WO2012070227A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012070227A1
WO2012070227A1 PCT/JP2011/006489 JP2011006489W WO2012070227A1 WO 2012070227 A1 WO2012070227 A1 WO 2012070227A1 JP 2011006489 W JP2011006489 W JP 2011006489W WO 2012070227 A1 WO2012070227 A1 WO 2012070227A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
carbon atoms
Prior art date
Application number
PCT/JP2011/006489
Other languages
English (en)
French (fr)
Inventor
由美子 水木
博之 齊藤
均 熊
祐一郎 河村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP11843161.8A priority Critical patent/EP2645443A4/en
Priority to CN2011800563133A priority patent/CN103222082A/zh
Priority to JP2012545614A priority patent/JPWO2012070227A1/ja
Priority to US13/988,710 priority patent/US20130306957A1/en
Priority to KR1020137013004A priority patent/KR20130135256A/ko
Publication of WO2012070227A1 publication Critical patent/WO2012070227A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescence (EL) element, particularly a highly efficient organic EL element.
  • EL organic electroluminescence
  • organic EL elements When organic EL elements are classified according to their light emission principles, they can be divided into two types: fluorescent and phosphorescent types.
  • fluorescent and phosphorescent types When a voltage is applied to the organic EL element, holes are injected from the anode and electrons are injected from the cathode, and these recombine in the light emitting layer to form excitons.
  • electrons According to the statistical rule of electron spin, singlet excitons and triplet excitons are generated at a ratio of 25%: 75%. Since the fluorescence type uses light emitted from singlet excitons, the internal quantum efficiency was said to be 25%.
  • a fluorescent element using a fluorescent material has recently been developed with a long-life technology and is being applied to a full-color display such as a mobile phone or a television. However, high efficiency has been a problem.
  • Non-Patent Document 1 a non-doped element using an anthracene compound as a host material is analyzed, and as a mechanism, singlet excitons are generated by collisional fusion of two triplet excitons. Fluorescence emission is increasing.
  • Non-Patent Document 1 only discloses that an increase in fluorescence emission is confirmed by collisional fusion of triplet excitons in a non-doped element composed of only a host material. The increase was as low as 3-6%.
  • Non-Patent Document 2 reports that the blue quantum element has an internal quantum efficiency of 28.5%, which exceeds the conventional theoretical limit of 25%. However, no technical means for exceeding 25% has been disclosed, and further higher efficiency has been demanded from the viewpoint of practical use of a full-color organic EL television.
  • Patent Document 1 Another example using triplet excitons in a fluorescent element is disclosed in Patent Document 1.
  • the lowest triplet excited state (T1) is lower than the lowest singlet excited state (S1), but the higher triplet excited state (T2) may be higher than S1.
  • the external quantum efficiency is about 6% (when the light extraction efficiency is 25%, the internal quantum efficiency is 24%), which does not exceed the limit value of 25% that has been conventionally known.
  • the mechanism here is due to intersystem crossing from a triplet excited state to a singlet excited state in one molecule, and the two triplet excitons disclosed in Non-Patent Document 1 The singlet generation phenomenon due to the collision has not occurred.
  • phenanthroline derivatives such as BCP (Bathocuproin) and BPhen are used for the hole blocking layer in the fluorescent element, thereby increasing the density of holes at the interface between the hole blocking layer and the light emitting layer, and efficiently. Techniques for causing recombination are disclosed.
  • phenanthroline derivatives such as BCP (basocuproin) and BPhen are vulnerable to holes, have poor oxidation durability, and have insufficient performance from the viewpoint of extending the lifetime of the device.
  • Patent Documents 4 and 5 disclose examples in which an aromatic compound such as an anthracene derivative is used as a material for an electron transport layer in contact with a light emitting layer in a fluorescent element.
  • an aromatic compound such as an anthracene derivative
  • the triplet energy of the electron transport layer normally designed in so-called phosphorescent devices.
  • the triplet energy of the electron transport layer is smaller than the triplet energy of the light-emitting layer, so that triplet excitons generated in the light-emitting layer are actually transported by electrons. It has been diffused to the layer and then undergoes a thermal deactivation process, and it has been difficult to exceed 25%, which is the theoretical limit value of conventional fluorescence.
  • Patent Document 6 discloses a device using a fluoranthene dopant exhibiting long-life and high-efficiency blue light emission, but it is not necessarily high-efficiency.
  • the phosphorescent type uses light emitted directly from triplet excitons. Since singlet exciton energy is also converted into triplet exciton by spin conversion inside the light emitting molecule, it is expected that an internal light emission efficiency of nearly 100% can be obtained in principle. Therefore, since a phosphorescent light emitting device using an Ir complex was announced by Forrest et al. In 2000, a phosphorescent light emitting device has attracted attention as a technique for improving the efficiency of organic EL devices. However, although red phosphorescent devices have reached the practical application range, green and blue phosphorescent devices have a shorter lifetime than fluorescent-type devices, and in particular, blue phosphorescence has insufficient color purity and luminous efficiency. The current situation is that it has not been put into practical use.
  • Triplet-Triplet Fusion TTF phenomenon
  • JP-T-2002-525808 discloses a technique for improving efficiency by providing a barrier layer made of phenanthroline derivative BCP (bathocuproine) adjacent to the light emitting layer and confining holes and excitons. Yes.
  • a specific aromatic ring compound is used for the hole blocking layer to achieve high efficiency and long life.
  • TTA triplet-triplet annihilation
  • the following organic EL elements are provided.
  • An anode, a light emitting layer, a barrier layer, an electron injection layer, and a cathode are provided in this order,
  • the light emitting layer includes a host and a styrylamine derivative represented by the following formula (1) or (2),
  • An organic electroluminescence device wherein triplet energy of the barrier layer is larger than triplet energy of the host.
  • Ar 1 to Ar 4 are each a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • Ar 5 to Ar 7 are each a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group
  • l, m, and n are each an integer of 1 to 3
  • p is an integer of 0 to 2
  • Ar 5 may be the same or different
  • Ar 6 may be the same or different
  • Ar 7 may be the same or different
  • the substituents for Ar 1 to Ar 7 are a halogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, a substituted or unsubstituted silyl group, or a
  • (Ar 6 ) m is an arylene group having 7 or more carbon atoms
  • (Ar 5 ) 1 is an arylene group having 7 or more carbon atoms.
  • Ar 8 is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group
  • a 1 and A 2 are each an alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a group represented by the following formula (3)
  • Ar 9 is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group
  • B 2 is a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero group.
  • Ar 9 and B 2 may be the same or different.
  • B 1 is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • the substituents of Ar 8 to Ar 9 , A 1 , A 2 , B 1 , B 2 are halogen atoms, alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, substituted or unsubstituted silyl groups, or cyano groups. is there. ) 2.
  • Ar 1 to Ar 4 , A 1 , A 2 , B 1 and B 2 are substituents selected from a cyano group, a fluorine atom and a substituted or unsubstituted silyl group.
  • a TTF phenomenon is efficiently caused inside the light emitting layer, and a highly efficient organic EL element can be provided.
  • the present invention utilizes the TTF phenomenon.
  • the TTF phenomenon will be described below. Holes and electrons injected from the anode and cathode recombine in the light emitting layer to generate excitons.
  • the spin state has a ratio of 25% for singlet excitons and 75% for triplet excitons, as is conventionally known.
  • a conventionally known fluorescent element light is emitted when 25% of singlet excitons are relaxed to the ground state, but the remaining 75% of triplet excitons are thermally emitted without emitting light. It returns to the ground state through the deactivation process. Therefore, the theoretical limit value of the internal quantum efficiency of the conventional fluorescent element was said to be 25%.
  • TTF ratio TTF-derived emission ratio
  • FIG. 1 is a schematic configuration diagram of an organic EL element showing an example of the first embodiment of the present invention.
  • FIG. 2A schematically shows the lowest excited singlet energy level and the lowest excited triplet energy level of each layer.
  • the triplet energy means a difference between the energy in the lowest excited triplet state and the energy in the ground state
  • the singlet energy (sometimes referred to as an energy gap) is the energy in the lowest excited singlet state and the ground state. This is the difference in energy.
  • the organic EL element shown in FIG. 1 is laminated in order of the hole transport zone 50, the light emitting layer 20, the electron transport zone 30, and the cathode 40 in order from the anode 10.
  • a hole transport zone 50 is preferably provided between the anode 10 and the light emitting layer 20.
  • the term “barrier layer” refers to a layer having a barrier function against triplet energy. Therefore, the hole barrier layer and the charge barrier layer have different functions.
  • FIG. 2A holes injected from the anode are injected into the light emitting layer through the hole transport band, and electrons injected from the cathode are injected into the light emitting layer through the electron transport band. Thereafter, holes and electrons are recombined in the light emitting layer, and singlet excitons and triplet excitons are generated.
  • the triplet energies of the hole transport zone, host, and dopant are E T h0 , E T h , and E T d , respectively
  • the singlet energies of the host and dopant are E S h and E S d , respectively.
  • the electron transport zone has a barrier layer in a portion adjacent to the light emitting layer.
  • the barrier layer prevents triplet excitons generated in the light-emitting layer from diffusing into the electron transport band, and increases the density of triplet excitons by confining the triplet excitons in the light-emitting layer. It has a function to cause a phenomenon efficiently.
  • the triplet energy E T b of the barrier layer is preferably larger than E T h and further larger than E T d .
  • the barrier layer prevents the triplet excitons from diffusing into the electron transport band, the host triplet excitons efficiently become singlet excitons in the light-emitting layer, and the singlet excitons are It moves onto the dopant to deactivate the optical energy.
  • a hydrocarbon aromatic ring compound is preferably selected. More preferably, a polycyclic aromatic compound is selected. Since these materials have hole resistance, they hardly deteriorate and have a long life.
  • FIG. 2B shows a particularly preferred embodiment.
  • the host and dopant preferably satisfy the relationship of E T h ⁇ E T d .
  • the singlet energy E S d of the dopant is smaller than the singlet energy E S h of the host, singlet excitons generated by the TTF phenomenon transfer energy from the host to the dopant and contribute to the fluorescence emission of the dopant.
  • a transition from an excited triplet state to a ground state is forbidden. In such a transition, the triplet exciton does not undergo optical energy deactivation and is thermally depleted. It was alive.
  • singlet excitons are efficiently generated by collision with each other before the triplet excitons are thermally deactivated, and the luminous efficiency is increased. Will improve.
  • an electron injection layer that facilitates electron injection from the cathode is provided between the barrier layer and the cathode.
  • Specific examples include those obtained by laminating a normal electron transport material and an alkali metal compound, an alkali metal or an alkali metal complex, or a material which forms a barrier layer, and a donor represented by an alkali metal compound, an alkali metal or an alkali metal complex. Can be used.
  • the light emitting layer of the present invention contains a host and a specific styrylamine derivative.
  • the styrylamine derivative that can be used in the present invention is represented by the following formula (1).
  • Ar 1 to Ar 4 are each a substituted or unsubstituted aryl group (preferably having 6 to 20 ring carbon atoms) or a substituted or unsubstituted heteroaryl group (preferably ring forming). Number of atoms 5-20).
  • Ar 1 to Ar 4 are each a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, and more preferably a substituted or unsubstituted phenyl group or naphthyl group.
  • Ar 5 to Ar 7 are each a substituted or unsubstituted arylene group (preferably having 6 to 20 ring carbon atoms) or a substituted or unsubstituted heteroarylene group (preferably having 5 to 20 ring atoms). .
  • Ar 5 to Ar 7 are each a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms, more preferably a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted Or it is an unsubstituted fluorenylene group or a substituted or unsubstituted phenanthrene group.
  • At least one of Ar 5 to Ar 7 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted phenanthrene group.
  • the substituent is preferably an alkyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms).
  • l, m, and n are each an integer of 1 to 3, preferably 1.
  • Ar 5 may be the same or different
  • m is 2 or more
  • Ar 6 may be the same or different
  • p is 1 or more and n is 2 or more
  • Ar 5 7 may be the same or different
  • Ar 7 may be the same or different.
  • P is an integer of 0 to 2, preferably 0 to 1, more preferably 0. In the case of 0, it becomes a single bond.
  • aryl group, arylene group, heteroaryl group, and heteroarylene group are groups composed of one or more rings, and a plurality of rings may or may not be condensed.
  • Ring-forming carbon means a carbon atom constituting a saturated ring, unsaturated ring, or aromatic ring
  • ring-forming atom means a hetero ring (including saturated ring, unsaturated ring, and aromatic ring). The carbon atom and hetero atom which comprise are meant.
  • the aryl group having 6 to 20 ring carbon atoms of Ar 1 to Ar 4 is preferably an aryl group having 6 to 12 ring carbon atoms.
  • Specific examples of the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group.
  • the heteroaryl group having 5 to 20 ring atoms of Ar 1 to Ar 4 is preferably a heteroaryl group having 5 to 14 ring atoms.
  • Specific examples of the heteroaryl group include pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, imidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, 1-dibenzofuranyl group, 2-dibenzofuran group.
  • bivalent groups such as a phenyl group, a fluorenyl group, a naphthyl group, a phenanthryl group, a biphenylyl group, a dibenzofluorenyl group, a pyridinyl group, and an isoquinolyl group are exemplified.
  • the following groups can be illustrated as a substituted or unsubstituted arylene group of Ar 5 , Ar 6 and Ar 7 .
  • Y 1 , Y 2 , and X 1 to X 8 are a hydrogen atom, an alkyl group, a cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted silyl group.
  • X 1 and X 2 , X 2 and X 3 , X 3 and X 4 , X 5 and X 6 , X 6 and X 7 , and X 7 and X 8 are bonded to each other, and are exemplified below.
  • Saturated and unsaturated cyclic structures may be formed.
  • the cyclic structure may further have a substituent.
  • any two selected from X 1 to X 8 and the binding site of the cyclic structure are linked as a single bond. (In each formula, the wavy lines at both ends continue to the connection site as a single bond)
  • the substituent for Ar 1 to Ar 7 is a halogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, a substituted or unsubstituted silyl group, or a cyano group, preferably a substituted or unsubstituted group.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, An n-octyl group and the like can be mentioned.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl and n-hexyl are preferred.
  • the alkoxy group is represented as -OY, and examples of Y include the above alkyl groups.
  • the alkoxy group is, for example, a methoxy group or an ethoxy group.
  • the substituted silyl group includes substituted or unsubstituted alkylsilyl groups having 1 to 20 carbon atoms (including mono-, di- and trialkylsilyl groups) and substituted or unsubstituted arylsilyl groups having 6 to 30 carbon atoms (aryl Dialkylsilyl group, diarylalkylsilyl group, and triarylsilyl group).
  • the alkylsilyl group having 1 to 20 carbon atoms is preferably an alkylsilyl group having 1 to 10 carbon atoms, and more preferably an alkylsilyl group having 1 to 6 carbon atoms.
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, and a propyldimethylsilyl group.
  • the arylsilyl group having 6 to 30 carbon atoms is preferably an arylsilyl group having 6 to 20 carbon atoms, and more preferably an arylsilyl group having 6 to 10 carbon atoms.
  • arylsilyl group examples include a triphenylsilyl group, a phenyldimethylsilyl group, a t-butyldiphenylsilyl group, a tolylsilylsilyl group, a trixylsilyl group, a trinaphthylsilyl group, and the like.
  • halogen atom examples include fluorine, chlorine, bromine, iodine, and the like, preferably a fluorine atom.
  • a styrylamine derivative that can be used in the present invention is represented by the following formula (2).
  • Ar 8 is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • a 1 and A 2 are each an alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a group represented by the following formula (3).
  • Ar 9 is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group
  • B 2 is a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero group.
  • Ar 9 and B 2 may be the same or different.
  • B 1 is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • At least one of Ar 8 to Ar 9 is a substituted or unsubstituted naphthylene group or a substituted or unsubstituted fluorenylene group.
  • the alkyl group for A 1 and A 2 is an alkyl group having 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms). Specific examples include a methyl group, an ethyl group, Examples include propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and the like.
  • Examples of the substituted or unsubstituted aryl group for A 1 , A 2 , B 1 , and B 2 include 6 to 30 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms).
  • Substituted or unsubstituted aryl groups include substituted or unsubstituted phenyl groups, naphthyl groups, anthryl groups, phenanthryl groups, naphthacenyl groups, anthracenyl groups, chrycenyl groups, fluorenyl groups, triphenylenyl groups, and pyrenyl groups.
  • Biphenyl group p-terphenyl group, m-terphenyl group, o-tolyl group, m-tolyl group, p-tolyl group, pt-butylphenyl group, p- (phenylpropyl) phenyl group, methylnaphthyl Group, methylanthryl group, methylbiphenyl group, t-butyl-p-terphenyl, dimethylfluorenyl group, m-biphenyl Group, o-biphenyl group, 4- (2-phenylpropan-2-yl) phenyl group, fluoranthenyl group, 9,9'-dimethylfluorenyl group, benzo-9,9'-dimethylfluorenyl Group, dibenzo-9,9'-dimethylfluorenyl group and the like.
