WO2012067490A1 - Électrode sélective d'ions - Google Patents

Électrode sélective d'ions Download PDF

Info

Publication number
WO2012067490A1
WO2012067490A1 PCT/MY2011/000140 MY2011000140W WO2012067490A1 WO 2012067490 A1 WO2012067490 A1 WO 2012067490A1 MY 2011000140 W MY2011000140 W MY 2011000140W WO 2012067490 A1 WO2012067490 A1 WO 2012067490A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective electrode
ion selective
diamine
bisphenol
conductive polymer
Prior art date
Application number
PCT/MY2011/000140
Other languages
English (en)
Inventor
Ahmad Mohd Rais
Alva Sagir
Abd Rashid Norazah
Abd Aziz Aiman Sajidah
Original Assignee
Mimos Berhad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimos Berhad filed Critical Mimos Berhad
Publication of WO2012067490A1 publication Critical patent/WO2012067490A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Definitions

  • the present invention relates to ion selective electrode for potentiometric measurement .
  • Ion selective electrode has been widely employed as chemical sensors in potentiometric measurement.
  • the ISE sensor comprises selective polymeric membrane, electrochemical reduction-oxidation (redox) transducer, conducting film or wire and a reference electrode.
  • Reversible redox transducer is often used to convert chemical potential to electrical signal.
  • Silver-silver chloride transducer is the most choice but conducting polymer, especially polypyrrole (PPy), is becoming more common.
  • Polypyrrole has been the most widely used due to its ease of use, good sensor characteristics and mechanical strength.
  • Polypyrrole (PPy) is often deposited on electrode surface via electropolymerization of the doped pyrrole monomer electrolyte.
  • the underlying layer preferably has clean surface and uniform thickness of screen-printed carbon. Electropolymerization of pyrrole on metallic surface is less common. Although metals like silver, copper and gold are better conductor for signal transmission, formation of polypyrrole transducer layer on metal electrode surface can take hours.
  • the electrode is too small and the electrical contacts are inaccessable for contacting, electrical shorting occurs when the unprotected contact pads are immersed in the pyrrole monomer electrolyte solution, the electrode has metallic surface wherein electropolymerization takes hours to complete.
  • the solution cast conductive polymer transducer layerl6 comprises of ; a bisphenol A propoxylate diglycidyl ether, a purified diamine binder; a polymer; an organic sulfonate salt; and a polar solvent.
  • the solution cast conductive polymer transducer layer 16 wherein the polymer is at least one or combination of polypyrrole, polythiophene, polyaniline.
  • the polymer is polypyrrole.
  • the solution cast conductive polymer transducer layer 16 contains 3 to
  • the diamine binder is selected from at least one or combination of m - xylylenediamine, /?-xylylenediamine, /?-phenylenediamine, 1,3-diaminopropane, 1 ,4-diaminobutane.
  • the conductor layer 14 is selected from the list of carbon, silver, copper, gold, platinum or combination thereof.
  • the conductor layer 14 is silver
  • the polar solvent is selected from the list of methanol, ethanol, n - propanol, wo-propanol, tetrahydrofuran, diethylether, dimethylsulfoxide, acetonitrile, acetone, water or combination thereof.
  • the retaining dam 20 is screen-printed paste of Bisphenol A propoxylate diglycidyl ether-diamine paste.
  • the solution cast conductive polymer transducer layer 16 comprises 3 to 10 percent polypyrrole, 1 to 5 percent Bisphenol A propoxylate diglycidyl ether, 1 to 5 percent diamine crosslinker and 2 to 5 percent /?ora-toluene sulfonic acid, all by weight, in polar solvent.
  • the solution cast polymer transducer layer 16 minimizes the needs of continuous stirring during preparation of the transducer layer.
  • the ion selective electrode 10 is producible in shorter time.
  • the ion selective electrode 10 gives excellent electrochemical characteristics.
  • the ion selective electrode 10 is usable as pH sensor, potassium
  • Figure 1 illustrates Ion selective electrode with solvent cast transducer.
  • Figure 2 illustrates Solvent cast conductive polypyrrole with Bisphenol A
  • Figure 3 illustrates pH ISE with cast polypyrrole transducer.
  • Figure 4 illustrates Potassium ISE with cast polypyrrole transducer.
  • FIG. 5 illustrates Nitrate ISE with cast polypyrrole transducer
  • the present invention relates to ion selective electrode 10 with solvent cast polymer transducer layer 16.
