WO2012069411A1 - El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen - Google Patents

El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen Download PDF

Info

Publication number
WO2012069411A1
WO2012069411A1 PCT/EP2011/070555 EP2011070555W WO2012069411A1 WO 2012069411 A1 WO2012069411 A1 WO 2012069411A1 EP 2011070555 W EP2011070555 W EP 2011070555W WO 2012069411 A1 WO2012069411 A1 WO 2012069411A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
component
layer
isocyanate
element according
Prior art date
Application number
PCT/EP2011/070555
Other languages
English (en)
French (fr)
Inventor
Joachim Wagner
Sebastian Dörr
Thomas Bernert
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to US13/989,044 priority Critical patent/US20130313968A1/en
Priority to EP11791497.8A priority patent/EP2644007A1/de
Priority to JP2013540311A priority patent/JP2014503940A/ja
Priority to CN2011800660097A priority patent/CN103329624A/zh
Priority to KR1020137016346A priority patent/KR20130119953A/ko
Publication of WO2012069411A1 publication Critical patent/WO2012069411A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to formulations for the production of electroluminescent Folienieneie- elements (hereinafter referred to as EL elements) and a method for producing inventive film elements, for example by screen printing with formulations and pastes containing blocked isocyanates as a curing agent component of the binder.
  • EL elements electroluminescent Folienieneie- elements
  • inventive film elements for example by screen printing with formulations and pastes containing blocked isocyanates as a curing agent component of the binder.
  • Two-dimensional EL elements are well known in the prior art, but three-dimensionally deformed EL elements have also been proposed.
  • DE-A 44 30 907 relates to an arrangement for forming a three-dimensional electroluminescent display in which curved or profiled surfaces are luminous.
  • DE-A 102 34 031 relates to an electroluminescent luminous surface which contains a carrier provided with information, which is manufactured from a freely deformable foil material or from a hard material which has a three-dimensionally deformed surface.
  • the production of the electroluminescent luminous area is effected by first printing the carrier layer with information and subsequently providing it with a first electrically conductive layer, a pigment layer, an insulation and reflection layer, a back electrode and an optional protective layer. Polyurethanes as binders for the various layers are not mentioned.
  • WO 03/037039 relates to a three-dimensional electro luminescence display, which comprises a main body and an electroluminescent device.
  • the main body of the electroluminescent display is made of a suitable plastic, which can advantageously be processed in an injection molding process.
  • the electroluminescent device is first produced. Subsequently, the electroluminescent device is reshaped. After the forming process (thermoforming), the electroluminescent device can be back-injected, for example. Again, no polyurethanes are described as binders for formulations for producing the layers of the electroluminescent device.
  • polycarbonate films are preferably provided with an EL layer structure and then preferably deep-drawn in the high-pressure forming process (HPF), as described, for example, in WO 2009/043539.
  • HPF high-pressure forming process
  • WO 2008/068016 describes an EL element containing a semitransparent metal foil and its preparation and its applications.
  • the EL element described is also produced using two-component polyurethanes.
  • One component of the two-component polyurethanes is a di- or polyisocyanate, the other component is an isocyanate-reactive component, such as polyamines or preferably diols and polyols.
  • the layers described by printing or coating of formulations Inks, pastes, printing inks or paints successively preferably applied with intermediate drying and / or crosslinking.
  • a method for applying the layers are in principle all known in the art coating and Druckv experienced, for example, doctoring.
  • the method is the screen printing method, hereinafter are formulations.
  • Inks, pastes, inks or varnishes generally referred to as formulations.
  • binders based on two-component polyurethanes have the flexibility necessary for the deformation.
  • the described two-component polyurethane systems have the limitation that the pot size of the formulations is limited. This can be a disadvantage in the production process because the viscosity of the formulation increases with increasing processing time. Particularly in screen printing, adverse effects on the EL elements may result, such as a non-constant layer thickness within a lot from the first to the last arc. As a result, the sanctities of a lamp (s) in a batch also vary as the EL element glows darker as the thickness of the pigment and dielectric layers increases. In addition, the handling of the formulations is difficult because the formulation polymerizes continuously in the closed vessel after preparation and thus increases the viscosity.
  • the pot life refers to the time from preparation of the formulation to / at the end of its processability.
  • a paste can no longer be processed (end of processability achieved) if there is a loss of quality of the printing layer, such as streaking, increasing the thickness of the printing layer or clogging the screen meshes, during spraying, for example, clogging of the spray gun and an increase in the layer thickness the applied layers, during doctoring, for example, an increase in the layer thickness of the applied layers.
  • the still tolerable layer thicknesses must be matched to a production process and determined. If these limits are exceeded, the wording must be rejected as it has exceeded its pot life.
  • the object of the present invention was to provide a technology which uses two-component polyurethanes as binders for formulations for the production of EL elements, which no longer have the disadvantages, such as limited pot lives, and no increase in viscosity processing, such as interruption of processing.
  • blocked diisocyanates and blocked polyisocyanates are also suitable for the preparation of formulations with which EL elements can be produced. Since the blocked isocyanate / di- or polyisocyanate does not react with the isocyanate-reactive component, for example the polyol, but only after cleavage of the blocking group, the pot life is prolonged. For example, it takes more than three months instead of a few hours. As a result, in principle, a permanently stable one-component system for the production of the respective layer can be provided. The viscosity of the formulation during the application process does not increase as a result of the chemical crosslinking, only the evaporation of possibly added solvents can increase the viscosity somewhat.
  • Blocking group in the context of the invention is a chemical group on the isocyanate, which is connected by reaction of the isocyanate with a blocking agent with the isocyanate groups and which is thermally cleaved upon heating of the isocyanate and leaves the isocyanate, as it was before reaction with the blocking agent.
  • the reaction of the blocked isocyanate with the isocyanate-reactive compound can also proceed concerted with simultaneous deprotection.
  • Blocking group in the context of the invention is also a chemical group on Isocyanate, which does not split off during curing, but by other reactions (eg transesterification in the case of reaction of malonate-blocked polyisocyanates with polyols) lead to branching or crosslinking.
  • Blocking agents for isocyanate groups are known to the person skilled in the art.
  • Pigment layer used luminescent pigments are high.
  • An EL element comprises a support or a substrate (1), an at least partially transparent front electrode (2), a layer containing the electroluminescent crystals (3), optionally a dielectric layer (4) which exhibits the dielectric strength of the layer structure increases, and has the highest possible dielectric constant, another electrode layer (5), optionally silver reinforcements, so-called silver busbars (6) for the electrodes and optionally a covering layer (7). Furthermore, the EL element may optionally be laminated to protect it from external influences.
  • the invention therefore provides an EL element comprising a substrate, a front and a back electrode and a pigment layer, wherein the pigment layer contains: a) a binder system comprising a component with thermally reversibly blocked isocyanate groups aa) and one or more isocyanate-reactive components ab) and b) in the electric field luminescent pigments or crystals.
  • the described layer structure causes the lamp to shine through the substrate (1) (conventional structure).
  • the layers can also be arranged so that the lamp to the side facing away from the substrate lights (layer structure, for example, (1), (5), (4), (3), (2), (6)).
  • the cover layer (6) or the protective laminate must be at least partially transparent. This arrangement is called inverse.
  • an EL element can also shine in both directions. This arrangement is referred to as two-sided.
  • An at least partially transparent covering layer or an at least partially transparent protective laminate means a covering layer or a protective laminate with a transmission of the incident light of at least one percent. Description of the individual layers and components Substrate (1)
  • the EL element As a substrate for an EL element, many materials can be used. Usually, the EL element is illuminated by the substrate (conventional structure). Therefore, at least partially transparent materials are particularly suitable as substrates, such as glass, plastics or plastic films. As a material for plastic films are all acquaintances.
  • a large number of the electroluminescent elements have polyester films or polyethylene terephthalate films as a carrier material with an electrically conductive, largely transparent layer, for example, sputtered by the sputtering process.
  • such EL elements generally contain further layers, for example protective layers.
  • the conventional EL elements are generally planar, as is the case, for example, with objects having three-dimensional geometries , may affect the visibility of information and usability.
  • polycarbonate is present as, for example, in the films referred to as Makrofol® and Bayfol® (Bayer Materials Science AG, D-51368 Leverkusen, www.bayermaterialscience.com), which are particularly well suited for three-dimensionally shaped EL elements.
  • a first electrically conductive layer is applied to the substrate, in the inverse structure an electrically conductive layer is applied to the pigment layer, which is at least partially transparent.
  • An at least partially transparent, electrically conductive layer means a transmission of the incident light through the layer of at least 30%, preferably more than 70%, particularly preferably more than 80%.
  • such layers are known, for non-three-dimensionally deformed EL elements is often used indium tin oxide (ITO) or antimony tin oxide (ATO).
  • PET films with ITO coatings are commercially available, for example from Sheldahl (1150 Sheldahl Road, Northfield, Minesota 55057).
  • screen printable formulations which are suitable for making at least partially transparent, electrically conductive coatings, for example the ATO screen printing pastes with the designations 7162E or 7164 from DuPont (DuPont (UK) Limited, Cold Harbor Lane, Frenchay, Bristol BS 16 1 QD, England).
  • ATO screen printing pastes with the designations 7162E or 7164 from DuPont (DuPont (UK) Limited, Cold Harbor Lane, Frenchay, Bristol BS 16 1 QD, England).
  • electrically conductive polymers such as PEDOT / PSS (poly-3,4-dioxythiophene), which is available under the trade name Clevios® from HC Starck (HC Starck GmbH, PO Box 2540, 38615 Goslar, Germany) or polyaniline, which are used to form the electrically conductive Electrode layers are suitable.
  • the electrically conductive layer which is arranged on the opposite side of the lighting of the EL element, does not have to be transparent. Therefore, other materials that are not suitable for use in an at least partially transparent electrically conductive layer may be used. For example, silver-filled, electrically conductive screen printing pastes are well suited for the production of the back electrode. Furthermore, other metals or carbon may be used as the electric current conductive fillers.
  • Screen-printable silver pastes are, for example, Electrodag® PF 410 or Eiectrodag® PM 470 from Acheson (Acheson France SAS, 67152 Erstein Cedex, France), the DuPont 9145 Electroluminescent Silver Conductor paste (DuPont (UK) Limited, Cold Harbor Lane, Frenchay, Bristol BS 16 1QD, England).
  • Carbon-filled, electrically conductive, screen-printable pastes for producing a non-transparent electrode are, for example, the DuPont 8144 electroluminescent carbon conductor paste (DuPont (UK) Limited, Cold Harbor Lane, Frenchay, Bristol BS16 1 QD, England) or US Pat Electrodag® PF 407 A from Acheson (Acheson France SAS, 67152 Erstein Cedex, France).
  • Covering layer (5) Commercial lacquers or printing inks, such as, for example, under the brand names Noriphan 1 [TR. Noriphan PCI, Noriphan N2K, Noricryl or NoriPET from Pro 11 KG (Treuchtlinger Strasse 29, D-91781 Weissenburg i. Bay.) Or Maraflex FX from Marabu GmbH & Co. KG (Asperger Strasse 4, D-71732 Tamm) , Polyplast PY from Fujifilm Sericol
  • the formulations can be water-based, solvent-based or solvent-free. be constructed solvent-free.