  • an aromatic group in which a phenyl group, a phenylene group, a naphthyl group, and a naphthalene group are combined for example, a phenylnaphthyl group, a naphthylphenyl group, a naphthylnaphthyl group, a naphthylnaphthylnaphthyl group, a phenylphenylnaphthyl group, a naphthylnaphthylphenyl group, a naphthyl group)
  • a phenylnaphthyl group, a naphthylphenylphenyl group, a phenylnaphthylnaphthyl group, a phenylnaphthylphenyl group, etc. A phenylnaphthyl group, a naphthylphenyl
  • Preferred examples include aromatic groups such as a substituted or unsubstituted phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group, anthracenyl group, chrycenyl group, and fluorenyl group.
  • aromatic groups such as a substituted or unsubstituted phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group, anthracenyl group, chrycenyl group, and fluorenyl group.
  • each of A 1 , A 2 , B 1 and B 2 is a substituted or unsubstituted phenyl group, biphenyl group, naphthyl group or fluorenyl group.
  • Examples of the substituted or unsubstituted heteroaryl group for A 1 , A 2 , B 1 , B 2 include 5 to 30 ring forming atoms (preferably 5 to 20 ring forming atoms, more preferably 5 to 5 ring forming atoms).
  • a substituted or unsubstituted heteroaryl group and specific examples include a substituted or unsubstituted pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, furyl group, benzofuranyl group, dibenzofuranyl group, iso Benzofuranyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, oxazolyl group, oxadiazolyl group, flazanyl group , Thienyl group, methylpyrrolyl group, t-butylpyrrolyl, ( Phenylpropyl) pyrrolyl, methylindolyl,
  • a substituted or unsubstituted dibenzofuranyl group, a pyridinyl group, and a carbazolyl group are mentioned.
  • a 1 and A 2 are each a substituted or unsubstituted dibensofuranyl group.
  • Examples of the substituted or unsubstituted arylene group for Ar 8 and Ar 9 include a divalent group of a substituted or unsubstituted aryl group for A 1 , A 2 , B 1 , and B 2 .
  • Y 1 , Y 2 , and X 1 to X 8 are a hydrogen atom, an alkyl group, a cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted silyl group.
  • X 1 and X 2 , X 2 and X 3 , X 3 and X 4 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 are bonded to each other and saturated as exemplified below:
  • An unsaturated cyclic structure may be formed.
  • the cyclic structure may further have a substituent.
  • any two selected from X 1 to X 8 and the binding site of the cyclic structure are linked as a single bond. (In each formula, the wavy lines at both ends continue to the connection site as a single bond)
  • Examples of the substituted or unsubstituted heteroarylene group for Ar 8 and Ar 9 include a divalent group of a substituted or unsubstituted heteroaryl group for A 1 , A 2 , B 1 , and B 2 .
  • Preferred are a substituted or unsubstituted dibenzofuranylene group, a pyridinylene group, and a carbazolylene group.
  • an anthracene derivative represented by the following formula (10) is preferable.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a heterocyclic group having 5 to 50 ring atoms
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted carbon number 7 -50 aralkyl group, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthi
  • the anthracene derivative according to the present invention is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics.
  • Ar 11 and Ar 12 in Formula (10) are each independently a substituted or unsubstituted condensed aryl group having 10 to 50 ring carbon atoms.
  • the anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted condensed aryl group and a case where they are different substituted or unsubstituted condensed aryl groups.
  • anthracene derivatives represented by the following formulas (2-1) to (2-3), and anthracene derivatives in which Ar 11 and Ar 12 in formula (10) are different substituted or unsubstituted condensed aryl groups Is mentioned.
  • Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl groups.
  • R 1 to R 8 are the same as above, R 11 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • a silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group and a hydroxyl group, a is an integer of 0 to 9.
  • a is an integer of 2 or more, a plurality of R 11 s may be the same or different on condition that two substituted or
  • Ar 11 and Ar 12 in the formula (10) are substituted or unsubstituted 2-naphthyl groups.
  • R 1 to R 8 and R 11 are the same as above, b is an integer of 1 to 7.
  • b is an integer of 2 or more, a plurality of R 11 may be the same or different on condition that two substituted or unsubstituted 2-naphthyl groups are the same.
  • Ar 11 and Ar 12 in the formula (10) are substituted or unsubstituted 1-naphthyl groups.
  • R 1 to R 8 , R 11 and b are the same as described above.
  • b is an integer of 2 or more, a plurality of R 11 are two substituted or unsubstituted. Each may be the same or different, provided that the 1-naphthyl groups are the same.
  • Ar 11 and Ar 12 in formula (10) are different substituted or unsubstituted condensed aryl groups
  • Ar 11 and Ar 12 are substituted or unsubstituted 9-phenanthrenyl group
  • substituted or unsubstituted 1 -It is preferably either a naphthyl group or a substituted or unsubstituted 2-naphthyl group.
  • Ar 11 is a 1-naphthyl group and Ar 12 is a 2-naphthyl group
  • Ar 11 is a 1-naphthyl group and Ar 12 is a 9-phenanthryl group
  • Ar 11 is 2- This is the case where the naphthyl group and Ar 12 are a 9-phenanthryl group.
  • anthracene derivative (B) In the anthracene derivative, one of Ar 11 and Ar 12 in formula (10) is a substituted or unsubstituted phenyl group, and the other is a substituted or unsubstituted condensed aryl group having 10 to 50 ring carbon atoms. .
  • Specific examples of the anthracene derivative include anthracene derivatives represented by the following formulas (2-4) and (2-5).
  • Ar 11 in the formula (10) is a substituted or unsubstituted 1-naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group.
  • Ar 6 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, Substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, 9,9-dimethylfluoren-1-yl group, 9,9-dimethylfluorene- 2-yl group, 9,9-dimethylfluoren-3-yl group, 9,9-dimethylfluoren-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofuran-3-yl group, Or a di
  • Ar 6 may form a ring such as a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofuranyl group together with a benzene ring to which Ar 6 is bonded.
  • b is an integer of 2 or more, the plurality of R 11 may be the same or different.
  • Ar 11 in the formula (10) is a substituted or unsubstituted 2-naphthyl group
  • Ar 12 is a substituted or unsubstituted phenyl group.
  • R 1 to R 8 , R 11 and b are the same as above, Ar 7 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Ar 7 may form a ring such as a substituted or unsubstituted fluorenyl group or a substituted or unsubstituted dibenzofuranyl group together with a benzene ring to which Ar 7 is bonded.
  • b is an integer of 2 or more, the plurality of R 11 may be the same or different.
  • the anthracene derivative is represented by the following formula (2-6), specifically, any one of the following formulas (2-6-1), (2-6-2), and (2-6-3) It is preferable that it is a derivative represented.
  • Ar 5 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, and Ar 5 and Ar 6 are independently selected. )
  • R 1 to R 8 are as defined above.
  • R 1 to R 8 are as defined above.
  • Ar 8 is a substituted or unsubstituted condensed aryl group having 10 to 20 ring carbon atoms.
  • R 1 to R 8 are the same as in the formula (10).
  • Ar 5a and Ar 6a are each independently a substituted or unsubstituted condensed aryl group having 10 to 20 ring carbon atoms.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms of R 1 to R 8 , R 11 , Ar 5 to Ar 7 , Ar 11 and Ar 12 include a phenyl group, a 1-naphthyl group and a 2-naphthyl group.
  • an unsubstituted phenyl group A substituted phenyl group and a substituted or unsubstituted aryl group having 10 to 14 ring carbon atoms (eg, 1-naphthyl group, 2-naphthyl group, 9-phenanthryl group), substituted or unsubstituted fluorenyl group (2-fluorenyl group) Base) And a substituted or unsubstituted pyrenyl group (1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group).
  • Examples of the substituted or unsubstituted condensed aryl group having 10 to 20 ring carbon atoms of Ar 5a , Ar 6a and Ar 8 include 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, Examples include 2-pyrenyl group, 4-pyrenyl group, 2-fluorenyl group and the like. In particular, a 1-naphthyl group, a 2-naphthyl group, a 9-phenanthryl group, and a fluorenyl group (2-fluorenyl group) are preferable.
  • Examples of the substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms of R 1 to R 8 , R 11 , Ar 5 to Ar 7 , Ar 11 and Ar 12 include a 1-pyrrolyl group, a 2-pyrrolyl group, 3-pyrrolyl, pyrazinyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6- Indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3- Furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofur
  • 1-dibenzofuranyl group 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothiophenyl group, 2-dibenzothiophenyl group, 3-dibenzothiophenyl group Group, 4-dibenzothiophenyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms of R 1 to R 8 , R 11 and Ar 5 to Ar 7 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s- Butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxy Isobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2-dichloroethyl group, 1,3-d
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms of the substituents R 1 to R 8 , R 11 and Ar 5 to Ar 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, Examples include 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like. Preferably, they are a cyclopentyl group and a cyclohexyl group.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of R 1 to R 8 and R 11 is a group represented by —OZ, and Z is the substituted or unsubstituted carbon number of R 1 to R 8. Selected from 1 to 50 alkyl groups.
  • R 1 to R 8 , R 11 and Ar 5 to Ar 7 as a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms (the aryl moiety has 6 to 49 carbon atoms and the alkyl moiety has 1 to 44 carbon atoms) are benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -
  • Aryloxy and arylthio groups of R 1 ⁇ R 8, and substituted or unsubstituted ring carbon atoms 6 to 50 R 11 is respectively represented by -OY and -SY, Y is the R 1 ⁇ R 8 It is selected from a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms (the alkyl moiety has 1 to 49 carbon atoms) of R 1 to R 8 and R 11 is represented as —COOZ, and Z is the substituent of R 1 to R 8 .
  • Z is the substituent of R 1 to R 8 .
  • it is selected from an unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Examples of the substituted silyl group of R 1 to R 8 and R 11 include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group.
  • halogen atoms for R 1 to R 8 and R 11 include fluorine, chlorine, bromine and iodine.
  • the barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the electron transport band, and also plays a role of efficiently injecting electrons into the light emitting layer.
  • the electron injecting property to the light emitting layer is lowered, the density of triplet excitons is reduced by reducing electron-hole recombination in the light emitting layer.
  • the collision frequency of triplet excitons decreases and the TTF phenomenon does not occur efficiently. From the viewpoint of efficiently injecting electrons into the light emitting layer, the following two modes can be considered as the form of the electron transport band including the barrier layer.
  • the electron transport zone has a laminated structure of two or more different materials, and an electron injection layer for efficiently receiving electrons from the cathode is provided between the barrier layer and the cathode.
  • the electron injection layer include nitrogen-containing heterocyclic derivatives.
  • the electron transport zone is composed of one barrier layer.
  • a donor typified by an alkali metal is doped in the vicinity of the cathode interface in the barrier layer.
  • the donor at least one selected from the group selected from a donor metal, a donor metal compound, and a donor metal complex can be selected.
  • the donor metal means a metal having a work function of 3.8 eV or less, preferably an alkali metal, an alkaline earth metal, or a rare earth metal, and more preferably Cs, Li, Na, Sr, K, Mg, Ca, Ba. , Yb, Eu and Ce.
  • the donor metal compound is a compound containing the above donor metal, preferably a compound containing an alkali metal, an alkaline earth metal or a rare earth metal, and more preferably a halide, oxide or carbonic acid of these metals. Salt, borate.
  • MOx M is a donor metal
  • x is 0.5 to 1.5
  • MFx x is 1 to 3
  • the donor metal complex is a complex of the above-described donor metal, and preferably an alkali metal, alkaline earth metal, or rare earth metal organometallic complex.
  • An organometallic complex represented by the following formula (I) is preferable.
  • M is a donor metal
  • Q is a ligand, preferably a carboxylic acid derivative, diketone derivative or quinoline derivative, and n is an integer of 1 to 4.
  • the donor metal complex examples include a tungsten turbine described in JP-A-2005-72012. Further, phthalocyanine compounds whose central metals are alkali metals and alkaline earth metals described in JP-A-11-345687 can also be used as donor metal complexes. Said donor may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the exciton density at the interface between the light emitting layer and the barrier layer is large. In this case, the probability that holes that did not contribute to recombination in the light emitting layer are injected into the barrier layer is increased. Therefore, the material used for the barrier layer is preferably a material having excellent oxidation durability.
  • Ar 101 , Ar 102 , Ar 103 , Ra and Rb are a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted chrysene ring, a substituted or unsubstituted fluoranthene ring Substituted or unsubstituted phenanthrene ring, substituted or unsubstituted benzophenanthrene ring, substituted or unsubstituted dibenzophenanthrene ring, substituted or unsubstituted triphenylene ring, substituted or unsubstituted benzo [a] triphenylene ring, substituted or unsubstituted It represents a polycyclic aromatic skeleton selected from a substituted benzochrysene ring, a substituted or unsubstituted benzo [b] fluoranthene ring, a
  • Ra and Rb are selected from the group consisting of a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted benzo [c] phenanthrene ring, and a substituted or unsubstituted fluoranthene ring. It is preferable to be selected.
  • the polycyclic aromatic skeleton of the polycyclic aromatic compound may have a substituent.
  • substituent of the polycyclic aromatic skeleton include, for example, a halogen atom, a hydroxyl group, a substituted or unsubstituted amino group, a nitro group, a cyano group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, Substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted Examples thereof include a substituted aryloxy group, a substituted or unsubstituted alkoxycarbonyl group, and a carboxyl group.
  • aromatic hydrocarbon group examples include naphthalene, phenanthrene, fluorene, chrysene, fluoranthene and triphenylene.
  • polycyclic aromatic skeleton has a plurality of substituents, they may form a ring.
  • the polycyclic aromatic skeleton is preferably selected from the group consisting of compounds represented by the following formulas (1) to (4).
  • Ar 1 to Ar 5 represent a substituted or unsubstituted condensed ring structure having 4 to 16 nuclear carbon atoms.
  • Examples of the compound represented by the formula (1) include a substituted or unsubstituted phenanthrene, a simple substance or a derivative of chrysene.
  • Examples of the compound represented by the formula (2) include substituted or unsubstituted acenaphthylene, acenaphthene, fluoranthene alone or derivatives.
  • Examples of the compound represented by the formula (3) include a single or derivative of a substituted or unsubstituted benzofluoranthene.
  • Examples of the compound represented by the formula (4) include substituted or unsubstituted naphthalene alone or derivatives.
  • naphthalene derivatives examples include those represented by the following formula (4A).
  • each of R 1 to R 8 independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms.
  • Examples of the phenanthrene derivative include those represented by the following formula (5A).
  • each of R 1 to R 10 independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, or a branched or straight chain alkyl group having 1 to 30 carbon atoms.
  • chrysene derivative examples include those represented by the following formula (6A).
  • each of R 1 to R 12 independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, or a branched or straight chain alkyl group having 1 to 30 carbon atoms.
  • the polycyclic aromatic skeleton is preferably benzo [c] phenanthrene or a derivative thereof.
  • benzo [c] phenanthrene derivative include those represented by the following formula (7A).
  • R 1 to R 9 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms.
  • the polycyclic aromatic skeleton is preferably benzo [c] chrysene or a derivative thereof.
  • benzo [c] chrysene derivative include those of the following formula (8A).
  • R 1 to R 11 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms. Represents a substituent in which a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is composed of a single group or a plurality of combinations.
  • the polycyclic aromatic skeleton is preferably dibenzo [c, g] phenanthrene represented by the following formula (9) or a derivative thereof.
  • the polycyclic aromatic skeleton is preferably fluoranthene or a derivative thereof.
  • fluoranthene derivative include those of the following formula (10A).
  • X 12 to X 21 are a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group. Represents a substituted heteroaryl group.
  • the polycyclic aromatic skeleton is preferably triphenylene or a derivative thereof.
  • a triphenylene derivative the thing of a following formula (11A) is mentioned, for example.
  • R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 30 nuclear carbon atoms, a branched or straight chain alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms is a single or a combination of a plurality thereof.
  • the polycyclic aromatic compound may be represented by the following formula (12).
  • Ra and Rb are the same as the above formulas (A) to (C).
  • the substituent is an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 18 carbon atoms, It is a silyl group having 3 to 20 carbon atoms, a cyano group or a halogen atom, and the substituent of the naphthalene ring other than Ra and Rb may be an aryl group having 6 to 22 carbon atoms.
  • Ra and Rb are selected from a fluorene ring, a phenanthrene ring, a triphenylene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a fluoranthene ring, a benzochrysene ring, a benzo [b] fluoranthene ring and a picene ring. It is preferably a group.
  • nitrogen-containing heterocyclic derivatives represented by the following formulas (11) and (21) can be used.
  • any one of R 1 to R 12 is a hydrogen atom, a fluorine atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom. It is a heterocyclic group of several 5 to 30, and any one of R 1 to R 12 is a single bond and is bonded to L 1 .
  • L 1 is a single bond, a substituted or unsubstituted b + 1 valent hydrocarbon ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted b + 1 valent heterocyclic group having 5 to 30 ring atoms.
  • HAr is a substituted or unsubstituted nitrogen-containing heterocyclic group.
  • a and b are each an integer of 1 to 4, and at least one of a and b is 1.