  • the Ion selective electrode 10 comprising a substrate 12 underlaying a conductor layer 14; a solution cast conductive polymer transducer layer 16 to convert chemical concentration to electrical signal; a sensing membrane 18 having ion recognizing molecule, lipophilic salt and lipophilic organic polymer to selectively detect ionic analyte; a retaining dam 20 to contain a cocktail of the sensing membrane 18.
  • the solution cast conductive polymer transducer layer 16 comprises of ; a bisphenol A propoxylate diglycidyl ether, a purified diamine crosslinker; a polymer; an organic sulfonate salt; and a polar solvent.
  • a composition of homogenous PPy cocktail targeted for solvent casting application is used for preparing the transducer 16.
  • the cocktail contains Bisphenol A propoxylate diglycidyl ether with primary diamine crosslinkers that can be cured at ambient temperature.
  • the cocktail is either pipetted or drop coated onto ion selective electrode 10 (ISE) surface, preferably clean screen- printed carbon surface, to form reproducible PPy transducer layer 16 that gives excellent electrochemical characteristics.
  • ISE ion selective electrode 10
  • silver is used as conductor underlying layer 14 and wire trace is first screen printed followed by screen printing of carbon layer.
  • the screen printed carbon surface is cleaned by sonication and the solution cast polypyrrole tranducer cocktail containing 5 weight percent of Bisphenol A propoxylate diglycidyl ether resin and m-xylylenediamine crosslinker in ethanol was drop coated onto the clean carbon surface forming the solution cast polypyrrole transducer layer 16.
  • the solution cast polypyrrole transducer layer 16 was dried at room temperature under continuous flow of nitrogen.
  • PPy cocktail 22 is perferably homogenous, not sticky or too viscous to give reproducible results and facilitate dispensing.
  • binding (epoxy binder) component it is important that the binding (epoxy binder) component be able hold the poplypyrrole active component together while maintaining its conductive characteristic and reduction- oxidation properties.
  • the epoxy binder is electrically insulating and excessive use of it yields layer with high impedance and fails to conduct electrical signal.
  • the homogeneous polypyrrole cocktail for solvent casting on electrode 14 surface contains binder material that is cure-able at room temperature or gentle oven treatment.
  • the solution cast polypyrrole gives reproducible cyclic voltammograms and usable as transducer layer 16 for chemical sensors.
  • the solution cast conductive polymers is usable as transducer layer 16 for ion selective electrode 10 chemical sensors.
  • a circular shaped carbon layer is screen printed on pre-fabricated conductor layer 14 preferably silver.
  • the silver layer 14 can be electrochemically deposited or screen printed on the substrate 12.
  • Bisphenol A propoxylate diglycidyl ether-diamine binder is repeatedly screen-printed and oven cured to afford sufficient height to function as retaining dam 20.
  • Solution cast conductive polymer cocktail can be dispensed into the dam 20 and dried under inert atmosphere forming the transducer layer 16.
  • the function of the heat curable retaining dam 20 is to contain the cocktail of sensing membrane 18 without losing the active components via diffusion into the said retaining dam 20.
  • the polymeric sensing membrane 18 and photocurable sensor components can also be dropped coated into the dam 20, followed by UV-curing or drying.
  • Poplypyrrole is use as example for the solution cast polymer transducer layer 16.
  • other conductive polymer may be used in place of polypyrrole such as polythiophene, polyaniline or combination thereof.
  • the diamine binder may be selected from at least one or combination of m-xylylenediamine, p-xylylenediamine, p - phenylenediamine, 1,3-diaminopropane, 1,4-diaminobutane.
  • the polar solvent is selected from the list of methanol, ethanol, n-propanol, iso- propanol, tetrahydrofuran, diethylether, dimethylsulfoxide, acetonitrile, acetone, water or combination thereof.
  • the method of preparation of ion selective electrode 10 is applicable to manufacture a wide range of chemical sensor as described in the following examples.
  • Carbon paste is screen printed on conductor layer 14 such as copper-gold or prefabricated screen printed silver.
  • the optimized dry thickness of both screen printed carbon and silver conductor layer 14 are 100 micrometer.