  • the formulations may be crosslinkable by means of UV radiation, thermally crosslinking and / or drying and / or IR crosslinking / drying.
  • the EL element may be laminated front and back with another protective layer.
  • Suitable protective layers are all materials known to those skilled in the art which are suitable for lamination.
  • Silver busbars are usually used to contact the electrodes, since the electrode material would lead to high contact resistances at the contact points.
  • Silver busbar refers to a structure printed from silver conductive pastes, which usually conducts the current from the contact into a larger area.
  • Many suitable silver pastes are found in the prior art, for example ElectiOdag® PF 410 or Electrodag® PM 470 from Acheson (Acheson France SAS, 67152 First Cedex, France), 9145 Electroluminescent silver conductor or 5028 silver conductor from DuPont (DuPont (UK) Limited , Cold Harbor Lane, Frenchay, Bristol BS 16 1QD, England) or ELX30 silver conductive paste from Electra Polymers Ltd. (Roughway Mill, Tonbridge, Kent, TN 1 1 9SG, England). If the back electrode of the EL element already consists of a layer filled with silver, reinforcement with a silver busbar is generally not necessary.
  • Pigme layer (3) contains a) a binder system consisting of at least one component with thermally reversibly blocked isocyanate groups aa) and one or more isocyanate-reactive components ab) b) luminescent pigments or crystals in the electric field, c) optionally solvent d) if necessary, additives and additives
  • the screen printing pastes for the production of printing layers for inventive EL elements comprise a binder with a blocked isocyanate and at least one isocyanate-reactive component, preferably a polyol.
  • the proportions of the reactants are preferably selected so that the equivalent ratio of isocyanate-reactive groups to isocyanate at 1: 0.2 to 1: 3, preferably 1: 0.5 to 1: 1.5, and most preferably by 1 lies,
  • Suitable polyisocyanates for the preparation of component aa) can be found in the NCO-functional compounds known per se to a person skilled in the art having a functionality of preferably 2 or more. These are typically aliphatic, cycloaliphatic, araliphatic and / or aromatic di- or triisocyanates and their higher molecular weight derivatives with iminooxadiazinedione, isocyanurate, uretdione, urethane, allophanate, biuret, urea, oxadiazinetrione, oxazolidinone, acyl urea and / or carbodiimide structures having two or more free NCO groups.
  • di- or triisocyanates examples include tetramethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, hexamethylene diisocyanate (HDI), 1-isocyanato-3,3,5-trimethyl-5-isocyanato-methylcyclohexane (isophorone diisocyanate, IPDI) , methylene-bis- (4-isocyanatocyclohexane), tetramethylxylylene diisocyanate (TMXDI), triisocyanatononane, tolylene diisocyanate (TDI), di-phenyl methane-2,4 '-and / or 4,4' -diis o diisocyanate (MDI), Tripheny In ethane-4,4'-diisocyanate, naphthylene-1, 5-diisocyanate, 4-isocyanatomethyl-1, 8-octane
  • Such polyisocyanates typically have isocyanate contents of 0.5 to 60 wt .-%, preferably 3 to 30 wt .-%, particularly preferably 5 to 25 wt .-%.
  • the higher molecular weight compounds containing isocyanurate, urethane, allophanate, biuret, iminooxadiazinetrione, oxadiazinetrione and / or uretdione groups based on aliphatic and / or cycloaliphatic diisocyanates are preferably used in the process according to the invention.
  • component aa particularly preference is given in the process according to the invention in component aa) to compounds having biuret, iminooxadiazinedione, isocyanurate and / or uretdione groups based on hexamethylene diisocyanate, isophorone diisocyanate and / or 4,4'-diisocyanatodicyclohexylmethane.
  • polyisocyanates having an isocyanurate structure based on hexamethylene diisocyanate and / or isophorone diisocyanate are used in the art per se known monofunctional, thermally cleavable blocking agent.
  • Examples are phenols, oximes, such as butanone oxime, acetone oxime or cyclohexanone oxime, lactams, such as ⁇ -caprolactam, amines, such as N-tert-butylbenzylamine or diisopropylamine, 3,5-dimethylpyrazole, triazole, esters containing deprotonatable groups, such as diethyl malonate, Ethyl acetoacetate, or mixtures thereof and / or mixtures with other blocking agents.
  • component aa) can be carried out in a solvent, examples being N-methylpyrrolidone, N-ethylpyrrolidone, xylene, solvent naphtha, toluene, butyl acetate, methoxypropyl acetate, acetone or methyl ethyl ketone. It is possible to add solvent after the reaction of the isocyanate groups. It is also possible to use protic solvents, such as alcohols, which serve, for example, to stabilize the solution or to improve paint properties. Any mixtures of solvents are also possible. The amount of solvent is generally so calculated that 20 to 99 wt .-%, preferably 50 to 90 wt .-% solutions result. The production of solvent-free systems is possible.
  • Suitable catalysts are, for example, tertiary amines, tin, zinc or bismuth compounds or basic salts. Preference is given to dibutyltin dilaurate and tin dioctoate.
  • Suitable compounds of the isocyanate-reactive component ab such as, for example, polyhydroxyl compounds, are known per se with respect to the preparation and use of such stoving lacquers to those skilled in the art.
  • binders known per se based on polyhydroxy polyesters, polyhydroxy polyurethanes, polyhydroxy polyethers, polycarbonate diols or polymers containing hydroxyl groups, such as the polyhydroxypolyacrylates, polyacrylate polyurethanes and / or polyurethane polyacrylates known per se.
  • pigments which shine in the electric field Preferably, copper or manganese-doped zinc sulfide crystals are used. These are encapsulated with inorganic layers such as alumina because the unencapsulated pigments are sensitive to moisture during operation.
  • Encapsulated pigments are known in the art, are known to the person skilled in the art and are commercially available, for example from GTP (Global Tungsten & Powders Corp., Hawes Street, Towanda, PA 18848, USA).
  • solvents it is possible in principle to use all solvents known to the person skilled in the art which are suitable for the described polyurethanes, for example ethoxypropyl acetate, ethyl acetate, butyl acetate, methoxypropyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, Xylene, Solventnaphtha 100 or any mixtures of two or more of these solvents in amounts of preferably I to 50 wt .-%, preferably 2 to 30 wt .-%, particularly preferably 5 to 1
  • additives for improving the flow behavior and the course can be contained.
  • flow control agents are Additol XL480 from Cytec Surface Specialties Germany GmbH & Co. KG (D-65203 Wiesbaden, www.cytec.com) in butoxyl in a mixing ratio of 40:60 to 60:40.
  • rheology additives which contain the settling behavior can be included as further additives of pigments and fillers in the formulation, for example BYK 410, BYK 41, BYK 430, BYK 431 (BYK-Chemie, 46483 Wesel, Germany) or any mixtures thereof.
  • an insulating or dielectric layer is still located between the nickel electrode and the pigment layer. This improves the electrical breakdown strength between the two electrode layers which in operation serve as capacitor plates.
  • the dielectric layer contains a) a binder system consisting at least of aa) an isocyanate component ab) an isocyanate-reactive component b) optionally a filler, preferably an inorganic, which has the largest possible dielectric constant, c) optionally solvent d) optionally additives
  • the binder system a) contained in the dielectric layer corresponds to the binder system contained in the pigment layer and is described there.
  • the formulations for the preparation of the insulating, dielectric layer may preferably contain barium titanate as a filler. Furthermore, other materials can be used such as lead zirconate titanate or titanium dioxide.
  • a filler Preferably according to the invention as a filler are BaTi0 3 or PbZr0 3 or mixtures thereof, preferably in quantities of from 5 to 80 wt .-%, preferably from 10 to 75 wt .-%, particularly preferably from 40 to 70 wt .-%, each based on the total weight of the paste, in the paste for liersannon the dielectric layer.
  • solvents it is possible in principle to use all solvents known to the person skilled in the art which are suitable for the polyurethanes described, for example ethoxypropyl acetate, ethyl acetate, butyl acetate, methoxypropyl acetate. Acetone, methyl ethyl ketone, methyl isobutyl ketone,
  • additives for improving the flow behavior and the course can be contained.
  • flow control agents are Additol XL480 from Cytec Surface Specialties Germany GmbH & Co. KG (D-65203 Wiesbaden, www.cytec.com) in butoxyl in a mixing ratio of 40:60 to 60:40.
  • rheology additives which contain the settling behavior can be contained as further additives of pigments and fillers in the formulation, for example BYK 410, BYK 411, BYK 430, BYK 431 (BYK-Chemie, 46483 Wesel, Germany) or any mixtures thereof.
  • the formulations and pastes according to the invention are suitable for producing both two-dimensional EL elements as well as three-dimensionally deformed EL elements by means of isostatic high-pressure deformation.
  • the three-dimensional deformation of the film element is configured such that one or more recesses and / or elevations are formed in the flat film element.
  • the formulations are also suitable for the production of E L elements that can be back-injected.
  • the layers which have been formed by application and drying and / or crosslinking of the formulations according to the invention be prepared to withstand the temperatures and pressures in the deformation process and injection molding process.
  • Fig. 1 shows an EL element according to conventional construction. The light is emitted through the substrate.
  • Fig. 2 shows an EL element according to inverse construction. The light is emitted to the side facing away from the substrate.
  • Desmodur® BL 3475 BA / SN is an aliphatic cross-linking Embrennurethanharz with blocked isocyanate groups, based H DI / IPDI, form approximately 75% in Solventnaphtha® 100 / butyl acetate (1: 1), NCO content, blocked about 8 , 2%, Bayer MaterialScience AG, Leverkusen, DE
  • Desmophen® 670 BA is a weakly branched, hydroxyl-containing polyester, supplied in a form approx. 80% in butyl acetate, hydroxyl content 3.5 ⁇ 0.3% (DIN 53 240/2)%, Bayer MaterialScience AG, Leverkusen, DE
  • Desmophen® 1 800 is a slightly branched, solvent-free polyester polyol containing OH groups, hydroxyl content 1.82 ⁇ 0.09% (ISO 6796)%, Bayer MaterialScience AG, Leverkusen, DE
  • formulations contain the following receptors:
  • formulations contain the following reprints:
  • formulations contain the following formulations:
  • formulations contain the following formulations:
  • Example of the Production of an EL Element by Screen Printing with Formulations Containing Blocked Isocyanates All the layers described in the example were printed using a screen printing machine ATMACE (ESC Europa-Siebdmckmaschinen-Centrum VerwaitungsgesmbH, 32108Bad Salzuflen, Germany).
  • the first electrically conductive layer was printed on a polycarbonate film (Bayfol CR 1 -4 250 ⁇ m, Bayer MaterialScience AG), as described in WO 2008/071412 on page 21 in the left-hand column of the table, compare Table 5: Table 5.
  • Composition of a formulation for producing an electrically conductive layer as described in WO 2008/071412, page 21, left column of the table.
  • the already used pigment paste can be taken out of the sieve after printing. Furthermore, with screens in frame sizes of 1150 mm by 1350 mm, a flood amount of about one to one and a half kilograms of formulation is necessary. Both the amount of flooding and any residues left in excess can be stored for weeks in closed plastic containers and reused at any time. In the past compared in comparison pastes (recipe P2) reuse is no longer possible because the paste undergoes such a strong increase in viscosity within a few hours by crosslinking of the binder that they can no longer be printed error-free.
  • the viscosity was measured by approach, after four to five hours, and after about 24 hours.
  • the non-blocked system (Desmodur N75 MPA) - Comparative Example - shows within the first 5 hours only a slight increase in viscosity (0.388 mPas to 0.451 mas at a shear rate of 10 s "1 ) but a doubling of the viscosity after a total of 17 h (0.953 mPa-s at 10 s -1 ).
  • the unblocked system is fixed (no longer measurable), while the blocked is unchanged and can still be used.
  • the viscosity measurements were carried out on a Physica MCR 301 from Anton Paar GmbH (8054 Graz, Austria). The temperature was set at 25.0 ° C for all measurements. A cone / plate arrangement was used, the cone having a diameter of 49.966 mm and the cone angle was 1.994 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Die vorliegende Erfindung betrifft Formulierungen zur Herstellung eines Elektrolumineszenzelements, bestehend aus einem Substrat, einer zumindest teilweise transparenten Frontelektrode, mindestens einer Pigmentschicht, gegebenenfalls einer dielektrischen Schicht, einer Rückelektrode und Busbars zur Kontaktierung der Elektroden, gegebenenfalls einer Abdeckschicht oder eines Laminats sowie ein Verfahren zur Herstellung eines Elektrolumineszenzelements, vorzugsweise im Siebdruck. Die Formulierungen zur Herstellung der Pigment- und Dielektrikumschicht enthalten als Bindemittel isocyanatreaktive Komponenten und blockierte Isocyanate und / oder blockierte Di- und / oder Polyisocyanate.