  • R 201 to R 214 is a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted carbon group having 3 to 8 carbon atoms, A cycloalkyl group, a substituted or unsubstituted alkylsilyl group having 3 to 30 carbon atoms, a substituted or unsubstituted arylsilyl group having 8 to 30 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 20 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms Any one of R 201 to R 214 is a single bond
  • L 1 represents a single bond, a substituted or unsubstituted b + 1 valent hydrocarbon ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted b + 1 valent heterocyclic group having 5 to 30 ring atoms.
  • HAr is a substituted or unsubstituted nitrogen-containing heterocyclic group.
  • a and b are each an integer of 1 to 4, and at least one of a and b is 1.
  • Examples of HAr in the above formulas (11) and (21) include groups of the following formulas. (Wherein R 111 to R 130 are each a hydrogen atom or a substituent, and R 111 to R 130 may be bonded together by adjacent substituents to form a saturated or unsaturated ring. Any one of R 111 to R 115 , any one of R 116 to R 119 , any one of R 120 to R 122 , any one of R 123 to R 126 , and R 127 to R 130 Any one of these is a single bond, and binds to L 1 . )
  • a nitrogen-containing heterocyclic derivative represented by the following formula (31) can be used as the barrier layer material.
  • R 401 to R 416 are each a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, substituted or unsubstituted.
  • L 1 represents a single bond, a substituted or unsubstituted c + d valent hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted c + d valent heterocyclic group having 5 to 30 ring atoms.
  • c and d each represent an integer of 1 to 3.
  • L 1 and R 401 to R 416 are not anthracene-containing groups.
  • barrier layer material a material having an electron transport structure portion and a triplet barrier structure portion made of a condensed polycyclic aromatic hydrocarbon compound can be used.
  • the electron transport structure moiety includes, for example, one or more rings selected from the following rings.
  • the triplet barrier structure site is selected from, for example, the following rings.
  • Ar 1 to Ar 9 represent a condensed ring structure having 4 to 16 ring carbon atoms.
  • each R is independently a hydrogen atom, fluorine atom, substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, alkylamino group, arylamino group. , Alkylsilyl group, arylsilyl group, nitro group, cyano group, or a group in which two to three aryl groups and heteroaryl groups are connected.
  • any one of Rs is bonded to B as a single bond, and the remaining Rs are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group, a cycloalkyl group, an aryl group, A heteroaryl group, an alkoxy group, an aryloxy group, an alkylamino group, an arylamino group, an alkylsilyl group, an arylsilyl group, a nitro group, a cyano group, or a group in which two to three aryl groups and heteroaryl groups are connected M is an integer of 2 or more, B is a single bond or a linking group, a substituted or unsubstituted m-valent alkylene group, a substituted or unsubstituted alkenylene group, a substituted or unsubstituted m-valent arylene group, An m-valent group formed by bonding 2 to 4 substituted or un
  • Ar 1 '-Y-Ar 2 ' (b) (In the formula (b), Ar 1 ′ and Ar 2 ′ may be the same or different, Ar 1 ′ is a substituted or unsubstituted (j + 1) -valent arylene group or heteroarylene group, and Ar 2 ′ is a substituted group.
  • the aryl group is preferably phenyl, biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, naphthyl, phenanthryl, chrysenyl, benzophenanthryl.
  • the heteroaryl group is preferably a pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, quinolinyl group, isoquinolinyl group, quinoxalinyl group, naphthyridinyl group, imidazolpyridyl group, indolyl group, indazolyl group, phenanthryl group, imidazolyl group, pyrazolyl group.
  • a nitrogen-containing heterocyclic derivative represented by the following formula can be used as the barrier layer material.
  • Ar is a substituted or unsubstituted arylene group or heteroarylene group.
  • X is independently CR or N. Any one of R is bonded to Ar as a single bond, and the rest
  • the aryl group is preferably a phenyl group, biphenyl group, o-terphenyl group, m-terphenyl group, p-terphenyl group, naphthyl group, phenanthryl group, chrysenyl group, benzophenanthrenyl group, Examples include benzocrisenyl group, benzanthryl group, triphenyl group, fluoranthenyl group, benzofluoranthenyl group, and fluorenyl group.
  • the heteroaryl group is preferably a pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, quinolinyl group, isoquinolinyl group, quinoxalinyl group, naphthyridinyl group, imidazolpyridyl group, indolyl group, indazolyl group, phenanthryl group, imidazolyl group, pyrazolyl group.
  • the arylene group is a divalent or trivalent residue of the aryl group
  • the heteroarylene group is a divalent or trivalent residue of the heteroaryl group.
  • an oxygen-containing fused ring derivative represented by the following formula can be used as the barrier layer material.
  • Ar 1 is a condensed ring group in which four or more rings having one or more rings selected from a furan ring and a pyran ring are condensed.
  • HAr is any nitrogen-containing heterocyclic group represented by the following formula.
  • n and m are each an integer of 1 to 5.
  • L is a single bond, a substituted or unsubstituted n + m valent aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted n + m valent heterocyclic group having 5 to 30 ring atoms, or a substituted or unsubstituted group.
  • N + m-valent wherein two or three selected from the group consisting of an aryl group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms are connected by a single bond It is a group.
  • R 11 , R 12 , R 21 , R 22 , R 31 to R 40 , and R 41 to R 46 are each independently a hydrogen atom, a halogen atom, or a substituted or unsubstituted carbon atom having 1 to 10 carbon atoms.
  • Any one of R 31 to R 35 and any one of R 36 to R 40 is a single bond that connects two pyridine rings of the formula (4).
  • X is N or CR 13 and R 13 is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 8 ring carbon atoms, A substituted silyl group having 3 to 30 carbon atoms, a cyano group, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 20 ring carbon atoms, a substituted or unsubstituted carbon An alkylthio group having 1 to 20 carbon atoms, an amino group, a substituted or unsubstituted mono- or dialkylamino group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted group;
  • Y is N or CR 23
  • R 23 is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 8 ring carbon atoms, A substituted silyl group having 3 to 30 carbon atoms, a cyano group, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 20 ring carbon atoms, a substituted or unsubstituted carbon An alkylthio group having 1 to 20 carbon atoms, an amino group, a substituted or unsubstituted mono- or dialkylamino group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted group
  • Z is a bridging group, which is a substituted or unsubstituted alkylene group or a substituted or unsubstituted alkenylene group.
  • Any one of R 11 to R 13 , any one of R 21 to R 23 , any one of R 31 to R 40 , and any one of R 41 to R 46 is a single bond to L. It is a bond. )
  • carbazole azine compounds and ladder compounds can be used as the barrier layer material.
  • Cz- Carbazole azine (Cz-) mA
  • Cz is a substituted or unsubstituted carbazolyl group, or a substituted or unsubstituted azacarbazolyl group.
  • A is an aryl-substituted nitrogen-containing ring group, a diaryl-substituted nitrogen-containing ring group, or a triaryl-substituted nitrogen-containing ring.
  • Cz-An (In the formula, Cz is a substituted or unsubstituted carbazolyl group, or a substituted or unsubstituted azacarbazolyl group.
  • A is an aryl-substituted nitrogen-containing ring group, a diaryl-substituted nitrogen-containing ring group, or a triaryl-substituted nitrogen-containing ring.
  • N is an integer of 1 to 3)
  • Ar 1 , Ar 2 and Ar 3 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 ring-forming carbon atoms, or a substituted or unsubstituted ring formation. Represents an aromatic heterocyclic group having 6 atoms.
  • Ar 1 , Ar 2 and Ar 3 may have one or a plurality of substituents Y, and in the case of a plurality, they may be different from each other.
  • Y is an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyl group having 7 to 24 carbon atoms, a silyl group, or carbon
  • a substituted silyl group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 24 ring carbon atoms or a condensed aromatic hydrocarbon group, or a substituted or unsubstituted aromatic group having 3 to 24 ring carbon atoms Represents a heterocyclic group or a condensed aromatic heterocyclic group.
  • X 1 , X 2 , X 3 and X 4 each independently represent oxygen (O), sulfur (S), N—R 1 or CR 2 R 3 .
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, an aralkyl group having 7 to 24 carbon atoms, A silyl group or a substituted silyl group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 24 ring carbon atoms, or a substituted or unsubstituted ring carbon number 3 Represents 24 to 24 aromatic heterocyclic groups or condensed aromatic heterocyclic groups.
  • R 1 represents a monovalent fused aromatic heterocyclic group having 8 to 24 ring atoms that are substituted or unsubstituted.
  • o, p and q represent 0 or 1.
  • s represents 1, 2, 3 or 4
  • 1-mer was linking group L 4 respectively, dimer, trimer, and tetramer.
  • r represents 1, 2, 3 or 4.
  • L 2 represents a single bond, an alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 ring carbon atoms, a divalent silyl group, or a carbon number. 2 to 20 divalent substituted silyl groups, substituted or unsubstituted divalent aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups having 6 to 24 ring carbon atoms, or substitutions having 3 to 24 ring carbon atoms Alternatively, it represents an unsubstituted divalent aromatic heterocyclic group or a condensed aromatic heterocyclic group.
  • L 3 represents a single bond, an alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 ring carbon atoms, a divalent silyl group, or a group having 2 to 20 carbon atoms.
  • L 4 is a single bond, an alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 ring carbon atoms, or a divalent silyl group.
  • a divalent substituted silyl group having 2 to 20 carbon atoms a substituted or unsubstituted divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon having 6 to 24 ring carbon atoms, or 3 to 24 ring carbon atoms.
  • a trivalent saturated hydrocarbon group having 1 to 20 carbon atoms When s is 3, a trivalent saturated hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted trivalent cyclic saturated hydrocarbon group having 3 to 20 ring carbon atoms, a trivalent silyl group, or a carbon number 1 to 20 trivalent substituted silyl groups, substituted or unsubstituted trivalent aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups having 6 to 24 ring carbon atoms, or substitution having 3 to 24 ring carbon atoms Alternatively, it represents an unsubstituted trivalent aromatic heterocyclic group or a condensed aromatic heterocyclic group.
  • a 1 represents a hydrogen atom, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a silyl group, or a substituted silyl group having 3 to 20 carbon atoms, substituted or unsubstituted.
  • a 2 represents a hydrogen atom, a substituted or unsubstituted ring-forming cycloalkyl group having 3 to 20 carbon atoms, a silyl group or a substituted silyl group having 3 to 20 carbon atoms, a substituted or unsubstituted ring formation. It represents an aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group or condensed aromatic heterocyclic group having 3 to 24 ring carbon atoms.
  • One of X 1 and X 4 in the formulas (1) and (2) or one of X 2 and X 3 is an oxygen atom, and the compound represented by the formulas (1) and (2) is a molecule A compound having a dibenzofuran structure is preferable. Further, one of X 1 and X 4 in the formulas (1) and (2) and one of X 2 and X 3 are both oxygen atoms, and are represented by the formulas (1) and (2).
  • the compound is preferably a compound having a benzofuranodibenzofuran structure.
  • the emission intensity ratio derived from TTF can be measured by a transient EL method.
  • the transient EL method is a method for measuring the attenuation behavior (transient characteristic) of EL light emission after the DC voltage applied to the element is removed.
  • the EL emission intensity is classified into a light emission component from a singlet exciton generated by the first recombination and a light emission component from a singlet exciton generated via the TTF phenomenon.
  • the lifetime of singlet excitons is on the order of nanoseconds and is so short that it decays quickly after removal of the DC voltage.
  • the TTF phenomenon gradually attenuates due to light emission from the singlet excitons generated via the long-lived triplet excitons.
  • the light emission from the singlet excitons and the light emission from the triplet excitons have a large time difference, and thus the emission intensity derived from TTF can be obtained. Specifically, it can be determined by the following method.
  • the transient EL waveform is measured as follows (see Fig. 3).
  • a pulse voltage waveform output from the voltage pulse generator (PG) is applied to the EL element.
  • the applied voltage waveform is taken into an oscilloscope (OSC).
  • OSC oscilloscope
  • PMT photomultiplier tube
  • the voltage waveform and pulse emission are synchronized and taken into a personal computer (PC).
  • the TTF-derived emission intensity ratio is determined as follows by analysis of the transient EL waveform.
  • the time decay of the triplet exciton density nT inside the light emitting layer can be expressed by the following rate equation using the decay rate ⁇ due to the lifetime of the triplet exciton and the decay rate ⁇ due to the collision of the triplet exciton. .
  • the graph on the left of FIG. 4 is a measurement example when a predetermined DC voltage is applied to the EL element and then the voltage is removed, and shows a change over time in the emission intensity of the EL element.
  • the DC voltage was removed at about 3 ⁇ 10 ⁇ 8 seconds.
  • the graph represents the luminance when the voltage is removed as 1. After that, a slow decay component appears after rapid decay up to about 2 ⁇ 10 ⁇ 7 seconds.
  • the graph on the right side of FIG. 4 is a graph in which the reciprocal of the square root of the light intensity up to 10 ⁇ 5 seconds after voltage removal is plotted with the origin of voltage removal as the origin, and it can be seen that it can be approximated to a straight line.
  • the element of the present invention can have a tandem element configuration having at least two organic layer units including a light emitting layer.
  • An intermediate layer also referred to as an intermediate conductive layer, a charge generation layer, or CGL
  • An electron transport zone can be provided for each unit.
  • At least one light emitting layer is a fluorescent light emitting layer, and a unit including the light emitting layer satisfies the above requirements.
  • An example of a specific stacking order is shown below.
  • the light emitting layer described below may be a laminate of a plurality of light emitting layers, or may be an organic layer unit including a charge barrier layer according to a third embodiment described later.
  • FIG. 5 shows an example of the organic EL element according to this embodiment.
  • the organic EL element 1 includes an anode 10, light emitting layers 22 and 24, and a cathode 40 in this order, and an intermediate layer 60 is provided between the light emitting layers 22 and 24.
  • the electron transport zone 30 includes an electron injection layer 34 and a barrier layer 32, and the barrier layer 32 is adjacent to the light emitting layer 24.
  • the light emitting layer 24 is a fluorescent light emitting layer that satisfies the requirements of the present invention.
  • the other light emitting layer may be fluorescent or phosphorescent.
  • a barrier layer may be provided next to the light emitting layer 22 and the light emitting layer 24 may be a fluorescent light emitting layer that satisfies the requirements of the present invention.
  • an electron transport band and / or a hole transport band may be interposed between the two light emitting layers 22 and 24. Further, there may be three or more light emitting layers and two or more intermediate layers. When there are three or more light emitting layers, there may or may not be an intermediate layer between all the light emitting layers.
  • an anode, a plurality of light emitting layers, an electron transport zone, and a cathode are provided in this order, and a charge barrier layer is provided between any two light emitting layers of the plurality of light emitting layers,
  • the light emitting layer in contact with it is a fluorescent light emitting layer and satisfies the above requirements.
  • a suitable organic EL device As a configuration of a suitable organic EL device according to this embodiment, as described in Japanese Patent No. 4134280, US Patent Application Publication No. 2007 / 0273270A1, International Publication No. WO2008 / 023623A1, In a configuration in which one light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode are stacked in this order, a barrier layer and an electron injection layer for preventing diffusion of triplet excitons between the second light emitting layer and the cathode are provided.
  • band which has is mentioned.
  • the charge barrier layer is provided with an energy barrier of HOMO level and LUMO level between the adjacent light emitting layers, thereby adjusting the carrier injection into the light emitting layer, and carriers of electrons and holes injected into the light emitting layer.
  • This layer has the purpose of adjusting the balance.
  • Anode / first light emitting layer / charge barrier layer / second light emitting layer / electron transport zone / cathode anode / first light emitting layer / charge barrier layer / second light emitting layer / third light emitting layer / electron transport zone / cathode
  • FIG. 6 shows an example of the organic EL element according to this embodiment.
  • the upper diagram of FIG. 6 shows the device configuration and the HOMO and LUMO energy levels of each layer.
  • the figure below shows the relationship between the energy gap between the third light emitting layer and the barrier layer.
  • This organic EL element includes an anode, a first light emitting layer, a second light emitting layer, a third light emitting layer, an electron transport zone, and a cathode in this order, and between the first light emitting layer and the second light emitting layer, There is a charge barrier layer.
  • the electron transport zone consists of a barrier layer and an electron injection layer (not shown).
  • the third light emitting layer is a fluorescent light emitting layer that satisfies the requirements of the present invention.
  • the first light emitting layer and the second light emitting layer may be fluorescent or phosphorescent.
  • the element of the present embodiment is suitable as a white light-emitting element, and can be white by adjusting the emission color of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer.
  • the light emitting layer may be only the first light emitting layer and the second light emitting layer, and the light emission color of the two light emitting layers may be adjusted to be white.
  • the second light emitting layer is a fluorescent light emitting layer that satisfies the requirements of the present invention.
  • the host of the first light emitting layer is a hole transporting material
  • a fluorescent light emitting dopant having a main peak wavelength larger than 550 nm is added
  • the host of the second light emitting layer (and the third light emitting layer) is an electron transporting material.
  • the triplet energy of the hole transport material and the host is compared, it is preferable that the triplet energy is large.
  • blue pixels, green pixels, and red pixels are provided side by side on the substrate.
  • a blue pixel has the configuration of the first embodiment.
  • FIG. 7 shows an example of the organic EL element according to this embodiment.
