、ソース線SLから内部ノードN1に向かう方向に整流作用を有する。

Description

表示装置
 本発明は、アクティブマトリクス型の表示装置に関する。
 携帯電話や携帯型ゲーム機等の携帯用端末は、その表示手段として液晶表示装置を用いるのが一般的である。また、携帯電話等は、バッテリで駆動されることから、消費電力の低減が強く要請される。このため、時刻や電池残量といった常時表示を必要とする情報については、反射型サブパネルに表示しているものもある。また、最近では、同一メインパネルにて、フルカラー表示による通常表示と反射型での常時表示との両立が要求されるようになってきている。
 図38に、一般的なアクティブマトリクス型の液晶表示装置の画素回路の等価回路を示す。また、図39に、m×n画素のアクティブマトリクス型の液晶表示装置の回路配置例を示す。なお、m,nはいずれも2以上の整数である。
 図39に示すように、m本のソース線SL1,SL2,……,SLmと、n本の走査線GL1,GL2,……,GLnの各交点に、薄膜トランジスタ(TFT)からなるスイッチ素子を設ける。図38では、各ソース線SL1,SL2,……,SLmを、ソース線SLで代表し、同様に、各走査線GL1,GL2,……,GLnを代表してGLと符号を付している。
 図38に示すように、TFTを介して液晶容量素子Clcと補助容量素子Csが並列に接続されている。液晶容量素子Clcは画素電極20と対向電極80の間に液晶層を設けた積層構造で構成される。対向電極は共通(コモン)電極とも呼ばれる。
 なお、図39では、各画素回路については、簡略的にTFTと画素電極(黒色の矩形部分)だけを表示している。
 補助容量Csは、一端(一方の電極)が画素電極20に、他端(他方の電極)が補助容量線CSLに接続しており、画素電極20に保持される画素データの電圧を安定化する。補助容量Csは、TFTのリーク電流、液晶分子の有する誘電率異方性により黒表示と白表示で液晶容量素子Clcの電気容量が変動すること、及び、画素電極と周辺配線間の寄生容量を介して生じる電圧変動等に起因して、画素電極に保持する画素データの電圧が変動するのを抑制する効果がある。走査線の電圧を順次制御することで、1本の走査線に接続するTFTが導通状態となり、走査線単位で各ソース線に供給される画素データの電圧が対応する画素電極に書き込まれる。
 フルカラー表示による通常表示では、表示内容が静止画の場合でも、1フレーム毎に、同じ画素に同じ表示内容が繰り返し書き込まれる。このように、画素電極に保持する画素データの電圧が更新されることで、画素データの電圧変動が最小限に抑制され、高品質な静止画の表示が担保される。
 液晶表示装置を駆動するための消費電力は、ソースドライバによるソース線駆動のための消費電力にほぼ支配され、概ね、以下の数1に示す関係式によって表される。なお、数1において、Pは消費電力,fはリフレッシュレート(単位時間当たりの1フレーム分のリフレッシュ動作回数),Cはソースドライバによって駆動される負荷容量,Vはソースドライバの駆動電圧,nは走査線数,mはソース線数をそれぞれ示す。ここで、リフレッシュ動作とは、表示内容を保持しながらソース線を介して画素電極に対して電圧を印加する動作を指す。
 (数1)
 P∝f・C・V・n・m
 ところで、常時表示の場合は、表示内容が静止画であることから、必ずしも画素データの電圧を1フレーム毎に更新する必要はない。このため、液晶表示装置の消費電力を更に低減するために、この常時表示時のリフレッシュ周波数を下げることが行われている。しかし、リフレッシュ周波数を下げると、TFTのリーク電流により、画素電極に保持されている画素データ電圧が変動する。当該電圧変動が、各画素の表示輝度(液晶の透過率)の変動となり、フリッカとして観測されるようになる。また、各フレーム期間における平均電位も低下するので、十分なコントラストを得られない等の表示品位の低下を招くおそれもある。
 ここで、電池残量や時刻表示等の静止画の常時表示において、リフレッシュ周波数の低下により表示品質が低下する問題の解決と低消費電力化とを同時に実現する方法として、例えば、下記特許文献1に記載の構成が開示されている。特許文献1に開示の構成では、透過型と反射型の両機能による液晶表示が可能であり、更に、反射型による液晶表示が可能な画素領域内の画素回路にはメモリ部を有している。このメモリ部は、反射型液晶の表示部において表示すべき情報を電圧信号として保持している。反射型による液晶表示時には、画素回路がメモリ部内に保持された電圧を読み出すことで、当該電圧に応じた情報を表示する。
 特許文献1では、上記メモリ部がSRAMで構成されており、上記電圧信号が静的に保持されるため、リフレッシュ動作が不要となり、表示品質の維持と低消費電力化が同時に実現できる。
特開2007-334224号公報
 しかし、携帯電話等で使用される液晶表示装置において、上記のような構成を採用した場合には、通常動作時にアナログ情報としての各画素データの電圧を保持するための補助容量素子に加えて、画素データを記憶するためのメモリ部を画素毎或いは画素群毎に備える必要がある。これにより、液晶表示装置における表示部を構成するアレイ基板(アクティブマトリクス基板)に形成すべき素子数や信号線数が増えるため、透過モードでの開口率が低下する。また、液晶を交流駆動するための極性反転駆動回路を上記メモリ部と共に設ける場合には、更に開口率の低下を招く。このように素子数や信号線数の増加によって開口率が低下すると通常表示モードでの表示画像の輝度が低下する。
 また、上記の常時表示モードはあくまで2階調が想定されているが、多色表示が可能な常時表示モードの実現も求められている。しかしながら、従来の構成で、このような表示モードを実現しようとすれば、当然に必要なメモリ部の数が増し、これに伴って素子数や信号線数が更に増大してしまう。
 本発明は、上記の問題点に鑑みてなされたもので、その目的は、開口率の低下を招くことなく低消費電力で液晶の劣化及び表示品質の低下を防止できる画素回路及び表示装置を提供する点にあり、特に多色化が実現される表示モードにおいても、素子数や信号数の増加を抑制しながらリフレッシュ動作を可能にする点にある。
 上記の目的を達成すべく、本発明に係る画素回路は、
 画素回路が行方向及び列方向に夫々複数配置されて構成された画素回路アレイを有する表示装置であって、
 前記画素回路は、単位表示素子を含む表示素子部、前記表示素子部の一部を構成して前記表示素子部に印加される画素データの電圧を保持する内部ノード、第1スイッチ回路、第2スイッチ回路、第1容量素子を含む制御回路を有し、
 前記第2スイッチ回路は、一端が前記内部ノードに接続されており、第1トランジスタ素子とダイオード素子の直列回路で構成され、
 前記制御回路は、前記第1容量素子と第2トランジスタ素子の直列回路で構成され、前記第2トランジスタ素子の第1端子が前記内部ノードに接続し、前記第2トランジスタ素子の第2端子が前記第1トランジスタの制御端子及び前記第1容量素子の一端に接続して出力ノードを形成し、
 前記第1スイッチ回路は、一端が前記内部ノードに接続し、第3トランジスタ素子を含む構成であり
 前記単位表示素子の端子のうち、前記内部ノードと接続する端子とは反対側の端子には共通電極が接続され、
 同一列に配置される前記画素回路は、前記第1スイッチ回路の他端、及び前記第2スイッチ回路の他端が共通のデータ信号線に接続し、
 同一行に配置される前記画素回路は、前記第3トランジスタ素子の制御端子が共通の走査信号線に接続し、
 同一行又は同一列に配置される前記画素回路は、前記第2トランジスタ素子の制御端子が共通の第1制御線に接続し、
 同一行又は同一列に配置される前記画素回路は、前記第1容量素子の他端が共通の第2制御線に接続し、
 前記データ信号線を各別に駆動するデータ信号線駆動回路、前記第1及び第2制御線を各別に駆動する制御線駆動回路、前記走査信号線を各別に駆動する走査線駆動回路を備え、
 前記画素回路アレイ内の各画素回路の内部ノードは、それぞれ離散した複数の電圧状態の内の一の電圧状態を保持可能な構成であって、異なる電圧状態によって多階調が実現されており、
 複数の前記画素回路に対して前記第2スイッチ回路と前記制御回路を作動させ、実行する対象階調を順次変化させながら前記内部ノードの電圧変動を同時に補償するセルフリフレッシュ動作時において、
 前記走査信号線駆動回路が、前記画素回路アレイ内の全部の前記画素回路に接続する前記走査信号線に所定の電圧を印加して前記第3トランジスタ素子を非導通状態とし、
 前記データ信号線駆動回路が、前記データ信号線に対して、リフレッシュ動作を実行する対象階調の電圧状態に対応するリフレッシュ目標電圧に前記第2スイッチ回路内の電圧降下分に対応する所定の第1調整電圧を加えたリフレッシュ入力電圧を印加し、
 前記制御線駆動回路が、前記第1制御線に対して、前記対象階調よりも一段階低階調の電圧状態と前記対象階調の電圧状態の中間電圧で規定されるリフレッシュ分離電圧に前記第1制御線と前記内部ノードの電圧降下分に対応する所定の第2調整電圧を加えたリフレッシュ基準電圧を印加した状態で、前記第2制御線に対して所定振幅のブースト電圧を印加して前記出力ノードに対して前記第1容量素子を介した容量結合による電圧変化を与えることで、前記内部ノードの電圧状態が前記リフレッシュ目標電圧よりも高い場合には、前記ダイオード素子が前記データ信号線から前記内部ノードに向けて逆バイアス状態となって前記データ信号線と前記内部ノードが導通せず、前記内部ノードの電圧状態が前記リフレッシュ分離電圧よりも低い場合には、前記ブースト電圧印加による前記出力ノードの電位変動を抑制して前記第1トランジスタ素子が非導通となって前記データ信号線と前記内部ノードが導通せず、前記内部ノードの電圧状態が前記リフレッシュ分離電圧以上で前記リフレッシュ目標電圧以下の場合には、前記データ信号線から前記内部ノードに向けて前記ダイオード素子が順バイアス状態となると共に前記出力ノードの電位変動が抑制されずに前記第1トランジスタ素子が導通状態となって前記リフレッシュ目標電圧が前記内部ノードに与えられて、前記対象階調の電圧状態を示す前記内部ノードを備えた前記画素回路に対するリフレッシュ動作を実行し、
 更に、前記ブースト電圧を引き続き印加したまま、前記対象階調を1段階高い階調として、前記第1制御線に印加する前記リフレッシュ基準電圧を変化させた後、前記データ信号線に印加する前記リフレッシュ入力電圧を変化させることで、異なる階調の電圧状態を示す前記内部ノードを備えた前記画素回路に対して、リフレッシュ動作を順次実行し、
 最も低い階調を除く全ての階調に対してリフレッシュ動作を行った後、前記制御線駆動回路が前記第1制御線の印加電圧を低下させることで、全ての階調における第2トランジスタ素子を非導通とした後、前記第2制御線に対する前記ブースト電圧の印加を停止し、その後に、前記第1制御線の印加電圧を上昇させて全ての階調における第2トランジスタ素子を導通させることを特徴とする。
 このとき、前記リフレッシュ入力電圧として、前記第1制御線及び前記第2制御線への印加電圧を変動させることで生じる、前記第2トランジスタ素子の寄生容量を起因とした前記内部ノード及び前記出力ノードの電位変動分を考慮した、所定の余裕電圧を更に加えた電圧値とするのが好適である。
 また、同一列に配置される前記画素回路が備える前記第2スイッチ回路の前記他端が、共通の前記データ信号線に代えて共通の電圧供給線に接続され、
 各前記電圧供給線は、前記制御線駆動回路によって各別に駆動される構成であり、
 前記セルフリフレッシュ動作時に、前記リフレッシュ入力電圧を、前記データ信号線駆動回路が前記データ信号線に対して印加する代わりに、前記制御線駆動回路が前記電圧供給線に対して印加することを別の特徴とする。
 前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び制御端子が前記第2制御線に接続した第4トランジスタ素子の直列回路で構成されるものとしても良い。
 また、前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び第4トランジスタ素子の直列回路で構成され、
 同一行又は同一列に配置される前記画素回路は、前記第4トランジスタ素子の制御端子が共通の第3制御線に接続し、前記制御線駆動回路によって前記第3制御線を各別に駆動可能に構成されており、
 前記セルフリフレッシュ動作時に、前記制御線駆動回路が前記第3制御線に対して前記第4トランジスタ素子を導通状態とする所定電圧を印加した状態で前記第2制御線に対して前記ブースト電圧を印加するものとしても良い。
 また、前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び第4トランジスタ素子の直列回路で構成されており、
 同一行又は同一列に配置される前記画素回路は、前記第4トランジスタ素子の制御端子が共通の第3制御線に接続し、前記制御線駆動回路によって前記第3制御線を各別に駆動可能に構成されており、
 前記セルフリフレッシュ動作時に、前記制御線駆動回路が前記第2制御線に対して前記ブースト電圧を印加した状態で前記第3制御線に対して前記第4トランジスタ素子を導通状態とする所定電圧を印加するものとしても良い。
 なお、上記各構成において、前記ダイオード素子が、ゲート及びソースが接続されたMOSトランジスタで構成されているものとしても良い。
 本発明の構成により、通常の書き込み動作の他、書き込み動作によることなく表示素子部両端間の電圧の絶対値を直前の書き込み動作時の値に復帰させる動作(セルフリフレッシュ動作)を実行することができる。特に、本発明によれば、1回のパルス電圧の印加によって、複数の画素回路の中から対象となる階調の電圧状態に復帰させるべき内部ノードを備えた画素回路のみを自動的にリフレッシュさせることができ、内部ノードに多値レベルの電圧状態が保持される状況下でのセルフリフレッシュ動作が可能となる。
 画素回路が複数配列されている場合において、通常の書き込み動作は、一般的に行毎に実行される。このため、最大で、配列された画素回路の行数分だけドライバ回路を駆動させる必要がある。
 本発明の画素回路によれば、セルフリフレッシュ動作を行うことにより、配置された複数の画素に対して、保持されている電圧状態毎に一括してリフレッシュ動作を実行することができる。このため、リフレッシュ動作の開始から終了までに必要なドライバ回路の駆動回数を大きく削減することができ、低消費電力を実現できる。
 そして、画素回路内にSRAM等のメモリ部を別途備える必要がないため、従来技術のように開口率を大きく低下させるということがない。
 特に、本発明の構成によれば、セルフリフレッシュ動作時において第1制御線及び第2制御線への印加電圧を変動させるのに伴い、トランジスタの寄生容量を起因とした内部ノードの電位変動が生じることを想定し、いったん第2トランジスタ素子を非導通とした状態で第2制御線へのブースト電圧の印加を停止している。このように、各階調の画素回路における内部ノード及び出力ノードの電位を予め少し低下させておき、その後に第1制御線への印加電圧を上昇させることで両ノードの電位を等しくしている。これにより、セルフリフレッシュ動作を繰り返し実行することで、内部ノードがリフレッシュ動作完了後に寄生容量を起因としてリフレッシュ目標電圧よりも電圧が高く設定されるのを抑制することができる。
本発明の表示装置の概略構成の一例を示すブロック図 液晶表示装置の一部断面概略構造図 本発明の表示装置の概略構成の一例を示すブロック図 本発明の画素回路の基本回路構成を示す回路図 本発明の画素回路の他の基本回路構成を示す回路図 本発明の画素回路の他の基本回路構成を示す回路図 本発明の画素回路のうち、第1類型の回路構成例を示す回路図 本発明の画素回路のうち、第1類型の別の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第2類型の回路構成例を示す回路図 本発明の画素回路のうち、第3類型の回路構成例を示す回路図 本発明の画素回路のうち、第3類型の回路構成例を示す回路図 第1、第3類型の画素回路による第2実施形態のセルフリフレッシュ動作のタイミング図 第1、第3類型の画素回路による第2実施形態のセルフリフレッシュ動作の別のタイミング図 第1、第3類型の画素回路による第2実施形態のセルフリフレッシュ動作の別のタイミング図 第2類型の画素回路による第2実施形態のセルフリフレッシュ動作のタイミング図 第2類型の画素回路による第2実施形態のセルフリフレッシュ動作の別のタイミング図 第1類型の画素回路による第3実施形態のセルフリフレッシュ動作のタイミング図 第2類型の画素回路による第3実施形態のセルフリフレッシュ動作のタイミング図 第2類型の画素回路による第3実施形態のセルフリフレッシュ動作の別のタイミング図 第1類型の画素回路による第3実施形態のセルフリフレッシュ動作の別のタイミング図 第1類型の画素回路による第4実施形態のセルフリフレッシュ動作のタイミング図 第1類型の画素回路による常時表示モード時の書き込み動作のタイミング図 第2類型の画素回路による常時表示モード時の書き込み動作のタイミング図 第2類型の画素回路による常時表示モード時の書き込み動作のタイミング図 第3類型の画素回路による常時表示モード時の書き込み動作のタイミング図 常時表示モードにおける書き込み動作とセルフリフレッシュ動作の実行手順を示すフローチャート 第1類型の画素回路による通常表示モード時の書き込み動作のタイミング図の一例 第2類型の画素回路による通常表示モード時の書き込み動作のタイミング図の一例 本発明の画素回路の更に別の基本回路構成を示す回路図 本発明の画素回路の更に別の基本回路構成を示す回路図 本発明の画素回路の更に別の構成を示す回路図 一般的なアクティブマトリックス型の液晶表示装置の画素回路の等価回路図 m×n画素のアクティブマトリックス型の液晶表示装置の回路配置例を示すブロック図
 本発明の画素回路及び表示装置の各実施形態につき、以下において図面を参照して説明する。なお、図38及び図39と同一の構成要素については、同一の符号を付している。
 [第1実施形態]
 第1実施形態では、本発明の表示装置(以下、単に「表示装置」という)と、その表示装置を構成する画素回路について説明する。
 《表示装置》
 図1に、表示装置1の概略構成を示す。表示装置1は、アクティブマトリクス基板10、対向電極80、表示制御回路11、対向電極駆動回路12、ソースドライバ13、ゲートドライバ14、及び後述する種々の信号線を備える。アクティブマトリクス基板10上には、画素回路2が、行及び列方向にそれぞれ複数配置され、画素回路アレイが形成されている。
 なお、図1では、図面が煩雑になるのを避けるため、画素回路2はブロック化して表示している。また、アクティブマトリクス基板10上に各種の信号線が形成されていることを明確化するために、便宜的に、アクティブマトリクス基板10を対向電極80の上側に図示している。
 本実施形態では、表示装置1は、同じ画素回路2を用いて、通常表示モードと常時表示モードの2つの表示モードで画面表示を行うことができる構成である。通常表示モードは、動画若しくは静止画をフルカラー表示で表示する表示モードで、バックライトを利用した透過型液晶表示を利用する。一方、本実施形態の常時表示モードは、画素回路単位で3階調以上の複数階調を表示し、3つの隣接する画素回路2を3原色(R,G,B)の各色に割り当てる。例えば、階調数が3階調であれば27色を表示し、4階調であれば64色を表示する。ただし、想定される階調数は通常表示モード時よりも少ない。
 更に、常時表示モードでは、隣接する3つの画素回路を更に複数セット組み合わせて、面積階調により表示色の数を増やすことが可能である。なお、本実施形態の常時表示モードは、透過型液晶表示でも反射型液晶表示でも利用可能な技術である。