Description

EL-Elemente enthaltend eine Pigmentschicht mit vernetzenden Systemen mit blockierten Is cyanat- Gruppen
Die vorliegende Erfindung betrifft Formulierungen zur Herstellung von elektrolumineszierenden Folieneie- menten (im Folgenden kurz EL-Elemente genannt) sowie ein Verfahren zur Herstellung erfindungsgemäßer Folienelemente, beispielsweise im Siebdruckverfahren mit Formulierungen und Pasten, die blockierte Iso- cyanate als Härterkomponente des Bindemittels enthalten.
Aus dem Stand der Technik sind zweidimensionale EL-Elemente hinreichend bekannt, jedoch wurden auch dreidimensional verformte EL-Elemente vorgeschlagen.
DE-A 44 30 907 betrifft eine Anordnung zur Bildung einer dreidimensionalen Elektrolumi- neszenz -Anzeige bei der gekrümmte oder profilierte Oberflächen leuchtend sind.
DE-A 102 34 031 betrifft eine Elektrolumineszenz-Leuchtfläche, die eine mit Informationsangaben versehene Trägers chicht enthält, die aus einem frei verformbaren Folienmaterial oder aus einem Hartmaterial, das eine dreidimensional verformte Oberfläche aufweist, gefertigt ist. Die Herstellung der Elektrolumines- zenz-Leuchtfläche erfolgt dadurch, dass zunächst die Trägerschicht mit Informationsangaben bedruckt wird und anschließend mit einer ersten elektrisch leitfähigen Schicht, einer Pigmentschicht, einer Isolationsund Reflexionsschicht, einer Back-Elektrode sowie einer optionalen Schutzschicht versehen wird. Polyurethane als Bindemittel für die verschiedenen Schichten sind nicht erwähnt. WO 03/037039 betrifft eine dreidimensionale Elektro lumineszenzanzeige, die einen Hauptkörper und eine Elektrolumineszenzeinrichtung umfasst. Der Hauptkörper der Elektrolumineszenzanzeige ist aus einem geeigneten Kunststoff, der sich vorteilhafterweise in einem Spritzgießprozess verarbeiten lässt. Zur Herstellung der dreidimensionalen Elektrolumineszenzanzeige wird zunächst die Elektrolumineszenzeinrichtung hergestellt. Anschließend wird die Elektrolumineszenzeinrichtung umgeformt. Nach der Umformung (Tiefziehen) kann die Elektrolumineszenzeinrichtung beispielsweise hinterspritzt werden. Auch hier sind keine Polyurethane als Bindemittel für Formulierungen zur Herstellung der Schichten der Elektrolumineszenzeinrichtung beschrieben.
Zur Herstellung dreidimensional verformter EL-Elemente werden vorzugsweise Polycarbonatfoiien mit einem EL Schichtaufbau versehen und anschließend vorzugsweise im High Pressure Forming Verfahren (HPF), wie beispielsweise in WO 2009/043539 beschrieben, tiefgezogen.
Spezielle Zwei-Komponenten-Polyurethane als bevorzugte Bindemittel für Pasten zur Herstellung von EL- Elementen, die auch dreidimensional verformbar sind, wurden bereits im Stand der Technik vorgeschlagen. So beschreibt WO 2008/071412 ein biegbares 3D-EL-HDFV Element, das Herstellungsverfahren und seine Anwendung.
In WO 2008/068016 wird ein EL -Element, das eine semitransparente Metallfolie enthält, und seine Herstellung sowie dessen Anwendungen beschrieben. Das beschriebene EL-Element wird ebenfalls unter Ver- wendung von Zwei-Komponenten-Polyurethanen hergestellt.
Eine Komponente der Zwei-Komponenten Polyurethane ist ein Di- oder Polyisocyanat, die andere Komponente ist eine isocyanatreaktive Komponente, wie beispielsweise Polyamine oder bevorzugt Diole sowie Polyole.
Die oben genannten Dokumente beschreiben die Verwendung von Polyurethanen zur Herstellung von EL- Elementen, die Verwendung von blockierten Isocyanaten und deren Vorteile werden jedoch nicht beschrieben.
Zur Herstellung von EL-Elementen werden die beschriebenen Schichten durch Aufdrucken oder Coaten von Formulierungen. Tinten, Pasten, Druckfarben oder Lacken nacheinander bevorzugt mit Zwischentrocknung und/oder -Vernetzung aufgebracht. Als Verfahren zum Aufbringen der Schichten eignen sich prinzipiell alle dem Fachmann bekannten Coating- und Druckv erfahren, beispielsweise Rakeln. Lackschleudern (Spincoating), Tauchlackieren (Dipcoating), Sprühlackieren (Spraycoating), Düsenauftrag (Slot-dye-coating), Vorhanggießen (Curtaincoating), Hochdruck, Flachdruck, Durchdruck, Flexodruck, Gravurdruck, Tiefdruck, Tampondruck, Offsetdruck, Digitaldruck und Thermotransferdruck. Vorzugsweise dient als Verfahren das Siebdruckverfahren, im Folgenden werden Formulierungen. Tinten, Pasten, Druckfarben oder Lacke allgemein als Formulierungen bezeichnet.
Bindemittel auf Basis von Zwei-Komponenten-Polyurethanen haben zwar die tür die Verformung notwendige Flexibilität. Die beschriebenen Zwei-Komponenten-Polyurethan Systeme haben jedoch die Einschränkung, dass die Topfzeil der Formulierungen begrenzt ist. Dies kann im Produktionsprozess von Nachteil sein, da die Viskosität der Formulierung mit fortschreitender Verarbeitungszeit ansteigt. Speziell im Sieb- druck können sich nachteilige Auswirkungen auf die EL-Elemente ergeben, wie z.B. eine nicht konstante Schichtdicke innerhalb eines Loses vom ersten zum letzten Bogen. Dadurch schwanken auch die Heiligkeiten der ein/einen Lampen in einem Los, da das EL-Element mit zunehmender Dicke der Pigment- und Dielektrikumschicht dunkler leuchtet. Zudem ist die Handhabung der Formulierungen schwierig, da die Formulierung auch im verschlossenen Gefäß nach Ansetzen kontinuierlich polymerisiert und somit die Visko- sität ansteigt. Bei Verzögerungen im Produktionsprozess muss daher eine formulierte Charge verworfen werden, wenn sie die Topfzeit überschritten hat und eine neue Charge muss angesetzt werden. Dies beeinträchtigt die Wirtschaftlichkeit des Verfahrens bei Verwendung dieser Polyurethane. Weiterhin wird die Reinigung speziell der Siebgewebe im Siebdruckverfahren bei Verwendung von Zwei-Komponenten- Polyurethanen schwieriger.
Die Topfzeit bezeichnet die Zeit vom Ansetzen der Formulierung bis /um Ende ihrer Verarbeitbarkeit. Im Siebdruck lässt sich eine Paste nicht mehr verarbeiten (Ende der Verarbeitbarkeit erreicht), wenn ein Quali- tätsverlust der Druckschicht wie beispielsweise Streifenbildung, Erhöhung der Dicke der Druckschicht oder Zusetzen der Siebmaschen eintritt, beim Sprühen beispielsweise ein Zusetzen der Sprühpistole und ein Ansteigen der Schichtdicke der applizierten Schichten, beim Rakeln beispielsweise ein Ansteigen der Schichtdicke der applizierten Schichten. Die noch tolerablen Schichtdicken müssen auf einen Produktions- prozess abgestimmt und festgelegt sein. Werden diese festgelegten Grenzen überschritten, ist die Formulie- rung zu verwerfen, da sie ihre Topfzeit überschritten hat.
Aufgabe der vorliegenden Erfindung war es, eine Technologie bereitzustellen, die als Bindemittel für Formulierungen zur Herstellung von EL-Elementen Zwei-Komponenten-Polyurethane verwendet, die die aufgezeigten Nachteile, wie begrenzte Topfzeiten, jedoch nicht mehr aufweisen und möglichst keine Zunahme in der Viskosität bei der Verarbeitung, beispielsweise bei Unterbrechung der Verarbeitung, verzeichnen.
Es wurde nun für den Fachmann überraschenderweise gefunden, dass auch blockierte Diisocyanate und blockierte Polyisocyanate zur Herstellung von Formulierungen, mit denen EL-Elemente produziert werden können, geeignet sind. Da das blockierte Isocyanat/Di- oder Polyisocyanat nicht mit der isocyanatreaktiven Komponente, beispielsweise dem Polyol reagiert, sondern erst nach Abspalten der Blockierungsgruppe, ist die Topfzeit verlängert. Sie beträgt statt einiger Stunden beispielsweise mehr als drei Monate. Dadurch kann im Prinzip ein dauerhaft stabiles einkomponentiges System für die Herstellung der jeweiligen Schicht bereitgestellt werden. Die Viskosität der Formulierung nimmt während des Applikationspr ozes s es somit auch nicht mehr durch die chemische Vernetzung zu, lediglich das Verdunsten von eventuell zugesetzten Lösungsmitteln kann die Viskosität etwas erhöhen. Dies ist jedoch bei allen mit Lösungsmitteln versetzten Formulierungen des Standes der Technik genauso. Durch die Verwendung von relativ hochsiedenden Lösungsmitteln wie beispielsweise Methoxypropylacetat (Siedebereich 145 - 147 °C) oder Ethoxypropy- lacetat (Siedebereich 158 - 160 °C) kann das Abdampfen des Lösungsmittels minimiert werden. Somit können während des Drucks stabile Schichtdicken erreicht werden. Erst bei Trocknung mit erhöhter Temperatur, beispielsweise im Bandtrockner und/ oder im Trockenschrank wird die Blockierungsgruppe abge- spalten und das Isocyanat reagiert mit dem Polyol. Blockierungsgruppe im Sinne der Erfindung ist eine chemische Gruppe am Isocyanat, die durch Reaktion des Isocyanats mit einem Blockierungsmittel mit den Isocyanatgruppen verbunden wird und die bei Erwärmen des Isocyanats thermisch abgespalten wird und das Isocyanat hinterlässt, wie es vor Reaktion mit dem Blockierungsmittel vorlag. Die Reaktion des blockierten Isocyanates mit der isocyanatreaktiven Verbindung kann auch konzertiert unter gleichzeitiger De- blockierung verlaufen. Blockierungsgruppe im Sinne der Erfindung ist ebenfalls eine chemische Gruppe am Isocyanat, die bei der Härtung nicht abgespalten, sondern durch andere Reaktionen (z.B. Umesterung im Falle der Umsetzung Malonester-blockierter Polyisocyanate mit Polyolen) zu Verzweigung oder Vernetzung führen. Blockierungsmittel für Isocyanatgruppen sind dem Fachmann bekannt.