  • a blue pixel B, a green pixel G, and a red pixel R are formed in parallel on a common substrate 100.
  • the blue pixel B includes an anode 10, a hole transport zone 50, a blue light emitting layer 20B, an electron transport zone 30 including a barrier layer and an electron injection layer, a cathode 40, and a protective layer 70 in this order from the substrate 100.
  • the green pixel G includes an anode 10, a hole transport zone 50, a green light emitting layer 20G, an electron transport zone 30 composed of a barrier layer and an electron injection layer, a cathode 40, and a protective layer 70 in this order from the substrate 100.
  • the red pixel R includes an anode 10, a hole transport zone 50, a red light emitting layer 20R, an electron transport zone 30 including a barrier layer and an electron injection layer, a cathode 40, and a protective layer 70 in this order from the substrate 100.
  • An insulating film 200 is formed between the anodes of adjacent pixels to maintain insulation between the pixels.
  • the barrier layer is provided in common for the blue pixel B, the red pixel R, and the green pixel G.
  • the effect of the barrier layer is remarkable compared to the light emission efficiency obtained in the conventional blue fluorescent element, but the same effect of confining the triplet energy in the light emitting layer is obtained also in the green fluorescent element and the red fluorescent element. Therefore, improvement in luminous efficiency can be expected.
  • the phosphorescent light-emitting layer it is possible to obtain an effect of confining triplet excitons in the light-emitting layer, which prevents diffusion of triplet energy and contributes to improvement of the light emission efficiency of the phosphorescent dopant.
  • the hole transport zone includes a hole transport layer, a hole transport layer, a hole injection layer, and the like.
  • the hole transport zones may be common or different.
  • each hole transport zone has a configuration suitable for the emission color.
  • the organic layer composed of the light emitting layers 20B, G, R and the barrier layer is not limited to the configuration shown in the figure and can be changed as appropriate.
  • E T Triplet energy
  • F-4500 manufactured by Hitachi
  • Conversion formula of E T is as follows.
  • Conversion formula E T (eV) 1239.85 / ⁇ ph “ ⁇ ph ” (unit: nm) is a tangent to the short-wavelength rise of the phosphorescence spectrum when the phosphorescence spectrum is represented with the phosphorescence intensity on the vertical axis and the wavelength on the horizontal axis. It means the wavelength value at the intersection of the tangent and the horizontal axis.
  • the sample for phosphorescence measurement put in the quartz cell was cooled to 77K, and the phosphorescence measurement sample was irradiated with excitation light, and the phosphorescence intensity was measured while changing the wavelength.
  • the vertical axis represents phosphorescence intensity and the horizontal axis represents wavelength.
  • a tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value ⁇ ph (nm) at the intersection of the tangent line and the horizontal axis was obtained.
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, tangents at each point on the curve are considered toward the long wavelength side. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases).
  • the tangent drawn at the point where the value of the slope takes the maximum value is taken as the tangent to the rising edge on the short wavelength side of the phosphorescence spectrum.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value is taken is taken as the tangent to the rise on the short wavelength side of the phosphorescence spectrum.
  • Affinity (Af) It calculated from the measured value of ionization potential Ip and energy gap Eg.
  • the calculation formula is as follows.
  • Af Ip-Eg
  • the energy gap Eg was measured from the absorption edge of the absorption spectrum in the toluene solution. Specifically, the absorption spectrum was measured using a commercially available visible / ultraviolet spectrophotometer, and calculated from the falling wavelength on the long wavelength side of the spectrum.
  • ⁇ ab (unit: nm) means a wavelength value at the intersection of the tangent line and the horizontal axis with respect to the falling edge of the absorption spectrum on the long wavelength side.
  • Each compound was dissolved in toluene solvent (Sample 2 ⁇ 10 -5 mol / l), the optical path length was prepared a sample so that 1 cm. Absorbance was measured while changing the wavelength.
  • the tangent to the falling edge of the absorption spectrum on the long wavelength side is drawn as follows. When moving on the spectrum curve in the long wavelength direction from the maximum value on the longest wavelength side among the maximum values of the absorption spectrum, the tangent at each point on the curve is considered.
  • the tangent drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent to the fall on the long wavelength side of the absorption spectrum.
  • the value is 0.2 or less maxima absorbance is not included in the maximum value of the longest wavelength side.
  • Ionization potential For the ionization potential, a single layer of each layer is separately prepared by vacuum deposition on an ITO glass substrate, and a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3) is used in the air using a thin film on the ITO glass substrate. And measured. Specifically, the measurement was performed by irradiating the material with light and measuring the amount of electrons generated by charge separation at that time. The emitted photoelectrons were plotted by the 1/2 power with respect to the energy of the irradiation light, and the threshold of the photoelectron emission energy was defined as the ionization potential (Ip).
  • Example 1 HI1, HT2, BH, BD-1, TB2, and ET were sequentially deposited on an ITO substrate on which ITO having a thickness of 130 nm was formed to obtain an element having the following configuration.
  • the parentheses indicate the film thickness (unit: nm).
  • Examples 2 to 6 A device was obtained in the same manner as in Example 1 except that the dopant shown in Table 1 was used instead of BD-1.
  • Comparative Examples 1-6 A device was obtained in the same manner as in Example 1 except that the dopant shown in Table 1 was used instead of BD-1 and the barrier layer was not formed, except that the ET film thickness was changed to 25 nm.
  • Evaluation Example 1 The following evaluations were performed on the devices obtained in Examples 1 to 6 and Comparative Examples 1 to 6. The results are shown in Table 1. A voltage was applied to the device so that the current value was 1 mA / cm 2, and the voltage value at that time was measured. Further, the EL emission spectrum at that time was measured using a spectral radiance meter (CS-1000: manufactured by Comica Minolta). From the obtained spectral radiance spectrum, current efficiency L / J (cd / A), external quantum efficiency EQE (%), and main peak wavelength ⁇ p (nm) were calculated.
  • CS-1000 spectral radiance meter
  • TTF ratio was measured by the following method. As a result, a TTF ratio of 25% was observed for the device of Example 3 and 12% for the device of Comparative Example 3.
  • Voltage pulse waveform output from a pulse generator (Agilent 8114A) (pulse width: 500 microseconds, frequency: 20 Hz, voltage: voltage equivalent to 0.1 to 100 mA / cm 2)
  • EL emission is a photomultiplier tube (R928 manufactured by Hamamatsu Photonics Co., Ltd.)
  • the pulse voltage waveform and the EL light emission were synchronized and captured in an oscilloscope (Tektronix 2440 manufactured) to obtain a transient EL waveform, which was analyzed to obtain a TTF-derived light emission ratio ( TTF ratio) was determined.
  • the organic EL element of the present invention can be used for a display panel or a lighting panel for a large-sized television where low power consumption is desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

陽極と、発光層と、障壁層と、電子注入層と、陰極とをこの順に備え、発光層は、ホストと特定構造のスチリルアミン誘導体を含み、障壁層の3重項エネルギーE が、ホストの3重項エネルギーE より大きい有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス(EL)素子、特に高効率の有機EL素子に関する。
 有機EL素子をその発光原理に従って分類すると、蛍光型と燐光型の二種類に分けることができる。有機EL素子に電圧を印加すると、陽極から正孔が、また陰極から電子が注入され、発光層においてこれらが再結合し励起子を形成する。電子スピンの統計則により、1重項励起子と3重項励起子が25%:75%の割合で生成する。蛍光型では1重項励起子による発光を用いるため、内部量子効率は25%が限界といわれていた。蛍光材料を用いた蛍光型素子は最近長寿命化技術が進展し、携帯電話やテレビ等のフルカラーディスプレイへ応用されつつあるものの、高効率化が課題であった。
 蛍光型素子の高効率化技術に関連し、これまで有効活用されていなかった3重項励起子から発光を取出す技術がいくつか開示されている。例えば非特許文献1では、アントラセン系化合物をホスト材料に用いたノンドープ素子を解析し、メカニズムとして、二つの3重項励起子が衝突融合することにより1重項励起子が生成し、その結果、蛍光発光が増加している。しかしながら非特許文献1では、ホスト材料のみのノンドープ素子において、3重項励起子が衝突融合することによって蛍光発光の増加が確認されたことを開示するのみであり、3重項励起子による効率の増加分は3~6%と低い効果であった。
 非特許文献2には、青色蛍光素子において内部量子効率28.5%という従来の理論限界値25%を超えるような報告がなされている。しかしながら25%を超えるための技術的手段は何らは開示されておらず、またフルカラー有機ELテレビの実用化という観点では更なる高効率化が求められていた。
 また、蛍光素子において3重項励起子を利用した別の例が特許文献1に開示されている。通常の有機分子では、最低3重項励起状態(T1)は最低1重項励起状態(S1)よりも低いが、高い3重項励起状態(T2)はS1よりも高い場合がある。このような場合にT2からS1への遷移が起こることにより、1重項励起状態からの発光を得ることができるとされている。しかしながら、実際には外部量子効率は6%程度(光取出し効率を25%とすると、内部量子効率24%)であり、従来から言われている限界値25%を超えるものではなかった。また、ここでのメカニズムは一分子内での3重項励起状態から1重項励起状態への項間交差によるものであり、非特許文献1が開示している二つの3重項励起子の衝突による1重項の生成現象は起きていない。
 特許文献2,3には、蛍光素子においてBCP(バソクプロイン)やBPhen等のフェナントロリン誘導体を正孔障壁層に用いることにより、正孔障壁層と発光層の界面における正孔の密度を高め、効率よく再結合を起こす技術が開示されている。しかしながら、BCP(バソクプロイン)やBPhen等のフェナントロリン誘導体は正孔に対して脆弱性があり、酸化耐久性に劣り、素子の長寿命化という観点からは性能が不十分であった。
 また、特許文献4,5には、蛍光素子において、発光層と接する電子輸送層の材料としてアントラセン誘導体等の芳香族化合物を用いた例が開示されている。しかしながら、これらは生成された1重項励起子が、短い時間の間に蛍光発光することを前提に設計された素子であるため、いわゆる燐光素子で通常設計される電子輸送層の3重項エネルギーとの関係については考慮されておらず、実際に、電子輸送層の3重項エネルギーが発光層の3重項エネルギーに比べて小さいため、発光層内で生成した3重項励起子は電子輸送層まで拡散されてしまい、その後、熱的失活過程を経ており、従来の蛍光発光の理論限界値である25%を超えることが困難であった。さらに、電子輸送層のアフィニティが大き過ぎるため、アフィニティの小さい発光層への電子注入性が悪く、高効率化という効果は必ずしも得られていなかった。また、特許文献6には、長寿命・高効率な青色発光を示すフルオランテン系ドーパントを用いた素子が開示されているが、必ずしも高効率とはいえなかった。
 一方、燐光型は、直接3重項励起子からの発光を用いる。1重項励起子エネルギーも発光分子内部のスピン転換により3重項励起子へ変換されるため、原理的には100%近い内部発光効率が得られると期待されている。そのため、2000年にForrestらによりIr錯体を用いた燐光発光素子が発表されて以来、有機EL素子の高効率化技術として燐光発光素子が注目されている。しかしながら、赤色燐光素子は実用化の領域に達しているものの、緑、青燐光素子については蛍光型素子に比べて寿命が短く、とくに青色燐光については寿命のみならず色純度や発光効率が不十分である、といった課題があり、実用化には至っていないのが現状である。
特開2004-214180号公報 特開平10-79297号公報 特開2002-100478号公報 特開2003-338377号公報 国際公開第2008/062773号 国際公開第2007/100010号 特表2002-525808号公報 米国特許第7018723号明細書
Journal of Applied Physics,102,114504(2007) SID2008 DIGEST,709(2008)
 そこで、本発明者らは、非特許文献1に記載のある現象、即ち二つの3重項励起子の衝突融合により1重項励起子が生成する現象(以下、Triplet-Triplet Fusion=TTF現象、と呼ぶ)に着目し、TTF現象を効率的に起こして蛍光素子の高効率化を図る検討を実施した。具体的には、発光層の陰極側界面に隣接する層(本発明では障壁層とよぶ)として、発光層を構成するホストよりも3重項エネルギーが大きい材料を用いた場合に、3重項励起子が発光層内に閉じ込められ、TTF現象を効率的に起こして蛍光素子の高効率かつ長寿命を実現するに至った。