 以下の説明では、便宜的に、1つの画素回路2に対応する最小表示単位を「画素」と呼び、各画素回路に書き込む「画素データ」は、3原色(R,G,B)によるカラー表示の場合には各色の階調データとなる。3原色に加えて複数階調の輝度データを含めてカラー表示する場合には、当該輝度データも画素データに含まれる。
 図2は、アクティブマトリクス基板10と対向電極80の関係を示す概略断面構造図であり、画素回路2の構成要素である表示素子部21(図4参照)の構造を示している。アクティブマトリクス基板10は、光透過性の透明基板であり、例えばガラスやプラスチックからなる。
 図1に図示したように、アクティブマトリクス基板10上には各信号線を含む画素回路2が形成されている。図2では、画素回路2の構成要素を代表して画素電極20を図示している。画素電極20は、光透過性の透明導電材料、例えばITO(インジウムスズ酸化物)からなる。
 アクティブマトリクス基板10に対向するように、光透過性の対向基板81が配置されており、これら両基板の間隙には液晶層75が保持される。両基板の外表面には偏光板(不図示)が貼り付けられている。
 液晶層75は、両基板の周辺部分においてはシール材74によって封止されている。対向基板81には、ITO等の光透過性の透明導電材料からなる対向電極80が、画素電極20と対向するように形成されている。この対向電極80は、対向基板81上をほぼ一面に広がるように単一膜として形成されている。ここで、1つの画素電極20と対向電極80とその間に挟持された液晶層75によって単位液晶表示素子Clc(図4参照)が形成される。
 また、バックライト装置(不図示)がアクティブマトリクス基板10の背面側に配置されており、アクティブマトリクス基板10から対向基板81に向かう方向に光を放射することができる。
 図1に示すように、アクティブマトリクス基板10上には複数の信号線が縦横方向に形成されている。そして、縦方向(列方向)に延伸するm本のソース線(SL1,SL2,……,SLm)と、横方向(行方向)に延伸するn本のゲート線(GL1,GL2,……,GLn)が交差する箇所において、画素回路2がマトリクス状に複数形成されている。m,nはいずれも2以上の自然数である。また、各ソース線を「ソース線SL」で代表し、各ゲート線を「ゲート線GL」で代表する。
 ここで、ソース線SLが「データ信号線」に対応し、ゲート線GLが「走査信号線」に対応する。また、ソースドライバ13が「データ信号線駆動回路」に対応し、ゲートドライバ14が「走査信号線駆動回路」に対応し、対向電極駆動回路12が「対向電極電圧供給回路」に対応し、表示制御回路11の一部が「制御線駆動回路」に対応する。
 なお、図1では、表示制御回路11,対向電極駆動回路12が、それぞれソースドライバ13やゲートドライバ14とは別個独立して存在するように図示されているが、これらのドライバ内に表示制御回路11や対向電極駆動回路12が含まれる構成であっても構わない。
 本実施形態では、画素回路2を駆動する信号線として、上述のソース線SLとゲート線GL以外に、リファレンス線REF、補助容量線CSL、及びブースト線BSTを備える。なお、別の構成例として、選択線SELを更に備える構成も可能である。この場合の表示装置の構成を図3に示す。
 リファレンス線REF、ブースト線BST、選択線SELは、それぞれ「第1制御線」、「第2制御線」、「第3制御線」に対応し、表示制御回路11によって駆動される。また、補助容量線CSLは、「第4制御線」又は「固定電圧線」に対応し、一例として表示制御回路11によって駆動される。
 図1及び図3において、リファレンス線REF,ブースト線BST,及び補助容量線CSLは、いずれも行方向に延伸するように各行に設けられており、画素回路アレイの周辺部で各行の配線が相互に接続して一本化されているが、各行の配線が個別に駆動され、動作モードに応じて共通の電圧が印加可能に構成されても良く、また列方向に延伸するように各列に設けるものとしても良い。基本的に、リファレンス線REF、ブースト線BST、及び補助容量線CSLのそれぞれは、複数の画素回路2で共通に使用される構成となっている。なお、選択線SELを更に備える場合には、ブースト線BSTと同様に設けられるものとして良い。
 表示制御回路11は、後述する通常表示モード及び常時表示モードにおける各書き込み動作と、常時表示モードにおけるセルフリフレッシュ動作を制御する回路である。
 書き込み動作時には、表示制御回路11は、外部の信号源から表示すべき画像を表すデータ信号Dvとタイミング信号Ctを受け取り、当該信号Dv,Ctに基づき、画像を画素回路アレイの表示素子部21(図4参照)に表示させるための信号として、ソースドライバ13に与えるディジタル画像信号DA及びデータ側タイミング制御信号Stcと、ゲートドライバ14に与える走査側タイミング制御信号Gtcと、対向電極駆動回路12に与える対向電圧制御信号Secと、リファレンス線REF,ブースト線BST,補助容量線CSL,及び存在する場合には選択線SELにそれぞれ印加する各信号電圧を生成する。
 ソースドライバ13は、表示制御回路11からの制御により、書き込み動作、及びセルフリフレッシュ動作時に、各ソース線SLに対して所定のタイミングで所定の電圧振幅のソース信号を印加する回路である。
 書き込み動作時、ソースドライバ13は、ディジタル画像信号DA及びデータ側タイミング制御信号Stcに基づき、ディジタル信号DAの表わす1表示ライン分の画素値に相当する、対向電圧Vcomの電圧レベルに適合した電圧をソース信号Sc1,Sc2,……,Scmとして1水平期間(「1H期間」ともいう)毎に生成する。当該電圧は、通常表示モード及び常時表示モード共に多階調の電圧を想定しているが、本実施形態では常時表示モードの方が階調数が少ないものとし、一例として3階調(3値)の電圧とする。そして、これらのソース信号を、それぞれ対応するソース線SL1,SL2,……,SLmに印加する。
 また、セルフリフレッシュ動作時には、ソースドライバ13は、表示制御回路11からの制御により、対象となる画素回路2に接続する全てのソース線SLに対して、同一のタイミングで同一の電圧印加を行う(詳細は後述する)。
 ゲートドライバ14は、表示制御回路11からの制御により、書き込み動作、及びセルフリフレッシュ動作時に、各ゲート線GLに対して所定のタイミングで所定の電圧振幅のゲート信号を印加する回路である。なお、このゲートドライバ14は、画素回路2と同様に、アクティブマトリクス基板10上に形成されても構わない
 書き込み動作時、ゲートドライバ14は、走査側タイミング制御信号Gtcに基づき、ソース信号Sc1,Sc2,……,Scmを各画素回路2に書き込むために、ディジタル画像信号DAの各フレーム期間において、ゲート線GL1,GL2,……,GLnをほぼ1水平期間ずつ順次選択する。
 また、セルフリフレッシュ動作時に、ゲートドライバ14は、表示制御回路11からの制御により、対象となる画素回路2に接続する全てのゲート線GLに、同一のタイミングで同一の電圧印加を行う(詳細は後述する)。
 対向電極駆動回路12は、対向電極80に対して対向電極配線CMLを介して対向電圧Vcomを印加する。本実施形態では、対向電極駆動回路12は、通常表示モード及び常時表示モードにおいて、対向電圧Vcomを所定の高レベル(5V)と所定の低レベル(0V)の間で交互に切り換えて出力する。このように、対向電圧Vcomを高レベルと低レベルの間で切り換えながら対向電極80を駆動することを「対向AC駆動」と呼ぶ。
 通常表示モードにおける「対向AC駆動」は、1水平期間毎及び1フレーム期間毎に、対向電圧Vcomを高レベルと低レベルの間で切り換える。つまり、ある1フレーム期間では、相前後する2つの水平期間で、対向電極80と画素電極20間の電圧極性が変化する。また、同じ1水平期間においても、相前後する2つのフレーム期間では、対向電極80と画素電極20間の電圧極性が変化する。
 一方、常時表示モードでは、1フレーム期間中は、同じ電圧レベルが維持されるが、相前後する2つの書き込み動作で対向電極80と画素電極20間の電圧極性が変化する。
 対向電極80と画素電極20間に同一極性の電圧を印加し続けると、表示画面の焼き付き(面焼き付き)が発生するため、極性反転動作が必要となるが、「対向AC駆動」を採用することで、極性反転動作における画素電極20に印加する電圧振幅が低減できる。
 《画素回路》
 次に、画素回路2の構成について図4~図17を参照して説明する。図4~図6に、本発明の画素回路2の基本回路構成を示す。画素回路2は、全ての回路構成に共通して、単位液晶表示素子Clcを含む表示素子部21,第1スイッチ回路22,第2スイッチ回路23,制御回路24,及び補助容量素子Csを備える構成である。補助容量素子Csは「第2容量素子」に対応する。
 なお、図4,図5,図6に示す基本回路構成は、それぞれ後述する第1~第3類型に属する基本回路構成を包含した共通の回路構成を示している。単位液晶表示素子Clcは、図2を参照して既に説明したとおりであり、説明は割愛する。
 画素電極20は、第1スイッチ回路22、第2スイッチ回路23、及び制御回路24の各一端に接続して、内部ノードN1を形成している。内部ノードN1は、書き込み動作時にソース線SLから供給される画素データの電圧を保持する。
 補助容量素子Csは、一端が内部ノードN1に、他端が補助容量線CSLに接続する。この補助容量素子Csは、内部ノードN1が画素データの電圧を安定的に保持できるように追加的に設けられたものである。
 第1スイッチ回路22は、内部ノードN1を構成しない側の一端が、ソース線SLと接続する。第1スイッチ回路22は、スイッチ素子として機能するトランジスタT3を備えている。トランジスタT3は、制御端子がゲート線に接続するトランジスタを指し、「第3トランジスタ素子」に対応する。少なくともトランジスタT3のオフ時には、第1スイッチ回路22は非導通状態となり、ソース線SLと内部ノードN1間の導通が遮断される。
 第2スイッチ回路23は、内部ノードN1を構成しない側の一端が、ソース線SLと接続する。第2スイッチ回路23は、トランジスタT1とダイオードD1の直列回路で構成される。なお、トランジスタT1は、制御端子が制御回路24の出力ノードN2に接続するトランジスタを指し、「第1トランジスタ素子」に対応する。また、ダイオードD1は、ソース線SLから内部ノードN1に向かう方向に整流作用を有しており、「ダイオード素子」に対応する。本実施形態では、このダイオードD1はPN接合で形成されるものとするが、ショットキー接合や、MOSFETのダイオード接続(ドレイン又はソースがゲートに接続したMOSFET)によって形成しても構わない。
 この図4に示すように、第2スイッチ回路23がトランジスタT1とダイオードD1の直列回路で構成され、トランジスタT4を含まない構成を、以下では第1類型と呼ぶ。
 この第1類型とは異なり、図5及び図6に示すように、第2スイッチ回路23が、トランジスタT1、ダイオードD1に加えて、トランジスタT4を含む直列回路で構成されても良い。このとき、トランジスタT4の制御端子が接続される信号線に応じて、図5と図6の2類型に分けられる。図5に示す画素回路の類型(第2類型)では、ブースト線BSTとは別の選択線SELを備えており、この選択線SELにトランジスタT4の制御端子が接続される構成である。一方、図6に示す画素回路の類型(第3類型)では、ブースト線BSTにトランジスタT4の制御端子が接続される構成である。なお、第1類型では当然に選択線SELは存在しない。このトランジスタT4は「第4トランジスタ素子」に対応する。
 第1類型の場合、トランジスタT1がオン時において、ダイオードD1の両端間にターンオン電圧以上の電位差が生じていれば、ソース線SLから内部ノードN1に向かう方向に第2スイッチ回路23が導通する。一方、第2及び第3類型の場合、トランジスタT1及びT4の双方がオン時において、ダイオードD1の両端間にターンオン電圧以上の電位差が生じていれば、ソース線SLから内部ノードN1に向かう方向に第2スイッチ回路23が導通する。
 制御回路24は、トランジスタT2とブースト容量素子Cbstの直列回路で構成される。トランジスタT2の第1端子が内部ノードN1に接続し、制御端子がリファレンス線REFに接続する。また、トランジスタT2の第2端子は、ブースト容量素子Cbstの第1端子、及びトランジスタT1の制御端子と接続して出力ノードN2を形成する。ブースト容量素子Cbstの第2端子は、ブースト線BSTに接続する。トランジスタT2は、「第2トランジスタ素子」に対応する。
 ところで、内部ノードN1には、補助容量素子Csの一端、並びに液晶容量素子Clcの一端が接続されている。符号の煩雑化を避けるべく、補助容量素子の静電容量(「補助容量」と呼ぶ)をCs、液晶容量素子の静電容量(「液晶容量」と呼ぶ)をClcと表す。このとき、内部ノードN1に寄生する全容量、すなわち画素データを書き込んで保持すべき画素容量Cpは、ほぼ液晶容量Clcと補助容量Csの和で表わされる(Cp≒Clc+Cs)。
 このとき、ブースト容量素子Cbstは、当該素子の静電容量(「ブースト容量」と呼ぶ)をCbstと記載すれば、Cbst<<Cpが成立するように設定されている。
 出力ノードN2は、トランジスタT2がオン時に、内部ノードN1の電圧レベルに応じた電圧を保持し、トランジスタT2がオフ時には、内部ノードN1の電圧レベルが変化しても当初の保持電圧を維持する。この出力ノードN2の保持電圧によって、第2スイッチ回路23のトランジスタT1のオンオフが制御される構成となっている。
 上記4種類のトランジスタT1~T4は、いずれもアクティブマトリクス基板10上に形成される、多結晶シリコンTFTや非晶質シリコンTFT等の薄膜トランジスタであり、第1及び第2端子の一方がドレイン電極、他方がソース電極、制御端子がゲート電極に相当する。更に、各トランジスタT1~T4は、それぞれ単体のトランジスタ素子で構成されても良いが、オフ時のリーク電流を抑制する要請が高い場合は、複数のトランジスタを直列に接続し、制御端子を共通化して構成されても良い。以下の画素回路2の動作説明では、トランジスタT1~T4が、全てNチャネル型の多結晶シリコンTFTで、閾値電圧が2V程度のものを想定する。
 また、ダイオードD1も、上記トランジスタT1~T4と同様に、アクティブマトリクス基板10上に形成される。本実施形態では、このダイオードD1は多結晶シリコンによるPN接合で実現されている。
 <第1類型>
 まず、第2スイッチ回路23がトランジスタT1とダイオードD1のみの直列回路で構成される、第1類型に属する画素回路について説明する。
 このとき、上述したように、第1スイッチ回路22の構成に応じて、図7~図8に示す画素回路2Aが想定される。
 図7に示す第1類型の画素回路2Aは、第1スイッチ回路22がトランジスタT3だけで構成される。
 ここで、図7では、第2スイッチ回路23が、ダイオードD1とトランジスタT1の直列回路で構成され、一例として、トランジスタT1の第1端子が内部ノードN1に接続し、トランジスタT1の第2端子がダイオードD1のカソード端子に接続し、ダイオードD1のアノード端子がソース線SLに接続する構成例を示している。しかし、図8に示すように当該直列回路のトランジスタT1とダイオードD1の配置を入れ替えても良い。また、2つのダイオードD1の間にトランジスタT1を挟んだ回路構成とすることも可能である。
 <第2類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子が選択線SELに接続される第2類型に属する画素回路について説明する。
 第2類型では、第1スイッチ回路22の構成に応じて、図9~図11に示す画素回路2Bと、図12~図15に示す画素回路2Cが想定される。
 図9に示す画素回路2Bは、第1スイッチ回路22がトランジスタT3のみで構成されている。なお、第1類型と同様に、第2スイッチ回路23の構成において、ダイオードD1の配置に応じた変形回路の実現が可能である(例えば、図10,図11参照)。またこれらの回路において、トランジスタT1とT4の配置を入れ換えることも可能である。
 図12に示す画素回路2Cは、第1スイッチ回路22がトランジスタT3とトランジスタT4の直列回路で構成される。トランジスタT4の配置個所を変更することで図13のような変形回路が実現される。また、トランジスタT4を複数備えることで図14のような変形回路の実現が可能である。
 更に、図15に示すように、第1スイッチ回路22内のトランジスタT4に代えて、このトランジスタT4と制御端子同士が接続されたトランジスタT5を備える変形回路の実現が可能である。
 <第3類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子がブースト線BSTに接続される第3類型に属する画素回路について説明する。
 第3類型の各画素回路は、第2類型の各画素回路に対して、トランジスタT4の制御端子の接続先をブースト線BSTとし、選択線SELを備えない構成としたものである。従って、図9~図11に示す画素回路2B、図12~図15に示す画素回路2Cに対応した画素回路がそれぞれ実現可能である。一例として、図9の画素回路2Bに対応する画素回路2Dを図16に、図12の画素回路2Cに対応する画素回路2Eを図17にそれぞれ示す。
 なお、上述した各類型の画素回路において、同一のトランジスタ素子或いはダイオード素子を、それぞれ複数直列に接続して実現することも可能である。
 [第2実施形態]
 第2実施形態では、上述した第1~第3類型の各画素回路によるセルフリフレッシュ動作につき、図面を参照して説明する。
 セルフリフレッシュ動作とは、常時表示モードにおける動作で、複数の画素回路2に対して、第1スイッチ回路22と第2スイッチ回路23と制御回路24を所定のシーケンスで作動させ、画素電極20の電位(これは内部ノードN1の電位でもある)を直前の書き込み動作で書き込まれた階調の電位に復元させる動作であって、全ての階調の画素回路を対象として各階調別に同時に一括して復元される。セルフリフレッシュ動作は、上記画素回路2A~2Eによる本発明に特有の動作であり、従来のように通常の書き込み動作を行って画素電極20の電位を復元させる「外部リフレッシュ動作」と比較して大幅な低消費電力化を可能とするものである。なお、上記「同時に一括して」の「同時」とは、一連のセルフリフレッシュ動作の時間幅を有する「同時」である。
 ところで、従来においては、書き込み動作を行って、画素電極20と対向電極80の間の印加される液晶電圧Vclの絶対値を維持しながら極性のみを反転させる動作(外部極性反転動作)が行われていた。この外部極性反転動作が行われると、極性が反転すると共に、液晶電圧Vclの絶対値も直前の書き込み時の状態に更新される。つまり、極性反転とリフレッシュが同時に行われることとなる。このため、書き込み動作によって、極性を反転させずに液晶電圧Vclの絶対値のみを更新させる目的でリフレッシュ動作を実行するということは通常はあまり行われないが、以下では、説明の都合上、セルフリフレッシュ動作と比較する観点から、このようなリフレッシュ動作のことを「外部リフレッシュ動作」と呼ぶこととする。
 なお、外部極性反転動作によってリフレッシュ動作を実行する場合においても、書き込み動作が行われることには変わりない。つまり、この従来方法と比較した場合においても、本実施形態のセルフリフレッシュ動作によって大幅な低消費電力化が可能となるものである。