Während bei Verwendung von Zwei-Komponenten Polyurethansystemen bereits angesetzte Formulierungen nach Gebrauch nicht mehr verwendet werden können, können bei Zwei Komponenten-Systemen mit blockierten Diisocyanaten und Polyisocyanaten nicht verbrauchte Reste in verschlossenen Gefäßen aufgehoben und weiterverwendet werden. Dies erhöht die Wirtschaftlichkeit, da die Kosten vor allem für die in der
Pigmentschicht verwendeten Leuchtpigmente hoch sind.
Ein EL-Element weist einen Träger oder ein Substrat auf (1), eine zumindest teilweise transparente Frontelektrode (2), eine Schicht, die die im elektrischen Feld lumineszierenden Kristalle enthält (3), gegebenenfalls eine dielektrische Schicht (4), die die Durchschlagsfestigkeit des Schichtaufbaus erhöht, sowie eine möglichst hohe Dielektrizitätskonstante aufweist, eine weitere Elektrodens chicht (5), gegebenenfalls Silberverstärkungen, so genannte Silber-Busbars (6) für die Elektroden und gegebenenfalls eine Abdeckschicht (7). Weiterhin kann das EL-Element gegebenenfalls laminiert sein, um es vor äußeren Einflüssen zu schützen.
Gegenstand der Erfindung ist daher ein EL-Element enthaltend ein Substrat, eine Front- und eine Rückelektrode sowie eine Pigmentschicht, wobei die Pigmentschicht enthält: a) ein Bindemittelsystem enthaltend eine Komponente mit thermisch reversibel blockierten Isocyanat-Gruppen aa) sowie eine oder mehrere isocyanatreaktive Komponenten ab) und b) im elektrischen Feld lumines ierende Pigmente oder Kristalle.
Der beschriebene Schichtaufbau führt dazu, dass die Lampe durch das Substrat (1) leuchtet (herkömmlicher Aufbau). Die Schichten können jedoch auch so angeordnet werden, dass die Lampe zur dem Substrat abgewandten Seite leuchtet (Schichtaufbau beispielsweise (1), (5), (4), (3), (2), (6)). Dann muss die Abdeckschicht (6) oder das Schutzlaminat zumindest teilweise transparent sein. Diese Anordnung wird als invers bezeichnet. Weiterhin kann ein EL-Element auch in beide Richtungen leuchten. Diese Anordnung wird als beidseitig bezeichnet. Unter einer zumindest teilweise transparenten Abdeckschicht oder einem zumindest teilweise transparenten Schutzlaminat versteht man eine Abdeckschicht oder ein Schutzlaminat mit einer Transmission des eingestrahlten Lichts von mindestens einem Prozent. Beschreibung der einzelnen Schichten und Komponenten Substrat (1)
Als Substrat für ein EL -Element lassen sich viele Materialien verwenden. Üblicherweise leuchtet das EL- Element durch das Substrat (herkömmlicher Aufbau). Daher eignen sich zumindest teilweise transparente Materialien besonders gut als Substrate, wie beispielsweise Glas, Kunststoffe oder Kunststofffolien. Als Material für Kunststofffolien eignen sich alle Bekannten. Eine Vielzahl der Elektrolumineszenz-Elemente weisen Polyesterfolien oder Polyethylentherephthalatfolien als Trägermaterial auf mit einer beispielsweise im Sputterverfahren aufgedampften elektrisch leitenden, weitgehend transparenten Schicht. Daneben enthalten solche EL- Elemente im Allgemeinen weitere Schichten, beispielsweise Schutzschichten. Da diese im Stand der Technik zur Herstellung von EL-Elementen eingesetzten Schichten häufig einen spröden Charakter haben, bzw. einem Verformprozess mit hohen Temperaturen nicht standhalten, sind die herkömmlichen EL-Elemente im Aligemeinen eben ausgebildet, was beispielsweise bei Gegenständen, die dreidimensionale Geometrien aufweisen, zu einer Beeinträchtigung der Wahrnehmbarkeit von Informationsangaben und der Bedienbarkeit führen kann. Im Besonderen ist Polycarbonat wie beispielsweise in den als Makrofol ® und Bayfol ® (Bayer Materials cience AG, D-51368 Leverkusen, www.bayermaterialscience.com) bezeichneten Folien enthalten, die besonders für dreidimensional verformte EL-Elemente sehr gut geeignet sind.
Elektrisch ieitfähige Schichten (2) und (4)
Im herkömmlichen Aufbau wird auf das Substrat eine erste elektrisch leitfähige Schicht aufgebracht, im inversen Aufbau eine elektrisch leitfähige Schicht auf die Pigmentschicht aufgebracht, die zumindest teilweise transparent ist. Eine zumindest teilweise transparente, elektrisch leitfähige Schicht bedeutet eine Transmission des eingestrahlten Lichts durch die Schicht von mindestens 30 %, bevorzugt mehr als 70 %, besonders bevorzugt mehr als 80 %. Im Stand der Technik sind derartige Schichten bekannt, für nicht dreidimensional verformte EL-Elemente verwendet man häufig Indium Zinn Oxid (ITO) oder Antimon Zinn Oxid (ATO). PET Folien mit ITO Beschichtungen sind kommerziell erhältlich, beispielsweise von Sheldahl (1150 Sheldahl Road, Northfield, Minesota 55057). Es sind auch siebdruckbare Formulierungen erhältlich, die zur Herstellung von zumindest teilweise transparenten, elektrisch leitfähigen Beschichtungen geeignet sind, beispielsweise die ATO-Siebdruckpasten mit den Bezeichnungen 7162E oder 7164 von DuPont (Du- Pont (UK) Limited, Coldharbour Lane, Frenchay, Bristol BS 16 1 QD, England). Weiterhin gibt es auch elektrisch leitfähige Polymere wie PEDOT/PSS (Poly-3,4-dioxythiophen), das unter dem Markennamen Clevios ® von H.C. Starck erhältlich ist (H.C. Starck GmbH, Postfach 2540, 38615 Goslar, Deutschland) oder Polyanilin, die zur Ausbildung der elektrisch leitfähigen Elektrodenschichten geeignet sind. Siebdruckpasten, die diese polymeren, elektrisch leitfähigen Materialien enthalten sind kommerziell verfügbar, wie beispielsweise die Orgacon EL-P 3000 Series von Agfa (Agfa-Gevaert NV, Septestraat 27, B-2640 Mortsel, Belgien) oder die Siebdruckpasten von Ormecon (Ormecon GmbH, Ferdinand-Harten Str. 7, D- 22941 Ammersbeck, Deutschland). Bevorzugt wird als elektrisch leitfähiger Bestandteil einer Formulierung zur Herstellung der zumindest teilweise transparenten Elektrode des Elektrolumineszenz-Elements das Clevios Poly(3 ,4-ethylendioxythiophen)-System von H.C. Starck GmbH eingesetzt, das mit Lösungsmit- teln, Additiven und einer Polymerdispersion formuliert wird.
Die elektrisch leitfähige Schicht, die auf der dem Leuchten des EL-Elements entgegen gesetzten Seite angeordnet ist, muss nicht transparent sein. Daher können weitere Materialien verwendet werden, die nicht zur Verwendung in einer zumindest teilweise transparenten elektrisch leitfähigen Schicht geeignet sind. Beispielsweise eignen sich mit Silber gefüllte, elektrisch leitfähige Siebdruckpasten gut zur Herstellung der Rückelektrode. Weiterhin können auch andere Metalle oder Kohlenstoff als den elektrischen Strom leitende Füllstoffe verwendet werden. Siebdruckbare Silberpasten sind beispielsweise Electrodag ® PF 410 oder Eiectrodag ® PM 470 von Acheson (Acheson France S.A.S., 67152 Erstein Cedex, Frankreich), die 9145 Electroluminescent silver conductor Paste von DuPont (DuPont (UK) Limited, Coldharbour Lane, Frenchay, Bristol BS 16 1QD, England). Mit Kohlenstoff gefüllte, elektrisch leitfähige, siebdruckbare Pas- ten zur Herstellung einer nicht-transparenten Elektrode sind beispielsweise die 8144 electroluminescent carbon conductor Paste von DuPont (DuPont (UK) Limited, Coldharbour Lane, Frenchay, Bristol BS16 1 QD, England), oder die Electrodag ® PF 407 A von Acheson (Acheson France S.A.S., 67152 Erstein Cedex, Frankreich).
Abdeckschicht (5) Als Abdeckschicht eignen sich kommerzielle Lacke oder Druckfarben, wie sie beispielsweise unter den Markennamen Noriphan 1 [TR. Noriphan PCI, Noriphan N2K, Noricryl oder NoriPET von Pro 11 KG (Treuchtlinger Straße 29, D-91781 Weißenburg i. Bay.) angeboten werden oder unter Maraflex FX von Marabu GmbH & Co. KG (Asperger Straße 4, D-71732 Tamm), Polyplast PY von Fujifilm Sericol
Deutschland GmbH (Postfach 10 15 55, D-46215 Bottrop) oder Siebdruckfarben HG, SG, CP, CX, PK, J, TL sowie YN von Coates Screen Inks GmbH (Wiederholdpiatz 1, D-90451 Nürnberg) oder 1500 Series UV Flexiform, 1600 Power Print Series, 1700 Versa Print, 3200 Series, 1800 Power Print plus, 9700 Series, PP Series, 7200 Lacquer, 7900 Series von Nazdar (8501 Hedge Lane Terrace, Shawnee, KS 66227- 3290 USA) vertrieben werden. Die Formulierungen können wasserbasiert, lösungsmittelbasiert oder lö- sungsmittelfrei aufgebaut sein. Die Formulierungen können mittels UV-Strahlung vernetzbar sein, thermisch vernetzend und / oder trocknend und / oder IR vernetzend / trocknend.
Als Alternative zu einem Abdecklack oder zusätzlich zu diesem kann das EL-Element vorder- wie rückseitig mit einer weiteren Schutzschicht laminiert werden. Als Schutzschichten eignen sich alle dem Fachmann bekannten Materialien, die zur Lamination geeignet sind.
Silber-Busbars (6)
Um die Elektroden zu kontaktieren verwendet man in der Regel Silber-Busbars, da das Elektrodenmaterial an den Kontaktstellen zu hohen Kontakt widerständen führen würde. Silber-Busbar bezeichnet eine aus Silberleitpasten gedruckte Struktur, die in der Regel den Strom vom Kontakt in eine größere Fläche leitet. Im Stand der Technik finden sich viele geeignete Silberpasten, beispielsweise ElectiOdag ® PF 410 oder Electrodag ® PM 470 von Acheson (Acheson France S.A.S., 67152 Erstem Cedex, Frankreich), 9145 Electroluminescent silver conductor oder 5028 silver conductor von DuPont (DuPont (UK) Limited, Cold- harbour Lane, Frenchay, Bristol BS 16 1QD, England) oder ELX30 silver conductive paste von Electra Polymers Ltd. (Roughway Mill, Tonbridge, Kent, TN 1 1 9SG, England). Besteht die Rückelektrode des EL -Elements bereits aus einer mit Silber gefüllten Schicht ist eine Verstärkung mit einem Silber Busbar in der Regel nicht nötig.