 なお、燐光型素子において、1重項励起子に比べて励起子寿命が長い3重項励起子の発光層外への拡散を防止する目的で、発光層の陰極側界面に隣接する層として、3重項エネルギーが大きい材料を用いることによって高効率を達成することが知られている。特表2002-525808号公報には発光層に隣接するようにフェナントロリン誘導体であるBCP(バソクプロイン)からなる障壁層を設け、正孔や励起子を閉じ込めることにより高効率化を図る技術が開示されている。また、米国特許第7018723号明細書においては、特定の芳香族環化合物を正孔障壁層に用いて高効率・長寿命化を図っている。しかしながら、これらの文献は燐光型素子においては、上記TTF現象は、TTA(Triplet-Triplet Annihiration:3重項対消滅)と呼ばれ、燐光の特徴である3重項励起子からの発光を損なう現象として知られており、本発明のように3重項励起子を発光層内に効率的に閉じ込めることが、燐光型素子においては必ずしも高効率化にはつながらないといえる。
 本発明によれば、以下の有機EL素子が提供される。
1.陽極と、発光層と、障壁層と、電子注入層と、陰極とをこの順に備え、
 前記発光層は、ホストと、下記式(1)又は(2)で表わされるスチリルアミン誘導体を含み、
 前記障壁層の3重項エネルギーが、前記ホストの3重項エネルギーより大きい有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Ar~Arは、それぞれ、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、
 Ar~Arは、それぞれ、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、
 l、m、及びnは、それぞれ1~3の整数であり、pは、0~2の整数であり、
 lが2以上の場合、Arがそれぞれ同じでも異なってもよく、
 mが2以上の場合、Arがそれぞれ同じでも異なってもよく、
 pが1以上で、nが2以上の場合、Arがそれぞれ同じでも異なってもよく、
 pが2以上で、nが1の場合、Arがそれぞれ同じでも異なってもよく、
 Ar~Arの置換基は、ハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、置換もしくは無置換のシリル基、又はシアノ基である。
 但し、p=0でありかつ(Arがビフェニレン基の場合、(Arは、炭素数が7以上のアリーレン基であり、p=0でありかつ(Arがビフェニレン基の場合、(Arは、炭素数が7以上のアリーレン基である。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、Arは、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、
 A、Aは、それぞれ、アルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、又は下記式(3)で表わされる基であり、
Figure JPOXMLDOC01-appb-C000003
(式(3)中、Arは、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、Bは、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、A及びAが共に式(3)の基である場合、Ar及びBは、それぞれ同じでも異なってもよい。)
 Bは、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、
 Ar~Ar、A、A、B、Bの置換基は、ハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、置換もしくは無置換のシリル基、又はシアノ基である。)
2.前記式(1)又は(2)において、Ar~Ar、A、A、B及びBが、シアノ基、フッ素原子及び置換もしくは無置換のシリル基から選択される置換基を少なくとも1つ以上有する1記載の有機エレクトロルミネッセンス素子。
3.前記式(1)において、pが0、lが1、mが1である1又は2記載の有機エレクトロルミネッセンス素子。
4.前記式(1)において、pが1、lが1、mが1、nが1である1又は2記載の有機エレクトロルミネッセンス素子。
5.前記式(1)において、pが0、lが1、mが2である1又は2記載の有機エレクトロルミネッセンス素子。
6.前記式(1)において、pが0、lが2、mが2である1又は2記載の有機エレクトロルミネッセンス素子。
7.前記式(1)において、pが1、lが2、mが2、nが2である1又は2記載の有機エレクトロルミネッセンス素子。
8.前記式(1)において、Ar~Arの少なくとも1つが、置換もしくは無置換のフルオレニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェニル基である1記載の有機エレクトロミネッセンス素子。
9.前記式(2)において、Ar、Arの少なくとも1つが、置換もしくは無置換のフルオレニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェニル基である1記載の有機エレクトロミネッセンス素子。
10.前記式(1)において、2つの窒素の間の構造が下記の式のいずれかである1~8のいずれか記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000004
(各式中、両端の波線は窒素原子へと続く)
 本発明によれば、発光層内部においてTTF現象を効率的に引き起こし、高効率な有機EL素子が提供できる。
第1の実施形態にかかる有機EL素子の一例を示す図である。 本発明の各層のエネルギーギャップの関係を示す図である。 本発明の各層のエネルギーギャップの関係に基づく作用を示す図である。 過渡EL波形の測定方法を示す図である。 TTF由来の発光強度比の測定方法を示す図である。 第2の実施形態にかかる有機EL素子の一例を示す図である。 第3の実施形態にかかる有機EL素子の一例を示す図である。 第4の実施形態にかかる有機EL素子の一例を示す図である。
<第1の実施形態>
 本発明はTTF現象を利用したものである。まず、以下にTTF現象を説明する。
 陽極、陰極から注入された正孔、電子は発光層内で再結合し励起子を生成する。そのスピン状態は、従来から知られているように、1重項励起子が25%、3重項励起子が75%の比率である。従来知られている蛍光素子においては、25%の1重項励起子が基底状態に緩和するときに光を発するが、残りの75%の3重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。従って、従来の蛍光素子の内部量子効率の理論限界値は25%といわれていた。
 一方、有機物内部で生成した3重項励起子の挙動が理論的に調べられている。S.M.Bachiloらによれば(J.Phys.Cem.A,104,7711(2000))、5重項等の高次の励起子がすぐに3重項に戻ると仮定すると、3重項励起子(以下、と記載する)の密度が上がってきたとき、3重項励起子同士が衝突し下記式のような反応が起きる。ここで、Aは基底状態、は最低励起1重項励起子を表す。
 →(4/9)A+(1/9)+(13/9)
 即ち、5→4A+となり、当初生成した75%の3重項励起子のうち、1/5即ち20%が1重項励起子に変化することが予測されている。従って、光として寄与する1重項励起子は当初生成する25%分に75%×(1/5)=15%を加えた40%ということになる。このとき、全発光強度中に占めるTTF由来の発光比率(TTF比率)は、15/40、すなわち37.5%となる。また、当初生成した75%の3重項励起子のお互いが衝突して1重項励起子が生成した(2つの3重項励起子から1つの1重項励起子が生成した)とすると、当初生成する1重項励起子25%分に75%×(1/2)=37.5%を加えた62.5%という非常に高い内部量子効率が得られることとなる。このとき、TTF比率は37.5/62.5=60%となる。
 図1は、本発明の第1の実施形態の一例を示す有機EL素子の概略構成図である。図2Aは各層の最低励起一重項エネルギー準位及び最低励起三重項エネルギー準位を模式的に表す。尚、本発明で三重項エネルギーは、最低励起三重項状態におけるエネルギーと基底状態におけるエネルギーの差をいい、一重項エネルギー(エネルギーギャップという場合もある)は、最低励起一重項状態におけるエネルギーと基底状態におけるエネルギーの差をいう。図1に示す有機EL素子は、陽極10から順に、正孔輸送帯域50、発光層20、電子輸送帯域30、陰極40の順に積層されている。陽極10と発光層20の間に正孔輸送帯域50が設けられていることが好ましい。なお、本発明において単に障壁層といったときは三重項エネルギーに対する障壁機能を有する層をいう。従って、正孔障壁層や電荷障壁層とはその機能が異なるものである。
 図2Aにおいて、陽極から注入された正孔は正孔輸送帯域を通して発光層へ注入され、陰極から注入された電子は電子輸送帯域を通して発光層へ注入される。その後、発光層で正孔と電子が再結合し、一重項励起子と三重項励起子が生成する。再結合はホスト分子上で起こる場合とドーパント分子上で起こる場合の2通りがある。図2Aにおいて、正孔輸送帯域、ホスト、ドーパントの三重項エネルギーをそれぞれE h0、E 、E とし、ホスト、ドーパントの一重項エネルギーをそれぞれE 、E とする。
 本発明では、電子輸送帯域は、発光層に隣接する部分に障壁層を有する。障壁層は、発光層で生成する3重項励起子が電子輸送帯域へ拡散することを防止し、3重項励起子を発光層内に閉じ込めることによって3重項励起子の密度を高め、TTF現象を効率よく引き起こす機能を有する。3重項励起子拡散防止のため、障壁層の3重項エネルギーE はE より大きく、さらに、E よりも大きいことが好ましい。障壁層は3重項励起子が電子輸送帯域へ拡散することを防止するので、発光層内においてホストの3重項励起子が効率的に1重項励起子となり、その1重項励起子がドーパント上へ移動して光学的なエネルギー失活をする。
 障壁層を形成する材料としては、好ましくは炭化水素芳香族環化合物を選択する。より好ましくは、多環芳香族化合物を選択する。これらの材料は耐正孔性があるので劣化し難く寿命が長くなる。
 図2Bは特に好適な態様を示す。ホストとドーパントは、好ましくは、E <E の関係を満たす。この関係を満たすことにより、図2Bに示されるように、ホスト上で再結合し発生した三重項励起子は、より高い三重項エネルギーを持つドーパントには移動しない。また、ドーパント分子上で再結合し発生した三重項励起子は速やかにホスト分子にエネルギー移動する。即ちホストの三重項励起子がドーパントに移動することなくTTF現象によって効率的にホスト上で三重項励起子同士が衝突することで一重項励起子が生成される。さらに、ドーパントの一重項エネルギーE は、ホストの一重項エネルギーE より小さいため、TTF現象によって生成された一重項励起子は、ホストからドーパントへエネルギー移動しドーパントの蛍光性発光に寄与する。本来、蛍光型素子に用いられるドーパントにおいては、励起三重項状態から基底状態への遷移は禁制であり、このような遷移では三重項励起子は光学的なエネルギー失活をせず、熱的失活を起こしていた。しかし、ホストとドーパントの三重項エネルギーの関係を上記のようにすることにより、三重項励起子が熱的失活を起こす前に互いの衝突により効率的に一重項励起子を生成し発光効率が向上することになる。
 電子輸送帯域には、障壁層と陰極の間には、陰極からの電子注入を容易にするような電子注入層を設ける。具体例としては、通常の電子輸送材とアルカリ金属化合物、アルカリ金属又はアルカリ金属錯体を積層したものや、障壁層を形成する材料に、アルカリ金属化合物、アルカリ金属又はアルカリ金属錯体に代表されるドナーを添加したものを用いることができる。
 本発明の発光層は、ホストと特定のスチリルアミン誘導体を含む。本発明で用いることのできるスチリルアミン誘導体は下記式(1)で表わされる。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Ar~Arは、それぞれ、置換または無置換のアリール基(好ましくは環形成炭素数6~20)、又は置換または無置換のヘテロアリール基である(好ましくは環形成原子数5~20)。好ましくはAr~Arが、それぞれ、置換もしくは無置換の環形成炭素数6~20のアリール基であり、より好ましくは、置換または無置換の、フェニル基、ナフチル基である。
 Ar~Arは、それぞれ、置換または無置換のアリーレン基(好ましくは環形成炭素数6~20)、又は置換または無置換のヘテロアリーレン基(好ましくは環形成原子数5~20)である。好ましくはAr~Arが、それぞれ、置換もしくは無置換の環形成炭素数6~20のアリーレン基であり、より好ましくは、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のフルオレニレン基、又は置換もしくは無置換のフェナントレン基である。Ar~Arの少なくとも1つは、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のフルオレニレン基、又は置換もしくは無置換のフェナントレン基である。置換基は、アルキル基(好ましくは炭素数1~6、より好ましくは1~4)が好ましい。
 l、m、nは、それぞれ、1~3の整数であり、好ましくは1である。lが2以上の場合、Arがそれぞれ同じでも異なってもよく、mが2以上の場合、Arがそれぞれ同じでも異なってもよく、pが1以上で、nが2以上の場合、Arがそれぞれ同じでも異なってもよく、pが2以上で、nが1の場合、Arがそれぞれ同じでも異なってもよい。
 pは、0~2、好ましくは0~1、より好ましくは0の整数である。0の場合は、単結合となる。
 上記のアリール基、アリーレン基、ヘテロアリール基、ヘテロアリーレン基は、1以上の環からなる基であり、複数の環は縮合していてもいなくてもよい。
 「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 Ar~Arの環形成炭素数6~20のアリール基は、好ましくは環形成炭素数6~12のアリール基である。
 アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、ナフタセニル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、1-フルオレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、9-フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、ターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、トリル基、キシリル基、1-ナフチル基である。
 Ar~Arの環形成原子数5~20のヘテロアリール基は、好ましくは環形成原子数5~14のヘテロアリール基である。
 ヘテロアリール基の具体例としては、ピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、イミダゾリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、チエニル基、ベンゾチオフェニル基等が挙げられ、好ましくは、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基である。
 Ar、Ar及びArの環形成炭素数6~20(好ましくは6~12)のアリーレン基及び環形成原子数5~20(好ましくは5~14)のヘテロアリーレン基の具体例としては、上記Ar~Arの環形成炭素数6~20のアリール基及び環形成原子数5~20のヘテロアリール基の具体例に対応する2価の基が挙げられる。好ましくはフェニル基、フルオレニル基、ナフチル基、フェナントリル基、ビフェニルイル基、ジベンゾフルオレニル基、ピリジニル基、イソキノリル基等の2価の基が挙げられる。
 また、Ar、Ar及びArの置換もしくは無置換のアリーレン基として以下の基を例示できる。
Figure JPOXMLDOC01-appb-C000006
 式中、Y、Y、X~Xは水素原子、アルキル基、シクロアルキル基、置換もしくは無置換のアリール基、又は置換シリル基である。また、XとX、XとX、XとX、XとX、XとX、XとXは、それぞれ互いに結合して、以下の例示するような飽和、不飽和の環状構造を形成してもよい。前記環状構造はさらに置換基を有してもよい。但し、環状構造を形成する場合はX~X及び環状構造の結合部位から選択されるいずれか2つが、単結合として連結する。
Figure JPOXMLDOC01-appb-C000007
(各式中、両端の波線は単結合として連結部位へと続く)
 上記のAr~Arの置換基は、ハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、置換または無置換のシリル基、又はシアノ基であり、好ましくは、置換または無置換のシリル基、シアノ基、フッ素原子である。
 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 上記アルキル基の炭素数は、1~10が好ましく、1~6がさらに好ましい。中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が好ましい。
 アルコキシ基は、-OYと表され、Yの例として上記のアルキル基の例が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基である。
 置換シリル基は、置換もしくは無置換の炭素数1~20のアルキルシリル基(モノ-、ジ-及びトリアルキルシリル基を含む)及び置換もしくは無置換の炭素数6~30のアリールシリル基(アリールジアルキルシリル基、ジアリールアルキルシリル基、及びトリアリールシリル基を含む)を含む。
 上記炭素数1~20のアルキルシリル基は、好ましくは炭素数1~10のアルキルシリル基であり、より好ましくは炭素数1~6のアルキルシリル基である。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。
 上記炭素数6~30のアリールシリル基は、好ましくは炭素数6~20のアリールシリル基であり、より好ましくは炭素数6~10のアリールシリル基である。アリールシリル基の具体例としては、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基、トリキシリルシリル基、トリナフチルシリル基等が挙げられる。
 ハロゲン原子として、フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。
 上記式(1)における、2つの窒素の間の構造を以下に例示する。
Figure JPOXMLDOC01-appb-C000008
(各式中、両端の波線は窒素原子へと続く)
 以下、式(1)の化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 また、本発明で用いることのできるスチリルアミン誘導体は下記式(2)で表わされる。
Figure JPOXMLDOC01-appb-C000011
 式(2)中、Arは、置換または無置換のアリーレン基、又は置換または無置換のヘテロアリーレン基である。
 A、Aは、それぞれ、アルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、又は下記式(3)で表わされる基である。
Figure JPOXMLDOC01-appb-C000012
(式(3)中、Arは、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、Bは、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、A及びAが共に式(3)の基である場合、Ar及びBは、それぞれ同じでも異なってもよい。)
 Bは、置換または無置換のアリール基、又は置換または無置換のヘテロアリール基である。
 好ましくは、Ar~Arの少なくとも1つ以上が、置換もしくは無置換のナフチレン基又は置換もしくは無置換のフルオレニレン基である。
 A、Aのアルキル基としては、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)のアルキル基であり、具体例として、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 A、A、B、Bの置換若しくは無置換のアリール基としては、環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)の置換若しくは無置換のアリール基であり、具体例として、置換若しくは無置換のフェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、アントラセニル基、クリセニル基、フルオレニル基、トリフェニレニル基、ピレニル基、ビフェニル基、p-ターフェニル基、m-ターフェニル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(フェニルプロピル)フェニル基、メチルナフチル基、メチルアントリル基、メチルビフェニル基、t-ブチル-p-ターフェニル、ジメチルフルオレニル基、m-ビフェニル基、o-ビフェニル基、4-(2-フェニルプロパン-2-イル)フェニル基、フルオランテニル基、9,9’-ジメチルフルオレニル基、ベンゾ-9,9’-ジメチルフルオレニル基、ジベンゾ-9,9’-ジメチルフルオレニル基等が挙げられる。また、フェニル基、フェニレン基、ナフチル基、ナフタレン基を組み合わせた芳香族基(例えば、フェニルナフチル基、ナフチルフェニル基、ナフチルナフチル基、ナフチルナフチルナフチル基、フェニルフェニルナフチル基、ナフチルナフチルフェニル基、ナフチルフェニルナフチル基、ナフチルフェニルフェニル基、フェニルナフチルナフチル基、フェニルナフチルフェニル基等)でもよい。
 好ましくは、置換若しくは無置換のフェニル基、ビフェニル基、ターフェニル基、ナフチル基、フェナントリル基、アントラセニル基、クリセニル基、フルオレニル基等の芳香族基が挙げられる。
 特に好ましくは、A、A、B、Bがそれぞれ置換若しくは無置換のフェニル基、ビフェニル基、ナフチル基、フルオレニル基である。
 A、A、B、Bの置換若しくは無置換のヘテロアリール基としては、環形成原子数5~30(好ましくは環形成原子数5~20、より好ましくは環形成原子数5~12)の置換若しくは無置換のヘテロアリール基であり、具体例として、置換若しくは無置換のピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、ジベンゾフラニル基、イソベンゾフラニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、チエニル基、メチルピロリル基、t-ブチルピロリル、(フェニルプロピル)ピロリル、メチルインドリル基、t-ブチルインドリル基、ジベンゾチオフェニル基、ピリミジニル基、ピリダジニル基等が挙げられる。
 好ましくは、置換若しくは無置換のジベンゾフラニル基、ピリジニル基及びカルバゾリル基が挙げられる。
 特に好ましくは、A、Aがそれぞれ置換若しくは無置換のジベンソフラニル基である。
 Ar、Arの置換若しくは無置換のアリーレン基としては、A、A、B、Bの置換若しくは無置換のアリール基の2価の基が挙げられる。
 好ましくは、置換若しくは無置換のフェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、フェナントレニレン基、アントラセニレン基、クリセニレン基、フルオレニレン基、トリフェニレニレン基等の芳香族基である。
 また、Ar、Arの置換若しくは無置換のアリーレン基として以下の基を例示できる。
Figure JPOXMLDOC01-appb-C000013
 式中、Y、Y、X~Xは水素原子、アルキル基、シクロアルキル基、置換もしくは無置換のアリール基、又は置換シリル基である。XとX、XとX、XとX、XとX、XとX、XとXは、それぞれ互いに結合して、以下の例示するような飽和、不飽和の環状構造を形成してもよい。前記環状構造はさらに置換基を有してもよい。但し、環状構造を形成する場合はX~X及び環状構造の結合部位から選択されるいずれか2つが、単結合として連結する。
Figure JPOXMLDOC01-appb-C000014
(各式中、両端の波線は単結合として連結部位へと続く)
 Ar、Arの置換若しくは無置換のヘテロアリーレン基としては、A、A、B、Bの置換若しくは無置換のヘテロアリール基の2価の基が挙げられる。