  • the circular shaped conductor layer 14 known as electrodes with 3mm diameter is printed on polyester or printed circuit board substrate 12 and separated by 2mm spacing from each other for integrated multi-sensor application.
  • the printed paste was cured at 120 °C to give the desired dry thickness.
  • Solder mask insulating layer was also screen printed to define the electrode window, separate the wells and protect the printed conducting wires 14.
  • Bisphenol A diglycidyl resin (100 mg) was transferred into a glass vial and 50 uL of purified m-xylylene diamine crosslinker was added into the resin, and the mixture diluted with ethanol to give 10 weight percent solution of the Bisphenol-m-xylylene binder.
  • the vial was tightly capped and sonicated at 40 °C for 30 minutes.
  • Doped polypyrrole powder 300 mg and 50 mg sodium ⁇ -toluene sulfonate were added into a glass vial and the mixture was dissolved with ethanol to give 10 weight percent doped polypyrrole solution.
  • the vial was tightly capped and sonicated at 40 °C for 30 minutes.
  • the polypyrrole-salt solution (30 uL) and 20 uL of the Bisphenol-diamine solution and were combined and in a glass vial.
  • the vial was tightly capped and sonicated at 40 °C for 30 minutes.
  • the solvent cast polypyrrole cocktail was stored at 4 °C before use.
  • pH Sensor cocktail was prepared by mixing 37mg poly(vinyl) chloride (PVC), 3mg sodium tetrakis[bis-3,5(trifluoromethyl)phenyl] borate (NaTFPB), 10.6mg tridode- cylamine (Hydrogen Ionophore I), 67mg bis(2-Ethylhexyl) Sebacate (DOS) and 600 uL tetrahydofuran (THF) solvent.
  • the solvent cast polypyrrole solution (5 uL), prepared as described in Example 2, was drop coated onto screen-printed carbon electrode 14 and the solvent evaporated under nitrogen atmosphere for 1 hour.
  • Cyclic voltammetry of the solvent cast polypyrrole was performed with Metrohm Autolab system in 0.1M potassium chloride solution transducer layer 16 with silver-silver chloride double-junction reference electrode and platinum counter electrode.
  • the homogenous pH cocktail for the preparation of the sensing membrane 18 was drop coated on the freshly prepared polypyrrole transducer layer 16 and dried under continuous flow of nitrogen gas for 2 hours or air dried at ambient temperature for 12 hours.
  • This pH sensor was tested using commercial Ag AgCl double junction reference electrode with 0.1M LiOAc as outer solution. The results were shown in Figure 3.
  • the plots of emf response versus activity of hydrogen ion shows acceptable Nernstian response and linearity.
  • Potassium sensor cocktail was prepared by mixing 90mg poly( vinyl) chloride (PVC), 5.4mg potassium tetrakis[para-cholorophenyl] borate (KTpClPhB), 24.3mg
  • Valinomycin (Potassium Ionophore), 219.9mg bis(2-Ethylhexyl) Sebacate (DOS) an 1800 D L tetrahydofuran (THF) solvent.
  • the solvent cast polypyrrole solution (5 uL ), prepared as described in Example 2, was drop coated onto screen-printed carbon electrode 14 and the solvent evaporated under nitrogen atmosphere for 1 hour. Cyclic voltammetry of the solvent cast polypyrrole was performed with Metrohm Autolab system in 0.1M potassium chloride solution with silver-silver chloride double-junction reference electrode and platinum counter electrode.
  • the potassium cocktail for the preparation of the sensing membrane 18 was drop coated on the freshly prepared polypyrrole transducer layer 16 and dried under continuous flow of nitrogen gas for 2 hours or air dried at ambient temperature for 12 hours.
  • This potassium sensor was tested using commercial Ag/AgCl double junction reference electrode with 0.1M LiOAc as outer solution. The results were shown in Figure 4.
  • the plots of emf response versus activity of potassium ion shows acceptable Nernstian response and linearit
  • Nitrate sensor cocktail was prepared by mixing 33 mg poly( vinyl) chloride (PVC), 3 mg tetraoctyl ammonium nitrate, 67 mg 2-nitrophenyl octyl ether (NPOE) and 1 mL tetrahydofuran (THF) solvent.
  • the solvent cast polypyrrole solution (5
  • the nitrate sensor cocktail for the preparation of the sensing membrane 18 was drop coated on the freshly prepared polypyrrole transducer layer 16 and dried under continuous flow of nitrogen gas for 2 hours or air dried at ambient temperature for 12 hours.
  • This nitrate sensor was tested using commercial Ag/AgCl double junction reference electrode with 2M ammonium sulfate as outer solution. The results were shown in Figure 5.
  • the plots of emf response versus activity of nitrate ion shows acceptable Nernstian response and linearity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