 後述するように、本実施形態のセルフリフレッシュ動作では、全ての画素回路に対して、同一の電圧印加状態に設定するが、実際には、この電圧状態の下では、内部ノードN1が特定の一階調の電圧状態を示す画素回路のみが自動的に選択されて、内部ノードN1の電位が復元(リフレッシュ)される。つまり、全ての画素回路に対して電圧印加を行っているものの、実際には、その電圧印加の時点では、内部ノードN1の電位がリフレッシュされる画素回路とリフレッシュされない画素回路が存在することとなる。
 このため、表現上混同が生じるのを避けるべく、以下では、「セルフリフレッシュ(動作)」という言葉と、「リフレッシュ(動作)」という言葉を意識的に区別して記載する。前者は、各画素回路の内部ノードN1の電位を復元するための一連の動作を指す広い概念で用いる。一方、後者は、実際に画素電極の電位(内部ノードの電位)を復元する動作を指す狭い概念で用いる。つまり、本実施形態における「セルフリフレッシュ動作」では、全ての画素回路に対して同一の電圧状態に設定することで特定の一階調の電圧状態を示す内部ノードのみを自動選択的に「リフレッシュする」構成である。そして、「リフレッシュする」対象となる階調を変更すべく電圧の値を変更して同様に電圧印加を行うことで、全ての階調に対して「リフレッシュ」がされる。このように、本実施形態における「セルフリフレッシュ動作」は、階調毎に「リフレッシュ動作」を行う構成である。
 セルフリフレッシュ動作の対象となる画素回路2に接続する全てのゲート線GL、ソース線SL、リファレンス線REF、補助容量線CSL、ブースト線BST及び対向電極80には、全て同じタイミングで電圧印加が行われる。選択線SELを備える第2類型の画素回路の場合は、この選択線SELに対しても同様に電圧印加が行われる。
 そして、同一タイミング下では、全てのゲート線GLに対して同一電圧が印加され、全てのリファレンス線REFに対して同一電圧が印加され、全ての補助容量線CSLに対して同一電圧が印加され、全てのブースト線BSTに対して同一電圧が印加される。これらの電圧印加のタイミング制御は、図1に示す表示制御回路11によって行われ、個々の電圧印加は、表示制御回路11、対向電極駆動回路12、ソースドライバ13、ゲートドライバ14によって行われる。
 本実施形態の常時表示モードにおいても、第1実施形態で上述したように、画素回路単位で3階調(3値)の画素データを保持するものとする。このとき、内部ノードN1に保持されている電位VN1(これは画素電極20の電位でもある)は、第1~第3電圧状態の3つの電圧状態を示す。本実施形態では、一例として、第1電圧状態(高電圧状態)を5V,第2電圧状態(中電圧状態)を3V,第3電圧状態(低電圧状態)を0Vとする。
 セルフリフレッシュ動作の実行直前の状態において、画素電極20が第1電圧状態に書き込まれている画素、第2電圧状態に書き込まれている画素、第3電圧状態に書き込まれている画素のそれぞれが混在することが想定される。しかしながら、本実施形態のセルフリフレッシュ動作によれば、画素電極20がどのような電圧状態に書き込まれていても、同一のシーケンスに基づく電圧印加処理を行うことで、全ての画素回路に対するリフレッシュ動作を実行することができる。この内容につき、タイミング図及び回路図を参照して説明する。
 なお、以下では、直前の書き込み動作で第1電圧状態の電圧(高レベル電圧)が書き込まれており、当該高レベル電圧を復元させる場合を「ケースH」と呼び、直前の書き込み動作で第2電圧状態(中レベル電圧)が書き込まれており、当該中レベル電圧を復元させる場合を「ケースM」と呼び、直前の書き込み動作で第3電圧状態(低レベル電圧)が書き込まれており、当該低レベル電圧を復元させる場合を「ケースL」と呼ぶ。
 また、第1実施形態で上述したように、各トランジスタの閾値電圧を2Vとする。そして、ダイオードD1のターンオン電圧を0.6Vとする。
 <第1類型>
 まず、第2スイッチ回路23がトランジスタT1とダイオードD1のみの直列回路で構成される、第1類型の画素回路2Aのセルフリフレッシュ動作について説明する。ここでは図7に示す画素回路2Aを想定する。
 図18に、第1類型のセルフリフレッシュ動作のタイミング図を示す。図18に示すように、セルフリフレッシュ動作は、2つのステップS1,S2に分解され、更にステップS1は2つのフェーズP1,P2を備える。図18には、セルフリフレッシュ動作の対象となる画素回路2Aに接続する全てのゲート線GL,ソース線SL,ブースト線BST,リファレンス線REF,補助容量線CSL,ブースト線BSTの各電圧波形と、対向電圧Vcomの電圧波形を図示している。なお、本実施形態では、画素回路アレイの全画素回路が、セルフリフレッシュ動作の対象とする。
 更に、図18では、ケースH,M,Lそれぞれにおける内部ノードN1の電位(画素電圧)VN1、及び出力ノードN2の電位VN2の変化を示す波形、並びにトランジスタT1~T3の各ステップ及び各フェーズにおけるオンオフ状態を示している。なお、図18では、どのケースに該当するかを括弧付きで明記している。例えば、VN1(H)は、ケースHにおける電位VN1の変化を示す波形である。
 なお、セルフリフレッシュ動作を開始する時刻(t1)より前の時点で、ケースHでは高レベル書き込みがなされており、ケースMでは中レベル書き込みがなされており、ケースLでは低レベル書き込みがなされているものとする。
 書き込み動作が実行された後、時間が経過すると、画素回路内の各トランジスタのリーク電流の発生に伴い、内部ノードN1の電位VN1は変動する。ケースHの場合、書き込み動作直後においてはVN1が5Vであったが、この値は時間が経過することで当初よりも低い値を示す。同様に、ケースMの場合においても、書き込み動作直後においてはVN1が3Vであったが、この値は時間が経過することで当初よりも低い値を示す。これらケースH,Mの場合において、内部ノードN1の電位が経時的に徐々に低下するのは、主としてオフ状態のトランジスタを介してリーク電流が低電位(例えば接地線)に向かって流れることによる。
 また、ケースLの場合においては、書き込み動作直後においては、電位VN1は0Vであったが、時間経過と共に少し上昇することがある。これは、例えば他の画素回路への書き込み動作時においてソース線SLに書き込み電圧が印加されることにより、非選択の画素回路であっても、非導通のトランジスタを介してソース線SLから内部ノードN1に向けてリーク電流が流れることによる。
 図18では、時刻t1において、VN1(H)が5Vより少し低く、VN1(M)が3Vより少し低く、VN1(L)が0Vより少し高く表示されている。これらは上記の電位変動を考慮したものである。
 本実施形態のセルフリフレッシュ動作は、大きく2つのステップS1,S2に分けられる。ステップS1は「リフレッシュステップ」に対応し、ステップS2は「待機ステップ」に対応する。
 ステップS1では、パルス電圧を印加することで、ケースH及びケースMに対するリフレッシュ動作を直接的に実行する。一方、ステップS2では、ステップS1より長い時間(例えば10倍以上の時間)にわたって一定の電圧を印加することで、ケースLに対するリフレッシュ動作を間接的に実行する。なお、「直接的に実行する」とは、内部ノードN1とソース線SLを第2スイッチ回路23を介して導通させることで、ソース線SLに印加された電圧を内部ノードN1に与えて、内部ノードの電位VN1を目標値に設定することを表わしている。また、「間接的に実行する」とは、内部ノードN1とソース線SLとは第2スイッチ回路23を介して導通しないものの、非導通の第1スイッチ回路22を介して内部ノードN1とソース線SLとの間で微少に流れるリーク電流を用いることで、内部ノードN1の電位VN1を目標値に近づけることを表わしている。
 また、ステップS1において、各フェーズP1,P2は、ケースHとケースMのどちらをリフレッシュするかという点に違いがある。図18では、フェーズP1においてケースH(高電圧書き込み)の内部ノードN1のみをリフレッシュし、フェーズP2においてケースM(中電圧書き込み)の内部ノードN1のみをリフレッシュする。以下、この動作につき詳細に説明する。
 《ステップS1/フェーズP1》
 時刻t1より開始されるフェーズP1では、ゲート線GLにトランジスタT3が完全にオフ状態となるような電圧を印加する。ここでは-5Vとする。なお、セルフリフレッシュ動作実行中は、トランジスタT3は常時オフであるため、このゲート線GLへの印加電圧は、セルフリフレッシュ動作実行中は不変として良い。
 対向電極80に印加する対向電圧Vcom、及び補助容量線CSLに印加する電圧は、0Vとする。これは0Vに限る趣旨ではなく、時刻t1より前の時点における電圧値をそのまま維持するものとして良い。なお、これらの電圧についても、セルフリフレッシュ動作実行中は不変として良い。
 ソース線SLには、時刻t1において、リフレッシュ動作によって復元したい内部ノードN1の目標電圧に、ダイオードD1のターンオン電圧Vdnを加えた電圧を印加する。フェーズP1では、リフレッシュ対象がケースHであるため、内部ノードN1の目標電圧は5Vである。従って、ダイオードD1のターンオン電圧Vdnを0.6Vとすると、ソース線SLには5.6Vを印加する。
 なお、この内部ノードN1の目標電圧が「リフレッシュ目標電圧」に対応し、ダイオードD1のターンオン電圧Vdnが「第1調整電圧」に対応し、リフレッシュステップS1において実際にソース線SLに印加される電圧が「リフレッシュ入力電圧」に対応する。この言葉を用いると、〈リフレッシュ入力電圧=リフレッシュ目標電圧+第1調整電圧〉と規定される。フェーズP1では、リフレッシュ入力電圧が5.6Vである。
 リファレンス線REFには、時刻t1において、内部ノードN1がリフレッシュ対象となっている電圧状態(階調)及びそれよりも高い電圧状態(高階調)を示す場合にはトランジスタT2が非導通となり、リフレッシュ対象となっている電圧状態(階調)よりも低い電圧状態(低階調)を示す場合にはトランジスタT2が導通となるような電圧を印加する。フェーズP1の場合、リフレッシュ対象はケースH(第1電圧状態)であり、これよりも高電圧の電圧状態はないため、リファレンス線REFに対し、内部ノードN1が第1電圧状態(ケースH)の場合のみトランジスタT2が非導通状態となり、第2電圧状態(ケースM)及び第3電圧状態(ケースL)の場合にはトランジスタT2が導通状態となるような電圧を印加する。
 より具体的には、トランジスタT2の閾値電圧Vt2は2Vであるため、5V(=3+2)より高い電圧をリファレンス線REFに印加することで、ケースMにおけるトランジスタT2を導通状態とすることができる。一方、7V(=5+2)より高い電圧をリファレンス線REFに印加すると、フェーズP1における対象であるケースHにおけるトランジスタT2も導通してしまう。従って、リファレンス線REFには、5Vと7Vの間の電圧を印加すれば良い。
 なお、内部ノードN1の電位は、上述したリーク電流の発生等によって、セルフリフレッシュ動作実行前の時点では、直前の書き込み動作によって書き込まれた電圧状態から一定レベル低下していることが想定される。つまり、ケースMに対応する内部ノードN1の電位VN1が、セルフリフレッシュ動作実行前の時点で2.5V程度に低下している可能性もある。このとき、仮にリファレンス線REFに5.1V程度の電圧を印加した場合には、内部ノードN1の電位低下の程度によってはケースMの場合にもトランジスタT2が非導通となる可能性があるため、ここではある程度の余裕を持って6.5Vとした。
 リファレンス線REFに6.5Vを印加した場合、内部ノードN1の電位VN1が4.5V以上の画素回路においては、トランジスタT2が非導通となる。一方、VN1が4.5Vより低い画素回路においては、トランジスタT2が導通となる。直前の書き込み動作において5Vに書き込まれたケースHの内部ノードN1は、リーク電流の発生によって0.5V以上低下しない時間内においてこのセルフリフレッシュ動作を実行することにより、VN1が4.5V以上を実現するため、トランジスタT2は非導通となる。一方、直前の書き込み動作によって3Vに書き込まれたケースMの内部ノードN1、0Vに書き込まれたケースLの内部ノードN1は、時間が経過しても4.5V以上となることはなく、これらについてはトランジスタT2は導通する。
 以上を踏まえれば、リファレンス線REFに印加する電圧VrefからトランジスタT2の閾値電圧Vt2を引いた値が、このフェーズでリフレッシュ動作の対象となっているケースHにおける内部ノード電位VN1と、それよりも一段階電圧状態の低いケースMにおける内部ノード電位VN1の間に位置している必要がある。言い換えると、このフェーズP1では、リファレンス線REFへの印加電圧Vrefが、3V<(Vref-Vt2)<5Vの条件を満たすような値である必要がある。Vref-Vt2の電圧が「リフレッシュ分離電圧」に対応し、Vt2が「第2調整電圧」に対応し、Vrefが「リフレッシュ基準電圧」に対応する。これらの言葉を用いて上記の条件を記載すれば、フェーズP1においてリファレンス線REFに印加する「リフレッシュ基準電圧」は、リフレッシュ動作の対象となっている電圧状態(階調)と、それよりも一段階低い電圧状態(階調)の間の中間電圧で規定される「リフレッシュ分離電圧」に、トランジスタT2の閾値電圧に相当する「第2調整電圧」を加えた電圧値に対応する。
 ブースト線BSTには、前記のようにトランジスタT2が非導通とされたケースHにおいてトランジスタT1を導通状態とし、トランジスタT2が導通しているケースM及びLにおいてトランジスタT1を非導通状態とする範囲内の電圧を印加する。
 ブースト線BSTは、ブースト容量素子Cbstの一端に接続されている。このため、ブースト線BSTに高レベル電圧を印加すると、ブースト容量素子Cbstの他端の電位、すなわち出力ノードN2の電位VN2が突き上げられる。このように、ブースト線BSTに印加する電圧を上昇させることで出力ノードN2の電位を突き上げることを、以下では、「ブースト突き上げ」と呼ぶ。
 上述したように、ケースHの場合、フェーズP1においてトランジスタT2が非導通である。このため、ブースト突き上げによるノードN2の電位変動量は、ブースト容量CbstとノードN2に寄生する全容量の比率によって決定する。一例として、この比率を0.7とすると、ブースト容量素子の一方の電極がΔVbst上昇すれば、他方の電極すなわちノードN2は、ほぼ0.7ΔVbstだけ上昇することとなる。
 ケースHの場合、時刻t1において内部ノードN1の電位VN1(H)はほぼ5Vを示す。トランジスタT1のゲート、すなわち出力ノードN2に、VN1(H)よりも閾値電圧2V以上高い電位を与えればトランジスタT1は導通する。本実施形態では、時刻t1においてブースト線BSTに印加する電圧を10Vとする。この場合、出力ノードN2の電位は7V上昇することとなる。第5実施形態で後述するように、書き込み動作においては、トランジスタT2は導通されているため、時刻t1の直前の時点でノードN2はノードN1とほぼ同電位(5V)を示す。これにより、ブースト突き上げによって当該ノードN2の電位は12V程度を示す。よって、トランジスタT1にはゲートとノードN1の間に閾値電圧以上の電位差が生じるため、当該トランジスタT1が導通する。
 他方、フェーズP1においてトランジスタT2が非導通であるケースMやケースLの場合、ケースHとは異なり、出力ノードN2と内部ノードN1が電気的に接続している。この場合、ブースト突き上げによる出力ノードN2の電位変動量は、ブースト容量Cbst及びノードN2の全寄生容量に加えて、内部ノードN1の全寄生容量の影響を受ける。
 内部ノードN1には、補助容量素子Csの一端、並びに液晶容量素子Clcの一端が接続されており、この内部ノードN1に寄生する全容量Cpは、ほぼ液晶容量Clcと補助容量Csの和で表わされることは上述した通りである。そして、ブースト容量Cbstは液晶容量Cpと比べてはるかに小さい値である。従って、これらの総容量に対するブースト容量の比率は極めて小さく、例えば0.01以下程度の値となる。この場合、ブースト容量素子の一方の電極がΔVbst上昇すれば、他方の電極、すなわち出力ノードN2は、高々0.01ΔVbst程度しか上昇しない。つまり、ケースM及びケースLの場合、ΔVbst=10Vとしても、出力ノードN2の電位VN2(M),VN2(L)はほとんど上昇しないこととなる。
 ケースMの場合、電位VN2(M)は時刻t1の直前においてほぼ3Vを示している。また、ケースLの場合、VN2(L)は時刻t1の直前においてほぼ0Vを示している。従って、両ケース共に、時刻t1でブースト突き上げを行っても、トランジスタT1のゲートには同トランジスタを導通させるに十分な電位が与えられない。つまり、ケースHとは異なり、トランジスタT1は依然として非導通状態を示す。
 なお、ケースM,Lの場合、時刻t1の直前における出力ノードN2の電位は、必ずしもそれぞれ3V,0Vである必要はなく、ブースト線BSTへのパルス電圧印加に伴う微少な電位変動を考慮してもトランジスタT1が導通しないような電位であれば良い。同様にケースHの場合、時刻t1の直前におけるノードN1の電位は、必ずしも5Vである必要はなく、トランジスタT2が非導通状態の下でブースト突き上げがされることによる電位変動を考慮してトランジスタT1が導通するような電位であれば良い。
 ケースHの場合、ブースト突き上げがされることで、トランジスタT1が導通する。また、ソース線SLには5.6Vが印加されているため、内部ノードN1の電位VN1(H)が5Vから少し低下しているとすれば、ソース線SLと内部ノードN1の間にはダイオードD1のターンオン電圧Vdn以上の電位差が生じている。よって、ソース線SLから内部ノードN1に向かう方向にダイオードD1は導通し、ソース線SLから内部ノードN1に向けて電流が流れる。これにより、内部ノードN1の電位VN1(H)は上昇する。なお、この電位上昇は、ソース線SLと内部ノードN1の電位差が、ダイオードD1のターンオン電圧Vdnに等しくなるまで起こり、前記電位差がVdnに等しくなった時点で停止する。ここでは、ソース線SLの印加電圧が5.6Vであり、ダイオードD1のターンオン電圧Vdnが0.6Vであるので、内部ノードN1の電位VN1(H)は5Vまで上昇した時点で停止する。つまり、ケースHにおけるリフレッシュ動作が実行される。
 そして、上述したように、ケースM、Lにおいては、いずれもトランジスタT1が非導通であるため、ソース線SLと内部ノードN1は導通していない。よってソース線SLへの印加電圧は、内部ノードN1の電位VN1(M),VN1(L)の電位には影響しない。
 以上をまとめると、内部ノードN1の電位が、リフレッシュ分離電圧以上でリフレッシュ目標電圧以下となっている画素回路に対して、リフレッシュ動作が実行されることとなる。フェーズP1では、リフレッシュ分離電圧を4.5V(=6.5-2V)、リフレッシュ目標電圧を5Vとしたため、内部ノードN1の電位VN1が4.5V以上5V以下の画素回路に対してのみ、すなわちケースHに対してのみ電位VN1を5Vにリフレッシュする動作が行われる。
 なお、フェーズP1が終了後は、ソース線SL,ブースト線BST,リファレンス線REFの各線への電圧印加をいったん停止する。その後、時刻t2より次のフェーズP2へ移行する。
 《ステップS1/フェーズP2》
 時刻t2より開始されるフェーズP2では、ケースM(中電圧書き込みノード)をリフレッシュ対象とする。
 具体的には、リフレッシュ入力電圧としてソース線SLに3.6Vを印加する。この3.6Vは、フェーズP2における内部ノードN1のリフレッシュ目標電圧(3V)に、ダイオードD1のターンオン電圧Vdnを加えた値である。