 好ましくは、置換若しくは無置換のジベンゾフラニレン基、ピリジニレン基及びカルバゾリレン基である。
 Ar、Ar、A、A、B、Bの置換基は、Ar~Arと同じである。
 以下、式(2)の化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000015
 ホストとしては、下記式(10)で表されるアントラセン誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(10)中、Ar11及びAr12は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、又は環形成原子数5~50の複素環基であり、
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。
 本発明に係るアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(10)におけるAr11及びAr12が、それぞれ独立に、置換もしくは無置換の環形成炭素数10~50の縮合アリール基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の置換もしくは無置換の縮合アリール基である場合、及び異なる置換もしくは無置換の縮合アリール基である場合に分けることができる。
 具体的には、下記式(2-1)~(2-3)で表されるアントラセン誘導体、及び式(10)におけるAr11及びAr12が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体が挙げられる。
 下記式(2-1)で表されるアントラセン誘導体は、Ar11及びAr12が、置換もしくは無置換の9-フェナントレニル基となっている。
Figure JPOXMLDOC01-appb-C000017
(式(2-1)中、R~Rは前記と同様であり、
 R11は水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基であり、
 aは0~9の整数である。aが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換のフェナントレニル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
 下記式(2-2)で表されるアントラセン誘導体は、式(10)におけるAr11及びAr12が、置換もしくは無置換の2-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000018
(式(2-2)中、R~R及びR11は前記と同様であり、
 bは1~7の整数である。bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の2-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
 下記式(2-3)で表されるアントラセン誘導体は、式(10)におけるAr11及びAr12が、置換もしくは無置換の1-ナフチル基となっている。
Figure JPOXMLDOC01-appb-C000019
(式(2-3)中、R~R、R11及びbは前記と同様である。また、bが2以上の整数の場合、複数あるR11は、2つの置換もしくは無置換の1-ナフチル基が同一であることを条件に、それぞれが同一でも異なっていてもよい。)
 式(10)におけるAr11及びAr12が異なる置換もしくは無置換の縮合アリール基であるアントラセン誘導体としては、Ar11及びAr12が、置換もしくは無置換の9-フェナントレニル基、置換もしくは無置換の1-ナフチル基、置換もしくは無置換の2-ナフチル基のいずれかであることが好ましい。
 具体的には、Ar11が1-ナフチル基、及びAr12が2-ナフチル基である場合、Ar11が1-ナフチル基及びAr12が9-フェナントリル基である場合、並びにAr11が2-ナフチル基及びAr12が9-フェナントリル基である場合である。
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(10)におけるAr11及びAr12の一方が置換もしくは無置換のフェニル基であり、他方が置換もしくは無置換の環形成炭素数10~50の縮合アリール基となっている。当該アントラセン誘導体としては、具体的には、下記式(2-4)及び(2-5)で表されるアントラセン誘導体が挙げられる。
 下記式(2-4)で表されるアントラセン誘導体は、式(10)におけるAr11が置換もしくは無置換の1-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000020
(式(2-4)中、R~R、R11及びbは前記と同様であり、
 Arは置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成原子数5~50の複素環基、9,9-ジメチルフルオレン-1-イル基、9,9-ジメチルフルオレン-2-イル基、9,9-ジメチルフルオレン-3-イル基、9,9-ジメチルフルオレン-4-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基や置換もしくは無置換のジベンゾフラニル基等の環を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
 下記式(2-5)で表されるアントラセン誘導体は、式(10)におけるAr11が置換もしくは無置換の2-ナフチル基であり、Ar12が、置換もしくは無置換のフェニル基となっている。
Figure JPOXMLDOC01-appb-C000021
(式(2-5)中、R~R、R11及びbは前記と同様であり、
 Arは、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、又はジベンゾフラン-4-イル基である。また、Arはそれが結合しているベンゼン環と共に、置換もしくは無置換のフルオレニル基や置換もしくは無置換のジベンゾフラニル基等の環を形成していてもよい。bが2以上の整数の場合、複数あるR11は、それぞれが同一でも異なっていてもよい。)
(アントラセン誘導体(C))
 当該アントラセン誘導体は、下記式(2-6)で表され、具体的には、下記式(2-6-1)、(2-6-2)及び(2-6-3)のいずれかで表される誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(2-6)中、R~R及びArは前記と同様であり、
 Arは置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、又は置換もしくは無置換の環形成原子数5~50の複素環基であり、ArとArはそれぞれ独立に選択される。)
Figure JPOXMLDOC01-appb-C000023
(式(2-6-1)中、R~Rは前記と同様である。)
Figure JPOXMLDOC01-appb-C000024
(式(2-6-2)中、R~Rは前記と同様である。Arは置換もしくは無置換の環形成炭素数10~20の縮合アリール基である。)
Figure JPOXMLDOC01-appb-C000025
(式(2-6-3)中、R~Rは式(10)と同様である。
 Ar5a及びAr6aはそれぞれ独立に、置換もしくは無置換の環形成炭素数10~20の縮合アリール基である。)
 R~R、R11、Ar~Ar、Ar11及びAr12の置換もしくは無置換の環形成炭素数6~50のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、6-クリセニル基、1-ベンゾ[c]フェナントリル基、2-ベンゾ[c]フェナントリル基、3-ベンゾ[c]フェナントリル基、4-ベンゾ[c]フェナントリル基、5-ベンゾ[c]フェナントリル基、6-ベンゾ[c]フェナントリル基、1-ベンゾ[g]クリセニル基、2-ベンゾ[g]クリセニル基、3-ベンゾ[g]クリセニル基、4-ベンゾ[g]クリセニル基、5-ベンゾ[g]クリセニル基、6-ベンゾ[g]クリセニル基、7-ベンゾ[g]クリセニル基、8-ベンゾ[g]クリセニル基、9-ベンゾ[g]クリセニル基、10-ベンゾ[g]クリセニル基、11-ベンゾ[g]クリセニル基、12-ベンゾ[g]クリセニル基、13-ベンゾ[g]クリセニル基、14-ベンゾ[g]クリセニル基、1-トリフェニル基、2-トリフェニル基、2-フルオレニル基、9,9-ジメチルフルオレン-2-イル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基等が挙げられる。好ましくは、無置換のフェニル基、置換フェニル基及び置換もしくは無置換の環形成炭素数10~14のアリール基(例えば、1-ナフチル基、2-ナフチル基、9-フェナントリル基)、置換もしくは無置換のフルオレニル基(2-フルオレニル基)、及び置換もしくは無置換のピレニル基(1-ピレニル基、2-ピレニル基、4-ピレニル基)である。
 また、Ar5a、Ar6a及びArの置換もしくは無置換の環形成炭素数10~20の縮合アリール基としては、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基等が挙げられる。特に、1-ナフチル基、2-ナフチル基、9-フェナントリル基、及びフルオレニル基(2-フルオレニル基)が好ましい。
 R~R、R11、Ar~Ar、Ar11及びAr12の置換もしくは無置換の環形成原子数5~50の複素環基としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル-1-インドリル基、4-t-ブチル-1-インドリル基、2-t-ブチル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。好ましくは、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基である。
 R~R、R11及びAr~Arの置換もしくは無置換の炭素数1~50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基等が挙げられる。好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基である。
 R~R、R11及びAr~Arの置換基の置換もしくは無置換の環形成炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。好ましくは、シクロペンチル基、シクロヘキシル基である。
 R~R及びR11の置換もしくは無置換の炭素数1~50のアルコキシ基は-OZで表される基であり、Zは、前記R~Rの置換もしくは無置換の炭素数1~50のアルキル基から選択される。
 R~R、R11及びAr~Arの置換基の置換もしくは無置換の炭素数7~50アラルキル基(アリール部分は炭素数6~49、アルキル部分は炭素数1~44)としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。
 R~R及びR11の置換もしくは無置換の環形成炭素数6~50のアリールオキシ基及びアリールチオ基は、それぞれ-OY及び-SYと表され、Yは、前記R~Rの置換もしくは無置換の環形成炭素数6~50のアリール基から選ばれる。
 R~R及びR11の置換もしくは無置換の炭素数2~50アルコキシカルボニル基(アルキル部分は炭素数1~49)は-COOZと表され、Zは、前記R~Rの置換もしくは無置換の炭素数1~50のアルキル基から選ばれる。
 R~R及びR11の置換シリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基等が挙げられる。
 R~R及びR11のハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 障壁層は、発光層で生成する3重項励起子が電子輸送帯域へ拡散するのを防止すると同時に、発光層へ効率よく電子を注入する役割も担っている。発光層への電子注入性が下がる場合、発光層における電子―正孔の再結合が減ることで、3重項励起子の密度が小さくなる。3重項励起子の密度が小さくなると、3重項励起子の衝突頻度が減り効率よくTTF現象が起きない。発光層への電子注入を効率的に起こすという観点では、障壁層を含む電子輸送帯域の形態としては、以下の二つを考えることができる。
(1)電子輸送帯域を二つ以上の異なる材料の積層構造とし、障壁層と陰極の間に、陰極から電子を効率よく受け取るための電子注入層を設ける。電子注入層の具体例としては、含窒素複素環誘導体等を挙げることができる。
(2)電子輸送帯域を障壁層1層で構成する。この場合には、陰極からの電子の受け取りを容易にするため、障壁層の中の陰極界面近傍にアルカリ金属で代表されるドナーをドープする。ドナーとしては、ドナー性金属、ドナー性金属化合物及びドナー性金属錯体から選ばれる群のうち少なくとも一種を選ぶことができる。
 ドナー性金属とは、仕事関数3.8eV以下の金属をいい、好ましくはアルカリ金属、アルカリ土類金属及び希土類金属であり、より好ましくはCs,Li,Na,Sr,K,Mg,Ca,Ba,Yb,Eu及びCeである。
 ドナー性金属化合物とは、上記のドナー性金属を含む化合物であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属を含む化合物であり、より好ましくはこれらの金属のハロゲン化物、酸化物、炭酸塩、ホウ酸塩である。例えば、MOx(Mはドナー性金属、xは0.5~1.5)、MFx(xは1~3)、M(CO)x(xは0.5~1.5)で表される化合物である。
 ドナー性金属錯体とは、上記のドナー性金属の錯体であり、好ましくはアルカリ金属、アルカリ土類金属又は希土類金属の有機金属錯体である。好ましくは下記式(I)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000026
 (式中、Mはドナー性金属であり、Qは配位子であり、好ましくはカルボン酸誘導体、ジケトン誘導体又はキノリン誘導体であり、nは1~4の整数である。)
 ドナー性金属錯体の具体例としては、特開2005-72012号公報に記載のタングステン水車等が挙げられる。さらに、特開平11-345687号公報に記載された中心金属がアルカリ金属、アルカリ土類金属であるフタロシアニン化合物等もドナー性金属錯体として使用できる。
 上記のドナーは一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 本発明では発光層と障壁層界面の励起子密度が大きい。この場合、発光層内で再結合に寄与しなかった正孔が障壁層内へ注入される確率が大きくなる。そのため、障壁層に用いる材料としては、酸化耐久性に優れる材料であることが好ましい。
 酸化耐久性に優れる材料の具体例としては、炭化水素芳香族化合物、特に特願2009-090379号明細書に記載される下記式(A)、(B)及び(C)で表される多環芳香族化合物からなる群から選ばれる1種以上の化合物であることが望ましい。
 Ra-Ar101-Rb  ・・・(A)
 Ra-Ar101-Ar102-Rb  ・・・(B)
 Ra-Ar101-Ar102-Ar103-Rb  ・・・(C)
 式中、Ar101,Ar102,Ar103,Ra及びRbは、置換若しくは無置換のベンゼン環、又は、置換若しくは無置換のナフタレン環、置換若しくは無置換のクリセン環、置換若しくは無置換のフルオランテン環、置換若しくは無置換のフェナントレン環、置換若しくは無置換のベンゾフェナントレン環、置換若しくは無置換のジベンゾフェナントレン環、置換若しくは無置換のトリフェニレン環、置換若しくは無置換のベンゾ[a]トリフェニレン環、置換若しくは無置換のベンゾクリセン環、置換若しくは無置換のベンゾ[b]フルオランテン環、置換若しくは無置換のフルオレン環、及び、置換若しくは無置換のピセン環から選択される多環芳香族骨格部を表す。但し、Ra及びRbの置換基はアリール基ではない。Ar,Ar,Ar,Ra及びRbが同時に置換若しくは無置換のベンゼン環である場合はない。
 上記多環芳香族化合物において、Ra及びRbのいずれか一方又は両方は、置換若しくは無置換のフェナントレン環、置換若しくは無置換のベンゾ[c]フェナントレン環及び置換若しくは無置換のフルオランテン環からなる群から選ばれることが好ましい。
 上記多環芳香族化合物の多環芳香族骨格部は、置換基を有していてもよい。
 多環芳香族骨格部の置換基としては、例えば、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基が挙げられる。芳香族炭化水素基の好ましい例としては、ナフタレン、フェナントレン、フルオレン、クリセン、フルオランテン及びトリフェニレンを挙げることができる。
 多環芳香族骨格部が複数の置換基を有する場合、それらが環を形成していてもよい。
 多環芳香族の骨格部については、下記の式(1)~(4)で表される化合物からなる群から選ばれるいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(1)~(4)中、Ar~Arは、置換若しくは無置換の核炭素数4から16の縮合環構造を表す。
 式(1)で表される化合物としては、例えば、置換若しくは無置換のフェナントレン、クリセンの単体又は誘導体等が挙げられる。
 式(2)で表される化合物としては、例えば、置換若しくは無置換のアセナフチレン、アセナフテン、フルオランテンの単体又は誘導体等が挙げられる。
 式(3)で表される化合物としては、例えば、置換若しくは無置換のベンゾフルオランテンの単体又は誘導体等が挙げられる。
 式(4)で表される化合物としては、例えば、置換若しくは無置換のナフタレンの単体又は誘導体等が挙げられる。
 ナフタレン誘導体としては、例えば、下記式(4A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000028
 式(4A)中、R~Rは、それぞれ独立に、水素原子又は、核炭素数5~30の置換基若しくは無置換のアリール基、炭素数1~30の分岐又は直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 フェナントレン誘導体としては、例えば、下記式(5A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 式(5A)中、R~R10は、それぞれ独立に、水素原子又は、核炭素数5~30の置換基若しくは無置換のアリール基、炭素数1~30の分岐若しくは直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 クリセン誘導体としては、例えば、下記式(6A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000030
 式(6A)中、R~R12は、それぞれ独立に、水素原子又は、核炭素数5~30の置換基若しくは無置換のアリール基、炭素数1~30の分岐若しくは直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 また、上記多環芳香族骨格部はベンゾ[c]フェナントレン又はその誘導体であることが好ましい。ベンゾ[c]フェナントレン誘導体としては、例えば、下記式(7A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000031
 式(7A)中、R~Rは、それぞれ独立に、水素原子又は、核炭素数5~30の置換基若しくは無置換のアリール基、炭素数1~30の分岐又は直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 さらに、上記多環芳香族骨格部は、ベンゾ[c]クリセン又はその誘導体であることが好ましい。ベンゾ[c]クリセン誘導体としては、例えば、下記式(8A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000032
 式(8A)中、R~R11は、それぞれ独立に、水素原子又は、核炭素数5~30の置換基若しくは無置換のアリール基、炭素数1~30の分岐又は直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 上記多環芳香族骨格部は、下記式(9)で表されるジベンゾ[c、g]フェナントレン又はその誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 また、上記多環芳香族骨格部は、フルオランテン又はその誘導体であることが好ましい。フルオランテン誘導体としては、例えば、下記式(10A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000034
 式(10A)中、X12~X21は水素原子、ハロゲン原子、直鎖、分岐若しくは環状のアルキル基、直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基を表す。
 さらに、上記多環芳香族骨格部は、トリフェニレン又はその誘導体であることが好ましい。トリフェニレン誘導体としては、例えば、下記式(11A)のものが挙げられる。
Figure JPOXMLDOC01-appb-C000035
 式(11A)中、R~Rは、それぞれ独立に、水素原子又は、核炭素数5~30の置換若しくは無置換のアリール基、炭素数1~30の分岐若しくは直鎖のアルキル基、炭素数3~20の置換若しくは無置換のシクロアルキル基が単独又は複数の組み合わせで構成される置換基を表す。
 上記多環芳香族化合物は、下記式(12)で表されるものでもよい。
Figure JPOXMLDOC01-appb-C000036
 式(12)中、Ra、Rbは上記式(A)~(C)と同じである。Ra、Rb、ナフタレン環が1つ又は複数の置換基を有する場合、置換基は、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数5~18のシクロアルキル基、炭素数3~20のシリル基、シアノ基又はハロゲン原子であり、Ra,Rb以外のナフタレン環の置換基はさらに炭素数6~22のアリール基でもよい。
 式(12)中、Ra、Rbは、フルオレン環、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環及びピセン環から選択される基であることが好ましい。
 障壁層材料として、下記式(11),(21)で表される含窒素複素環誘導体を用いることができる。
Figure JPOXMLDOC01-appb-C000037
(式中、R~R12のいずれか12-a個は、それぞれ水素原子、フッ素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基であり、R~R12のいずれかa個は単結合でありLと結合している。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のb+1価の炭化水素環基、又は置換もしくは無置換の環形成原子数5~30のb+1価の複素環基である。
 HArは、置換もしくは無置換の含窒素複素環基である。
 a及びbは、それぞれ1~4の整数であり、a及びbの少なくとも一方は1である。)
Figure JPOXMLDOC01-appb-C000038
(式中、R201~R214のいずれか14-a個は、それぞれ水素原子、フッ素原子、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の炭素数3~8のシクロアルキル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数8~30のアリールシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基であり、R201~R214のいずれかa個は単結合であり、Lと結合している。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のb+1価の炭化水素環基、又は置換もしくは無置換の環形成原子数5~30のb+1価の複素環基を示す。
 HArは、置換もしくは無置換の含窒素複素環基である。
 a及びbは、それぞれ1~4の整数であり、a及びbの少なくとも一方は1である。)
 上記式(11),(21)のHArの例として、下記式の基を例示できる。
Figure JPOXMLDOC01-appb-C000039