L'invention concerne une électrode sélective d'ions (ISE) (10) pour mesure potentiométrique. L'électrode sélective d'ions (10) pour détection électrochimique comprend un substrat (12) ; une couche conductrice (14) ; une couche transductrice de polymère conducteur coulé en solution (16) pour transformer la concentration chimique en signal électrique ; une membrane de détection (18) comprenant une molécule reconnaissant les ions, un sel lipophile et un polymère organique lipophile pour détecter sélectivement un analyte ionique ; un réservoir de retenue (20) destiné à contenir un cocktail de la membrane de détection (18). L'électrode sélective d'ions est caractérisé en ce que la couche transductrice de polymère conducteur coulé en solution (l6) comprend du bisphénol A, un éther de propoxylate diglycidyle, un liant diamine purifié, un polymère, un sel de sulfonate organique et un solvant polaire. L'invention concerne également des procédés de production et d'utilisation des capteurs ISE.
PCT/MY2011/000140 2010-11-15 2011-06-23 Électrode sélective d'ions WO2012067490A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2010005364 2010-11-15
MYPI2010005364 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012067490A1 true WO2012067490A1 (fr) 2012-05-24

Family

ID=46084252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2011/000140 WO2012067490A1 (fr) 2010-11-15 2011-06-23 Électrode sélective d'ions

Country Status (1)

Country Link
WO (1) WO2012067490A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063725A (zh) * 2012-12-13 2013-04-24 浙江大学 一种基于导电聚苯胺的固体铵离子电极及其制备方法
WO2014092543A1 (fr) * 2012-12-11 2014-06-19 Mimos Berhad Capteur sélectif d'ions calcium
WO2015137796A1 (fr) * 2014-03-11 2015-09-17 Mimos Berhad Dispositif de détection et son procédé de fabrication
CN106053582A (zh) * 2016-05-20 2016-10-26 浙江刚竹网络科技有限公司 一种基于聚苯胺的高灵敏度汞离子电极及其制备方法
CN109239162A (zh) * 2018-08-20 2019-01-18 浙江大学 基于亚硒酸掺杂聚苯胺的亚硒酸根离子选择电极及其制备方法
CN111289596A (zh) * 2020-03-12 2020-06-16 南京腾森分析仪器有限公司 一种三电极体系、电化学传感器及其制备方法、电化学工作站及其应用
WO2023280374A1 (fr) * 2021-07-05 2023-01-12 Robert Bosch Gmbh Système de liant et de sel pour électrode sélective d'ions à contact solide
EP4130161A4 (fr) * 2020-03-30 2023-09-06 Nitto Denko Corporation Composition conductrice, électrode biologique et capteur biologique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215087A (ja) * 2002-01-22 2003-07-30 Jokoh Co Ltd 感応物質自然発生型陰イオン選択性電極および電極用応答膜
WO2005008232A1 (fr) * 2003-07-09 2005-01-27 Auburn University Capteurs electrochimiques reversibles pour polyions
EP1634922A1 (fr) * 2003-06-18 2006-03-15 Shin-Etsu Polymer Co., Ltd. Composition conductrice, enduit conducteur, resine conductrice, condensateur, element convertisseur photo-electrique et procede de production associe
WO2008079440A2 (fr) * 2006-07-10 2008-07-03 Medipacs, Inc. Hydrogel époxy super-élastique
JP2010108986A (ja) * 2008-10-28 2010-05-13 Hitachi Chem Co Ltd ゲート絶縁膜層成形材料、電界効果型トランジスタ及びこの電界効果型トランジスタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215087A (ja) * 2002-01-22 2003-07-30 Jokoh Co Ltd 感応物質自然発生型陰イオン選択性電極および電極用応答膜
EP1634922A1 (fr) * 2003-06-18 2006-03-15 Shin-Etsu Polymer Co., Ltd. Composition conductrice, enduit conducteur, resine conductrice, condensateur, element convertisseur photo-electrique et procede de production associe
WO2005008232A1 (fr) * 2003-07-09 2005-01-27 Auburn University Capteurs electrochimiques reversibles pour polyions
WO2008079440A2 (fr) * 2006-07-10 2008-07-03 Medipacs, Inc. Hydrogel époxy super-élastique
JP2010108986A (ja) * 2008-10-28 2010-05-13 Hitachi Chem Co Ltd ゲート絶縁膜層成形材料、電界効果型トランジスタ及びこの電界効果型トランジスタの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092543A1 (fr) * 2012-12-11 2014-06-19 Mimos Berhad Capteur sélectif d'ions calcium
CN103063725A (zh) * 2012-12-13 2013-04-24 浙江大学 一种基于导电聚苯胺的固体铵离子电极及其制备方法
WO2015137796A1 (fr) * 2014-03-11 2015-09-17 Mimos Berhad Dispositif de détection et son procédé de fabrication
CN106053582A (zh) * 2016-05-20 2016-10-26 浙江刚竹网络科技有限公司 一种基于聚苯胺的高灵敏度汞离子电极及其制备方法
CN109239162A (zh) * 2018-08-20 2019-01-18 浙江大学 基于亚硒酸掺杂聚苯胺的亚硒酸根离子选择电极及其制备方法
CN109239162B (zh) * 2018-08-20 2019-12-17 浙江大学 基于亚硒酸掺杂聚苯胺的亚硒酸根离子选择电极及其制备方法
CN111289596A (zh) * 2020-03-12 2020-06-16 南京腾森分析仪器有限公司 一种三电极体系、电化学传感器及其制备方法、电化学工作站及其应用
EP4130161A4 (fr) * 2020-03-30 2023-09-06 Nitto Denko Corporation Composition conductrice, électrode biologique et capteur biologique
WO2023280374A1 (fr) * 2021-07-05 2023-01-12 Robert Bosch Gmbh Système de liant et de sel pour électrode sélective d'ions à contact solide