 そして、リファレンス線REFには、内部ノードN1がリフレッシュ対象となっている電圧状態(ケースM)及びそれよりも高い電圧状態(ケースH)を示す場合にはトランジスタT2が非導通となり、リフレッシュ対象となっている電圧状態(ケースM)よりも低い電圧状態(ケースL)を示す場合にはトランジスタT2が導通となるような電圧を印加する。フェーズP1の場合と同様に考えれば、2Vより高い電圧をリファレンス線REFに印加することで、ケースLにおけるトランジスタT2を導通状態とすることができる。一方、5Vより高い電圧をリファレンス線REFに印加すると、ケースMにおけるトランジスタT2も導通してしまう。従って、形式的にはリファレンス線REFには、2Vと5Vの間の電圧を印加すれば良いこととなる。しかし、フェーズP1と同様にある程度の余裕を持って電圧を印加する必要があるため、ここでは一例として4.5Vを印加するものとしている。この4.5VがフェーズP2におけるリフレッシュ基準電圧に相当し、トランジスタT2の閾値電圧分だけ減じた値である2.5Vがリフレッシュ分離電圧に相当する。
 このとき、内部ノードN1の電位VN1が、リフレッシュ分離電圧である2.5V以上であれば、トランジスタT2は非導通となる。一方、VN1が2.5Vより低い画素回路においては、トランジスタT2が導通となる。つまり、直前の書き込み動作によって5Vに書き込まれたケースH,3Vに書き込まれたケースMにおいては、いずれもVN1が2.5V以上であるためトランジスタT2は非導通となる。一方、直前の書き込み動作によって0Vに書き込まれたケースLは、VN1が2.5Vより低いためトランジスタT2は導通する。
 ブースト線BSTには、トランジスタT2が非導通とされたケースH,MにおいてトランジスタT1を導通状態とし、トランジスタT2が導通しているケースLにおいてトランジスタT1を非導通状態とする範囲内の電圧を印加する。ここでは、フェーズP1と同様に10Vとする。ケースH,Mにおいてはブースト突き上げによって出力ノードN2の電位が突き上げられるためトランジスタT1が導通する一方、ケースLにおいてはブースト突き上げを行っても出力ノードN2の電位VN2(L)がほとんど変化しないため、トランジスタT1は導通しない。この原理はフェーズP1と同様であり、詳細な説明を省略する。
 ケースHの場合、ブースト突き上げがされることで、トランジスタT1が導通する。しかし、ソース線SLには3.6Vが印加されている。内部ノードN1の電位VN1(H)が5Vから少し低下しているとしてもその低下分は1V未満である。すると、ソース線SLから内部ノードN1に向けて逆バイアス状態となっており、ダイオードD1の整流作用によってソース線SLと内部ノードN1とが導通しない。つまり、内部ノードN1の電位VN1(H)が、ソース線SLの印加電圧の影響を受けるということはない。
 ケースMの場合も、ブースト突き上げがされることで、トランジスタT1が導通する。ソース線SLには3.6Vが印加されているため、内部ノードN1の電位VN1(M)が3Vから少し低下しているとすれば、ソース線SLと内部ノードN1の間にはダイオードD1のターンオン電圧Vdn以上の電位差が生じている。よって、ソース線SLから内部ノードN1に向かう方向にダイオードD1は導通し、ソース線SLから内部ノードN1に向けて電流が流れる。これにより、内部ノードN1の電位VN1(M)は、ソース線SLと内部ノードN1の電位差がターンオン電圧Vdn(=0.6V)に等しくなるまで上昇する。つまり、VN1(M)は、3Vまで上昇した後、その電位を維持する。これにより、ケースMにおけるリフレッシュ動作が実行される。
 そして、上述したように、ケースLにおいては、トランジスタT1が非導通であるため、ソース線SLと内部ノードN1は導通していない。よってソース線SLへの印加電圧は、内部ノードN1のVN1(L)の電位には影響しない。
 以上をまとめると、フェーズP2では、リフレッシュ分離電圧を2.5V(=4.5-2V)、リフレッシュ目標電圧を3Vとしたため、内部ノードN1の電位VN1が2.5V以上3V以下の画素回路に対してのみ、すなわちケースMのみが、電位VN1を3Vにリフレッシュする動作が行われる。
 なお、フェーズP2が終了後は、ソース線SL,ブースト線BST,リファレンス線REFの各線への電圧印加を停止し、待機ステップS2へと移行する。
 《ステップS2》
 時刻t3より開始されるステップS2では、リファレンス線REFに対し、内部ノードN1の電位VN1にかかわらず、常にトランジスタT2が導通するような電圧を印加する。ここでは10Vとする。その他の信号線は、フェーズP2終了時点と同じ電圧状態を継続する。
 このような電圧状態とするとき、全てのケースH,M,Lにおいて、トランジスタT2が導通し、トランジスタT1は非導通となる。また、ゲート線GLには低レベル電圧が印加されたままであるため、依然としてトランジスタT3も非導通である。よって、内部ノードN1の電位VN1は、リフレッシュステップS1終了直後の状態が維持される。また、出力ノードN2は、内部ノードN1と導通するため、VN2がVN1と等しくなる。
 その後、時刻t4において、リファレンス線REFの印加電圧を低レベル(0V)にシフトする。これにより、トランジスタT2は非導通となる。
 このステップS2は、ステップS1よりも十分長い時間にわたって同一の電圧状態を維持するものとする。この間、ソース線SLには0Vが印加されているため、非導通のトランジスタT3を介して、内部ノードN1からソース線SLに向かう方向にリーク電流が発生する。上述したように、時刻t1の時点においてVN1(L)が0Vより少し高い値であっても、この待機ステップS2の期間にわたって、VN1(L)は徐々に0Vに近付いていく。これによって、「間接的に」ケースLのリフレッシュ動作が行われる。
 しかしながら、このリーク電流の発生は、ケースLの場合に限定されるものではなく、ケースHやケースMの場合にも発生する。このため、ケースHやケースMにおいても、ステップS1直後の時点でそれぞれ5V,3VにVN1がリフレッシュされたが、ステップS2においては、少しずつVN1が低下することとなる。したがって、待機ステップS2の電圧状態が一定時間経過した時点で、再びリフレッシュステップS1を実行することで、再度各ケースH,Mに対してリフレッシュ動作を実行することが望ましい。
 以上のように、このリフレッシュステップS1と待機ステップS2を繰り返すことで、ケースH,M,Lのそれぞれに対し、内部ノードN1の電位VN1を直前の書き込み状態に復帰させることができる。
 従来のように、ソース線SLを介した、いわゆる「書き込み動作」によって各画素回路に対してリフレッシュ動作を行う場合、ゲート線GLを1本ずつ垂直方向に走査する必要がある。このため、ゲート線GLに対しゲート線の数(n)だけ高レベル電圧を印加する必要がある。また、直前の書き込み動作において書き込まれた電位レベルと同一の電位レベルを、各ソース線SLに印加する必要があるため、各ソース線SLに対してもそれぞれ最大n回の充放電動作を必要とする。
 これに対し、本実施形態によれば、リフレッシュステップS1においては2回に分けてパルス電圧の印加を行い、その後の待機ステップにおいては一定の電圧状態を維持するのみで、内部ノードN1の電圧状態にかかわらず、全ての画素回路に対して、内部ノードN1の電位、すなわち画素電極20の電圧を書き込み動作時の電位状態に復帰することが可能となる。つまり、1フレーム期間内において、各画素の画素電極20の電位を復帰させるために各線に印加する印加電圧を変化させる回数を大幅に減少させることができ、更には、その制御内容も簡素化できる。このため、ゲートドライバ14及びソースドライバ13の消費電力量を大きく削減することができる。
 なお、図18を参照しながら説明した上記のセルフリフレッシュ動作は、図7の画素回路2Aを想定したものであったが、図8に示す変形型の画素回路においても、全く同様の方法でセルフリフレッシュ動作が実行できることは明らかである。
 また、第2スイッチ回路23内に複数個のダイオードD1を備える場合には、第2スイッチ回路23内において、ソース線SLから内部ノードN1に向けて、ターンオン電圧VdnにダイオードD1の個数倍以上の電位差を有しないと、ソース線SLと内部ノードN1が導通しない。従って、例えば第2スイッチ回路23内にダイオードD1を2つ備える場合であれば、ソース線SLに印加するリフレッシュ入力電圧として、各ケース毎のリフレッシュ目標電圧に、ターンオン電圧Vdnの2倍の値を第1調整電圧として加えた大きさの電圧を印加する必要がある。その他の点については、図18と同様の方法でセルフリフレッシュ動作を実行できる。
 なお、図18に示す電圧印加方法に代えて、以下の方法によることも可能である。
 1) 図18では、フェーズP1でケースHに対してリフレッシュ動作を実行し、その後にケースMに対してリフレッシュ動作を実行した。この順序を逆転させることも可能である。
 なお、ステップS1とステップS2の順序については、ステップS1とS2を繰り返すことを考えれば、あまり意味のある議論ではない。
 2) ブースト線BSTには、フェーズP1,P2の双方において10Vを印加するものとした。しかし、あくまでフェーズP1ではケースHのトランジスタT1を導通し、フェーズP2ではケースMのトランジスタT1を導通すれば良い。フェーズP2では、ソース線SLに印加される電圧が3.6Vであり、トランジスタT3の閾値電圧が2Vであるので、ダイオードD1のターンオン電圧Vdnを考慮しなければ、少なくとも5.6V以上の電圧を印加すれば良い。つまり、フェーズP2では、ケースMにおけるトランジスタT1が導通する範囲内において、フェーズP1よりもブースト線BSTへの印加電圧を小さくすることが可能である。
 3) 待機ステップS2では、時刻t3~t4にかけてリファレンス線REFに高レベル電圧(10V)を印加した。この電圧印加は、あくまで出力ノードN2の電位VN2を、内部ノードN1の電位VN1に等しくするために行われるものである。よって、ステップS2の期間内であれば、どのタイミングでリファレンス線REFに高レベル電圧を印加しても良い。
 4) 図18では、リフレッシュステップS1において、フェーズP1のリフレッシュ動作の後、いったんソース線SL並びにリファレンス線REFを低レベル(0V)に低下させてからフェーズP2のリフレッシュ動作を行っている。しかし、これらの線に対する印加電圧については、必ずしも低レベルに低下させなくても良い。例えば、図19のように、フェーズP1とP2の間、すなわち、ブースト線BSTのレベルが低レベル(0V)に低下している間に、ソース線SL及びリファレンス線REFを、フェーズP2で印加すべき値に設定するものとしても良い。このようにすることで、図18の場合と比較して、ソース線SL及びリファレンス線REFへの印加電圧の変動幅を小さくすることができる。
 5) 上記実施形態では、一連のセルフリフレッシュ動作として、リフレッシュステップS1でケースHとケースMに対してリフレッシュ動作を行い、その後に待機ステップS2を行うという動作を繰り返し実行することを想定した。これに対し、あるタームのリフレッシュステップS1内においては、所定の階調に対してリフレッシュ動作を行い、その後に待機ステップS2を行った後、次のタームのリフレッシュステップS1において、別の階調に対してリフレッシュ動作を行う構成としても良い(図20参照)。図20では、タームT1のリフレッシュステップS1において、ケースHのノードN1に対してリフレッシュ動作を行い(P1)、待機ステップS2を経た後、次のタームT2のリフレッシュステップS1でケースMのノードN1に対してリフレッシュ動作を行っている(P2)。このように、各ターム毎にリフレッシュ動作を行う対象の階調を変更しても良い。
 <第2類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子が選択線SELに接続される第2類型に属する画素回路について説明する。
 まず、図9に示した第2類型の画素回路2Bに対するセルフリフレッシュ動作を実行する場合につき、説明する。図7に示す画素回路2Aと比較した場合、トランジスタT1とダイオードD1に加えて、トランジスタT4によっても、第2スイッチ回路23の導通状態が制御される点が異なる。
 ここで、第1類型において上述したように、第2スイッチ回路23を介してソース線SLと内部ノードN1を導通させるのは、リフレッシュステップS1の間だけである。そして、各リフレッシュステップS1では、ダイオードD1又はトランジスタT1によって、リフレッシュ動作の対象とするケースのみが導通するように制御され、他のケースは、ダイオードD1が逆バイアスとなるか、トランジスタT1が非導通となることで、第2スイッチ回路23が非導通とされていた。この点においては、第2類型においても変わるところはない。
 第2類型の場合、トランジスタT4を備えているが、このトランジスタT4の導通状態を制御するための選択線SELを、ブースト線BSTとは別に備えている。従って、リフレッシュステップS1の間にわたって、常時トランジスタT4が導通状態となるように選択線SELに電圧印加を行っておけば、第1類型と全く同じ電圧状態を実現することができる。この場合のタイミング図を図21に示す。なお、ここでは選択線SELに対する印加電圧を10Vとした。
 無論、ブースト線BSTに対してブースト電圧を印加するタイミングと同じタイミングで選択線SELにパルス状に電圧を印加しても良い。この場合のタイミング図を図22に示す。
 上記の説明は、図10~図11に示す画素回路2B、図12~図15に示す画素回路2Cにおいて当てはまるものであることは言うまでもなく、その説明を割愛する。
 <第3類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子がブースト線BSTに接続される第3類型に属する画素回路について説明する。
 第3類型に属する各画素回路は、第2類型に属する各画素回路に対し、トランジスタT4の制御端子の接続先をブースト線BSTに変更し、選択線SELを備えなくした構成である。従って、第2類型の画素回路とは異なり、トランジスタT4の導通制御は、ブースト線BSTによって左右されることとなる。
 しかしながら、図22に示したように、第2類型において、ブースト線BSTと同じタイミングで選択線SELにパルス電圧を印加しても、第1類型の各画素回路と全く同様の電圧状態を実現することができる。そして、このことは、トランジスタT4の制御端子をブースト線BSTに接続しても、全く同じ電圧状態を実現できることを意味するものである。
 従って、図18と同じ電圧状態とすることで、図16の画素回路2Dに対してもセルフリフレッシュ動作を実行することができる。そして、このことは、図17の画素回路2Eに対しても当てはまるものである。詳細な説明は割愛する。
 [第3実施形態]
 第3実施形態では、第2実施形態とは異なる電圧印加方法によってセルフリフレッシュ動作を実行する場合につき、図面を参照して説明する。なお、本実施形態のセルフリフレッシュ動作は、第2実施形態と同様、リフレッシュステップS1と待機ステップS2に分けられる。
 第2実施形態では、フェーズP1においてケースH(高電圧書き込み)の内部ノードN1のみをリフレッシュし、フェーズP2においてケースM(中電圧書き込み)の内部ノードN1のみをリフレッシュする動作であった。そして、ステップS1では、これらフェーズP1、フェーズP2において、それぞれブースト線BSTに対するパルス電圧印加を行う必要があった。
 これに対し、本実施形態では、後述するように、フェーズP1においてケースM(中電圧書き込み)の内部ノードN1のみをリフレッシュし、フェーズP2においてケースH(高電圧書き込み)の内部ノードN1のみをリフレッシュする。そして、ステップS1では、フェーズP1からP2にかけてブースト線BSTに対して高レベル電圧を与える。これにより、ステップS1においてブースト線BSTに対する印加電圧の変化回数が削減され、セルフリフレッシュ動作時の電力消費量を削減できるというものである。以下、この動作につき詳細に説明する。
 <第1類型>
 第1類型の画素回路2Aに対し、本実施形態のセルフリフレッシュ動作を行う場合につき、図23のタイミング図を参照して説明する。画素回路2Aとしては、第2実施形態の場合と同様、図7に示す画素回路2Aを想定する。
 《ステップS1/フェーズP1》
 フェーズP1では、ケースM(中電圧状態)の書き込みノードN1(M)をリフレッシュ対象とする。
 時刻t1より開始されるステップS1において、ゲート線GLにはトランジスタT3が完全にオフ状態となるような電圧を印加する。ここでは-5Vとする。なお、セルフリフレッシュ動作実行中は、トランジスタT3は常時オフであるため、このゲート線GLへの印加電圧は、セルフリフレッシュ動作実行中は不変として良い。
 対向電極80に印加する対向電圧Vcom、及び補助容量線CSLに印加する電圧は0Vとする。これは0Vに限る趣旨ではなく、時刻t1より前の時点における電圧値をそのまま維持するものとして良い。なお、これらの電圧についても、セルフリフレッシュ動作実行中は不変として良い。
 リファレンス線REFには、時刻t1において、内部ノードN1がリフレッシュ対象となっている電圧状態(階調)及びそれよりも高い電圧状態(高階調)を示す場合にはトランジスタT2が非導通となり、リフレッシュ対象となっている電圧状態(階調)よりも低い電圧状態(低階調)を示す場合にはトランジスタT2が導通となるような電圧を印加する。フェーズP1の場合、リフレッシュ対象は第2電圧状態(ケースM)であり、リファレンス線REFに対し、内部ノードN1が第2電圧状態(ケースM)および第1電圧状態(ケースH)の場合にトランジスタT2が非導通状態となり、第3電圧状態(ケースL)の場合にはトランジスタT2が導通状態となるような電圧を印加する。
 より具体的には、トランジスタT2の閾値電圧Vt2は2Vであるため、2Vより高い電圧をリファレンス線REFに印加することで、ケースLにおけるトランジスタT2を導通状態とすることができる。一方、5Vより高い電圧をリファレンス線REFに印加すると、フェーズP1における対象であるケースMにおけるトランジスタT2も導通してしまう。従って、リファレンス線REFには、2Vと5Vの間の電圧を印加すれば良い。図23の例ではリファレンス線REFに4.5Vを印加するものとしている。
 リファレンス線REFに4.5Vを印加した場合、内部ノードN1の電位VN1が2.5V以上の画素回路においては、トランジスタT2が非導通となる。一方、VN1が2.5Vより低い画素回路においては、トランジスタT2が導通となる。
 直前の書き込み動作において3Vに書き込まれたケースMの内部ノードN1は、リーク電流の発生によって0.5V以上低下しない時間内においてこのセルフリフレッシュ動作を実行することにより、VN1が2.5V以上を実現するため、トランジスタT2は非導通となる。また、直前の書き込み動作において5Vに書き込まれたケースHの内部ノードN1も同様の理由によりVN1が2.5V以上を実現するため、トランジスタT2は非導通となる。一方、直前の書き込み動作によって0Vに書き込まれたケースLの内部ノードN1は、時間が経過しても2.5V以上となることはなく、これについてはトランジスタT2は導通する。
 ソース線SLには、リフレッシュ動作によって復元したい内部ノードN1の目標電圧に、ダイオードD1のターンオン電圧Vdnを加えた電圧を印加する(時刻t2)。ここで、本実施形態のフェーズP1では、リフレッシュ対象がケースMであるため、内部ノードN1の目標電圧は3Vである。従って、ダイオードD1のターンオン電圧Vdnを0.6Vとすると、ソース線SLには3.6Vを印加する。なお、リファレンス線REFに4.5Vを印加する時刻t1とソース線SLに3.6Vを印加する時刻t2を同時刻としても良い。
 この内部ノードN1の目標電圧が「リフレッシュ目標電圧」に対応し、ダイオードD1のターンオン電圧Vdnが「第1調整電圧」に対応し、リフレッシュステップS1において実際にソース線SLに印加される電圧が「リフレッシュ入力電圧」に対応する。フェーズP1では、このリフレッシュ入力電圧が3.6Vである。