(式中、R111~R130は、それぞれ水素原子又は置換基であり、R111~R130は隣接する置換基同士で結合して飽和もしくは不飽和の環を形成してもよい。
 R111~R115のいずれか1つ、R116~R119のいずれか1つ、R120~R122のいずれか1つ、R123~R126のいずれか1つ、及びR127~R130のいずれか1つは単結合であり、Lと結合する。)
 障壁層材料として、下記式(31)で表される含窒素複素環誘導体を用いることができる。
Figure JPOXMLDOC01-appb-C000040
(式中、R401~R416はそれぞれ水素原子、フッ素原子、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の炭素数3~10のシクロアルキル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数8~30のアリールシリル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換のアルキルアミノ基、置換もしくは無置換のアリールアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基を示す。R401~R410の1つ、及びR411~R416の1つは単結合であり、Lと結合している。R411~R416は隣接する置換基同士で飽和又は不飽和の環を形成してもよい。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のc+d価の炭化水素基、又は置換もしくは無置換の環形成原子数5~30のc+d価の複素環基を示す。
 c及びdはそれぞれ1~3の整数を示す。
 但し、L、R401~R416はアントラセン含有基ではない。)
 さらに、障壁層材料として、電子輸送構造部位と、縮合多環芳香族炭化水素化合物からなるトリプレット障壁構造部位を有する材料を用いることができる。
 電子輸送構造部位は、例えば、下記環から選択される1以上の環を含む。
Figure JPOXMLDOC01-appb-C000041
 トリプレット障壁構造部位は、例えば、下記環から選択される。
Figure JPOXMLDOC01-appb-C000042
(式(1)~(6)中、Ar~Arは、環形成炭素数4~16の縮合環構造を表す。)
 さらに、障壁層材料として、下記式(I),(II)で表されるフェナントロリン誘導体を用いることができる。
Figure JPOXMLDOC01-appb-C000043
(上記式において、Rはそれぞれ独立して水素原子、フッ素原子、置換又は無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルシリル基、アリールシリル基、ニトロ基、シアノ基又は上記アリール基及びヘテロアリール基が2~3個繋がった基である。)
Figure JPOXMLDOC01-appb-C000044
(上記式において、Rのうちいずれか1つは単結合としてBと結合し、残りのRはそれぞれ独立して水素原子、フッ素原子、置換又は無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルシリル基、アリールシリル基、ニトロ基、シアノ基又は上記アリール基及びヘテロアリール基が2~3個繋がった基である。mは2以上の整数である。Bは単結合又は連結基であり、置換又は無置換のm価のアルキレン基、置換又は無置換のアルケニレン基、置換又は無置換のm価のアリーレン基、置換又は無置換のm価のヘテロアリーレン基、アリール基及びヘテロアリール基が2~4個結合してできたm価の基又は下記式(b)で示されるm価の基である。
 Ar’-Y-Ar’  (b)
(式(b)において、Ar’とAr’は同じでも異なってもよく、Ar’は置換又は無置換の(j+1)価のアリーレン基又はヘテロアリーレン基であり、Ar’は置換又は無置換の(k+1)価のアリーレン基又はヘテロアリーレン基である。j及びkはそれぞれ独立して1以上の整数であって、j+k=mであり、Ar’とAr’は共に式(II)のフェナントロリン構造と結合する。Yは、O、S又はCR’であり、R’は独立して置換又は無置換のアルキル基、置換又は無置換のアリール基、又は置換又は無置換のヘテロアリール基であり、R’同士で結合を形成して飽和又は不飽和の環を形成していてもよい。))
 上記のフェナントロリン誘導体において、アリール基としては、好ましくはフェニル基、ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、クリセニル基、ベンゾフェナントリル基、ベンゾクリセニル基、ベンズアントリル基、トリフェニル基、フルオランテニル基、ベンゾフルオランテニル基、フルオレニル基等が挙げられる。ヘテロアリール基としては、好ましくはピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、キノリニル基、イソキノリニル基、キノキサリニル基、ナフチリジニル基、イミダゾピリジル基、インドリル基、インダゾリル基、フェナントロリル基、イミダゾリル基、ピラゾリル基、ピロリル基、フラニル基、チオフェニル基、オキサゾリル基、チアゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基等が挙げられる。
 障壁層材料として、下記式で表される含窒素複素環誘導体を用いることができる。
Figure JPOXMLDOC01-appb-C000045
(上記式において、Arは置換又は無置換のアリーレン基又はヘテロアリーレン基である。Xはそれぞれ独立してCR又はNである。Rのうちいずれか1つは単結合としてArと結合し、残りのRはそれぞれ独立して水素原子、フッ素原子、置換又は無置換のアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルシリル基、アリールシリル基、ニトロ基、シアノ基又は上記アリール基及びヘテロアリール基が2~3個繋がった基である。nは2又は3の整数である。)
 上記において、アリール基としては、好ましくはフェニル基、ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、クリセニル基、ベンゾフェナントレニル基、ベンゾクリセニル基、ベンズアントリル基、トリフェニル基、フルオランテニル基、ベンゾフルオランテニル基、フルオレニル基等が挙げられる。ヘテロアリール基としては、好ましくはピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、キノリニル基、イソキノリニル基、キノキサリニル基、ナフチリジニル基、イミダゾピリジル基、インドリル基、インダゾリル基、フェナントロリル基、イミダゾリル基、ピラゾリル基、ピロリル基、フラニル基、チオフェニル基、オキサゾリル基、チアゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基等が挙げられる。アリーレン基は上記アリール基の2又は3価の残基、ヘテロアリーレン基は、上記へテロアリール基の2又は3価の残基である。
 障壁層材料として、下記式で表される含酸素縮合環誘導体を用いることができる。
Figure JPOXMLDOC01-appb-C000046
(式中、Arは、フラン環、ピラン環から選択される環を1以上有する4環以上が縮合した縮合環基である。
 HArは、下記式で表わされる含窒素複素環基のいずれかである。
 n及びmは、それぞれ1~5の整数である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のn+m価のアリール基、置換もしくは無置換の環形成原子数5~30のn+m価の複素環基、又は置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30の複素環基からなる群から選択される2つもしくは3つが単結合で連結してなるn+m価の基である。)
Figure JPOXMLDOC01-appb-C000047
(式中、R11、R12、R21、R22、R31~R40、及びR41~R46は、それぞれ独立して水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、炭素数3~30の置換シリル基、シアノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、アミノ基、置換もしくは無置換の炭素数1~20のモノもしくはジアルキルアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 R31~R35のいずれか1つ及びR36~R40のいずれか1つは、式(4)の2つのピリジン環同士を結合する単結合である。
 Xは、N又はCR13であり、R13は水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、炭素数3~30の置換シリル基、シアノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、アミノ基、置換もしくは無置換の炭素数1~20のモノもしくはジアルキルアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 R13が複数ある場合、それぞれのR13は同じでも異なっていてもよい。
 Yは、N又はCR23であり、R23は水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~10のアルキル基、置換もしくは無置換の環形成炭素数3~8のシクロアルキル基、炭素数3~30の置換シリル基、シアノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~20のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、アミノ基、置換もしくは無置換の炭素数1~20のモノもしくはジアルキルアミノ基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 R23が複数ある場合、それぞれのR23は同じでも異なっていてもよい。
 Zは架橋基であり、置換もしくは無置換のアルキレン基、又は置換もしくは無置換のアルケニレン基である。
 R11~R13のいずれか1つ、R21~R23のいずれか1つ、R31~R40のいずれか1つ、及びR41~R46のいずれか1つはLと結合する単結合である。)
 障壁層材料として、下記カルバゾールアジン系化合物及びラダー系化合物を用いることができる。
(1)カルバゾールアジン系
   (Cz-)mA
(式中、Czは、置換もしくは無置換のカルバゾリル基、又は置換もしくは無置換のアザカルバゾリル基である。Aは、アリール置換含窒素環基、ジアリール置換含窒素環基、又はトリアリール置換含窒素環基である。mは1~3の整数である。)
   Cz-An
(式中、Czは、置換もしくは無置換のカルバゾリル基、又は置換もしくは無置換のアザカルバゾリル基である。Aは、アリール置換含窒素環基、ジアリール置換含窒素環基、又はトリアリール置換含窒素環基である。nは1~3の整数である。)
(2)ラダー系
Figure JPOXMLDOC01-appb-C000048
(式(1)及び(2)において、Ar、Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数6の芳香族複素環基を表す。
 但し、Ar、Ar及びArは置換基Yを一個又は複数個有していてもよく、複数の場合はそれぞれ異なっていてもよい。
 Yは炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、炭素数7~24のアラルキル基、シリル基もしくは炭素数3~20の置換シリル基、置換もしくは無置換の環形成炭素数6~24の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(1)及び(2)において、X、X、X及びXは、それぞれ独立に、酸素(O)、硫黄(S)、N-R又はCRを表す。
 前記R、R及びRは、それぞれ独立に、炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、炭素数7~24のアラルキル基、シリル基もしくは炭素数3~20の置換シリル基、置換もしくは無置換の環形成炭素数6~24の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成炭素数3~24の芳香族複素環基又は縮合芳香族複素環基を表す。
 但し、XとXが共にN-Rでo、pが0、qが1の場合、または、XとXが共にN-Rでp、qが0、oが1の場合は、Rの少なくとも1つは置換もしくは無置換の環形成原子数8~24である1価の縮合芳香族複素環基を表す。
 式(1)及び(2)において、o、p及びqは0又は1を表す。sは1、2、3又は4を表し、それぞれLを連結基とした1量体、2量体、3量体、4量体である。rは1、2、3又は4を表す。
 式(1)及び(2)において、Lは単結合、炭素数1~20のアルキレン基、置換もしくは無置換の環形成炭素数3~20のシクロアルキレン基、2価のシリル基もしくは炭素数2~20の2価の置換シリル基、置換もしくは無置換の環形成炭素数6~24の2価の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の2価の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(1)において、Lは単結合、炭素数1~20のアルキレン基、置換もしくは無置換の環形成炭素数3~20のシクロアルキレン基、2価のシリル基もしくは炭素数2~20の2価の置換シリル基、置換もしくは無置換の環形成炭素数6~24の2価の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の2価の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(2)において、Lは、sが2の場合、単結合、炭素数1~20のアルキレン基、置換もしくは無置換の環形成炭素数3~20のシクロアルキレン基、2価のシリル基もしくは炭素数2~20の2価の置換シリル基、置換もしくは無置換の環形成炭素数6~24の2価の芳香族炭化水素基又は縮合芳香族炭化水素、又は環形成炭素数3~24の置換もしくは無置換の2価の芳香族複素環基又は縮合芳香族複素環基を表す。
 sが3の場合、炭素数1~20の3価の飽和炭化水素基、置換もしくは無置換の環形成炭素数3~20の3価の環状飽和炭化水素基、3価のシリル基もしくは炭素数1~20の3価の置換シリル基、置換もしくは無置換の環形成炭素数6~24の3価の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の3価の芳香族複素環基又は縮合芳香族複素環基を表す。
 sが4の場合、炭素数1~20の4価の飽和炭化水素基、置換もしくは無置換の環形成炭素数3~20の4価の環状飽和炭化水素基、ケイ素原子、置換もしくは無置換の環形成炭素数6~24の4価の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の4価の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(1)及び(2)において、Aは、水素原子、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、シリル基もしくは炭素数3~20の置換シリル基、置換もしくは無置換の環形成炭素数6~24の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(1)において、Aは、水素原子、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、シリル基もしくは炭素数3~20の置換シリル基、置換もしくは無置換の環形成炭素数6~24の芳香族炭化水素基又は縮合芳香族炭化水素基、又は環形成炭素数3~24の置換もしくは無置換の芳香族複素環基又は縮合芳香族複素環基を表す。)
 前記式(1)及び(2)のXとXのうち一方もしくは、XとXのうち一方が酸素原子であり、前記式(1)及び(2)で表される化合物が分子内にジベンゾフラン構造を有する化合物であることが好ましい。
 さらに、前記式(1)及び(2)のXとXのうち一方と、XとXのうち一方が共に酸素原子であり、前記式(1)及び(2)で表される化合物がベンゾフラノジベンゾフラン構造を有する化合物であることが好ましい。
 <TTF比率の測定>
 ホスト、ドーパント及び障壁層材料の三重項エネルギーが所定の関係を満たすことにより、全発光に対するTTF由来の発光強度比を30%以上とすることができ、従来知られていた蛍光素子では達成できなかった高効率化を可能とすることができる。
 TTF由来の発光強度比は、過渡EL法により測定することができる。過渡EL法とは、素子に印加しているDC電圧を除去したあとのEL発光の減衰挙動(過渡特性)を測定する手法である。EL発光強度は、最初の再結合で生成する一重項励起子からの発光成分と、TTF現象を経由して生成する一重項励起子からの発光成分に分類される。一重項励起子の寿命はナノ秒オーダーであり非常に短いためDC電圧除去後速やかに減衰する。
 一方、TTF現象は寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように一重項励起子からの発光と三重項励起子からの発光は時間的に大きな差があるため、TTF由来の発光強度を求めることができる。具体的には以下の方法により決定することができる。
 過渡EL波形は以下のようにして測定する(図3を参照)。電圧パルスジェネレータ(PG)から出力されるパルス電圧波形をEL素子に印加する。印加電圧波形をオシロスコープ(OSC)に取り込む。パルス電圧をEL素子に印加すると、EL素子はパルス発光を生じる。この発光を、光電子増倍管(PMT)を経由してオシロスコープ(OSC)に取り込む。電圧波形とパルス発光を同期させてパーソナルコンピュータ(PC)に取り込む。
 さらに、過渡EL波形の解析によりTTF由来の発光強度比を以下のようにして決定する。
 三重項励起子の減衰挙動のレート方程式をといて、TTF現象にもとづく発光強度の減衰挙動をモデル化する。発光層内部の三重項励起子密度nTの時間減衰は、三重項励起子の寿命による減衰速度αと三重項励起子の衝突による減衰速度γを用いて次のようなレート方程式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 この微分方程式を近似的に解くと、次の式が得られる。ここで、ITTFはTTF由来の発光強度であり、Aは定数である。このように、過渡EL発光がTTFに基づくものであれば、その強度の平方根の逆数が直線近似で表されることになる。そこで、測定した過渡EL波形データを下記近似式にフィッティングし定数Aを求める。このときDC電圧を除去した時刻t=0における発光強度1/AがTTF由来の発光強度比と定義する。
Figure JPOXMLDOC01-appb-M000002
 図4左のグラフは、EL素子に所定のDC電圧を印加し、その後電圧を除去した時の測定例であり、EL素子の発光強度の時間変化をあらわしたものである。図4左のグラフにて時刻約3×10-8秒のところでDC電圧を除去した。なお、グラフは電圧を除去した時の輝度を1として表したものである。その後約2×10-7秒までの急速な減衰ののちゆるやかな減衰成分が現れる。図4右のグラフは、電圧除去時点を原点にとり、電圧除去後、10-5秒までの光強度の平方根の逆数をプロットしたグラフであり、直線によく近似できることがわかる。直線部分を時間原点へ延長したときの縦軸との交点Aの値は2.41である。すると、この過渡EL波形から得られるTTF由来発光強度比は、1/2.41=0.17となり、全発光強度のうちの17%がTTF由来であることになる。
 <第2の実施形態>
 本発明の素子は、発光層を含む有機層ユニットを少なくとも2つ有するタンデム素子構成とすることができる。2つの発光層の間には中間層(中間導電層、電荷発生層、CGLとも呼ぶ)が介在する。ユニット毎に電子輸送帯域を設けることができる。少なくとも1つの発光層が蛍光発光層でありその発光層を含むユニットが上記の要件を満たす。具体的な積層順の例を以下に示す。また、下記発光層は、複数の発光層の積層体であってもよく、後述する第3の実施形態の電荷障壁層を含む一の有機層ユニットであっても良い。
 陽極/蛍光発光層/中間層/蛍光発光層/障壁層/電子注入層/陰極
 陽極/蛍光発光層/障壁層/電子注入層/中間層/蛍光発光層/陰極
 陽極/蛍光発光層/障壁層/中間層/蛍光発光層/障壁層/電子注入層/陰極
 陽極/りん光発光層/中間層/蛍光発光層/障壁層/電子注入層/陰極
 陽極/蛍光発光層/障壁層/電子注入層/中間層/りん光発光層/陰極
 図5に本実施形態にかかる有機EL素子の一例を示す。有機EL素子1は、陽極10と、発光層22,24と、陰極40とをこの順に備え、発光層22,24の間には、中間層60がある。電子輸送帯域30には電子注入層34と障壁層32があり、障壁層32は発光層24に隣接している。発光層24が本発明の要件を満たす蛍光発光層である。他方の発光層は蛍光型でも燐光型でもよい。発光層22の隣に障壁層を設け、発光層24を本発明の要件を満たす蛍光発光層としてもよい。
 尚、2つの発光層22,24の間に電子輸送帯域及び/又は正孔輸送帯域が介在していてもよい。また、発光層は3以上あってもよく、中間層も2以上あってもよい。発光層が3以上あるとき、全ての発光層の間に中間層があっても、なくてもよい。
 中間層として公知の材料、例えば米国特許第7,358,661号明細書、米国特許出願第10/562,124号明細書等に記載のものを用いることができる。
 <第3の実施形態>
 本実施形態では、陽極と、複数の発光層と、電子輸送帯域と、陰極をこの順に備え、複数の発光層のいずれか二つの発光層の間に電荷障壁層を有し、電荷障壁層に接する発光層が蛍光発光層であり、上記の要件を満たす。
 本実施形態にかかる好適な有機EL素子の構成として、特許第4134280号公報、米国特許出願公開第2007/0273270A1号明細書、国際公開第WO2008/023623A1号に記載されているような、陽極、第1発光層、電荷障壁層、第2発光層及び陰極がこの順に積層された構成において、第2発光層と陰極の間に三重項励起子の拡散を防止するための障壁層と電子注入層を有する電子輸送帯域を有する構成が挙げられる。ここで電荷障壁層とは隣接する発光層との間でHOMOレベル、LUMOレベルのエネルギー障壁を設けることにより、発光層へのキャリア注入を調整し、発光層の注入される電子と正孔のキャリアバランスを調整する目的を有する層である。
 このような構成の具体的な例を以下に示す。
 陽極/第1発光層/電荷障壁層/第2発光層/電子輸送帯域/陰極
 陽極/第1発光層/電荷障壁層/第2発光層/第3発光層/電子輸送帯域/陰極
 尚、陽極と第1発光層の間には、他の実施形態と同様に正孔輸送帯域を設けることが好ましい。
 図6に本実施形態にかかる有機EL素子の一例を示す。図6の上図は、素子構成及び各層のHOMO、LUMOエネルギー準位を表すである。下図は第3発光層と障壁層のエネルギーギャップの関係を示す。
 この有機EL素子は、陽極と、第1発光層、第2発光層、第3発光層と、電子輸送帯域と、陰極をこの順に備え、第1発光層と第2発光層の間には、電荷障壁層がある。電子輸送帯域は障壁層と電子注入層(図示せず)からなる。第3発光層が本発明の要件を満たす蛍光発光層である。第1発光層、第2発光層は蛍光型でも燐光型でもよい。
 本実施形態の素子は、白色発光素子として好適であり、第1発光層、第2発光層、第3発光層の発光色を調整して白色とすることができる。また、発光層を第1発光層、第2発光層だけとして、2つの発光層の発光色を調整して白色としてもよい。このとき第2発光層が本発明の要件を満たす蛍光発光層となる。
 特に、第1発光層のホストを正孔輸送性材料とし、主ピーク波長が550nmより大きな蛍光発光性ドーパントを添加し、第2発光層(及び第3発光層)のホストを電子輸送性材料とし、主ピーク波長550nm以下の蛍光発光性ドーパントを添加することにより、全て蛍光材料で構成された構成でありながら、従来技術よりも高い発光効率を示す白色発光素子を実現することができる。
 発光層と隣接する正孔輸送層に特に言及をすると、本発明のTTF現象を効果的に起こすためには、正孔輸送材料とホストの三重項エネルギーを比較した場合に、正孔輸送材料の三重項エネルギーが大きいことが好ましい。