Similar Documents

Publication Publication Date Title
WO2012067490A1 (fr) Électrode sélective d'ions
CN101871912B (zh) 一种全固态钾离子传感器及其制备方法
Bobacka et al. Plasticizer-free all-solid-state potassium-selective electrode based on poly (3-octylthiophene) and valinomycin
CN101915794B (zh) 一种全固态参比电极的制备方法
CN102980931B (zh) 一种基于功能离子液体的全固态离子选择性电极及其制备方法
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
EP3561498A1 (fr) Systèmes et procédés pour capteur de gaz électrochimique imprimé
WO2012064179A1 (fr) Capteur de ph
WO2013019101A1 (fr) Électrode composite avec polyaniline polymérisée in situ et son procédé de préparation
Tsakova et al. Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition
CN103063718B (zh) 一种基于导电聚苯胺的固体硝酸根离子电极的制备方法
FI96141C (fi) Ioniselektiivinen elektrodi ja menetelmä ioniselektiivisen elektrodin valmistamiseksi
WO2012074368A1 (fr) Capteur de phosphates
Faridbod et al. Conducting polymer all solid state potentiometric sensor for the tramadol assay
CN103063725B (zh) 一种基于导电聚苯胺的固体铵离子电极及其制备方法
Schwarz et al. All-solid-state screen-printed sensors for potentiometric calcium (II) determinations in environmental samples
Yamada et al. All‐solid‐state Fluoride Ion‐selective Electrode using LaF3 Single Crystal with Poly (3, 4‐ethylenedioxythiophene) as Solid Contact Layer
WO2012070927A1 (fr) Procédé de préparation de polypyrrole dopé
Alizadeh et al. Gas sensing ability of a nanostructured conducting polypyrrole film prepared by catalytic electropolymerization on Cu/Au interdigital electrodes
WO2013081443A1 (fr) Électrode sélective pour l'ammonium et procédé pour sa préparation
Pankaj et al. Conducting polymer based potentiometric sensors
Abbaspour et al. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether
WO2013028061A1 (fr) Électrode composite de polyaniline et procédé permettant de préparer l'électrode composite de polyaniline
JP4024097B2 (ja) 参照電極及びこれを備える電解セル
JP7083367B2 (ja) 水素センサ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841539

Country of ref document: EP

Kind code of ref document: A1