 ブースト線BSTには、前記のようにトランジスタT2が非導通とされたケースM及びケースHにおいてトランジスタT1を導通状態とし、トランジスタT2が導通しているケースLにおいてトランジスタT1を非導通状態とする範囲内の電圧を印加する(時刻t3)。ブースト線BSTは、ブースト容量素子Cbstの一端に接続されている。このため、ブースト線BSTに高レベル電圧を印加すると、ブースト容量素子Cbstの他端の電位、すなわち出力ノードN2の電位が突き上げられる。
 上述したように、ケースM及びケースHの場合、フェーズP1においてトランジスタT2が非導通である。このため、ブースト突き上げによるノードN2の電位変動量は、ブースト容量CbstとノードN2に寄生する全容量の比率によって決定する。一例として、この比率を0.7とすると、ブースト容量素子の一方の電極がΔVbst上昇すれば、他方の電極すなわちノードN2は、ほぼ0.7ΔVbstだけ上昇することとなる。
 ケースMの場合、時刻t1において内部ノードN1の電位VN1(M)はほぼ3Vを示す。トランジスタT1のゲート、すなわち出力ノードN2に、VN1(M)よりも閾値電圧2V以上高い電位を与えればトランジスタT1は導通する。本実施形態では、時刻t1においてブースト線BSTに印加する電圧を10Vとする。この場合、出力ノードN2は7V上昇することとなる。書き込み動作においては、トランジスタT2は導通されているため、時刻t1の直前の時点でノードN2はノードN1とほぼ同電位(約3V)を示す。これにより、ブースト突き上げによって当該ノードN2は10V程度を示す。よって、トランジスタT1にはゲートとノードN1の間に閾値電圧以上の電位差が生じるため、当該トランジスタT1が導通する。
 ケースHの場合も同様に、ブースト突き上げによって当該ノードN2は12V程度を示すため、トランジスタT1が導通する。
 他方、フェーズP1においてトランジスタT2が導通であるケースLの場合、ケースM及びケースHとは異なり、出力ノードN2と内部ノードN1が電気的に接続している。この場合、ブースト突き上げによる出力ノードN2の電位変動量は、ブースト容量Cbst及びノードN2の全寄生容量に加えて、内部ノードN1の全寄生容量の影響を受ける。
 内部ノードN1には、補助容量素子Csの一端、並びに液晶容量素子Clcの一端が接続されており、この内部ノードN1に寄生する全容量Cpは、ほぼ液晶容量Clcと補助容量Csの和で表わされる。そして、ブースト容量Cbstは液晶容量Cpと比べてはるかに小さい値である。従って、これらの総容量に対するブースト容量の比率は極めて小さく、例えば0.01以下程度の値となる。この場合、ブースト容量素子の一方の電極がΔVbst上昇すれば、他方の電極、すなわち出力ノードN2は、高々0.01ΔVbst程度しか上昇しない。つまり、ケースLの場合、ΔVbst=10Vとしても、出力ノードN2の電位VN2(L)はほとんど上昇しないこととなる。
 ケースLの場合、VN2(L)は時刻t1の直前においてほぼ0Vを示している。従って、時刻t1でブースト突き上げを行っても、トランジスタT1のゲートには同トランジスタを導通させるに十分な電位が与えられない。つまり、ケースMとは異なり、トランジスタT1は依然として非導通状態を示す。
 ケースMの場合、ブースト突き上げがされることで、トランジスタT1が導通する。また、ソース線SLには3.6Vが印加されているため、内部ノードN1の電位VN1(M)が3Vから少し低下しているとすれば、ソース線SLと内部ノードN1の間にはダイオードD1のターンオン電圧Vdn以上の電位差が生じている。よって、ソース線SLから内部ノードN1に向かう方向にダイオードD1は導通し、ソース線SLから内部ノードN1に向けて電流が流れる。これにより、内部ノードN1の電位VN1(M)は上昇する。なお、この電位上昇は、ソース線SLと内部ノードN1の電位差が、ダイオードD1のターンオン電圧Vdnに等しくなるまで起こり、前記電位差がVdnに等しくなった時点で停止する。ここでは、ソース線SLの印加電圧が3.6Vであり、ダイオードD1のターンオン電圧Vdnが0.6Vであるので、内部ノードN1の電位VN1(M)は3Vまで上昇した時点で停止する。つまり、ケースMにおけるリフレッシュ動作が実行される。
 ケースHの場合もブースト突き上げがされることで、トランジスタT1が導通する。しかし、ソース線SLには3.6Vが印加されている。内部ノードN1の電位VN1(H)が5Vから少し低下しているとしてもその低下分は1V未満である。すると、ソース線SLから内部ノードN1に向けて逆バイアス状態となっており、ダイオードD1の整流作用によってソース線SLと内部ノードN1とが導通しない。つまり、内部ノードN1の電位VN1(H)が、ソース線SLの印加電圧の影響を受けるということはない。
 ケースLにおいてはトランジスタT1が非導通であるため、ソース線SLと内部ノードN1は導通していない。よってソース線SLへの印加電圧は、内部ノードN1の電位VN1(L)の電位には影響しない。
 以上をまとめると、フェーズP1では、内部ノードN1の電位がリフレッシュ分離電圧以上でリフレッシュ目標電圧以下となっている画素回路に対して、リフレッシュ動作が実行される。フェーズP1では、リフレッシュ分離電圧を2.5V(=4.5-2V)、リフレッシュ目標電圧を3Vとしたため、内部ノードN1の電位VN1が2.5V以上3V以下の画素回路に対してのみ、すなわちケースMのみが電位VN1を3Vにリフレッシュする動作が行われる。
 《ステップS1/フェーズP2》
 フェーズP2では、ケースH(高電圧状態)の書き込みノードN1(H)をリフレッシュ対象とする。
 ブースト線BSTへの印加電圧はフェーズP1から引き続き10Vとする。
 リファレンス線REFには、時刻t4において、内部ノードN1がリフレッシュ対象となっている電圧状態(ケースH)を示す場合にはトランジスタT2が非導通のままとなり、リフレッシュ対象となっている電圧状態(ケースH)よりも低い電圧状態(ケースM,L)を示す場合にはトランジスタT2が導通となるような電圧を印加する。
 より具体的には、トランジスタT2の閾値電圧Vt2は2Vであり、ケースMの内部ノードN1の電圧VN1(M)は3Vであるため、5V(=2+3)より高い電圧をリファレンス線REFに印加することで、ケースMにおけるトランジスタT2を導通状態とすることができる。このとき、当然にケースLにおけるトランジスタT2も導通状態となる。
 一方、7Vより高い電圧をリファレンス線REFに印加すると、ケースHにおけるトランジスタT2も導通してしまう。従って、形式的にはリファレンス線REFには、5Vと7Vの間の電圧を印加すれば良いこととなる。しかし、フェーズP1と同様にある程度の余裕を持って電圧を印加する必要があるため、ここでは一例として6.5Vを印加するものとしている。この6.5VがフェーズP2におけるリフレッシュ基準電圧に相当し、トランジスタT2の閾値電圧分だけ減じた値である4.5Vがリフレッシュ分離電圧に相当する。
 このとき、内部ノードN1の電位VN1が、リフレッシュ分離電圧である4.5V以上であれば、トランジスタT2は非導通となる。一方、VN1が4.5Vより低い画素回路においては、トランジスタT2が導通となる。つまり、直前の書き込み動作によって5Vに書き込まれたケースHにおいては、VN1が4.5V以上であるためトランジスタT2は非導通となる。一方、直前の書き込み動作によって0Vに書き込まれたケースL、3Vに書き込まれたケースMにおいては、VN1が4.5Vより低いためトランジスタT2は導通する。
 ソース線SLには、リフレッシュ動作によって復元したい内部ノードN1の目標電圧に、ダイオードD1のターンオン電圧Vdnを加えた電圧を印加する(時刻t5)。ここで、本実施形態のフェーズP2では、リフレッシュ対象がケースHであるため、内部ノードN1の目標電圧は5Vである。従って、ダイオードD1のターンオン電圧Vdnを0.6Vとすると、ソース線SLには5.6Vを印加する。なお、後述するように、本フェーズP2では、ソース線SLに5.6Vを印加する時刻t5は、リファレンス線REFに6.5Vを印加する時刻t4よりも後にする必要がある。
 ケースHの場合、トランジスタT2がフェーズP1から引き続き非導通状態を維持し、内部ノードN2の電位がフェーズP1の状態を保持することで、トランジスタT1が導通する。この状態でソース線SLに5.6Vを印加することにより、内部ノードN1の電位VN1(H)が5Vから少し低下しているとすれば、ソース線SLと内部ノードN1の間にはダイオードD1のターンオン電圧Vdn以上の電位差が生じる。よって、ソース線SLから内部ノードN1に向かう方向にダイオードD1は導通し、ソース線SLから内部ノードN1に向けて電流が流れる。これにより、内部ノードN1の電位VN1(H)は、ソース線SLと内部ノードN1の電位差がターンオン電圧Vdn(=0.6V)に等しくなるまで上昇する。つまり、VN1(H)は、5Vまで上昇した後、その電位を維持する。これにより、ケースHにおけるリフレッシュ動作が実行される。
 ケースMの場合につき詳述する。リファレンス線REFに6.5Vが印加される時刻t4の直前の段階で、ノードN2の電位VN2(M)は約12Vであり、VN1(M)は3Vである。この状態で時刻t4においてリファレンス線REFに6.5Vが印加されると、トランジスタT2はノードN2からN1に向かう方向に導通し、この向きに電流が発生する。しかし、上述したように、ノードN2の寄生容量に比べてノードN1の寄生容量が遥かに大きいため、この電流発生によりノードN2の電位が低下する一方、ノードN1の電位は不変となる。ノードN2は、ノードN1と同電位(すなわち3V)になるまで電位を低下させた後、電位低下が停止する。なお、この時点では、ケースMはフェーズP1において既にリフレッシュ動作が行われているため、ノードN2の電位VN2(M)もリフレッシュ動作後のVN1(M)と同電位となる。
 ノードN2の電位が、ノードN1の電位にトランジスタT1の閾値電圧(2V)を加えた電圧(つまり5V)を下回ると、トランジスタT1は非導通となる。そして、上述のようにノードN2はノードN1と同電位になって電位変化を停止させるため、その後引き続きトランジスタT1は非導通となる。従って、この状態の下で、ソース線SLに5.6Vが印加されていても、この電圧がトランジスタT1を介してノードN1(M)に供給されるということはない。つまり、フェーズP2におけるソース線SLへの印加電圧(5.6V)は、内部ノードN1の電位VN1(M)の電位には影響しない。
 逆に言えば、時刻t5においてソース線SLに5.6Vが印加された場合に、この電圧がケースMの内部ノードN1に供給されないようにするためには、時刻t5の時点でトランジスタT1が非導通になっていることが条件となる。リファレンス線REFに6.5Vを印加する直前の段階ではケースMのトランジスタT1は導通されており、これを非導通とするためには、リファレンス線REFに6.5Vを印加した後、ノードN2の電位VN2が少なくとも5Vを下回っていることが条件となる。このため、時刻t4においてリファレンス線REFに6.5Vを印加した後、ノードN2の電位VN2が少なくとも5Vを下回るまで時間が経過してからソース線SLの印加電圧を5.6Vに変更する必要がある。従って、ソース線SLに5.6Vを印加する時刻t5は、少なくともリファレンス線REFに6.5Vを印加する時刻t4よりも後の時刻であることが要求される。図23においては、トランジスタT1(M)がONからOFFに移行するタイミングを、時刻t4より少し遅らせているのはこのことを表わしている。
 ケースLにおいてはフェーズP1から引き続きトランジスタT1が非導通であるため、ソース線SLと内部ノードN1は導通していない。よってソース線SLへの印加電圧は、内部ノードN1の電位VN1(L)の電位には影響しない。
 以上をまとめると、フェーズP2では、内部ノードN1の電位がリフレッシュ分離電圧以上でリフレッシュ目標電圧以下となっている画素回路に対して、リフレッシュ動作が実行される。ここでは、リフレッシュ分離電圧を4.5V(=6.5-2V)、リフレッシュ目標電圧を5Vとしたため、内部ノードN1の電位VN1が4.5V以上5V以下の画素回路に対してのみ、すなわちケースHに対してのみ電位VN1を5Vにリフレッシュする動作が行われる。
 ケースHのリフレッシュ動作の後、ブースト線BSTへの電圧印加を停止し(時刻t6)、リファレンス線REFに高電圧(ここでは10V)を印加して各ケースH,M,LにおいてトランジスタT2を導通させる(時刻t7)。そして、ソース線SLへの電圧印加を停止する(時刻t8)。なお、時刻t6~t8の順序はこの順に限られず、また、同時刻に実行しても良い。
 《ステップS2》
 時刻t8以後は、そのままの電圧状態で待機するステップS2に移行する(時刻t8~t9)。このとき、リファレンス線REFに高電圧を印加しているため、各ケースH,M,L共にノードN1とN2の電位が同電位を示している。待機ステップS2がリファレンスステップS1よりも十分長い時間確保される点は第2実施形態と同様である。
 以上説明したように、図23に示す本実施形態のセルフリフレッシュ動作によれば、図18に示す第2実施形態の場合と比較して、ブースト線BSTへの電圧変動の回数を抑制することができ、消費電力を更に削減することが可能となる。なお、上記説明は、図7の画素回路2Aの他、図8に示す変形型の画素回路に対しても同様に当てはまることは言うまでもない。
 なお、第2実施形態の場合には、ケースHとケースMのリフレッシュ動作の順序を入れ替えることが可能であったが、ブースト線BSTへの電圧変動回数を1回とした本実施形態の場合には、ケースMのリフレッシュ動作を行った後にケースHのリフレッシュ動作を行う必要があり、その逆の順序では行うことができない。なぜなら、先にケースHのリフレッシュ動作を実行すべくブースト線BSTに10Vを印加すると、ケースMのノードN2の電位が突き上がらないため、ケースMのリフレッシュ動作を実行するために再度ブースト線BSTに電圧変動を生じさせる必要が出るためである。
 また、本実施形態では、時刻t1の直前、並びに待機ステップS2においてリファレンス線REFに10V(ケースH,M,LによらずトランジスタT2が導通する電圧)を印加しているが、第2実施形態のように、リファレンス線REFに0Vを印加してトランジスタT2をオフにしても良い。ただし、本実施形態のような電圧印加とすることで、リファレンス線REFへの印加電圧の変動を抑制することができる。
 <第2類型>
 図9に示す第2類型の画素回路2Bの場合、トランジスタT4を備えているが、このトランジスタT4の導通状態を制御するための選択線SELを、ブースト線BSTとは別に備えている。従って、リフレッシュステップS1の間にわたって、常時トランジスタT4が導通状態となるように選択線SELに電圧印加を行っておけば、第1類型と全く同じ電圧状態を実現することができる。この場合のタイミング図を図24に示す。なお、ここでは選択線SELに対する印加電圧を10Vとした。
 また、ブースト線BSTに対してブースト電圧を印加するタイミングと同じタイミングで選択線SELにパルス状に電圧を印加しても良い。この場合のタイミング図を図25に示す。
 上記の説明は、図9の画素回路2Bの他、図10~図11に示す画素回路2B,図12~図15に示す画素回路2Cに対しても同様に当てはまることは言うまでもない。詳細な説明は割愛する。
 <第3類型>
 第3類型に属する各画素回路2D,2Eは、第2類型に属する各画素回路に対し、トランジスタT4の制御端子の接続先をブースト線BSTに変更し、選択線SELを備えなくした構成である。従って、第2類型の画素回路とは異なり、トランジスタT4の導通制御は、ブースト線BSTによって左右されることとなる。
 しかしながら、図25に示したように、第2類型において、ブースト線BSTと同じタイミングで選択線SELにパルス電圧を印加しても、第1類型の各画素回路と全く同様の電圧状態を実現することができる。そして、このことは、トランジスタT4の制御端子をブースト線BSTに接続しても、全く同じ電圧状態を実現できることを意味するものである。
 従って、図25と同じ電圧状態とすることで、図16の画素回路2Dに対してもセルフリフレッシュ動作を実行することができる。そして、このことは、図17の画素回路2Eに対しても当てはまるものである。詳細な説明は割愛する。
 [第4実施形態]
 第4実施形態では、第3実施形態のセルフリフレッシュ方法を基礎としながら、一部の電圧印加方法を変更してセルフリフレッシュ動作を実行する場合につき、図面を参照して説明する。
 上述したように、第3実施形態の方法によってもセルフリフレッシュ動作を行うことは可能であるが、この方法を繰り返し実行した場合に、以下のような問題を引き起こす可能性がある。本実施形態のセルフリフレッシュ方法によれば、第3実施形態の方法でセルフリフレッシュ動作を実行した場合に想定され得る問題点を解消することができる。
 まず、第3実施形態のセルフリフレッシュ方法により生じ得る問題点につき説明する。ここでは、図7の画素回路2Aに対して図23に示すセルフリフレッシュ動作を行った場合について説明するが、他の画素回路においても同様の議論が可能である。
 図26は、図23と全く同じセルフリフレッシュ動作を行った場合につき、生じ得る問題点を誇張して図示したタイミング図である。
 上述したように、リフレッシュ動作を行うに際しては、リファレンス線REFやブースト線BSTに印加される電圧の引き上げ、引き下げ動作が行われる。リファレンス線REFへの印加電圧を急激に上昇/下降させると、画素回路内のトランジスタ(特にT2)の寄生容量に起因してノードN1,N2の電位変動が生じることがある。リフレッシュ動作を繰り返し実行することで、この電位変動が無視できないレベルとなり、結果として正しくリフレッシュされないという場合が起こり得る。以下、この点につき説明する。
 時刻t1においてリファレンス線REFへの印加電圧を10Vから4.5Vに低下させると、このREFへの印加電圧の引き下げに起因してノードN1,N2の電位も一定レベル突き下げられる。図26ではこの電位の引き下げをタイミング図に反映させている(図23,図26参照)。
 時刻t2でソース線SLへの印加電圧を3.6Vにした後、時刻t3でブースト線BSTへの印加電圧を10Vに上昇させる。このとき、第3実施形態で上述したように、トランジスタT2が非導通であるケースH及びケースMについては、ノードN2の電位が大きく突き上げられる。
 ケースMの場合、ノードN2の電位上昇によりトランジスタT1が導通することで、ソース線SLへの印加電圧が内部ノードN1に供給される。ソース線SLには3.6Vが印加されているため、内部ノードN1の電位VN1(M)はダイオードD1のターンオン電圧Vdn(=0.6V)を差し引いた3Vまで上昇する。
 ケースHの場合は、ソース線SLの印加電圧が内部ノードN1よりも低電位であるため、ダイオードD1の整流作用により、ソース線SLと内部ノードN1は電気的に接続されない。この結果、内部ノードN1の電位はソース線SLの印加電圧の影響を受けない。この点は第3実施形態と同じである。
 しかし、ケースHにおいても、ノードN1の寄生容量の存在に起因して、BST線の電位突き上げにより、ノードN1の電位がわずかに上昇する。これは、ケースLにおいても同じである。図26のタイミング図には、これらの電位上昇を反映させている(図23も参照)。
 なお、ケースMの場合は、ソース線SLの印加電圧の影響を受けるため、第3実施形態と同じようにVN1(M)が3Vに達した時点で上昇が停止する。