 <第4の実施形態>
 本実施形態では、青色画素、緑色画素、赤色画素を、基板上に並べて設ける。これら3色の画素のうち、青色画素が第1の実施形態の構成を有する。
 図7に本実施形態にかかる有機EL素子の一例を示す。
 この図に示す上面発光型有機EL素子2は、共通基板100上に、青色画素B、緑色画素G及び赤色画素Rが並列に形成されている。
 青色画素Bは、陽極10、正孔輸送帯域50、青色発光層20B、障壁層と電子注入層からなる電子輸送帯域30、陰極40、保護層70を基板100からこの順に備えている。
 緑色画素Gは、陽極10、正孔輸送帯域50、緑色発光層20G、障壁層と電子注入層からなる電子輸送帯域30、陰極40、保護層70を基板100からこの順に備えている。
 赤色画素Rは、陽極10、正孔輸送帯域50、赤色発光層20R、障壁層と電子注入層からなる電子輸送帯域30、陰極40、保護層70を基板100からこの順に備えている。
 それぞれの隣接する画素の陽極間に絶縁膜200が形成され、画素間の絶縁を保持している。
 有機EL素子2では、障壁層が青色画素B、赤色画素R、緑色画素Gに共通に設けられている。
 障壁層の効果は青色蛍光素子において従来得られていた発光効率に比べて顕著なものであるが、緑色蛍光素子、赤色蛍光素子においても、三重項エネルギーを発光層内に閉じ込める同様の効果を得ることが可能であり、発光効率の向上が期待できる。
 一方、燐光発光層においては、三重項励起子を発光層内に閉じ込める効果を得ることが可能であり、三重項エネルギーの拡散を防ぎ、燐光発光性ドーパントの発光効率の向上に寄与する。
 正孔輸送帯域は正孔輸送層、正孔輸送層及び正孔注入層等からなる。正孔輸送帯域は、共通でも異なってもよい。通常、正孔輸送帯域はそれぞれ発光色に適した構成にする。
 発光層20B,G,Rと障壁層から構成される有機層は、図に示す構成に限定されず適宜変更できる。
 実施例及び比較例で使用した材料と物性値は以下の通りである。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 上記物性値の測定方法は以下の通りである。
(1)三重項エネルギー(E) 
 市販の装置F-4500(日立社製)を用いて測定した。Eの換算式は以下の通りである。
  換算式E(eV)=1239.85/λph 
 「λph」(単位:nm)とは、縦軸にリン光強度、横軸に波長をとって、リン光スペクトルを表したときに、リン光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。
 各化合物を溶媒に溶解(試料10μmol/リットル、EPA(ジエチルエーテル:イソペンタン:エタノール=5:5:5(容積比))、各溶媒は分光用グレード)し、リン光測定用試料とした。石英セルへ入れたリン光測定用試料を77Kに冷却し、励起光をリン光測定用試料に照射し、波長を変えながらリン光強度を測定した。リン光スペクトルは、縦軸をリン光強度、横軸を波長とした。
 このリン光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λph(nm)を求めた。
 リン光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。リン光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該リン光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該リン光スペクトルの短波長側の立ち上がりに対する接線とする。
(2)アフィニティ(Af)
 イオン化ポテンシャルIpとエネルギーギャップEgの測定値から算出した。算出式は、次のとおりである。
  Af=Ip-Eg
 エネルギーギャップEgは、トルエン溶液中の吸収スペクトルの吸収端から測定した。具体的には、市販の可視・紫外分光光度計を用いて、吸収スペクトルを測定し、そのスペクトルの長波長側の立ち下がり波長から算出した。
 換算式は、次のとおりである。
  Eg(eV)=1239.85/λab
 縦軸に吸光度、横軸に波長をとって、吸収スペクトルを表したものを吸収スペクトルとした。エネルギーギャップEgに関する上記換算式において、「λab」(単位:nm)は、吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。
 各化合物をトルエン溶媒に溶解(試料2×10-5mol/リットル)し、光路長は1cmとなるように試料を準備した。波長を変えながら吸光度を測定した。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。
 吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
(3)イオン化ポテンシャル(Ip)
 イオン化ポテンシャルは、各層の単独層を別途ITOガラス基板上に真空蒸着で作製し、ITOガラス基板上の薄膜を用いて大気下で光電子分光装置(理研計器(株)社製:AC-3)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定した。照射光のエネルギーに対し、放出された光電子を1/2乗でプロットし、光電子放出エネルギーのしきい値をイオン化ポテンシャル(Ip)とした。
実施例1
 膜厚130nmのITOが成膜されたITO基板上に、HI1、HT2、BH、BD-1、TB2、ETを順次蒸着し、下記の構成からなる素子を得た。括弧内は膜厚(単位:nm)を示す。
ITO(130)/HI1(50)/HT2(45)/BH:BD-1(25;5wt%)/TB2(5)/ET(20)/LiF(1)/Al(80)
実施例2~6
 BD-1の代わりに表1に示すドーパントを用いた他は、実施例1と同様にして素子を得た。
比較例1~6
 BD-1の代わりに表1に示すドーパントを用いて、障壁層を形成しなかった他は、ETの膜厚を25nmに変更し、実施例1と同様にして素子を得た。
評価例1
 実施例1~6、比較例1~6で得られた素子について以下の評価を行った。結果を表1に示す。
 電流値が1mA/cmとなるように素子に電圧を印加し、そのときの電圧値を測定した。またそのときのEL発光スペクトルを分光放射輝度計(CS-1000:コミカミノルタ社製)を用いて計測した。得られた分光放射輝度スペクトルから、電流効率L/J(cd/A)、外部量子効率EQE(%)、主ピーク波長λ(nm)を算出した。
Figure JPOXMLDOC01-appb-T000001
 比較例1~6では、障壁層を形成しなかったために3重項励起子の閉じ込めがされず、実施例1~6に比べ効率の低下がみられる。すなわち、実施例1~6では本発明における障壁層の効果が示されたといえる。
評価例2
 実施例3と比較例3で得られた素子について、以下の方法でTTF比率を測定した結果、実施例3の素子では25%、比較例3の素子では12%のTTF比率が観測された。
 パルスジェネレータ(アジレント社製8114A)から出力した電圧パルス波形(パルス幅:500マイクロ秒、周波数:20Hz、電圧:0.1~100mA/cm相当の電圧を印加し、EL発光を光電子増倍管(浜松ホトニクス社製R928)に入力し、パルス電圧波形とEL発光とを同期させてオシロスコープ(テクトロニクス社製2440)に取り込んで過渡EL波形を得た。これを解析してTTF由来の発光比率(TTF比率)を決定した。
 本発明の有機EL素子は、低消費電力化が望まれる大型テレビ向け表示パネルや照明パネル等に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (10)

  1.  陽極と、発光層と、障壁層と、電子注入層と、陰極とをこの順に備え、
     前記発光層は、ホストと、下記式(1)又は(2)で表わされるスチリルアミン誘導体を含み、
     前記障壁層の3重項エネルギーが、前記ホストの3重項エネルギーより大きい有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000052
    (式(1)中、Ar~Arは、それぞれ、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、
     Ar~Arは、それぞれ、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、
     l、m、及びnは、それぞれ1~3の整数であり、pは、0~2の整数であり、
     lが2以上の場合、Arがそれぞれ同じでも異なってもよく、
     mが2以上の場合、Arがそれぞれ同じでも異なってもよく、
     pが1以上で、nが2以上の場合、Arがそれぞれ同じでも異なってもよく、
     pが2以上で、nが1の場合、Arがそれぞれ同じでも異なってもよく、
     Ar~Arの置換基は、ハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、置換もしくは無置換のシリル基、又はシアノ基である。
     但し、P=0でありかつ(Arがビフェニレン基の場合、(Arは、炭素数が7以上のアリーレン基であり、P=0でありかつ(Arがビフェニレン基の場合、(Ar、は、炭素数が7以上のアリーレン基である。)
    Figure JPOXMLDOC01-appb-C000053
    (式(2)中、Arは、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、
     A、Aは、それぞれ、アルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、又は下記式(3)で表わされる基であり、
    Figure JPOXMLDOC01-appb-C000054
    (式(3)中、Arは、置換もしくは無置換のアリーレン基、又は置換もしくは無置換のヘテロアリーレン基であり、Bは、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、A及びAが共に式(3)の基である場合、Ar及びBは、それぞれ同じでも異なってもよい。)
     Bは、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロアリール基であり、
     Ar~Ar、A、A、B、Bの置換基は、ハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、置換もしくは無置換のシリル基、又はシアノ基である。)
  2.  前記式(1)又は(2)において、Ar~Ar、A、A、B及びBが、シアノ基、フッ素原子及び置換もしくは無置換のシリル基から選択される置換基を少なくとも1つ以上有する請求項1記載の有機エレクトロルミネッセンス素子。
  3.  前記式(1)において、pが0、lが1、mが1である請求項1又は2記載の有機エレクトロルミネッセンス素子。
  4.  前記式(1)において、pが1、lが1、mが1、nが1である請求項1又は2記載の有機エレクトロルミネッセンス素子。
  5.  前記式(1)において、pが0、lが1、mが2である請求項1又は2記載の有機エレクトロルミネッセンス素子。
  6.  前記式(1)において、pが0、lが2、mが2である請求項1又は2記載の有機エレクトロルミネッセンス素子。
  7.  前記式(1)において、pが1、lが2、mが2、nが2である請求項1又は2記載の有機エレクトロルミネッセンス素子。
  8.  前記式(1)において、Ar~Arの少なくとも1つが、置換もしくは無置換のフルオレニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェニル基である請求項1記載の有機エレクトロミネッセンス素子。
  9.  前記式(2)において、Ar、Arの少なくとも1つが、置換もしくは無置換のフルオレニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェニル基である請求項1記載の有機エレクトロミネッセンス素子。
  10.  前記式(1)において、2つの窒素の間の構造が下記の式のいずれかである請求項1~8のいずれか記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000055
    (各式中、両端の波線は窒素原子へと続く)
PCT/JP2011/006489 2010-11-22 2011-11-22 有機エレクトロルミネッセンス素子 WO2012070227A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11843161.8A EP2645443A4 (en) 2010-11-22 2011-11-22 ORGANIC ELECTROLUMINESCENT ELEMENT
CN2011800563133A CN103222082A (zh) 2010-11-22 2011-11-22 有机电致发光元件
JP2012545614A JPWO2012070227A1 (ja) 2010-11-22 2011-11-22 有機エレクトロルミネッセンス素子
US13/988,710 US20130306957A1 (en) 2010-11-22 2011-11-22 Organic electroluminescent element
KR1020137013004A KR20130135256A (ko) 2010-11-22 2011-11-22 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010260607 2010-11-22
JP2010-260607 2010-11-22

Publications (1)

Publication Number Publication Date
WO2012070227A1 true WO2012070227A1 (ja) 2012-05-31

Family

ID=46145594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006489 WO2012070227A1 (ja) 2010-11-22 2011-11-22 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20130306957A1 (ja)
EP (1) EP2645443A4 (ja)
JP (1) JPWO2012070227A1 (ja)
KR (1) KR20130135256A (ja)
CN (1) CN103222082A (ja)
TW (1) TW201226525A (ja)
WO (1) WO2012070227A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109407A (ja) * 2013-05-16 2015-06-11 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP2016110978A (ja) * 2014-05-13 2016-06-20 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器、および照明装置
US9780317B2 (en) 2012-12-05 2017-10-03 Samsung Display Co., Ltd. Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material
US9997715B2 (en) 2014-11-18 2018-06-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
JP2019186521A (ja) * 2018-03-30 2019-10-24 キヤノン株式会社 有機発光素子、表示装置、撮像装置および照明装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517591B1 (ko) * 2014-10-07 2023-04-03 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자 및 전자 기기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525808A (ja) * 1998-09-14 2002-08-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ 高効率の電界発光デバイスのための構造
WO2010058995A1 (en) * 2008-11-21 2010-05-27 Gracel Display Inc. Electroluminescent device using the electroluminescent compounds
JP2011176267A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333232A1 (de) * 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
JP2008227182A (ja) * 2007-03-13 2008-09-25 Fujifilm Corp 表示装置
US20100187511A1 (en) * 2007-06-18 2010-07-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525808A (ja) * 1998-09-14 2002-08-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ 高効率の電界発光デバイスのための構造
WO2010058995A1 (en) * 2008-11-21 2010-05-27 Gracel Display Inc. Electroluminescent device using the electroluminescent compounds
JP2011176267A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2645443A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780317B2 (en) 2012-12-05 2017-10-03 Samsung Display Co., Ltd. Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material
US10629830B2 (en) 2012-12-05 2020-04-21 Samsung Display Co., Ltd. Organic electroluminescent device
US10128455B2 (en) 2013-05-16 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2021121041A (ja) * 2013-05-16 2021-08-19 株式会社半導体エネルギー研究所 発光素子
JP2015109407A (ja) * 2013-05-16 2015-06-11 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP7510526B2 (ja) 2013-05-16 2024-07-03 株式会社半導体エネルギー研究所 発光素子
JP7232868B2 (ja) 2013-05-16 2023-03-03 株式会社半導体エネルギー研究所 発光素子
JP2019216288A (ja) * 2013-05-16 2019-12-19 株式会社半導体エネルギー研究所 発光素子
US11462701B2 (en) 2013-05-16 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10686153B2 (en) 2014-05-13 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Exciplex light-emitting device
US11158832B2 (en) 2014-05-13 2021-10-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with exciplex light-emitting layers
JP2016110978A (ja) * 2014-05-13 2016-06-20 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器、および照明装置
US11864403B2 (en) 2014-05-13 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising first to third light-emitting layers
JP2019024140A (ja) * 2014-05-13 2019-02-14 株式会社半導体エネルギー研究所 発光装置
US9997715B2 (en) 2014-11-18 2018-06-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
JP2019186521A (ja) * 2018-03-30 2019-10-24 キヤノン株式会社 有機発光素子、表示装置、撮像装置および照明装置

Also Published As

Publication number Publication date
CN103222082A (zh) 2013-07-24
JPWO2012070227A1 (ja) 2014-05-19
KR20130135256A (ko) 2013-12-10
US20130306957A1 (en) 2013-11-21
TW201226525A (en) 2012-07-01
EP2645443A4 (en) 2014-04-23
EP2645443A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5480364B2 (ja) 有機エレクトロルミネッセンス素子
JP5208270B2 (ja) 有機エレクトロルミネッセンス素子
JP5208271B2 (ja) 有機エレクトロルミネッセンス素子
US9324950B2 (en) Organic electroluminescence device
US8476823B2 (en) Organic electroluminescent device
US9153790B2 (en) Organic electroluminescent device
KR102261235B1 (ko) 방향족 복소 고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
JP6152053B2 (ja) 芳香族複素環誘導体、および有機エレクトロルミネッセンス素子用材料
US8883323B2 (en) Organic electroluminescence device
WO2017099160A1 (ja) 有機el発光装置及び電子機器
US20120126205A1 (en) Organic electroluminescence device
EP2166588A1 (en) Organic el device
EP2166591A1 (en) Organic el device
KR20110086021A (ko) 유기 발광 소자 및 이에 사용하기 위한 재료
WO2012070227A1 (ja) 有機エレクトロルミネッセンス素子
JP6047116B2 (ja) 新規なアントラセン化合物及びこれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545614

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011843161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13988710

Country of ref document: US