Pigme schicht (3) Die Pigmentschicht enthält a) ein Bindemittelsystem bestehend mindestens aus einer Komponente mit thermisch reversibel blockierten Isocyanat-Gruppen aa) sowie eine oder mehrere isocyanatreaktive Komponenten ab) b) im elektrischen Feld lumineszierende Pigmente oder Kristalle, c) gegebenenfalls Lösungsmittel d) gegebenenfalls Additive und Zuschlagsstoffe
a) Bindemittelsystem Die Siehdruckpasten zur Herstellung von Druckschichten tur erfindungsgemäße EL -Elemente enthalten ein Bindemittel mit einem blockierten Isocyanat und mindestens einer isocyanatreaktiven Komponente, bevorzugt einem Polyol.
Die Mengenverhältnisse der Reaktionspartner werden bevorzugt so gewählt, dass das Äquivalent- Verhältnis der gegenüber Isocyanat reaktionsfähigen Gruppen zum Isocyanat bei 1 :0,2 bis 1 :3 bevorzugt bei 1 :0,5 bis 1 : 1,5 und ganz besonders bevorzugt um 1 liegt,
Ais geeignete Polyisocyanate für die Herstellung der Komponente aa) können die dem Fachmann an sich bekannten NCO-funktionellen Verbindungen einer Funktionalität von bevorzugt 2 oder mehr Verwendung finden. Dies sind typischerweise aliphatische, cycloaliphatische, araliphatische und/oder aromatische Di- oder Triisocyanate sowie deren höhermolekulare Folgeprodukte mit Iminooxadiazindion-, Isocyanurat-, Uretdion-, Urethan-, Allophanat-, Biuret-, Harnstoff-, Oxadiazintrion, Oxazolidinon-, Acylharnstoff- und/oder Carbodiimid-Strukturen, die zwei oder mehr freie NCO-Gruppen aufweisen.
Beispiele für solche Di- oder Triisocyanate sind Tetramethylendiisocyanat, Cyclohexan-1,3- und 1.4- diisocyanat, Hexamethylendiisocyanat (HDI), l-Isocyanato-3,3,5-trimethyl-5-isocyanato-methyl- cyclohexan (Isophorondiisocyanat, IPDI), Methylen-bis-(4-isocyanatocyclohexan), Tetramethylxylylen- diisocyanat (TMXDI), Triisocyanatononan, Toluylendiisocyanat (TDI), Di-phenylmethan-2,4"-und/oder 4,4'-diis o cyanat (MDI) , Tripheny Im ethan-4,4 '-diisocyanat, Naphtylen- 1 ,5-diisocyanat, 4- Isocyanatomethyl- 1 , 8-octandiisocyanat (Nonantriisocyanat, Triisocyanatononan, TIN) und/oder 1 ,6,1 1 - Undecantriisocyanat sowie deren beliebige Mischungen und ggf. auch Mischungen anderer Di-, Tri- und/oder Polyisocyanate.
Solche Polyisocyanate haben typischerweise Isocyanatgehalte von 0,5 bis 60 Gew.-%, bevorzugt 3 bis 30 Gew.-%, besonders bevorzugt 5 bis 25 Gew.-%.
Bevorzugt werden im erfindungsgemäßen Verfahren die höhermolekularen Verbindungen mit Isocyanurat-, Urethan-, Allophanat-, Biuret-, Iminooxadiazintrion-, Oxadiazintrion- und/oder Uretdiongruppen auf Basis aliphatischer und/oder cycloaliphatischer Diisocyanate eingesetzt.
Besonders bevorzugt werden im erfindungsgemäßen Verfahren in Komponente aa) Verbindungen mit Biuret-, Iminooxadiazindion,- Isocyanurat- und/oder Uretdiongruppen auf Basis von Hexamethylendiisocyanat, Isophorondiisocyanat und/ oder 4,4 ' -Diisocyanatodicyclohexylmethan eingesetzt.
Ganz besonders bevorzugt werden Polyisocyanate mit Isocyanuratstruktur auf Basis von Hexamethylen- diisocyanat und/oder Isophorondiisocyanat eingesetzt. Als Blockierungsmittel für die Isocyanatgruppen der Komponente aa) werden in der Fachwelt an sich bekannten monofunktionellen, thermisch abspaltbaren Blockierungsmittel eingesetzt. Beispiele sind Phenole, Oxime, wie Butanonoxim, Acetonoxim oder Cyclohexanonoxim, Lactame wie ε-Caprolactam, Amine wie N-tert.-Butyl-benzylamin oder Diisopropylamin, 3,5-Dimethylpyrazol, Triazol, Ester enthaltend deproto- nierbaren Gruppen, wie Malonsäurediethylester, Acetessigsäureethylester, bzw. deren Gemische und/oder Gemische mit anderen Blockierungsmitteln. Bevorzugt sind Butanonoxim, Acetonoxim, 3,5- Dimethylpyrazoi, Malonsäurediethylester, Acetessigsäureethylester und/oder deren Gemische, besonders bevorzugt ist 3,5-Dimethylpyrazol.
Die Herstellung und/oder Verwendung der Komponente aa) kann in einem Lösemittel erfolgen, beispiele sind N-Methylpyrrolidon, N-Ethylpyrrolidon, Xylol, Solvent Naphtha, Toluol, Butylacetat, Methoxypropy- lacetat, Aceton oder Methylethylketon. Es ist möglich, nach der Abreaktion der Isocyanatgruppen Lösemittel hinzu zu geben. Hierbei können auch protische Lösemittel wie Alkohole zum Einsatz kommen, die beispielsweise der Stabilisierung der Lösung oder der Verbesserung von Lackeigenschaften dienen. Es sind auch beliebige Mischungen von Lösemitteln möglich. Die Menge Lösemittels wird im allgemeinen so be- messen, dass 20 bis 99 gew.-%ige, vorzugsweise 50 bis 90 gew.-%ige Lösungen resultieren. Auch die Herstellung lösemittelfreier Systeme ist möglich.
Zur Beschleunigung der Vernetzung können auch Katalysatoren zugesetzt werden. Geeignete Katalysatoren sind beispielsweise tertiäre Amine, Zinn-, Zink-, oder Wismutverbindungen oder basische Salze. Bevorzugt sind Dibutylzinndilaurat und Zinndioctoat. Geeignete Verbindungen der isocyanatreaktiven Komponente ab) wie beispielsweise Polyhydroxylverbin- dungen sind bzgl. der Herstellung und Anwendung derartiger Einbrennlacke dem Fachmann an sich bekannt. Bevorzugt sind dies die an sich bekannten Bindemittel auf Basis von Polyhydroxypolyestem, Po- lyhydroxypolyurethanen, Polyhydroxypolyethern, Polycarbonat-Diolen oder von Hydroxylgruppen aufweisende Polymerisaten, wie den an sich bekannten Polyhydroxypolyacrylaten, Polyacrylatpolyurethanen und/oder Polyurethanpolyacrylaten b) Als Pigmente, die im elektrischen Feld leuchten, werden bevorzugt kupier- oder mangandotierte Zinksul- fid-Kristalle verwendet. Diese werden mit anorganischen Schichten, wie beispielsweise Aluminiumoxid, verkapselt, da die unverkapselten Pigmente im Betrieb feuchtigkeitsempfindlich sind. Verkapselte Pigmente sind Stand der Technik, dem Fachmann bekannt und kommerziell erhältlich, beispielsweise von GTP (Glo- bal Tungsten & Powders Corp, Hawes Street, Towanda, PA 18848, USA). c) Als Lösungsmittel können prinzipiell alle dem Fachmann bekannten Lösungsmittel verwendet werden, die für die beschriebenen Polyurethane geeignet sind, wie beispielsweise Ethoxypropylacetat, Ethylacetat, Butylacetat, Methoxypropylacetat, Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon, Toluol, Xylol, Solventnaphtha 100 oder beliebige Mischungen von zwei oder mehreren dieser Lösemittel in Mengen von vorzugsweise I bis 50 Gew.-%, bevorzugt 2 bis 30 Gew.-%, besonders bevorzugt 5 bis 1 5
Gew.-%, jeweils bezogen auf die Gesamtpastenmasse.
d) Weiterhin können 0, 1 bis 2 Gew.-% Additive zur Verbesserung des Fließverhaltens und des Verlaufs enthalten sein. Beispiele für Verlaufsmittel sind Additol XL480 von Cytec Surface Specialties Germany GmbH & Co KG (D-65203 Wiesbaden, www.cytec.com) in Butoxyl in einem Mischungsverhältnis von 40:60 bis 60:40. Als weitere Additive können 0,01 bis 10 Gew.-%, bevorzugt 0,05 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-%, jeweils bezogen aus die Gesamtpastenmasse, Rheologieadditive enthalten sein, die das Absetzverhalten von Pigmenten und Füllstoffen in der Formulierung vermindern, beispielswei- se BYK 410, BYK 41 1. BYK 430, BYK 431 ( BYK-Chemie. 46483 Wesel, Deutschland) oder beliebige Mischungen davon.
Dielektrikumschicht (4)
In der Regel befindet sich zwischen der Riickelektrode und der Pigmentschicht noch eine Isolations- oder Dielektrikumschicht. Diese verbessert die elektrische Durchschlagsfestigkeit zwischen den beiden im Betrieb als Kondensatorplatten dienenden Elektrodenschichten.
Die Dielektrikumschicht enthält a) ein Bindemittelsystem, bestehend mindestens aus aa) einer Isocyanatkomponente ab) einer isoeyanatreaktiven Komponente b) gegebenenfalls einen Füllstoff, vorzugsweise einen Anorganischen, der eine möglichst große Dielektrizitätskonstante hat, c) gegebenenfalls Lösungsmittel d) gegebenenfalls Additive
Das in der Dielektrikumschicht enthaltene Bindemittelsystem a) entspricht dem in der Pigmentschicht enthaltenen Bindemittelsystem und ist dort beschrieben. b) Die Formulierungen zur Herstellung der isolierenden, dielektrischen Schicht können bevorzugt Ba- riumtitanat als Füllstoff enthalten. Weiterhin können andere Materialien verwendet werden wie z.B. Blei-Zirkonat-Titanat oder Titandioxid. Weitere Füllmaterialien für eine Formulierung zur Herstellung einer Dielektrikumschicht sind dem Fachmann aus der Literatur bekannt, beispielsweise: BaTi03, SrTi03, KNb03, PbTi03, LaTa03, LiNb03, GeTe, Mg2Ti04, Bi2(Ti03)3, NiTi03, CaTi03, ZnTi03, Zn2Ti04, BaSn03, Bi(Sn03)3, CaSn03, PbSn03, MgSn03, SrSn03, ZnSn03, BaZr03, CaZr03, PbZr03, MgZr03, SrZr03, ZnZr03 oder Mischungen von zwei oder mehreren dieser Füllstoffe. Erfindungsgemäß bevorzugt als Füllstoff sind BaTi03 oder PbZr03 oder Mischungen daraus, vorzugsweise in Füllmengen von 5 bis 80 Gew.-%, bevorzugt von 10 bis 75 Gew.-%, besonders bevorzugt von 40 bis 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Paste, in der Paste zur Liersteilung der Dielektrikumschicht. c) Als Lösungsmittel können prinzipiell alle dem Fachmann bekannten Lösungsmittel verwendet werden, die für die beschriebenen Polyurethane geeignet sind, wie beispielsweise Ethoxypropylacetat, Ethylacetat, Butylacetat, M ethoxypropylacetat. Aceton, Methylethylketon, Methylisobutylketon,