 次に、時刻t4でリファレンス線REFへの印加電圧を6.5Vに上昇させる。時刻t1において各ノードN1,N2の電位が下がったのと逆の理由により、各ケースにおいてノードN1,N2の電位の値がわずかに上昇する。
 また、ケースMの場合、REFへの印加電圧の上昇によりトランジスタT2が導通するため、ノードN1及びN2は、共に時刻t4直前の時点におけるVN1(M)とVN2(M)の中間電位となる。ただし、第3実施形態でも上述したように、ノードN2に比べてノードN1の寄生容量が十分に大きいため、実際にはノードN1の電位VN1(M)に惹きつけられることとなるが、時刻t4直前の時点におけるVN1(M)の値からはわずかながら上昇する。つまり、時刻t4の後、VN1(M)及びVN2(M)は、3Vからわずかに上昇した値を示すこととなる。
 次に、時刻t5でソース線SLへの印加電圧を5.6Vとすると、トランジスタT1が導通しているのはケースHのみであるため、このケースHについてのみ、ソース線SLへの印加電圧が内部ノードN1に供給される。この結果、内部ノードN1(H)の電位は5Vにリフレッシュされる。これは、第3実施形態と同様である。
 次に、時刻t6でブースト線BSTへの印加電圧を0Vに引き下げる。このとき、第3実施形態で上述したように、トランジスタT2が非導通であるケースHについては、ノードN2の電位が大きく突き下げられる。そして、時刻t3と同様、非導通状態のトランジスタT2が容量素子として機能することにより、ノードN1(H)についても、微小に電位が突き下げられる。
 更に、ケースM,Lにおいても、時刻t3において各ノードN1,N2の電位が上がったのと逆の理由により、各ケースにおいてノードN1,N2の電位の値がわずかに低下する。
 次に、時刻t7において、リファレンス線REFへの印加電圧を10Vに上昇させる。このとき、REF線への印加電圧の上昇に伴ってノードN1の電位はわずかに上昇する。また、REF線に10Vを印加することでトランジスタT2が導通したため、ノードN2の電位は、このノードN1の電位と等しい値となる。
 このとき、特にケースMについてみれば、時刻t3の時点でVN1(M)を3Vにリフレッシュしたにもかかわらず、時刻t4においてその電位VN1(M)がわずかに上昇してしまう。その後、時刻t6におけるBST線への印加電圧の引き下げに伴ってVN1(M)は低下するものの、時刻t7におけるREF線への印加電圧の上昇に伴ってVN1(M)は再びわずかに上昇する。この結果、リフレッシュ終了時において、VN1(M)は3Vより少し高い電位になってしまう(図26内における矢印E1参照)。
 このような事態が起きるのを防ぐべく、本実施形態におけるセルフリフレッシュ動作は、第3実施形態とは一部異なるシーケンスで電圧印加を行う。
 図27は、本実施形態のセルフリフレッシュ動作を示すタイミング図である。図26と同様に、図7の画素回路2Aに対してセルフリフレッシュ動作を行った場合を例に挙げて説明する。なお、図27に示すタイミング図では、図26に示した場合と同様に、REF線はBST線への印加電圧の変化に伴った、寄生容量を起因としたノードN1,N2の電位変動の変動を考慮している。
 時刻t1~t4までは、図26と同じであるため説明を省略する。
 時刻t5において、本実施形態ではソース線SLへの印加電圧を図26の場合よりも少し上昇させる。ここでは0.1V高い5.7Vとした。
 これにより、VN1(H)は、5.7VからダイオードD1のターンオン電圧分(ここでは0.6V)低下した値、すなわち5.1Vを示す。つまり、リフレッシュ目標電圧である5Vよりもわずかに上昇した電位となる。なお、VN2(H),及び他のケースにおけるノードN1及びN2の電位については、図26の場合と同じである。
 次に、時刻t6においてREF線への印加電圧を6.5Vから0Vに低下させる。これにより、各ケースにおいてノードN1及びN2の電位がわずかに低下し、トランジスタT2はOFFとなる。
 次に、時刻t7において、BST線への印加電圧を10Vから0Vに低下させる。これは、図26における時刻t6と同様の動作である。
 ケースHにおいて、ノードN1の電位VN1(H)は、時刻t3においてVN1(H)が上昇したのと逆の理由により、わずかに低下する。また、ノードN2の電位VN2(H)は、時刻t6の時点でトランジスタT2が非導通であるため、BST線への印加電圧低下に伴って大きく突き下げられる。第2実施形態と同様に、ブースト容量CbstとノードN2に寄生する全容量の比率を0.7とした場合、時刻t7においてVN2(H)は5Vを少し下回る電位まで低下する。
 ケースMにおいて、ノードN1の電位VN1(M)は、VN1(H)と同様の理由によりわずかに低下し、3Vを少し下回る値となる。また、ノードN2の電位VN2(M)は、ケースHと同様に時刻t6の時点でトランジスタT2が非導通であるため、BST線への印加電圧の低下に伴い、大きく突き下げられる。
 ただし、ケースMの場合、時刻t7の時点でVN2(M)は3Vを示していたため、BST線が10V低下すると、0Vを下回る負電位を示すこととなる。ただし、大きく電位が低下した瞬間、トランジスタT2がノードN1からN2の方向へ導通し、VN2(M)は上昇する。そして、第2実施形態と同様に、トランジスタT2の閾値電圧を2Vとすれば、VN2(M)はゲート電位であるREF線への印加電圧0Vから2V低下した-2Vあたりまで電位が上昇した後、これが維持される。
 ケースLは、ノードN1,N2の電位共にケースMと同様の挙動を示す。ノードN1の電位VN1(L)の場合、VN1(H)と同様の理由によりわずかに低下し、0Vを少し下回る値となる。また、ノ-ドN2の電位VN2(L)の場合、瞬間的に電位が大きく低下するものの、その後トランジスタT2が導通し、VN2(L)は上昇する。そして、VN2(M)と同様に、ゲート電位であるREF線への印加電圧0Vから2V低下した-2Vあたりまで電位が上昇した後、これが維持される。
 次に、時刻t8において、REF線への印加電圧を0Vから10Vに上昇させる。このとき、時刻t4におけるREF線への印加電圧の上昇の際と同様の理由により、ノードN1及びN2の電位は、わずかに上昇する。すなわち、時刻t8の直前の時点で5Vを少し下回っていたVN1(H)が5Vに上昇し、3Vを少し下回っていたVN1(M)が3Vに上昇し、0Vを少し下回っていたVN1(L)が0Vに上昇する。
 更に、このREF線への印加電圧の上昇によって、各ケースH,M,L共にトランジスタT2が導通し、ノードN2の電位VN2は、ノードN1の電位VN1の方向に変化する。つまり、VN2もVN1と等しい電位まで上昇する。
 その後は、ソース線SLへの電圧印加を停止し、第2実施形態と同様に待機ステップS2へと移行する。
 図26を参照して説明したように、第2実施形態のセルフリフレッシュ方法による場合、リフレッシュステップS1の終了時においてREF線の印加電圧を上昇させてトランジスタT2を導通させる動作が行われる。そして、この動作の直前の時点で、特にケースMのノードN1の電位VN1(M)はリフレッシュ目標電圧である3Vに設定されている。このため、REF線への印加電圧の上昇動作に伴って、VN1(M)がわずかに上昇し、目標である3Vを上回った状態でリフレッシュ動作が完了するという状態が起こり得た。
 これに対し、本実施形態のセルフリフレッシュ方法による場合、REF線への印加電圧の上昇動作を行う時刻t8の前段階において、時刻t6においていったんREF線への印加電圧を低下させて全ケースにおけるトランジスタT2を非導通とした状態で、時刻t7においてBST線への印加電圧を低下させる動作を行っている。このため、時刻t8においてREF線への印加電圧を上昇させる直前の時点では、VN1(M)はリフレッシュ目標電圧である3Vを少し下回る電位を示しているため、時刻t8においてREF線への印加電圧が上昇すると、VN1(M)はわずかに上昇して目標である3Vに達する。
 なお、本実施形態では、時刻t5の時点でソース線SLに印加する電圧を、ケースHのリフレッシュ目標電圧にダイオードのターンオン電圧を加えた値(ここでは5.6V)よりも少し高い値としている。これは、時刻t6においてREF線への印加電圧を6.5Vから0Vに低下させるに伴ってVN1(H)が低下することを見越して、予めVN1(H)を目標電位よりも少し高く設定しておくためである。
 [第5実施形態]
 第5実施形態では、常時表示モードにおける書き込み動作につき、図面を参照して説明する。
 常時表示モードにおける書き込み動作では、1フレーム分の画素データを水平方向(行方向)の表示ライン毎に分割し、1水平期間毎に、各列のソース線SLに1表示ライン分の各画素データに対応した電圧を印加する。ここでも、第2実施形態と同様、画素データは3階調が想定されるものとする。すなわち、ソース線SLには、高レベル電圧(5V)、中レベル電圧(3V)、又は低レベル電圧(0V)が印加される。そして、選択された表示ライン(選択行)のゲート線GLに選択行電圧8Vを印加して、当該選択行の全ての画素回路2の第1スイッチ回路22を導通状態にして、各列のソース線SLの電圧を、選択行の各画素回路2の内部ノードN1に転送する。
 選択された表示ライン以外(非選択行)のゲート線GLには、当該選択行の全ての画素回路2の第1スイッチ回路22を非導通状態にするため、非選択行電圧-5Vを印加する。なお、以下に説明する書き込み動作における各信号線の電圧印加のタイミング制御は、表示制御回路11によって行われ、個々の電圧印加は、表示制御回路11、対向電極駆動回路12、ソースドライバ13、ゲートドライバ14によって行われる。
 <第1類型>
 まず、第2スイッチ回路23がトランジスタT1とダイオードD1のみの直列回路で構成される、第1類型に属する画素回路について説明する。
 図28に、第1類型の画素回路2A(図7)を使用した書き込み動作のタイミング図を示す。図28では、1フレーム期間における2本のゲート線GL1,GL2、2本のソース線SL1,SL2、リファレンス線REF、補助容量線CSL、ブースト線BSTの各電圧波形と、対向電圧Vcomの電圧波形を図示している。
 更に、図28では、4つの画素回路2Aの内部ノードN1の電位VN1の波形を合わせて表示している。これら4つの画素回路2Aは、それぞれ、ゲート線GL1とソース線SL1で選択される画素回路2A(a)、ゲート線GL1とソース線SL2で選択される画素回路2A(b)、ゲート線GL2とソース線SL1で選択される画素回路2A(c)、ゲート線GL2とソース線SL2で選択される画素回路2A(d)である。図中では、内部ノード電位VN1の後ろに、それぞれ(a)~(d)を付して区別している。
 1フレーム期間は、ゲート線GLの本数分の水平期間に分割され、各水平期間に選択されるゲート線GL1~GLnが順番に割り当てられている。図28では、最初の2水平期間における2本のゲート線GL1,GL2の電圧変化を図示している。第1水平期間では、ゲート線GL1に選択行電圧8Vが、ゲート線GL2に非選択行電圧-5Vが印加され、第2水平期間では、ゲート線GL2に選択行電圧8Vが、ゲート線GL1に非選択行電圧-5Vが印加され、それ以後の水平期間では、両ゲート線GL1,GL2に非選択行電圧-5Vが印加される。
 各列のソース線SLには、水平期間毎に対応する表示ラインの画素データに対応した電圧(5V,3V,0V)が印加される。図28では、各ソース線SLを代表して2本のソース線SL1,SL2を図示している。なお、図28では、内部ノードN1の電位VN1の変化を説明するため、最初の2水平期間の2本のソース線SL1,SL2の電圧を5V,3V,0Vに分けて図示している。その後は、画素データに対応した3値の電圧が印加される。図28では、データに依存する電圧値であることを示すべく、「D」と表示している。
 図28では、一例として、第1水平期間h1において、画素回路2A(a)に高レベル電圧を、画素回路2A(b)に低レベル電圧をそれぞれ書き込み、更に第2水平期間h2において、画素回路2A(c)及び2A(d)に中レベル電圧を書き込む場合を示している。
 以下では、一例として、書き込み動作直前の時点における各画素回路2A(a)~(d)は、それぞれ2A(a)がほぼ0V(低電圧状態)、2A(b)及び2A(c)がほぼ3V(中電圧状態)、2A(d)がほぼ5V(高電圧状態)に書き込まれていたものとする。なお、ここでいう「ほぼ」とは、第2実施形態で上述したように、リーク電流などに起因して経時的な電位変化を考慮した記載である。
 つまり、本実施形態の書き込み動作によって、画素回路2A(a)は0Vから5Vに書き込まれ、2A(b)は3Vから0Vに書き込まれ、2A(c)は引き続き3Vが書き込まれ、2A(d)は5Vから3Vに書き込まれるものとする。
 書き込み動作の期間中(1フレーム期間中)、リファレンス線REFには、トランジスタT2を内部ノードN1の電圧状態に関係なく常時オン状態とするような電圧を印加する。ここでは8Vとした。この電圧は、高電圧状態に書き込まれた内部ノードN1の電位VN1(5V)にトランジスタT2の閾値電圧(2V)を加えた値よりも大きい値であれば良い。これにより、出力ノードN2と内部ノードN1が電気的に接続され、内部ノードN1に接続する補助容量素子Csを、内部ノード電位VN1の安定化のために利用できる。
 また、書き込み動作期間中、ブースト突き上げ動作を行うことはないため、ブースト線BSTには低レベル電圧(ここでは0Vとした)を印加する。補助容量線CSLは所定の固定電圧(例えば、0V)に固定する。対向電圧Vcomは、上述した対向AC駆動がなされるが、1フレーム期間の間は高レベル電圧(5V)又は低レベル電圧(0V)のいずれか一方に固定される。図28では、対向電圧Vcomを0Vに固定した。
 第1水平期間h1において、ゲート線GL1に選択行電圧を印加し、各ソース線SLに対して、画素データに応じた電圧を印加する。ゲート線GL1にトランジスタT3の制御端子が接続されている画素回路のうち、画素回路2A(a)には5Vを、画素回路2A(b)には0Vをそれぞれ書き込むため、ソース線SL1に5Vを、ソース線SL2に0Vをそれぞれ印加する。その他のソース線についても、同様に画素データに応じた電圧が印加される。
 第1水平期間h1において、画素回路2A(a)及び2A(b)では、いずれもトランジスタT3が導通するため、ソース線SLへの印加電圧がトランジスタT3を介して内部ノードN1へと書き込まれる。
 一方、第1水平期間h1において、ゲート線GL1以外のゲート線GLにトランジスタT3の制御端子が接続されている画素回路については、トランジスタT3が非導通であるため、ソース線SLへの印加電圧が第1スイッチ回路22を介して内部ノードN1に与えられるということはない。
 ここで、ゲート線GL2とソース線SL1で選択される画素回路2A(c)に着目する。画素回路2A(c)は、トランジスタT3の制御端子がゲート線GL2に接続されているため、上述したようにトランジスタT3が非導通であり、第1スイッチ回路22を介してソース線SL1への印加電圧(5V)が内部ノードN1に書き込まれるということはない。
 そして、書き込み直前時においては、内部ノードN1の電位VN1(c)がほぼ3Vを示しており、内部ノードN1と出力ノードN2は同電位を示すため、トランジスタT1のゲート電位もほぼ3Vを示す。ソース線SL1には5Vが印加されているため、トランジスタT1は非導通となる。従って、第2スイッチ回路23を介してソース線SL1への印加電圧が内部ノードN1に書き込まれるということもない。
 よって、第1水平期間h1において、VN1(c)は依然として書き込み動作直前時の電位を保持する。
 次に、ゲート線GL2とソース線SL2で選択される画素回路2A(d)に着目する。画素回路2A(d)も、トランジスタT3の制御端子がゲート線GL2に接続されているため、画素回路2A(c)と同様に、トランジスタT3が非導通である。従って、第1スイッチ回路22を介してソース線SL2への印加電圧(0V)が内部ノードN1に与えられるということはない。
 そして、書き込み直前時においては、内部ノードN1の電位VN1(d)がほぼ5Vを示している。ソース線SL2には0Vが印加されているため、ダイオードD1には逆バイアスの電圧が印加される。従って、第2スイッチ回路23を介してソース線SL2への印加電圧(0V)が内部ノードN1に与えられるということはない。
 よって、第1水平期間h1において、VN1(d)も依然として書き込み動作直前時の電位を保持する。
 一方、第2水平期間h2においては、画素回路2A(c)及び2A(d)にそれぞれ3Vを書き込むべく、ゲート線GL2に選択行電圧を印加し、それ以外のゲート線GLには非選択行電圧を印加し、ソース線SL1及びSL2にはそれぞれ3Vを印加し、他のソース線SLにもゲート線GL2によって選択される各画素回路の画素データに応じた電圧を印加する。画素回路2A(c)および2A(d)は、第1スイッチ回路22を介してソース線SLへの印加電圧が内部ノードN1に与えられる。そして、画素回路2A(a)及び2A(b)は、第1スイッチ回路22が非導通であり、また、第2スイッチ回路23においても、ダイオードD1が逆バイアス状態となるか、或いはトランジスタT1が非導通状態となることで非導通であるため、ソース線SLへの印加電圧が内部ノードN1に与えられることはない。
 このような電圧印加を行うことで、選択された画素回路に対してのみ、画素データに応じた電圧が、ソース線SLから第1スイッチ回路22を介して内部ノードN1に与えられる。
 なお、上述の実施形態では、各画素回路が図7に示す画素回路2Aである場合を想定して説明したが、図8に示す画素回路2Aであっても同様に書き込み動作を実現できることは言うまでもない。
 <第2類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子が選択線SELに接続される第2類型に属する画素回路について説明する。
 第2類型では、第1スイッチ回路22がトランジスタT3のみで構成される画素回路2B(図9~図11)、トランジスタT3とT4(又はT5)の直列回路で構成される画素回路2C(図12~図15)が想定されることは上述した通りである。
 第1類型で上述したように、書き込み動作時においては第2スイッチ回路23を非導通とし、第1スイッチ回路22を介してソース線SLから内部ノードN1へ電圧を印加する。画素回路2Bにおいては、トランジスタT4を常に非導通としておくことで、書き込み動作時に第2スイッチ回路23を確実に非導通とすることが可能である。また、その他については第1類型と同様の方法で書き込み動作の実現が可能である。図29に、第2類型の画素回路2B(図9)を使用した書き込み動作のタイミング図を示す。なお、図29では、書き込み動作期間中トランジスタT4を非導通とすべく、選択線SELに-5Vを印加するものとした。
 一方、図12~図15のように、第1スイッチ回路22がトランジスタT3とT4(又はT5)の直列回路で構成される場合には、書き込み動作時においては、第1スイッチ回路22を導通すべく、トランジスタT3に加えてT4(又はT5)も導通させる必要がある。なお、図15に示す画素回路2Cは、第1スイッチ回路22がトランジスタT5を備えているが、このトランジスタT5はトランジスタT4と制御端子同士が接続されているため、他の画素回路2Cと同様にトランジスタT4の導通制御を行うことで第1スイッチ回路22の導通制御が行われる。
 以上を踏まえると、画素回路2Cでは、画素回路2Bのように全ての選択線SELを一括して制御するのではなく、ゲート線GLと同様に、行単位に個別に制御する必要がある。つまり、選択線SELは行毎に1本ずつ、ゲート線GL1~GLnと同数設けられ、ゲート線GL1~GLnと同様に順番に選択される。