Cyclohexanon, Toluol, Xylol, Solventnaphtha 100 oder beliebige Mischungen von zwei oder mehreren dieser Lösemittel in Mengen von vorzugsweise 1 bis 50 Gew.-%, bevorzugt 2 bis 30 Gew.-%, besonders bevorzugt 5 bis 15 Gew.-%, jeweils bezogen auf die Gesamtpastenmasse.
d) Weiterhin können 0, 1 bis 2 Gew.-% Additive zur Verbesserung des Fließverhaltens und des Verlaufs enthalten sein. Beispiele für Verlaufsmittel sind Additol XL480 von Cytec Surface Specialties Germany GmbH & Co KG (D-65203 Wiesbaden, www.cytec.com) in Butoxyl in einem Mischungsverhältnis von 40:60 bis 60:40. Als weitere Additive können 0,01 bis 10 Gew.-%, bevorzugt 0,05 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew. -%, jeweils bezogen aus die Gesamtpastenmasse, Rheologieadditive enthalten sein, die das Absetzverhalten von Pigmenten und Füllstoffen in der Formulierung vermindern, beispielsweise BYK 410, BYK 411 , BYK 430, BYK 431 (BYK-Chemie, 46483 Wesel, Deutschland) oder beliebige Mischungen davon.
Die erfindungsgemäßen Formulierungen und Pasten sind geeignet, sowohl zweidimensionale EL-Elemente herzustellen als auch mittels isostatischer Hochdruckverformung dreidimensional verformte EL-Elemente. Die dreidimensionale Verformung des Folienelements ist dabei derart ausgestaltet, dass in das ebene Folienelement eine oder mehrere Vertiefungen und/oder Erhebungen eingeformt sind. Die Formulierungen sind weiterhin zur Herstellung von E L- Elementen geeignet, die hinterspritzt werden können. Dazu müssen die Schichten, die durch Aufbringen und Trocknung und/oder Vernetzung der erfindungsgemäßen Formulie- rungen hergestellt werden den Temperaturen und Drücken im Verformungsprozess und Hinterspritzverfahren standhalten.
Beschreibung der Zeichnung
1 - Foliensubstrat
2 - Front elektrode
3 Pigmentschicht 4 Dielektrikumschicht 5 - Rückelektrode
Fig. 1 zeigt ein EL-Element nach herkömmlichen Aufbau. Das Licht wird durch das Substrat emittiert.
Fig. 2 zeigt ein EL-Element nach inversem Aufbau. Das Licht wird zur dem Substrat abgewandten Seite emittiert.
Beispiele
Die hier aufgeführten Beispiele sollen die Erfindung verdeutlichen und plausibel machen, schränken sie jedoch in keiner Weise auf die in den Beispielen verwendeten Angaben ein. Desmodur® BL 3475 BA/SN ist ein aliphatisches vernetzendes Embrennurethanharz mit blockierten Iso- cyanatgruppen, Basis H DI / IPDI, Lieferform ca. 75 %ig in Solventnaphtha® 100 / Butylacetat (1 : 1), NCO-Gehalt, blockiert ca. 8,2 %, Bayer MaterialScience AG, Leverkusen, DE
Desmophen® 670 BA ist ein schwach verzweigter, hydroxylgruppenhaltiger Polyester, Lieferform ca. 80%ig in Butylacetat, Hydroxylgehalt 3,5 ± 0,3 % ( DIN 53 240/2) %, Bayer MaterialScience AG, Lever- kusen, DE
Desmophen® 1 800 ist ein wenig verzweigtes, lösemittelfreies OH-Gruppenhaltiges Polyesterpolyol, Hydroxylgehalt 1,82 ± 0,09 % (ISO 6796) %, Bayer MaterialScience AG, Leverkusen, DE
Beispiel 1 :
Zur Herstellung einer erfindungsgemäßen Pigmentschicht enthalten Formulierungen die folgenden Rezeptu- ren:
Figure imgf000015_0001
Zur LIerstellung einer erfindungsgemäßen dielektrischen Schicht enthalten Formul ierungen folgende Re/ep- turen:
Figure imgf000015_0002
www . sigmaaldrich.com)
Beispiel 2:
Zur Herstellung einer erfindungsgemäßen Pigmentschicht enthalten Formulierungen die folgenden Rezepturen:
Figure imgf000016_0001
Zur Herstellung einer erfindungsgemäßen dielektrischen Schicht enthalten Formulierungen folgende Rezepturen:
Figure imgf000016_0002
Beispiel für die Herstellung eines EL-Elements im Siebdruck mit Formulierungen, die blockierte Isocyanate enthalten: Alle im Beispiel beschriebenen Schichten wurden mit einer Siebdruckmaschine ATMACE (ESC Europa- Siebdmckmaschinen-Centrum Verwaitungsges. mbH, 32108Bad Salzuflen, Deutschland) gedruckt. Auf eine P olycarb onatfolie (Bayfol CR 1 -4 250 μτη, Bayer MaterialScience AG) wurde die erste elektrisch leitfähige Schicht gedruckt, wie sie in WO 2008/071412 auf Seite 21 in der linken Spalte der Tabelle beschrieben wurde, vergleiche Tabelle 5: Tabelle 5. Zusammensetzung einer Formulierung zur Herstellung einer elektrisch leitfähigen Schicht, wie in WO 2008/071412, Seite 21, linke Spalte der Tabelle beschrieben.
Figure imgf000017_0001
Nach Trocknung der elektrisch leitfähigen Schicht (30 Minuten bei 1 10 °C) wurde eine Pigmentschicht
(gemäß Tabelle 1 Rezeptur PI) nass in nass gedruckt. Die Pigmentschicht wurde bei 1 10 °C im Bandtrockner für fünf Minuten getrocknet, daraufhin im Trockenschrank für weitere 10 Minuten bei 1 10 °C. Anschließend wurde die Dielektrikumschicht (gemäß Tabelle 2, Rezeptur Dl) nass in nass gedruckt und ebenfalls bei 110 °C im Bandtrockner für fünf Minuten, sowie für 10 Minuten im Trockenschrank ge- trocknet. Diese Temperaturen wurden gewählt, da das verwendete Substrat bei höheren Temperaturen im Trockenschrank wellig wird und das verwendete blockierte Isocyanat bei geringeren Temperaturen nicht mehr deblockiert wird. Anschließend wurde eine zweite elektrisch leitfähige Schicht aufgedruckt, wozu dieselbe Formulierung wie für die erste elektrisch leitfähige Schicht verwendet wurde. Nach Trocknung dieser elektrisch leitfähigen Schicht (30 Minuten bei 110 °C im Trockenschrank) wurde das EL -Element durch Aufdrucken von Silber-Busbars (Acheson Electrodag PM-470) zur Verstärkung der elektrischen Leitfähigkeit der Elektroden komplettiert.
Die bereits benutzte Pigmentpaste kann nach dem Druck aus dem Sieb genommen werden. Weiterhin ist bei Sieben in Rahmengrößen von 1150 mm mal 1350 mm eine Flutmenge von etwa ein bis eineinhalb Kilogramm Formulierung notwendig. Sowohl die Flutmenge als auch Reste, die im Überschuss angesetzt wur- den können für Wochen in geschlossenen Kunststoffgebinden aufgehoben und jederzeit wieder verwendet werd en. Bei den im Vergleich sbeispiel angesetzten Pasten (Rezeptur P2) ist eine Wiederverwendung nicht mehr möglich, da die Paste durch Vernetzung des Bindemittels innerhalb weniger Stunden eine so starke Viskositätserhöhung erfährt, dass sie nicht mehr fehlerfrei druckbar ist.
Um den Vorteil, den ein System mit einem blockierten Isocyanat bietet zu dokumentieren, wurde die Visko- sität nach Ansetzen und nach mehreren Stunden bestimmt. Als Systeme wurden das hier im Beispiel angeführte Bindemittel Desmodur 3475 BA/SN mit Desmophen 670 verwendet, als Vergleichssystem das in WO2008068016 (EL-Element enthaltend eine semitransparente Metallfolie und Herstellungsverfahren und Anwendung) angegebene System (Desmodur N75 MPA und Desmophen 670). Zur Messung der Viskositäten wurden Verlaufsadditive und Füllstoffe nicht verwendet, da hier nur die Reaktion des Isocyanats mit dem Polyol verfolgt werden soll, Ziel der Viskositätsmessungen ist das Verfolgen der Reaktion. Dabei wird gezeigt, dass die Viskosität der Mischung mit dem nicht blockierten Isocyanat (Desmodur N75 MPA) durch die Vernetzung des Bindemittels zunimmt, während die Mischung mit dem blockierten Isocyanat nicht reagiert und die Viskosität sich nur marginal ändert. Die Änderung der Viskosität ist somit entscheidend nicht ihr absoluter Wert. Dieser hängt u.a. von der Menge des Lösungsmittels ab, der bei beiden Ansätzen unterschiedlich ist. Folgende Ansätze wurden für die Viskositätsbestimmungen hergestellt:
Vergleichsbeispiel ( nicht blockiertes Isocyanat):
Figure imgf000018_0001
Erfindungsgemäßes Beispiel (Formulierung mit blockiertem Isocy;
Figure imgf000018_0002
Von diesen Formulierungen wurde nach Ansatz die Viskosität gemessen, nach vier bis fünf Stunden, sowie nach ca. 24 Stunden.
Das nicht blockierte System (Desmodur N75 MPA) - Vergleichsbeispiel - zeigt innerhalt der ersten 5 Stunden nur einen leichten Anstieg der Viskosität (0,388 mPa- s auf 0,451 m a s bei einer Scherrate von 10 s"1) jedoch eine Verdoppelung der Viskosität nach insgesamt 17 h (0,953 mPa-s bei 10 s"1). Das blockierte System (Desmodur 3475) - erfindungsgemäßes Beispiel - hat nach Ansetzen der Formulierung eine Viskosität von 1 ,98 mPa-s bei 10 s"1, viereinhalb Stunden nach Ansetzen der Formulierung eine Viskosität von 1 ,93 mPa-s bei 10 s"1 und nach 27 Stunde eine Viskosität von 2,00 mPa s bei 10 s"1. Die Viskosität steigt also nicht an. Drei Tage nach Ansetzen der Formulierungen ist das nichtblockierte System fest (nicht mehr messbar), das Blockierte hingegen ist unverändert und kann weiterhin verwendet werden.
Die Viskositätsmessungen wurden auf einem Physica MCR 301 der Firma Anton Paar GmbH (8054 Graz, Österreich) durchgeführt. Die Temperatur wurde bei allen Messungen auf 25,0 °C eingestellt. Es wurde eine Kegel/Platte-Anordnung verwendet, wobei der Kegel einen Durchmesser von 49,966 mm hatte und der Kegelwinkel 1,994 ° betrug.

Claims

Patentansprüche:
1. EL-Element enthaltend ein Substrat, eine Front- und eine Rückelektrode sowie eine Pigmentschicht, wobei die Pigmentschicht enthält: a) ein Bindemittelsystem enthaltend eine Komponente mit thermisch reversibel blockierten Isocyanat -Gruppen aa) sowie eine oder mehrere isocyanatreaktive Komponenten ab) und b) im elektrischen Feld lumineszierende Pigmente oder Kristalle.
2. EL-Element gemäß Anspruch 1, wobei das Bindemittelsystem als Komonente aa) enthält: aliphatische, cycloaliphatische, araliphatische und/oder aromatische Di- oder Triisocyanate sowie deren höhermolekulare Folgeprodukte mit Iminooxadiazindion-, Isocyanurat-, Uretdion-, Urethan-, Allophanat-, Biuret-, Harnstoff-, Oxadiazintrion, Oxazolidinon-, Acylharnstoff- und/oder Car- bodiimid-Strukturen, die zwei oder mehr freie NCO-Gruppen aufweisen, und als Komponente ab) Phenole, Oxime, wie Butanonoxim, Acetonoxim oder Cyclohexanonoxim, Lactame wie c- Caprolactam, Amine wie N-tert.-Butyl-benzylamin oder Diisopropylamin, 3,5-Dimethylpyrazol, Triazol, Ester enthaltend deprotonierbaren Gruppen, wie Malonsäurediethylester, Acetessigsäureet- hylester, bzw. deren Gemische und/oder Gemische mit anderen Blockierungsmitteln.
3. EL-Element gemäß Anspruch 2, wobei Komponente aa) ausgewählt ist aus mindestens einer aus der Gruppe bestehend aus T etr amethylendiis ocyanat, Cyclohexan-1,3- und 1 ,4-diisocyanat, Hexamethy- lendiisocyanat (HDI), 1 -Isocyanato-3,3,5-trimethyl-5-isocyanato-methyl-cyclohexan (Isophoron- diis ocyanat, IPDI), Methyl en-bis-(4-isocyanatocyclohexan), Tetramethylxylylendiisocyanat (TMXDI), Triisocyanatononan, T oluylendiis ocyanat (TDI), Di-phenylmethan-2.4' -und/oder 4,4' - diisocyanat (MDI), Triphenylmethan-4,4'-diisocyanat, Naphtylen- 1 ,5-diisocyanat, 4- Isocyanatomethyl-l ,8-octandiisocyanat (Nonantriisocyanat, Triis ocy anatononan, TIN) und 1 ,6,1 1 Undecantriisocyanat.
4. EL-Element gemäß Anspruch 2, wobei Komponente ab) ausgewählt ist aus mindestens einer aus der Gruppe bestehend aus Butanonoxim, Acetonoxim, 3,5-Dimethylpyrazol, Malonsäurediethylester und Acetessigsäureethylester.
5. EL-Element gemäß Anspruch 1 , wobei die Isocyanat-Gruppen aa) Isocyanatgehalte von 0,5 bis 60 Gew.-% aufweisen (bezogen auf Komponente aa).,
6. EL-Element gemäß Anspruch 1 enthaltend weitere Schichten ausgewählt aus mindestens einer aus der Gruppe bestehend aus Dielektrikumschicht, Abdeckschicht.
PCT/EP2011/070555 2010-11-25 2011-11-21 El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen WO2012069411A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/989,044 US20130313968A1 (en) 2010-11-25 2011-11-21 El elements containing a pigment layer comprising crosslinking systems with blocked isocyanate groups
EP11791497.8A EP2644007A1 (de) 2010-11-25 2011-11-21 El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen
JP2013540311A JP2014503940A (ja) 2010-11-25 2011-11-21 ブロックトイソシアネート基を有する架橋系を有する色素層を含むel素子
CN2011800660097A CN103329624A (zh) 2010-11-25 2011-11-21 包括含具有封端异氰酸酯基团的交联体系的颜料层的el元件
KR1020137016346A KR20130119953A (ko) 2010-11-25 2011-11-21 블로킹된 이소시아네이트 기를 갖는 가교계를 포함하는 안료 층을 함유하는 el 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010061963A DE102010061963A1 (de) 2010-11-25 2010-11-25 EL-Elemente enthaltend eine Pigmentschicht mit vernetzenden Systemen mit blockierten Isocyanat-Gruppen
DE102010061963.9 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012069411A1 true WO2012069411A1 (de) 2012-05-31

Family

ID=45099061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070555 WO2012069411A1 (de) 2010-11-25 2011-11-21 El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen

Country Status (8)

Country Link
US (1) US20130313968A1 (de)
EP (1) EP2644007A1 (de)
JP (1) JP2014503940A (de)
KR (1) KR20130119953A (de)
CN (1) CN103329624A (de)
DE (1) DE102010061963A1 (de)
TW (1) TW201236505A (de)
WO (1) WO2012069411A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014819A1 (en) * 2012-03-29 2015-01-15 Fujifilm Corporation Underlying film composition for imprints and pattern forming method using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190132B1 (de) * 2014-09-04 2018-05-23 Asahi Kasei Kabushiki Kaisha Polyisocyanatzusammensetzung, beschichtungszusammensetzung, beschichtungsfilm und herstellungsverfahren dafür und feuchtigkeitsstabilisierungsverfahren
KR20180051162A (ko) * 2016-11-08 2018-05-16 (주)호이스 박막형태의 내장형 축전기 제조방법 및 그로써 제조된 박막형태의 내장형 축전기
WO2018186297A1 (ja) * 2017-04-03 2018-10-11 リンテック株式会社 高周波誘電加熱接着シート、及び高周波誘電加熱接着シートを用いてなる接着方法
US11193031B2 (en) * 2017-05-15 2021-12-07 Alpha Assembly Solutions Inc. Dielectric ink composition
CN110785450B (zh) * 2017-06-23 2021-10-26 旭化成株式会社 封端异氰酸酯组合物、单组分型涂料组合物以及涂膜
JP7288858B2 (ja) * 2017-11-21 2023-06-08 三井化学株式会社 ブロックイソシアネート組成物、および、コーティング剤

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2631949A1 (de) * 1976-07-15 1978-01-19 Bayer Ag Strahlen-haertende bindemittel
US4853079A (en) * 1984-12-03 1989-08-01 Lumel, Inc. Method for making electroluminescent panels
DE4430907A1 (de) 1993-12-09 1995-06-14 Aeroquip Corp Dreidimensionale Elektrolumineszenzanzeige
US20020074228A1 (en) * 2000-10-26 2002-06-20 Nippon Paint Co., Ltd. Electrodeposition coating composition
WO2003037039A1 (de) 2001-10-24 2003-05-01 Lumitec Ag Dreidimensionale elektrolumineszenzanzeige
DE10234031A1 (de) 2002-02-13 2003-08-28 Albea Kunststofftechnik Gmbh & Elektrolumineszenz-Leuchtfläche
US20040118687A1 (en) * 2002-11-08 2004-06-24 Hisaichi Muramoto Process for forming cured gradient coating film and multi-layered coating film containing the same
JP2007039633A (ja) * 2005-06-30 2007-02-15 Shinichiro Isobe マーキング剤
WO2008068016A1 (de) 2006-12-07 2008-06-12 Bayer Materialscience Ag El-element enthaltend eine semitransparente metallfolie und herstellungsverfahren und anwendung
WO2008071412A1 (de) 2006-12-13 2008-06-19 Lyttron Technology Gmbh Biegbares 3d-el-hdfv element und herstellungsverfahren und anwendung
WO2009043539A2 (de) 2007-09-28 2009-04-09 Bayer Materialscience Ag Verfahren zur herstellung eines tiefgezogenen folienteils aus thermoplastischem kunststoff
WO2009053458A1 (de) * 2007-10-25 2009-04-30 Lyttron Technology Gmbh Mindestens einschichtiges anorganisches dickfilm-ac elektrolumineszenz-system mit unterschiedlich konturierten und weitgehend transparenten leitschichten, verfahren zu dessen herstellung und dessen verwendung
WO2009079004A1 (en) * 2007-12-18 2009-06-25 Lumimove, Inc., Dba Crosslink Flexible electroluminescent devices and systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637334A1 (de) * 1996-09-13 1998-03-19 Bayer Ag Stabilisierte blockierte Isocyanate
JP4140323B2 (ja) * 2001-09-19 2008-08-27 富士ゼロックス株式会社 有機電界発光素子
JP4449282B2 (ja) * 2001-09-19 2010-04-14 富士ゼロックス株式会社 有機電界発光素子
FR2849042B1 (fr) * 2002-12-24 2005-04-29 Rhodia Chimie Sa Composition polycondensable a reticulation retardee, son utilisation pour realiser des revetements et revetements ainsi obtenus
US7078474B2 (en) * 2004-07-07 2006-07-18 E. I. Dupont De Nemours And Company Thermally curable coating compositions
US7804087B2 (en) * 2006-12-07 2010-09-28 Eastman Kodak Company Configurationally controlled N,N'-Dicycloalkyl-substituted naphthalene-based tetracarboxylic diimide compounds as N-type semiconductor materials for thin film transistors
EP1992478A1 (de) * 2007-05-18 2008-11-19 LYTTRON Technology GmbH Verbundglaselement, bevorzugt Verbundsicherheitsglaselement, mit integrierter Elektrolumineszenz (EL)-Leuchtstruktur
DE102007030108A1 (de) * 2007-06-28 2009-01-02 Lyttron Technology Gmbh Anorganisches Dickfilm-AC Elektrolumineszenzelement mit zumindest zwei Einspeisungen und Herstellverfahren und Anwendung
JP2010170830A (ja) * 2009-01-22 2010-08-05 Sumitomo Chemical Co Ltd バンク絶縁層用組成物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2631949A1 (de) * 1976-07-15 1978-01-19 Bayer Ag Strahlen-haertende bindemittel
US4853079A (en) * 1984-12-03 1989-08-01 Lumel, Inc. Method for making electroluminescent panels
DE4430907A1 (de) 1993-12-09 1995-06-14 Aeroquip Corp Dreidimensionale Elektrolumineszenzanzeige
US20020074228A1 (en) * 2000-10-26 2002-06-20 Nippon Paint Co., Ltd. Electrodeposition coating composition
WO2003037039A1 (de) 2001-10-24 2003-05-01 Lumitec Ag Dreidimensionale elektrolumineszenzanzeige
DE10234031A1 (de) 2002-02-13 2003-08-28 Albea Kunststofftechnik Gmbh & Elektrolumineszenz-Leuchtfläche
US20040118687A1 (en) * 2002-11-08 2004-06-24 Hisaichi Muramoto Process for forming cured gradient coating film and multi-layered coating film containing the same
JP2007039633A (ja) * 2005-06-30 2007-02-15 Shinichiro Isobe マーキング剤
WO2008068016A1 (de) 2006-12-07 2008-06-12 Bayer Materialscience Ag El-element enthaltend eine semitransparente metallfolie und herstellungsverfahren und anwendung
WO2008071412A1 (de) 2006-12-13 2008-06-19 Lyttron Technology Gmbh Biegbares 3d-el-hdfv element und herstellungsverfahren und anwendung
WO2009043539A2 (de) 2007-09-28 2009-04-09 Bayer Materialscience Ag Verfahren zur herstellung eines tiefgezogenen folienteils aus thermoplastischem kunststoff
WO2009053458A1 (de) * 2007-10-25 2009-04-30 Lyttron Technology Gmbh Mindestens einschichtiges anorganisches dickfilm-ac elektrolumineszenz-system mit unterschiedlich konturierten und weitgehend transparenten leitschichten, verfahren zu dessen herstellung und dessen verwendung
WO2009079004A1 (en) * 2007-12-18 2009-06-25 Lumimove, Inc., Dba Crosslink Flexible electroluminescent devices and systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014819A1 (en) * 2012-03-29 2015-01-15 Fujifilm Corporation Underlying film composition for imprints and pattern forming method using the same

Also Published As

Publication number Publication date
CN103329624A (zh) 2013-09-25
TW201236505A (en) 2012-09-01
DE102010061963A1 (de) 2012-05-31
JP2014503940A (ja) 2014-02-13
KR20130119953A (ko) 2013-11-01
EP2644007A1 (de) 2013-10-02
US20130313968A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
EP2644007A1 (de) El-elemente enthaltend eine pigmentschicht mit vernetzenden systemen mit blockierten isocyanat-gruppen
EP1162238B1 (de) Leitfähige Beschichtungen hergestellt aus Mischungen enthaltend Polythiophen und Lösemittel
EP2232601B1 (de) Energiewandler hergestellt aus filmbildenden wässrigen polyurethan-dispersionen
EP2334742B1 (de) Härtende zusammensetzungen zur beschichtung von verbundwerkstoffen
EP2340575B1 (de) Energiewandler auf basis von polyurethan-lösungen
EP2422530A1 (de) Verfahren zur herstellung eines elektromechanischen wandlers
CN102473841A (zh) 生产机电换能器的方法
EP2867281A1 (de) Dielektrischer polyurethan film
EP2870189A1 (de) Verfahren zur herstellung eines mehrschichtigen dielektrischen polyurethanfilmsystems
EP1927466A1 (de) Verbundgebilde mit einer Polyurethanschicht, Verfahren zu deren Herstellung und Verwendung
WO2010012389A1 (de) Elektromechanischer wandler mit einem polymerelement auf polyisocyanat-basis
DE19832570C2 (de) Hochtemperaturbeständige flexible Druckfarbe und deren Verwendung
DE1955478A1 (de) Verwendung von Polyurethanen zur Herstellung von Lackfilmen durch elektrostatische Pulverbeschichtung
EP2368935B1 (de) Polymerschichtenverbund mit verbesserter Haftung der Schichten
DE10219462A1 (de) Mehrschichtmaterialien zum Herstellen von Verpackungen
DE102009010990A1 (de) Solarzellenmodul und Verfahren zu seiner Herstellung
EP3037449A1 (de) Dipol-modifiziertes Polyurethan, Verfahren zu dessen Herstellung und Verwendung zur Herstellung von elektroaktiven Polyurethan-basierten Gießelastomerfolien
WO2012152500A1 (de) Siebdruckverfahren mit zu einem polyurethanpolymer reagierender drucktinte
EP2588546A1 (de) Verfahren zur herstellung einer farb - und/oder effektgebenden mehrschichtigen lackierung, wobei die farbbildende beschichtungszusammensetzung ein alkylsubstituiertes cycloaliphatisches keton enthält zur verminderung der nadelstichanzahl
EP3098248A1 (de) Polymeres, nicht angebundenes additiv zur erhöhung der dielektrizitätskonstante in elektroaktiven polyurethan polymeren
DE2008710B2 (de) Herstellung von Lackfilmen durch elektrostatische Pulverbeschichtung
DD246778A1 (de) Verfahren zur herstellung von thermoplastischen polyurethanen als kaschierklebstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011791497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137016346

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989044

Country of ref document: US