 図30に、第2類型の画素回路2C(図12)を使用した書き込み動作のタイミング図を示す。図30では、最初の2水平期間における2本の選択線SEL1,SEL2の電圧変化を図示している。第1水平期間では、選択線SEL1に選択用電圧8Vが、選択線SEL2に非選択用電圧-5Vが印加され、第2水平期間では、選択線SEL2に選択用電圧8Vが、選択線SEL1に非選択用電圧-5Vが印加され、それ以後の水平期間では、両選択線SEL1,SEL2に非選択用電圧-5Vが印加される。その他の点は、図28に示す第1類型の画素回路2Aの書き込み動作のタイミング図と同じである。これによって、図28に示す第1類型の画素回路2Aと同じ電圧状態を実現することができる。詳細な説明は割愛する。
 <第3類型>
 次に、第2スイッチ回路23が、トランジスタT1,ダイオードD1,及びトランジスタT4の直列回路で構成されると共に、トランジスタT4の制御端子がブースト線BSTに接続される第3類型に属する画素回路について説明する。
 第3類型の画素回路は、第2類型と比べて、選択線SELを備えず、トランジスタT4の制御端子にブースト線BSTが接続されている点のみが異なる。従って、第2類型において選択線SELに印加したのと同様の方法で、ブースト線BSTに電圧を印加すれば良い。図31に第3類型の画素回路2D(図16)を使用した書き込み動作のタイミング図を示す。
 なお、このとき、リファレンス線REFには8Vが印加され、トランジスタT2は常に導通しているため、ブースト線BSTの印加電圧が上昇しても、出力ノードN2の電位VN2はほとんど上昇せず、トランジスタT1が導通するということはない。
 [第6実施形態]
 第6実施形態では、常時表示モードにおけるセルフリフレッシュ動作と書き込み動作の関係について説明する。
 常時表示モードでは、1フレーム分の画像データに対して書き込み動作を実行した後、一定期間は書き込み動作を行わずに、直前に行われた書き込み動作によって得られる表示内容を維持させる。
 書き込み動作によって、ソース線SLを介して各画素内の内部ノードN1(画素電極20)に電圧が与えられる。その後、ゲート線GLが低レベルとなり、トランジスタT3が非導通状態となる。しかし、直前の書き込み動作によって画素電極20に蓄積された電荷の存在により内部ノードN1の電位VN1が保持される。すなわち、画素電極20と対向電極80との間には電圧Vlcが維持される。これにより、書き込み動作が完了した後においても、液晶容量Clc両端に対して画像データの表示に必要な電圧が印加された状態が継続する。
 対向電極80の電位が固定されている場合、液晶電圧Vlcは画素電極20の電位に依存する。この電位は、画素回路2内のトランジスタのリーク電流の発生に伴って、時間経過と共に変動する。例えば、ソース線SLの電位が内部ノードN1の電位より低い場合には、内部ノードN1からソース線SLに向かうリーク電流が生じ、内部ノードN1の電位VN1は経時的に減少する。逆に、ソース線SLの電位が内部ノードN1の電位より高い場合(特に低電圧状態の書き込みがされている場合)には、ソース線SLから内部ノードN1に向かうリーク電流が生じ、VN1が経時的に増加する。つまり、外部からの書き込み動作を行うことなく時間が経過すると、液晶電圧Vlcが徐々に変化していき、この結果、表示画像も変化してしまう。
 通常表示モードの場合、静止画像であっても1フレーム毎に全ての画素回路2に対して書き込み動作を実行する。従って、画素電極20に蓄積された電荷量は1フレーム期間だけ維持できれば良い。高々1フレーム期間内における画素電極20の電位変動量はごくわずかであるため、この間の電位変動は、表示される画像データに対して視覚的に確認できる程度の影響を与えるものではない。このため、通常表示モードでは、画素電極20の電位変動はあまり問題とはならない。
 これに対し、常時表示モードでは、1フレーム毎に書き込み動作を実行する構成ではない。従って、対向電極80の電位が固定されている間、場合によって数フレームにわたって画素電極20の電位を保持する必要がある。しかし、数フレーム期間にわたって書き込み動作を行わずに放置しておくと、前述したリーク電流の発生によって画素電極20の電位は断続的に変動する。この結果、表示される画像データが、視覚的に確認できる程度に変化するおそれもある。
 このような現象が生じるのを避けるべく、常時表示モードでは、図32のフローチャートに示す要領で、セルフリフレッシュ動作と書き込み動作を組み合わせて実行することで、画素電極の電位変動を抑制しながらも大幅な電力消費の低減を図る。
 まず、常時表示モードにおける1フレーム分の画素データの書き込み動作を、第5実施形態で上述した要領で実行する(ステップ#1)。
 ステップ#1の書き込み動作後、第2実施形態で上述した要領によりセルフリフレッシュ動作を実行する(ステップ#2)。上述したように、セルフリフレッシュ動作は、リフレッシュステップS1と待機ステップS2によって構成される。
 ここで、待機ステップS2の期間中に、新たな画素データの書き込み動作(データ書き換え)、外部リフレッシュ動作、又は外部極性反転動作の要求を受け取ると(ステップ#3のYES)、ステップ#1に戻り、新たな画素データまたは従前の画素データの書き込み動作を実行する。待機ステップS2の期間中に、当該要求を受け取らない場合(ステップ#3のNO)は、ステップ#2に戻り再びセルフリフレッシュ動作を実行する。これにより、リーク電流の影響による表示画像の変化を抑制することができる。
 セルフリフレッシュ動作を行なわずに、書き込み動作によってリフレッシュ動作を行うとすると、上述の数1に示す関係式で表わされる消費電力となるが、同じリフレッシュレートでセルフリフレッシュ動作を繰り返す場合、各画素回路が3値の画素データを保持するとすれば、第5実施形態のように全てのソース線電圧の駆動回数が2回であるため、数1中の変数nが2となり、表示解像度(画素数)としてVGAを想定すると、m=1920、n=480であるので、240分の1程度の消費電力の低減が期待される。
 本実施形態において、セルフリフレッシュ動作と、外部リフレッシュ動作又は外部極性反転動作を併用する理由は、仮に、当初正常に動作していた画素回路2であっても、経年変化により、第2スイッチ回路23または制御回路24に不具合が生じ、書き込み動作は支障なく実施できるが、セルフリフレッシュ動作を正常に実行できない状態が、一部の画素回路2に発生する場合に対処するためである。つまり、セルフリフレッシュ動作だけに依存すると、当該一部の画素回路2の表示に劣化が現れ、それが固定されるが、外部極性反転動作を併用することで、当該表示欠陥の固定化を防止することができる。
 [第7実施形態]
 第7実施形態では、通常表示モードにおける書き込み動作につき、各類型毎に図面を参照して説明する
 通常表示モードにおける書き込み動作では、1フレーム分の画素データを水平方向(行方向)の表示ライン毎に分割し、1水平期間毎に、各列のソース線SLに1表示ライン分の各画素データに対応した多階調のアナログ電圧を印加すると共に、選択された表示ライン(選択行)のゲート線GLに選択行電圧8Vを印加して、当該選択行の全ての画素回路2の第1スイッチ回路22を導通状態にして、各列のソース線SLの電圧を、選択行の各画素回路2の内部ノードN1に転送する動作である。選択された表示ライン以外(非選択行)のゲート線GLには、当該選択行の全ての画素回路2の第1スイッチ回路22を非導通状態にするため、非選択行電圧-5Vを印加する。
 なお、常時表示モードとは異なり、通常表示モードの書き込み動作では、対向電圧Vcomが1水平期間毎に変化する(対向AC駆動)ため、補助容量線CSLを対向電圧Vcomと同電圧となるように駆動する。これは、画素電極20が、対向電極80と液晶層を介して容量結合していると共に、補助容量素子Csを介して補助容量線CSLとも容量結合しているため、仮に補助容量素子Csの電圧を固定してしまうと、数2においてVcomだけが変動してしまい、これによって非選択行の画素回路2の液晶電圧Vlcの変動を誘発するためである。このため、全ての補助容量線CSLを対向電圧Vcomと同電圧に駆動することで、対向電極80と画素電極20の電圧を同じ電圧方向に変化させ、対向AC駆動の影響を相殺している。
 通常表示モードは、対向AC駆動を行う点、及びソース線SLから常時表示モード時よりも多階調のアナログ電圧が印加される点を除けば、常時表示モードの書き込み動作と原理的に同じ動作であるため、詳細な説明を割愛する。図33に、第1類型の画素回路2A(図7)に対する常時表示モード時の書き込み動作のタイミング図を示す。なお、図33において、ソース線SLにはアナログ表示ラインの画素データに対応した多階調のアナログ電圧が印加されるため、印加電圧は最小値VLと最大値VHの間で一義的には特定されないため、斜線により塗りつぶすことでこれを表現している。
 同様に、図34には、第2類型の画素回路2C(図12)を使用した書き込み動作のタイミング図を示す。
 本実施形態では、通常表示モードにおける書き込み動作において、1水平期間毎に各表示ラインの極性を反転させる方法を採用したが、これは、1フレーム単位で極性反転した場合に発生する以下に示す不都合を解消するためである。なお、このような不都合を解消する方法としては、列毎に極性反転駆動する方法や、行及び列方向同時に画素単位で極性反転駆動する方法もある。
 あるフレームF1で全ての画素において正極性の液晶電圧Vlcを印加し、次のフレームF2で全ての画素において負極性の液晶電圧Vlcを印加した場合を想定する。液晶層75に対して同一絶対値の電圧が印加された場合であっても、正極性か負極性によって光の透過率に微少な差異が生じる場合がある。高画質の静止画を表示している場合、この微少な差異の存在が、フレームF1とフレームF2で表示態様に微細な変化を生む可能性がある。また、動画表示時においても、フレーム間で同一内容の表示内容となるべき表示領域内において、その表示態様に微細な変化を生む可能性がある。高画質の静止画や動画の表示時には、このような微細な変化でも視覚的に認識することができる場合が想定される。
 そして、通常表示モードは、このような高画質の静止画や動画を表示するモードであるため、上述のような微細な変化が視覚的に認識される可能性がある。このような現象を回避すべく、本実施形態では、同一フレーム内において表示ライン毎に極性を反転させている。これにより、同一フレーム内でも表示ライン間で異なる極性の液晶電圧Vlcが印加されているため、液晶電圧Vlcの極性に基づく表示画像データへの影響を抑制できる。
 [別実施形態]
 以下、別実施形態につき説明する。
 〈1〉 上述の実施形態では、セルフリフレッシュ動作の対象となる常時表示モードは、通常表示モードに比べて表示色数が少ないものとして説明した。しかし、階調数を増加して表示色数を一定レベルに増やすことにより、常時表示モードのみによって液晶表示を実現するものとしても良い。この場合、通常表示モードのようなフルカラー表示は実現できないものの、求められる表示可能色数がそれほど多くない態様の画面に対しては、本発明の常時表示モードのみによって表示処理を行うことが可能である。
 なお、階調数が増加すると、第2実施形態におけるセルフリフレッシュ動作において印加するパルス回数、すなわちリフレッシュステップS1におけるフェーズ数も増加する。第2実施形態では、3値の場合においてフェーズP1及びP2の2フェーズで実現できたが、4階調に増加すれば当然に3フェーズ必要となり、5階調に増加すれば4フェーズ必要となる。
 一方、第3実施形態の方法によれば、ブースト線BSTへの印加電圧はフェーズP1開始後から一定としたまま、リファレンス線REFへの印加電圧、並びにソース線SLへの印加電圧を(階調数-1)回変化させることとなる。
 また、上記実施形態では、常時表示モードにおける画素データの値として、5V,3V,0Vを採用したが、これらの電圧値に限定されるものではないことは言うまでもない。
 〈2〉 第2類型の画素回路2B(図9~図11)に関しては、通常表示モード及び常時表示モードの書き込み動作時において、リファレンス線REFに低レベル電圧を与え、トランジスタT2をオフ状態としても良い。このようにすることで、内部ノードN1と出力ノードN2が電気的に分離される結果、画素電極20の電位が書き込み動作前の出力ノードN2の電圧の影響を受けなくなる。これにより、画素電極20の電圧は、ソース線SLの印加電圧を正しく反映し、画像データを誤差なく表示することができる。
 〈3〉 上記の実施形態では、アクティブマトリクス基板10上に構成される全ての画素回路2に対し、第2スイッチ回路23と制御回路24を備える構成とした。これに対し、アクティブマトリクス基板10上において、透過液晶表示を行う透過画素部と反射液晶表示を行う反射画素部の2種類の画素部を備える構成の場合には、反射画素部の画素回路にのみ第2スイッチ回路23と制御回路24を備え、透過表示部の画素回路には第2スイッチ回路23と制御回路24を備えない構成としても良い。
 この場合、通常表示モード時には透過画素部によって画像表示がなされ、常時表示モード時には反射画素部によって画像表示がなされることとなる。このように構成することで、アクティブマトリクス基板10全体に形成される素子数を削減することができる。
 〈4〉 上記実施形態では、各画素回路2は、補助容量素子Csを備える構成であったが、補助容量素子Csを備えない構成であっても良い。ただし、内部ノードN1の電位をより安定化させ、表示画像の確実な安定化を図るためには、この補助容量素子Csを備える方が好ましい。
 〈5〉 上記実施形態では、各画素回路2の表示素子部21は、単位液晶表示素子Clcだけで構成される場合を想定したが、図35に示すように、内部ノードN1と画素電極20の間にアナログアンプAmp(電圧増幅器)を備える構成としても良い。図35では一例として、アナログアンプAmpの電源用ラインとして、補助容量線CSLと電源線Vccが入力される構成とした。
 この場合、内部ノードN1に与えられた電圧は、アナログアンプAmpによって設定された増幅率ηによって増幅され、増幅後の電圧が画素電極20に供給される。よって、内部ノードN1の微少な電圧変化を表示画像に反映することができる構成である。
 なお、この構成の場合、常時表示モードのセルフ極性反転動作では、内部ノードN1の電圧が、増幅率ηによって増幅され画素電極20に供給されるため、ソース線SLに印加する第1及び第2電圧状態の電圧差を調整することで、画素電極20に供給される第1及び第2電圧状態の電圧を、対向電圧Vcomの高レベル及び低レベルの電圧に一致させることができる。
 〈6〉 上記実施形態では、画素回路2内のトランジスタT1~T4を、Nチャネル型の多結晶シリコンTFTを想定したが、Pチャネル型のTFTを使用した構成や、非晶質シリコンTFTを使用した構成とすることも可能である。この場合、各電圧の大小関係やダイオードD1の整流方向を反転させる等により上記各実施形態と同様に画素回路2を動作させることが可能であり、同様の効果が得られる。
 〈7〉 上記実施形態では、液晶表示装置を例に挙げて説明したが、本発明はこれに限定されるものではなく、画素データを保持するための画素容量Cpに対応する容量を有し、当該容量に保持される電圧に基づき画像を表示する表示装置であれば、本発明を適用することができる。
 例えば、画素容量に相当する容量に画素データに相当する電圧を保持させて画像表示する有機EL(Electroluminescence)表示装置の場合、特にセルフリフレッシュ動作に関して本発明を適用することができる。図36は、このような有機EL表示装置の画素回路の一例を示す回路図である。この画素回路では、画素データとして補助容量Csに保持された電圧が、TFTで構成された駆動用トランジスタTdvのゲート端子に与えられ、その電圧に応じた電流が駆動用トランジスタTdvを介して発光素子OLEDに流れる。従って、この補助容量Csが上記各実施形態における画素容量Cpに相当する。
 なお、図36に示す画素回路においては、電極間に電圧を印加することで光の透過率を制御することで画像表示を行うという液晶表示装置とは異なり、素子を流れる電流によって素子そのものが発光することで画像表示を行う。このため、発光素子の整流性ゆえ、当該素子の両端に印加される電圧の極性を反転させるということができず、更にはそのような必要性もない。
 〈8〉 上記第2実施形態において、第2類型の画素回路のセルフリフレッシュ動作につき、図21及び図22のタイミング図を参照して説明した。第2類型の画素回路2B,2C(図9~図15)は、トランジスタT4を備えると共に、このT4のゲートに接続される選択線SELをブースト線BSTとは個別に備えている。よって、この類型の画素回路においては、ブースト線BSTへの電圧印加タイミングと、T4の導通タイミングを意図的に異ならせることができる。
 これを利用して、第2類型の画素回路2B,2Cに対するセルフリフレッシュ動作を行う場合には、選択線SELへの電圧印加タイミングを、リファレンス線REF及びブースト線BSTに対して電圧を印加するタイミングから少し遅らせるものとしても良い。
 上述したように、リファレンス線REFには、リフレッシュ対象となる階調よりも低い階調の画素においてはT2が導通するような範囲内の電圧が印加される。よって、この状態でブースト線BSTに電圧を印加しても、かかる画素のノードN2は電位突き上げが生じず、この結果、トランジスタT1が導通することはない。
 しかし、トランジスタの能力やノードの寄生容量その他の要素の影響によっては、トランジスタT2が導通しているにもかかわらず、ブースト線BSTに電圧を印加すると、ノードN2の電位が一時的に突き上げられる事態が生じることも想定される。この場合、その時点においてトランジスタT1が導通してしまい、この結果、かかる画素が異なる階調の電圧によって書き換えられるおそれがある。
 これに対し、トランジスタT4の導通タイミングをブースト線BSTへの電圧印加タイミングから少し遅らせることで、仮にノードN2の電位が一時的に上昇してトランジスタT1がこの間導通したとしても、トランジスタT4が非導通となるため、このトランジスタT4によってソース線SLとノードN1の間の導通を遮断することができる。なお、ノードN2の電位が一時的に上昇しても、その後はノードN1の寄生容量に電荷が吸収されるため、N2の電位は低下する。このときトランジスタT1は非導通となるため、ノードT4を導通させても、リフレッシュ対象階調より低階調の画素回路のノードN1がソース線SLの印加電圧によって書き換えられることはない。
 以上のように、特に第2類型の画素回路においては、選択線SELへの電圧印加タイミングを、ブースト線BSTへの電圧印加タイミングとは独立して制御できるため、ブースト線BSTへの印加タイミングから少し遅らせることで、誤った階調に書き込まれるという誤動作をより確実に防止することができる。
 この方法は、第3実施形態の図25に示すタイミング図にも応用することができる。すなわち、図25において、選択線SELへの電圧印加タイミングをt3から少し遅らせるものとすれば良い。
 なお、第1類型や第3類型では、このような方法でのリフレッシュ動作は行えないが、上述した誤書き込みが招来する可能性はもともと低いため、第2実施形態で説明した方法によるリフレッシュ動作でも正しく元の階調にリフレッシュさせることができる。
 〈9〉 上述の各実施形態では、画素回路として、一端にソース線SLが接続し、他端に内部ノードN1が接続する第2スイッチ回路23を備える構成を想定して説明した。しかし、ソース線SLとは別の電圧供給線VSLを備え、第2スイッチ回路23を、内部ノードN1を構成しない側の一端にこの電圧供給線VSLと接続する構成としても同様の動作が可能である。ここで、電圧供給線VSLも、リファレンス線REFやブースト線BSTと同様、表示制御回路11によって印加電圧が制御される構成とする。
 図37は、この別実施形態の画素回路の一構成例である。画素回路3Aは、図7に示す画素回路2Aに対し、第2スイッチ回路23の一端をソース線SLに接続せずに電圧供給線VSLに接続した構成である。図8~図17に示した各画素回路2A,2B,2C,2D,2Eに対しても、全く同様に第2スイッチ回路23の一端の接続先をソース線SLから電圧供給線VSLに変更することで、同様の画素回路の実現が可能である。
 そして、セルフリフレッシュ動作時においては、上述した各実施形態においてソース線SLに印加していた電圧と同一の電圧を電圧供給線VSLに印加することで、上記各実施形態と同じ電圧状態にすることができる。これにより、本別実施形態の画素回路についても、全く同様の原理によりセルフリフレッシュ動作が実行される。なお、セルフリフレッシュ動作期間中にわたってトランジスタT3が常時オフであるため、ソース線SLへの印加電圧はセルフリフレッシュ動作には無関係となる。消費電力の抑制やリーク電流の影響を排除する意味においては、セルフリフレッシュ動作期間中にわたってソース線SLへの印加電圧を0Vにするのが好適である。詳細な説明は割愛する。
  1: 液晶表示装置
  2: 画素回路
  2A,2B,2C,2D,2E,3A: 画素回路
  10: アクティブマトリクス基板
  11: 表示制御回路
  12: 対向電極駆動回路
  13: ソースドライバ
  14: ゲートドライバ
  20: 画素電極
  21: 表示素子部
  22: 第1スイッチ回路
  23: 第2スイッチ回路
  24: 制御回路
  74: シール材
  75: 液晶層
  80: 対向電極
  81: 対向基板
  Amp: アナログアンプ
  BST: ブースト線
  Cbst: ブースト容量素子
  Clc: 液晶表示素子
  CML: 対向電極配線
  CSL: 補助容量線
  Cs: 補助容量素子
  Ct: タイミング信号
  D1: ダイオード素子
  DA: ディジタル画像信号
  Dv: データ信号
  GL(GL1,GL2,……,GLn): ゲート線
  Gtc: 走査側タイミング制御信号
  N1: 内部ノード
  N2: 出力ノード
  OLED: 発光素子
  P1,P2: フェーズ
  REF: リファレンス線
  S1,S2: ステップ
  Sc1,Sc2,……,Scm: ソース信号
  SEL: 選択線
  SL(SL1,SL2,……,SLm): ソース線
  Stc: データ側タイミング制御信号
  T1,T2,T3,T4,T5: トランジスタ
  Tdv: 駆動用トランジスタ
  Vcom: 対向電圧
  Vlc: 液晶電圧
  VN1: 内部ノード電位、画素電極電位
  VN2: 出力ノード電位

Claims (7)

  1.  画素回路が行方向及び列方向に夫々複数配置されて構成された画素回路アレイを有する表示装置であって、
     前記画素回路は、単位表示素子を含む表示素子部、前記表示素子部の一部を構成して前記表示素子部に印加される画素データの電圧を保持する内部ノード、第1スイッチ回路、第2スイッチ回路、第1容量素子を含む制御回路を有し、
     前記第2スイッチ回路は、一端が前記内部ノードに接続されており、第1トランジスタ素子とダイオード素子の直列回路で構成され、
     前記制御回路は、前記第1容量素子と第2トランジスタ素子の直列回路で構成され、前記第2トランジスタ素子の第1端子が前記内部ノードに接続し、前記第2トランジスタ素子の第2端子が前記第1トランジスタの制御端子及び前記第1容量素子の一端に接続して出力ノードを形成し、
     前記第1スイッチ回路は、一端が前記内部ノードに接続し、第3トランジスタ素子を含む構成であり
     前記単位表示素子の端子のうち、前記内部ノードと接続する端子とは反対側の端子には共通電極が接続され、
     同一列に配置される前記画素回路は、前記第1スイッチ回路の他端、及び前記第2スイッチ回路の他端が共通のデータ信号線に接続し、
     同一行に配置される前記画素回路は、前記第3トランジスタ素子の制御端子が共通の走査信号線に接続し、
     同一行又は同一列に配置される前記画素回路は、前記第2トランジスタ素子の制御端子が共通の第1制御線に接続し、
     同一行又は同一列に配置される前記画素回路は、前記第1容量素子の他端が共通の第2制御線に接続し、
     前記データ信号線を各別に駆動するデータ信号線駆動回路、前記第1及び第2制御線を各別に駆動する制御線駆動回路、前記走査信号線を各別に駆動する走査線駆動回路を備え、
     前記画素回路アレイ内の各画素回路の内部ノードは、それぞれ離散した複数の電圧状態の内の一の電圧状態を保持可能な構成であって、異なる電圧状態によって多階調が実現されており、
     複数の前記画素回路に対して前記第2スイッチ回路と前記制御回路を作動させ、実行する対象階調を順次変化させながら前記内部ノードの電圧変動を同時に補償するセルフリフレッシュ動作時において、
     前記走査信号線駆動回路が、前記画素回路アレイ内の全部の前記画素回路に接続する前記走査信号線に所定の電圧を印加して前記第3トランジスタ素子を非導通状態とし、
     前記データ信号線駆動回路が、前記データ信号線に対して、リフレッシュ動作を実行する対象階調の電圧状態に対応するリフレッシュ目標電圧に前記第2スイッチ回路内の電圧降下分に対応する所定の第1調整電圧を加えたリフレッシュ入力電圧を印加し、
     前記制御線駆動回路が、前記第1制御線に対して、前記対象階調よりも一段階低階調の電圧状態と前記対象階調の電圧状態の中間電圧で規定されるリフレッシュ分離電圧に前記第1制御線と前記内部ノードの電圧降下分に対応する所定の第2調整電圧を加えたリフレッシュ基準電圧を印加した状態で、前記第2制御線に対して所定振幅のブースト電圧を印加して前記出力ノードに対して前記第1容量素子を介した容量結合による電圧変化を与えることで、前記内部ノードの電圧状態が前記リフレッシュ目標電圧よりも高い場合には、前記ダイオード素子が前記データ信号線から前記内部ノードに向けて逆バイアス状態となって前記データ信号線と前記内部ノードが導通せず、前記内部ノードの電圧状態が前記リフレッシュ分離電圧よりも低い場合には、前記ブースト電圧印加による前記出力ノードの電位変動を抑制して前記第1トランジスタ素子が非導通となって前記データ信号線と前記内部ノードが導通せず、前記内部ノードの電圧状態が前記リフレッシュ分離電圧以上で前記リフレッシュ目標電圧以下の場合には、前記データ信号線から前記内部ノードに向けて前記ダイオード素子が順バイアス状態となると共に前記出力ノードの電位変動が抑制されずに前記第1トランジスタ素子が導通状態となって前記リフレッシュ目標電圧が前記内部ノードに与えられて、前記対象階調の電圧状態を示す前記内部ノードを備えた前記画素回路に対するリフレッシュ動作を実行し、
     更に、前記ブースト電圧を引き続き印加したまま、前記対象階調を1段階高い階調として、前記第1制御線に印加する前記リフレッシュ基準電圧を変化させた後、前記データ信号線に印加する前記リフレッシュ入力電圧を変化させることで、異なる階調の電圧状態を示す前記内部ノードを備えた前記画素回路に対して、リフレッシュ動作を順次実行し、
     最も低い階調を除く全ての階調に対してリフレッシュ動作を行った後、前記制御線駆動回路が前記第1制御線の印加電圧を低下させることで、全ての階調における第2トランジスタ素子を非導通とした後、前記第2制御線に対する前記ブースト電圧の印加を停止し、その後に、前記第1制御線の印加電圧を上昇させて全ての階調における第2トランジスタ素子を導通させることを特徴とする表示装置。
  2.  前記リフレッシュ入力電圧として、前記第1制御線及び前記第2制御線への印加電圧を変動させることで生じる、前記第2トランジスタ素子の寄生容量を起因とした前記内部ノード及び前記出力ノードの電位変動分を考慮した、所定の余裕電圧を更に加えた電圧値とすることを特徴とする請求項1に記載の表示装置。
  3.  同一列に配置される前記画素回路が備える前記第2スイッチ回路の前記他端が、共通の前記データ信号線に代えて共通の電圧供給線に接続され、
     各前記電圧供給線は、前記制御線駆動回路によって各別に駆動される構成であり、
     前記セルフリフレッシュ動作時に、前記リフレッシュ入力電圧を、前記データ信号線駆動回路が前記データ信号線に対して印加する代わりに、前記制御線駆動回路が前記電圧供給線に対して印加することを特徴とする請求項1又は2に記載の表示装置。
  4.  前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び制御端子が前記第2制御線に接続した第4トランジスタ素子の直列回路で構成されていることを特徴とする請求項1~3の何れか1項に記載の表示装置。
  5.  前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び第4トランジスタ素子の直列回路で構成されており、
     同一行又は同一列に配置される前記画素回路は、前記第4トランジスタ素子の制御端子が共通の第3制御線に接続し、前記制御線駆動回路によって前記第3制御線を各別に駆動可能に構成されており、
     前記セルフリフレッシュ動作時に、前記制御線駆動回路が前記第3制御線に対して前記第4トランジスタ素子を導通状態とする所定電圧を印加した状態で前記第2制御線に対して前記ブースト電圧を印加することを特徴とする請求項1~3の何れか1項に記載の表示装置。
  6.  前記画素回路において、前記第2スイッチ回路が、前記第1トランジスタ素子、前記ダイオード素子、及び第4トランジスタ素子の直列回路で構成されており、
     同一行又は同一列に配置される前記画素回路は、前記第4トランジスタ素子の制御端子が共通の第3制御線に接続し、前記制御線駆動回路によって前記第3制御線を各別に駆動可能に構成されており、
     前記セルフリフレッシュ動作時に、前記制御線駆動回路が前記第2制御線に対して前記ブースト電圧を印加した状態で前記第3制御線に対して前記第4トランジスタ素子を導通状態とする所定電圧を印加することを特徴とする請求項1~3の何れか1項に記載の表示装置。
  7.  前記ダイオード素子が、ゲート及びソースが接続されたMOSトランジスタで構成されていることを特徴とする請求項1~6の何れか1項に記載の表示装置。
     
     
PCT/JP2011/072920 2010-11-25 2011-10-05 表示装置 WO2012070316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180056691.1A CN103229229B (zh) 2010-11-25 2011-10-05 显示装置
US13/989,492 US8947418B2 (en) 2010-11-25 2011-10-05 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-262534 2010-11-25
JP2010262534 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070316A1 true WO2012070316A1 (ja) 2012-05-31

Family

ID=46145674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072920 WO2012070316A1 (ja) 2010-11-25 2011-10-05 表示装置

Country Status (3)

Country Link
US (1) US8947418B2 (ja)
CN (1) CN103229229B (ja)
WO (1) WO2012070316A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498509B (zh) * 2009-09-07 2015-08-05 夏普株式会社 像素电路和显示装置
US9583063B2 (en) * 2013-09-12 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Display device
US20150255029A1 (en) * 2014-03-07 2015-09-10 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US9904251B2 (en) 2015-01-15 2018-02-27 Electronics And Telecommunications Research Institute Holographic display apparatus and method of driving the same
CN105116659B (zh) * 2015-09-28 2021-01-15 重庆京东方光电科技有限公司 阵列基板及其显示驱动方法、显示装置
JP6634302B2 (ja) * 2016-02-02 2020-01-22 株式会社ジャパンディスプレイ 表示装置
CN108428432A (zh) * 2017-02-15 2018-08-21 上海和辉光电有限公司 用于消除amoled屏幕待机闪屏的方法、装置及其终端设备
CN106991975B (zh) * 2017-06-08 2019-02-05 京东方科技集团股份有限公司 一种像素电路及其驱动方法
US10290272B2 (en) * 2017-08-28 2019-05-14 Innolux Corporation Display device capable of reducing flickers
WO2019207440A1 (ja) * 2018-04-26 2019-10-31 株式会社半導体エネルギー研究所 表示装置および電子機器
CN112530374B (zh) * 2019-04-04 2022-04-19 上海中航光电子有限公司 驱动电路及其驱动方法、面板及其驱动方法
CN111508436B (zh) * 2020-04-29 2021-07-09 昆山国显光电有限公司 驱动电路和显示装置
CN112017589A (zh) * 2020-09-08 2020-12-01 Tcl华星光电技术有限公司 多灰阶像素驱动电路及显示面板
US11328654B2 (en) * 2020-09-08 2022-05-10 Tcl China Star Optoelectronics Technology Co., Ltd. Multi-grayscale pixel driving circuit and display panel
JPWO2022102282A1 (ja) * 2020-11-10 2022-05-19
CN112419996B (zh) * 2020-12-01 2022-02-18 厦门天马微电子有限公司 像素电路及其驱动方法、显示面板和显示装置
CN115047657B (zh) * 2022-06-27 2023-06-09 绵阳惠科光电科技有限公司 显示面板及其制备方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147466A (ja) * 1998-11-17 2000-05-26 Minolta Co Ltd 液晶表示素子の駆動方法及び情報表示装置
JP2005157308A (ja) * 2003-11-24 2005-06-16 Samsung Sdi Co Ltd 発光表示装置,表示パネル,及び発光表示装置の駆動方法
JP4237614B2 (ja) * 2001-07-13 2009-03-11 ティーピーオー ホンコン ホールディング リミテッド アクティブマトリックスアレイ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630489B2 (ja) * 1995-02-16 2005-03-16 株式会社東芝 液晶表示装置
JP3305946B2 (ja) * 1996-03-07 2002-07-24 株式会社東芝 液晶表示装置
US6927765B1 (en) * 1998-11-17 2005-08-09 Minolta Co., Ltd. Liquid crystal display device and driving method thereof
KR20060109343A (ko) * 2005-04-15 2006-10-19 세이코 엡슨 가부시키가이샤 전자 회로, 그 구동 방법, 전기 광학 장치, 및 전자 기기
TWI335565B (en) * 2006-03-24 2011-01-01 Himax Tech Ltd Pixel driving method of oled display and apparatus thereof
KR100873078B1 (ko) * 2007-04-10 2008-12-09 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치 및 그의구동방법
KR100936882B1 (ko) * 2008-06-11 2010-01-14 삼성모바일디스플레이주식회사 유기전계발광 표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147466A (ja) * 1998-11-17 2000-05-26 Minolta Co Ltd 液晶表示素子の駆動方法及び情報表示装置
JP4237614B2 (ja) * 2001-07-13 2009-03-11 ティーピーオー ホンコン ホールディング リミテッド アクティブマトリックスアレイ装置
JP2005157308A (ja) * 2003-11-24 2005-06-16 Samsung Sdi Co Ltd 発光表示装置,表示パネル,及び発光表示装置の駆動方法

Also Published As

Publication number Publication date
US8947418B2 (en) 2015-02-03
CN103229229B (zh) 2016-05-25
US20130286001A1 (en) 2013-10-31
CN103229229A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5351974B2 (ja) 表示装置
JP5308534B2 (ja) 画素回路及び表示装置
WO2011052272A1 (ja) 画素回路及び表示装置
WO2012070316A1 (ja) 表示装置
JP5351973B2 (ja) 画素回路及び表示装置
JP5346380B2 (ja) 画素回路及び表示装置
JP5346381B2 (ja) 画素回路及び表示装置
JP5452616B2 (ja) 画素回路及び表示装置
JP5351975B2 (ja) 画素回路及び表示装置
JP5342657B2 (ja) 表示装置
JP5346379B2 (ja) 画素回路及び表示装置
WO2013105393A1 (ja) 画素回路及び表示装置
WO2012056804A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989492

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11843448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP