WO2012067427A9 - Lk8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물 - Google Patents

Lk8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물 Download PDF

Info

Publication number
WO2012067427A9
WO2012067427A9 PCT/KR2011/008761 KR2011008761W WO2012067427A9 WO 2012067427 A9 WO2012067427 A9 WO 2012067427A9 KR 2011008761 W KR2011008761 W KR 2011008761W WO 2012067427 A9 WO2012067427 A9 WO 2012067427A9
Authority
WO
WIPO (PCT)
Prior art keywords
protein
diabetic retinopathy
macular degeneration
cells
pharmaceutical composition
Prior art date
Application number
PCT/KR2011/008761
Other languages
English (en)
French (fr)
Other versions
WO2012067427A3 (ko
WO2012067427A2 (ko
Inventor
안진형
임양미
김정훈
유현경
최하나
윤엽
황유경
Original Assignee
재단법인 목암생명공학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 목암생명공학연구소 filed Critical 재단법인 목암생명공학연구소
Publication of WO2012067427A2 publication Critical patent/WO2012067427A2/ko
Publication of WO2012067427A9 publication Critical patent/WO2012067427A9/ko
Publication of WO2012067427A3 publication Critical patent/WO2012067427A3/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • compositions for preventing or treating diabetic retinopathy or elderly macular degeneration comprising LK8 protein as an active ingredient
  • the present invention relates to a pharmaceutical composition for the prevention or treatment of diabetic retinopathy or macular degeneration comprising LK8 protein as an active ingredient.
  • Retinal neovascularization which arises from the lamina of the retina, is one of the features found in diabetic retinopathy, prematurity retinopathy, or senile macular degeneration (jo, DH. Et al., Arch. Pharm. Res., 33 : 1557-1565, 2010). These new blood vessels grow into the vitreous cavity, which consists of various extracellular matrix proteins.
  • anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies significantly regulate retinal neovascularization of diabetic retinopathy (Smith, JM. Et al., Cochrane Database Syst. Rev., CD008214, 2011; Montero, JA. Et al., Curr. Bi abet es Rev., 7: 176-184, 2011) It does not directly inhibit the interaction between vascular endothelial cells and extracellular matrix proteins.
  • VEGF vascular endothelial growth factor
  • Angiostatin inhibits angiogenesis, but has no effect on fibronectin mediated neovascularization such as diabetic retinopathy because it inhibits vascular endothelial cell migration and cell death by signaling dependent on cell surface ATP synthase.
  • phosphorylation of FAK should be inhibited to inhibit vascular endothelial cell migration.
  • Angiostatin phosphorylates FAK, a subsignal related protein of integrins involved in cell migration (Lena, CW. Et al., Proc. Natl. Acad. Sci. USA., 95: 5579-5583, 1998).
  • angiostatin is not related to integrin and does not inhibit the migration of vascular endothelial cells induced by strong interaction of fibronectin with integrin.
  • Avastain TM and Lucentis TM which are licensed neovascular inhibitors, do not appear to be effective in treating diabetic retinopathy.
  • VEGF blockers neovascularization and senile macular degeneration
  • fibronectin fibronectin
  • Bodylak, SF. Et al., Semin. Cell. Dev. Biol., 13: 377-383, 2002 especially diabetic retinopathy Increased expression in patients' retinal vitreous and newly formed capillaries has been reported (Roy, S. et al., Invest.Ophthalmol. Vis. Sci., 37: 258-266, 1996; Probst, K.et al. 'Br. J.
  • kringle domain is a growth factor, proteolytic It mediates the function of proteins such as enzymes or arch factors (Kim, JS. Et al., Bioche. Biophys. Res. Co mun., 313: 534-540, 2004). Most kringle domain-containing proteins have properties that inhibit the growth of blood vessels. Angiostatin, a representative kringle-containing protein, is used in the domain to maintain anti-angiogenic effects.
  • Disulfide bonds have been reported to be essential (Cao, Y. et al., Curr. Med. Chew. Anticancer Agents, 2: 667-681, 2002).
  • the present inventors have been studying to find a therapeutic agent for diabetic retinopathy or senile macular degeneration, LK8 protein, Kringle domain protein effectively inhibits retinal neovascularization, and diabetic retinopathy by a mechanism different from the known anti-angiogenic inhibitors Or. It has been confirmed that the macular degeneration can be prevented or treated and completed the present invention.
  • SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide pharmaceutical compositions which can be used for the prevention or treatment of diabetic retinopathy or senile macular degeneration.
  • FIG. 1 is a graph illustrating the cytotoxicity of human vascular endothelial cells (A) and human retinoblastoma (B) by treating LK8 protein in order to evaluate the safety of LK8 protein.
  • Figure 2 is a photograph and graph confirming the increase of inflammatory cells and killer cells after injection of LK8 protein into mouse eye to confirm the retinal toxicity of LK8 protein in vivo by immunohistochemical staining.
  • 3 is a photograph and a graph confirming the retinal neovascularization inhibitory effect of the LK8 protein using the oxygen-induced retinopathy model, an angiogenesis model of mice similar to diabetic retinopathy or senile macular degeneration.
  • Figure 4 is a photograph and graph confirming the effect of LK8 protein on the formation of the tube vascular endothelial cells induced by vascular endothelial growth factor in vitro conditions.
  • FIG. 5 is a photograph and a graph confirming that effectively inhibits the movement of cells induced by vascular endothelial growth factor in the wound migration experiment using human vascular endothelial cells by LK8 protein treatment.
  • Figure 6 is a graph confirming the cell migration inhibitory effect of LK8 protein in the conditions covered with various extracellular matrix proteins (Vitronectin, collagen and fibronectin),
  • FIG. 7 is a photograph confirming the effect of inhibiting the adhesion of LK8 protein when vascular endothelial cells are attached to a plate covered with various extracellular matrix proteins (Vitronectin, collagen and fibronectin).
  • FIG. 9 is a graph showing the cell migration inhibitory effect of LK8 protein after pretreatment of various integrin antibodies to confirm the relationship between the cell migration inhibitory effect of LK8 protein and integrin.
  • FIG. 10 is a graph confirming the degree of adhesion of human vascular endothelial cells by treatment with various integrin antibodies and LK8 protein in order to reconfirm the effect of LK8 protein on the inhibition of human vascular endothelial cell adhesion and integrin.
  • FIG. 11 is a photograph and a graph confirming the binding of the LK8 protein and the integrin heterodimer with a protein chip.
  • FIG. 12 is a photograph and graph confirming the transfer inhibitory effect of LK8 protein after eukaryotic transformation of beta 1 and beta 3 siRNA in human vascular endothelial cells to temporarily inhibit expression.
  • FIG. 13 is a photograph showing that LK8 protein interacts with integrin beta 1 within a certain time after attachment of extracellular matrix proteins fibronectin and human vascular endothelial cells.
  • Figure 14 is a photograph confirming whether or not LK8 protein inhibits the signaling system delivered when human vascular endothelial cells are attached to fibronectin plate, an extracellular matrix protein.
  • LK8 protein refers to a recombinant protein of "KV38” corresponding to KV38 Kringle in the kringle region of apolipoprotein (a), but “LK8" and “KV38” are mutually exclusive unless otherwise indicated. Can be used interchangeably.
  • the L 8 protein of the invention has the amino acid of SEQ ID NO: 1.
  • LK8 can be obtained by transforming a host cell (eg Saccharomyces cerevisiae) with an expression vector (eg MSLK8) comprising LK8 and then culturing under appropriate conditions.
  • a host cell eg Saccharomyces cerevisiae
  • an expression vector eg MSLK8
  • LK8 protein using expression vectors, host cells, conditions and the like known in the art in addition to the methods exemplified in the patents.
  • the above mentioned patents mention the tumor therapeutic efficacy of LK8 protein, but do not disclose any specific effect on diabetic retinopathy or senile macular degeneration of the present invention.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of diabetic retinopathy or macular degeneration, comprising as an active ingredient LK8 protein having an amino acid sequence represented by SEQ ID NO: 1.
  • LK8 protein has the effect of inhibiting retinal neovascularization by inhibiting adhesion and migration of vascular endothelial cells in vitro (// 7 vitro) and in vivo o).
  • the effect is achieved through the mechanism by which the LK8 protein of the present invention interferes with the binding of integrin and fibronectin of vascular endothelial cells.
  • administration of LK8 protein into the eye has a significant inhibitory effect on retinal neovascularization (see FIG. 3). Therefore, the LK8 protein of the present invention can inhibit retinal neovascularization, and can be usefully used for preventing or treating diabetic retinopathy or macular degeneration through the above mechanism.
  • the LK8 protein of the present invention can be used in place of the conventional laser photocoagulation (laser photocoagulation).
  • laser photocoagulation When laser photocoagulation is used in patients with angiogenic diabetic retinopathy, retinal nerve cells may be killed and vision may deteriorate and vision may not be improved.However, LK8 protein does not affect the survival of retinal nerve cells. Deterioration can be prevented and vision improvement can be obtained (see FIG. 2).
  • LK8 protein acts to suppress neovascularization without affecting the survival of ocular and retinal cells, thus maximizing the treatment of diabetic retinopathy or macular degeneration by preventing side effects that may occur during intraocular administration.
  • the pharmaceutical composition for preventing or treating diabetic retinopathy or senile macular degeneration comprising the LK8 protein of the present invention can be administered intravitreally during clinical administration.
  • the pharmaceutical composition according to the present invention may be provided by formulating in a suitable form with the LK8 or a pharmaceutically acceptable carrier.
  • a "pharmaceutically acceptable" carrier refers to a nontoxic substance that is physiologically acceptable and does not cause side effects when administered to humans.
  • the pharmaceutical composition according to the present invention may be formulated with a suitable carrier depending on the route of administration.
  • the pharmaceutical composition according to the present invention may preferably be administered parenterally.
  • Parenteral routes of administration include, for example, several routes including intravenous, eye drop, retina or vitreous cavity. It may preferably be administered in the eye, in the retina or in the vitreous cavity.
  • compositions of the present invention may be mixed with suitable parenteral carriers according to methods known in the art to prepare ophthalmic topical or injectable formulations.
  • Ophthalmic topical formulations may include ophthalmic solutions, ophthalmic gel sprays, ointments, perfusions and inserts.
  • Topical delivery formulations of the LK8 protein of the invention must be stable for a long time to achieve the desired therapeutic effect. In addition, the formulation must penetrate the ocular surface structure and accumulate in significant amounts at the disease site. In addition, topically delivered formulations should not cause excessive local toxicity.
  • Ophthalmic solutions in the form of eye drops mainly consist of an aqueous medium.
  • a laxative agent an organic carrier, an inorganic carrier, an emulsifier, a humectant, or the like may be added.
  • Pharmaceutically acceptable monolayers for ophthalmic topical preparations include phosphate, borate, acetate and gluconate buffers.
  • Drug carriers include water, lower alkanols and water mixtures, vegetable oils, polyalkylene glycols, petroleum jelly, ethyl cellulose, ethyl acrylate, carboxymethyl cellulose, polyvinylpyridone, and isopropyl myrilate can do.
  • Ophthalmic sprays generally produce the same results as eye drops and can be formulated in a similar manner. Some ophthalmic drugs have poor permeability through the eye barrier and cannot be administered as eye drops or sprays. Thus, the ointment can be used to prolong the contact time and increase the amount of drug absorbed.
  • a polyethylene tube can be placed in the conjunctival sac to allow constant perfusion of the drug solution into the eye. The flow rate of the perfusion fluid can be adjusted via a minipump system to create a continuous irrigation of the eye.
  • the insert is similar to a soft contact lens placed on the cornea, except that it is generally placed in the upper appendage or less frequently in the lower conjunctival sac rather than attached to the open cornea. Inserts are generally made of a biologically soluble material that dissolves or disintegrates in the tear fluid while releasing the drug.
  • Injectable formulations comprise sterile aqueous solutions (if water soluble) or dispersions and sterile powders for the instant preparation of sterile injectable solutions or dispersions.
  • suitable carriers include physiological saline, bacteriostatic water and cremophores.
  • the carrier may be a solvent or a dispersion medium containing, for example, water, ethanol, poly (eg glycerol, propylene glycol and liquid polyethylene glycol, etc.), and suitable mixtures thereof. Proper fluidity can be maintained, for example, by using a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Microbial action can be prevented using various antibacterial and antifungal agents such as parabens, chlorobutane, phenol, ascorbic acid, chimerosal and the like.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbide, sodium chloride in the composition.
  • Absorption of the injectable composition can be enhanced by including in the composition an agent that delays absorption, such as aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by adding the LK8 protein in an appropriate amount, if desired, with one or a combination of ingredients enumerated above in a suitable solvent, followed by filtered sterilization.
  • dispersions are prepared by introducing the active compound into a sterile excipient containing a basic dispersion medium and the required other ingredients enumerated above.
  • the method of preparation is vacuum drying and freeze drying which yield a powder of the active ingredient and any further desired ingredients from the sterile filtered solution.
  • the term 'effective amount' refers to the amount of drug that causes a biological or medical reaction when administered to an animal or patient in a pathological state. Appropriate reactions may include preventing disease initiation, preventing disease progression, or disease regression.
  • the pharmaceutical composition of the present invention regresses diabetic retinopathy or senile macular degeneration.
  • the dosage of the pharmaceutical composition according to the present invention may be appropriately selected according to the route of administration, the subject to be administered, the target disease and its severity, age, sex weight, individual difference, and disease state.
  • the pharmaceutical composition comprising the protein of the present invention may vary the content of the active ingredient according to the extent of the disease, but usually 0.01 mg / mL to 100 mg / mL when administered once based on an adult An effective amount of may be repeated several times a day.
  • the LK8 protein of the present invention may be used in an amount of 0.1 ⁇ to ⁇ , but is not limited thereto.
  • the present invention also provides the use of the LK8 protein having the amino acid sequence represented by SEQ ID NO: 1 for the manufacture of a medicament for the prevention or treatment of diabetic retinopathy or senile macular degeneration.
  • the present invention comprises administering a LK8 protein having the amino acid sequence represented by SEQ ID NO: 1 to a mammal in need of prevention or treatment of diabetic retinopathy or senile macular degeneration, the method of preventing or treating diabetic retinopathy of a mammal To provide.
  • the mammal includes livestock, primates and humans, preferably humans.
  • a ⁇ -neo vector (Lee, FWF. (1997) Appl Microbiol Biotechnol, 48: 339) capable of inserting a desired gene into the ⁇ sequence, which is one of the transition elements present in the chromosome of the yeast, was used as the mother vector.
  • the ⁇ -neo vector comprises a ⁇ sequence for multiplexing the vector by a homologous recombination method and a neomycin resistance gene (neo) for selection of the inserted vector.
  • neo neomycin resistance gene
  • the DNA blunt Sail restriction enzyme recognition site present in the LK8 expression cassette was removed using a DNA Blunt Kit (Takara). Meanwhile, the LK8 expression cassette was isolated from the pMCLK8 vector (ATCC 87833, USA) using Sacl and Kpnl restriction enzymes that cut both ends of the GAL1 promoter and CYC1 terminator, respectively.
  • the blunt end of both Kpnl restriction enzyme recognition sites of the LK8 expression cassette separated from the Xba I restriction enzyme recognition site of the ⁇ -neo vector was separated using a DNA blunt kit. (blunt end). Thereafter, the LK8 expression cassette was introduced into the recombinant ⁇ -neo vector as described above to prepare an MSLK8 recombinant expression vector.
  • yeast was transformed with the MSLK8 recombinant expression vector prepared in Example ⁇ 1-1> using an alkali cationic yeast kit (Alkali Cation Yeast Kit, Q-BIO gene).
  • Alkali Cation Yeast Kit Alkali Cation Yeast Kit, Q-BIO gene.
  • the concentration of recombinant expression vector DNA was concentrated to 3 / and used for transformation.
  • Yeast transformed with the MSLK8 recombinant expression vector was selected using a YPD plate (2% peptone, 1% yeast extract, 2% glucose, 2% agar) containing G418 sulfate antibiotic.
  • the concentration of the G418 sulfate antibiotic was adjusted to 5 g /, 10 g / and 15 g /, respectively, to culture the transformed yeast strain.
  • the LK8 expression cassette is inserted into the chromosome of the yeast in a large amount, it can grow in a high concentration of G418 sulfate antibiotic medium.
  • a transformed yeast strain resistant to 15 g / ⁇ G418 sulfate antibiotic was prepared.
  • the prepared strain was named Saccharomyces cerevisiae BJ3501 / MSLK8 # 36.
  • Saccharomyces cerevisiae BJ3501 / MSLK8 # 36 transgenic strains prepared in Example ⁇ 1-2> were dispensed from hundreds to thousands of sterile storage containers in a sterile storage container, and then maintained in the same state to produce recombinant protein.
  • a system (called a working cell bank system) was established to maintain and be used for seed culture.
  • YPD 1% yeast extract, 23 ⁇ 4 peptone, 26%
  • the batch culture was performed by inoculating the seed culture solution obtained in Example ⁇ 1-3-1> on the initial starting medium.
  • the batch culture step is an adaptation step of galactose used as an inducer of cell growth and LK8 expression, inoculated more than ⁇ 3 ⁇ 4 of the culture medium, and gave a galactose period while increasing quantitatively cells using glucose and galactose as a carbon source.
  • the initial culture medium used in the process is glucose l ⁇ 3 ⁇ 4 (w / v), galactose l ⁇ 5% (w / v), yeast extract 1 ⁇ 50 g / ⁇ , casamino acid (casamino acid) 1 ⁇ 10 g / ⁇ , uracil 0.1-5 g / £ and histidine 0.1-5 g /.
  • the dissolved oxygen amount is rapidly depleted due to the vigorous respiration of the cells, but in the present invention, a method of supplying pure oxygen is used, but in the present invention, an air supply of 1 to 3 wm, 200 to 1000 rpm
  • the amount of dissolved oxygen could be maintained at 40% or more by adjusting the physical conditions, which is the stirring speed, from the latter part of the batch culture step to the end of the culture. This could reduce production costs by maintaining dissolved oxygen above a certain level without using pure oxygen in large fermenters. As a result, a cell weight of 30 or more hop light intensity (600 ran) was obtained.
  • the fed-batch culture step is a step of obtaining fermentation material by adding a galactose, which is an expression inducer and the only carbon source of the cell, and cultured it.
  • a medium consisting of galactose 20-50% (w / v), yeast extract 1-50 g /, peptone 1-30 g / ⁇ , uracil 0.1-5g / £ and histidine 0.1-5g / £ was used.
  • galactose was supplied at a rate of 1 / hr to 30 / hr to induce mass secretion of the LK8 protein, thereby maintaining the amount of galactose remaining in the medium at 5% (w / v) or less.
  • Galactose remaining in the fermentation tank during the fermentation period as described above By maintaining the concentration below 5% (w / v) it was possible to continuously increase the expression and secretion of LK8. Through the fed-batch culturing process, more than a few hundred rags of LK8 protein was obtained per 1 £ of culture supernatant for 300 hours of fermentation.
  • composition of the medium used for the seed culture, batch culture and fed-batch culture The composition of the medium used for the seed culture, batch culture and fed-batch culture
  • Example 2 Toxicity of LK8 Protein to Retinal Cells and Retinal Vascular Cells
  • a retinoblastoma cell line derived from the neural retinal layer SNUOT-Rbl, Int J Oncol 2007 31 ( 3): 585-92
  • human placental vascular endothelial cells HUVEC, Lonza C2517A, USA
  • Human placental vascular endothelial cells were cultured in EGM-2 medium and SNUOT-Rbl cells were cultured in RPMI 1640 medium added with 10% fetal bovine serum. 5 ⁇ 10 3 cells were dispensed into 96 well plates and incubated overnight. LK8 protein was added to the cultured cells at concentrations of 0.1, 1, 10 and 50 ⁇ and incubated for 24 hours. On the other hand, the control group was not added LK8 protein. Thereafter, 0.5 mg / ml of MTT was added, and after 4 hours, the medium containing MTT was removed, and then DMS0 was added to elute the purple formazan product. Thereafter, the absorbance was measured at 560 nm to confirm cell viability. The survival rate of placental vascular endothelial cells is shown in FIG. 1A, and the survival rate of retinoblastoma cells is shown in FIG. 1B.
  • 118 protein did not show toxicity to the retinal tissue of the mouse.
  • Example 4 Inhibition of Angiogenesis in Oxygen Induced Retinopathy Model Inhibition of angiogenesis of LK8 protein was confirmed in the oxygen induced retinopathy model. Specifically, newborn mice (C57BL / 6) were divided into four groups of eight mice each, and then raised for 5 days under 75% oxygen conditions, and further raised for 2 days in normal air, thereby inducing retinal neovascularization. Since retinal neovascularization peaked on day 5 after transfer to normal air, 0.1, 1 and 10 ⁇ LK8 protein was administered intravitreally on day 2 when transferred to normal air.
  • mice Three days after administration, the mice were regenerated, and the eyes were explanted and fixed in the same manner as Example 2. Tissues cut to 4 ⁇ thickness were stained with hemafocillin & eosin to count neovascularization in the vitreous cavity of the inner membrane. The results are shown in FIG. 3.
  • angiogenesis was suppressed overall by LK8 administration.
  • the angiogenesis inhibitory effect was about 503 ⁇ 4 compared to the control group, which showed the maximum efficacy at the concentration of 1 ⁇ .
  • Example 5 Inhibitory Effect on Vascular Endothelial Tube Formation The vascular endothelial cell tube forming test was used to confirm the in vitro angiogenesis inhibitory effect of LK8 protein.
  • HUVEC cells Longza C2517A, USA
  • the smart rijel matr igel
  • the vehicle of LK8 protein 100 mM NaCl, 150 mM glycine, pH4.2
  • the vascular endothelial growth factor (Calbiochem PF074, USA) was treated at a concentration of 10 ng / ml
  • the experimental group was treated with LK8 protein at 0.1, 1, and 10 ⁇ for 12 hours, and then, The effect of inhibiting induced tube formation was confirmed.
  • the results are shown in FIG. 4.
  • LK8 protein effectively inhibited the tube formation of HUVEC cells in a concentration-dependent manner.
  • Example 6 Efficacy of Inhibiting Endothelial Cell Migration In order to confirm the inhibitory effect of LK8 protein on cell migration, one of angiogenesis mechanisms, an endothelial cell wound migration test was performed.
  • ⁇ ⁇ ⁇ the six HUVEC cells gelatin-covered wound was induced using a sterile knife and then spread on plates. After washing and removing the separated cells were treated with vascular endothelial growth factor (VEGF) or vascular endothelial growth factor and LK8 protein and incubated for 12 hours. After removing the medium, the cells were fixed with 100% methane, and the cells were stained with Giemsa solution. Thereafter, photographs were taken using an optical microscope (Carl Zeiss, Germany) and the cells moved to the wound site were counted to confirm the efficacy of the UC8 protein.
  • VEGF vascular endothelial growth factor
  • LK8 protein vascular endothelial growth factor and LK8 protein
  • 0.1 uMLK8 protein inhibited cell migration induced by vascular endothelial growth factor by about 50% and LK8 protein inhibited HUVEC cell migration in a concentration-dependent manner.
  • Example 7 Efficacy of Inhibiting Vascular Endothelial Cell Migration on Specific Extracellular Matrix Proteins To determine the effect of LK8 protein on vascular endothelial cell migration on specific extracellular matrix proteins, Bodene was covered with various extracellular matrix proteins. The inhibitory effect of LK8 protein was confirmed using a measuring instrument.
  • a 8 ⁇ holed gauge was treated with Vitronectin (10 yg / tnl), Collagen (10 Ug / ml), and Fibronectin (10 yg / ml) for 2 hours at room temperature, and then washed with physiological saline 2 Dried for hours.
  • HUVEC cells were incubated overnight in serum-free EBM-2 medium and then treated with trypsin / EDTA to drop and trypsin After washing and removing with trypsin neutralizing solution, cells were suspended in EBM-2 medium containing 0. bovine serum albumin.
  • the suspension was treated with LK8 protein for 30 minutes, and the cells were suspended at 0.3 i to become ⁇ ⁇ ⁇ 5 cells, followed by sprinkling the cells on a Boyden meter covered with extracellular matrix protein and incubated for 4 hours in a 37 ° C. incubator. After incubation, the cells were fixed with 4% paraformaldehyde, stained with crystal violet, and crystal violet was extracted from the stained cells, and the absorbance was measured at 595 nm.
  • Example 8 Efficacy of Inhibiting Endothelial Cell Adhesion
  • the vascular endothelial cells were sprinkled on the plate covered with each extracellular matrix protein in the same manner as in Example 7, and after 4 hours, After fixing for 10 minutes with formaldehyde, 0.05% Triton-X 100 was treated for 5 minutes.
  • the primary antibody against paxillin (Upstate 05-417, USA) was treated and reacted overnight at 4 ° C. and washed three times with physiological saline the next day.
  • Secondary antibody conjugated with fluorescein (KPL 02-18-06, UAS) was treated for paxillin staining and at the same time fixed cells were identified to confirm the formation of actin stress fibers that maintain the skeleton of the cells.
  • Texas-red conjugated paloidine phalloidin, Invitrogen T7471, USA
  • Stained cells were photographed with fluorescence microscopy (Olympus BX51, Japan) to confirm the efficacy of LK8 protein on cell adhesion.
  • the experimental results are shown in FIG. 7.
  • Integrin expression of HUVEC cells was confirmed to confirm the relationship between LK8 protein and integrin protein.
  • HUVEC cells were suspended in physiological saline containing 0.5% BSA (Sigma A7906, USA) and then integrin beta Chemicon MAB1951Z, USA), beta 3 (Chemicon MAB1957Z, USA), alpha VCChemicon MAB1953Z, USA), alpha 3 (Chemicon MAB1952Z) ) And each of the alpha 5 (Chemicon AB1928, USA) primary antibodies to a HUVEC cell suspension and a secondary antibody (KPL 02-18-06, UAS) for integrin beta 1, beta 3, alpha V, alpha 3 staining. HUVEC cells were stained by treatment with secondary antibody (KPL 02-15-16, USA) for integrin alpha 5 staining. Stained cells were analyzed using FACS caliber equipment (DB Immunocytometry Systems FACSCaliber, USA).
  • HUVEC cells were prepared in the same manner as in Example 7 in order to confirm the association with the integrin protein in the cell migration inhibitory effect of L 8 protein. Integrin antibodies were treated prior to LK8 protein treatment. The following method was performed in the same manner as in Example 7, through which the cell migration inhibitory effect of LK8 protein was observed.
  • Example 8 In order to confirm the association with the integrin protein in the inhibitory effect of vascular endothelial cell adhesion of L 8 protein, cells were prepared as in Example 8, and treated with LK8 protein or each integrin antibody and plated in a fibronectin-covered dish. Thereafter, cells were stained and observed in the same manner as in Example 8.
  • the intensity of the bound LK8 protein was confirmed using a fluorescent scanner (Molecular Devices, USA).
  • the binding curve was calculated by varying the concentration of LK8 fluorescently labeled with Cy3 and the binding constant was calculated therefrom.
  • BSA was immobilized on the surface of the chip and treated with Cy3-labeled LK8 as a negative control group, and the intensity of integrin-bound LK8 was measured relatively.
  • the monoclonal antibody of LK8 protein was bound to the protein chip, and the Cy3 conjugated LK8 protein was treated.
  • LK8 protein was found to bind best with integrin alpha 3beta 1 heterozygotes.
  • Example 13 Integrin Beta 1 Mediated Cell Migration Inhibitory Effect of LK8 Protein
  • Integrin beta 1 specific siRNA (Dharmacon M-004124-02, USA) and beta 3 specific si RNA (Dharmacon M) to clarify the association of LK8 protein with integrin alpha 3beta 1 in cell migration inhibition effect -004506-00, USA) 4 yg was eukaryotically transformed into HUVEC cells and incubated for 24 hours. Cultured cells were obtained and some were hemolyzed to confirm the inhibition of expression of integrin, and the rest were treated with LK8 protein and sprinkled on fidonectin-covered Boyden measuring instruments to observe cell migration inhibition in the same manner as in Example 7.
  • integrin expression was significantly reduced in HUVEC cells eukaryotically transformed with specific integrin beta 1 or beta 3 siRNA.
  • the inhibitory effect of LK8 protein on HUVEC cells with reduced integrin expression was observed in HUVEC cells with reduced integrin beta 1 expression. Only migration was shown to be unaffected by the LK8 protein. The results show that integrin beta 1 is involved in the cell migration inhibitory potency of L 8 protein.
  • Example 14 Integrin Beta 1 Protein and LK8 Protein Coupling
  • HUVEC cells were prepared in the same manner as in Example 8, and then the cells treated with the LK8 protein were attached for 0, 30, 90, and 120 minutes. The attached cells were recovered and eluted, and the eluate was reacted with the integrin beta 1 antibody at 4 ° C. for 2 hours, and then further reacted with protein G-sepharose beads for 1 hour. After centrifugation of the reaction solution, the protein bound to protein G-sepharose beads was separated and electrophoresed, and the antibody treated with the LK8 protein was identified to identify the LK8 protein bound to the integrin beta 1 protein.
  • LK8 protein binds well to integrin beta 1 protein when HUVEC cells bind to fibronectin and integrin on the cell surface forms a heterozygote.
  • HUVEC cells were treated with trypsin / EDTA, dropped, and trypsin was washed with trypsin neutralizing solution to remove the cells, and the cells contained 0.5% bovine serum albumin. Suspended in EBM-2 medium. After the suspension was treated with LK8 protein for 90 minutes, the vascular endothelial cells were sprinkled on a fibronectin-covered plate, and after a period of time, the cells were fixed with 4% paraformaldehyde for 10 minutes, followed by 0.05% Triton X-100 for 5 minutes. .
  • anti-integrin beta 1 antibody (Chemicon MAB1951Z, USA) and LK8 monoclonal antibody (clone # 11-18, produced by the Cancer Research Institute) were treated overnight. After washing three times with physiological saline the next day, a secondary antibody (KPL 02-18-06, USA) was treated for integrin beta 1 staining and a secondary antibody (KPL 03-18-06, USA) for LK8 staining. . After washing 3 times with physiological saline The cells were photographed with a fluorescence microscope (Olympus BX51, Japan) to confirm that the integrin beta 1 antibody and LK8 protein bind to the same surface of HUVEC cells.
  • the eluate was electrophoresed to confirm specific tyrosine phosphorylation of FAK, phosphorylation of JNK and phosphorylation of ERK1 / 2.
  • To identify specific tyrosine phosphorylation of FAK 397 tyrosine phosphorylated FAK (Upstate MAB1144, USA), 576/577 tyrosine phosphorylated FAKCCell signaling # 3281, USA) and 925 tyrosine phosphorylated FAKCCell signaling # 3284, USA) were treated.
  • Phosphorylated ERKl / 2 (Cell signaling # 4370, USA) antibody was treated to confirm / 2 phosphorylation.
  • phosphorylated JNK antibody (Cell signaling 9251, USA) was treated. Meanwhile, FAK (Upstate 05-537, USA), ERKl / 2 (Cell signaling # 4695, USA) and JNK (Santa cruz SC-571, USA) antibodies were treated, respectively, to correct the amount of electrophoretic protein.
  • HUVEC eluate and protein -G-agarose were used to identify changes in the pl30CAS protein under FAK in the integrin signaling system. 15920-010, USA) and the pl30CAS antibody (Upstate 05-469, USA) were mixed and reacted.
  • the protein binding to the pl30CAS antibody was isolated from the HUVEC eluate and subjected to electrophoresis.
  • the phosphorylation of the specific tyrosine of pl30CAS was confirmed by Western blotting using a tyrosine-specific antibody (Upstate 05-321, USA). As a result, it was confirmed that pl8CAS phosphorylation was reduced in the LK8 protein treatment group (FIG. 14C).
  • Example 16 Analysis of Signaling System Using Protein Inhibitor
  • JNK inhibitor SP600125
  • PI3K inhibitor LY204002
  • ERK1 / 2 inhibitor U0126
  • LK8 protein did not affect the role of PI3K and ERK1 / 2 because LK8 protein inhibited cell migration under the condition of PI3K and ERK1 / 2 inhibitor.
  • Efficacy is not shown, indicating that JNK protein is involved in cell migration inhibition by LK8 protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질을 유효성분으로 포함하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물에 관한 것으로서, LK8 단백질은 피브로넥틴과 혈관내피세포와의 결합을 억제하는 효능이 있어 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 조성물로서 유용하게 사용될 수 있다.

Description

명세서
LK8단백질을유효성분으로포함하는당뇨망막병증또는노인성 황반변성의 예방또는 치료용 약학조성물 발명의 분야 본 발명은 LK8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물에 관한 것이다. 발명의 배경 망막의 속판으로부터 발쟁하는 망막 신생혈관형성은 당뇨망막병증, 미숙아망막병증, 또는 노인성 황반변성 환자에게서 발견되는 특징 중의 하나이다 (jo, DH. et al., Arch. Pharm. Res. , 33: 1557-1565, 2010). 이렇게 형성된 새로운 혈관들은 다양한 세포외기질 단백질로 구성된 유리체강내로 자라게 된다. 이러한 결과로 특히 당뇨망막병증 환자에서 신생혈관의 파열로 인해 유리체 출혈이 발생하고 섬유화 진행에 의해 망막 박리가 발생한다 (Permᅳ JH. et al., Prog. Ret in. Eye Res. , 33: 331-371, 2008). 이러한 합병증 때문에 당뇨망막병증은 선진국과 개발도상국 노동 인구의 실명의 주된 원인이 되고 있다 (Frank, R . et al., N. Engl. J. Med., 350: 48-58, 2004) . 전술한 바와 같이 유리체는 신생혈관들이 안으로 자라는 골격의 기능을 하며 혈관내피세포와 상호작용한다. 하지만 최근의 당뇨망막병증 치료 방법인 레이저 광웅고술 (laser photocoagulation)이나 유리체절제술 (vitrectomy)은 혈관내피세포와 세포외기질 단백질 사이의 역동적 변화에 영향을 주지 못하는 한계를 가지고 있다. 비록 항-혈관내피세포성장인자 (anti-VEGF) 단클론 항체들이 당뇨망막병증의 망막 신생혈관형성을 상당히 조절하지만 (Smith, JM. et al ., Cochrane Database Syst. Rev. , CD008214, 2011; Montero, JA. et al., Curr. Bi abet es Rev. , 7: 176-184, 2011) 혈관내피세포와 세포외기질 단백질간의 상호작용을 직접적으로 억제하지는 못한다. 부가적인 누적된 증거들은 혈관내피세포성장인자 (VEGF)의 직접적인 억제가 망막의 신경세포에 영향을 주며 망막 허혈을 악화시키고 광수용기 세포의 미토콘드리아의 파괴를 유도할 가능성이 있음을 보여주었다 (Saint-Geniez, M. et al., PLoS ONE. , 3: e3554, 2008; Lee, JS. et al ., J. Ocul. Pharmacol. Ther. , 25: 173-174, 2009; Inan, ϋϋ. et al. , Invest. Ophthalmol. Vis. Sci. , 48: 1773-1781, 2007) . 항-신생혈관형성 물질로 널리 알려진 안지오스타틴 (angiostatin)은 수용체로서 세포 표면 ATP 합성효소에 결합하는 것으로 보고되었다 (Niina, V. et al., Cancer Res. , 64: 3679-3686, 2004) . 안지오스타틴은 신생혈관형성을 억제하나, 세포 표면 ATP 합성효소에 의존적인 신호에 의해 혈관내피세포의 이동 억제 및 세포 사멸을 유도하기 때문에 당뇨망막병증과 같은 피브로넥틴 매개 신생혈관형성에는 아무런 영향을 미치지 못한다. 또한, 혈관내피세포의 이동을 억제하기 위해서는 FAK의 인산화가 억제되어야 하는데 안지오스타틴은 세포이동과 관련된 인테그린의 하위 신호 관련 단백질인 FAK를 인산화시킨다 (Lena, C-W. et al . , Proc. Natl. Acad. Sci. USA. , 95: 5579-5583, 1998). 이것은 안지오스타틴이 인테그린과 관련성이 없으며 피브로넥틴과 인테그린과의 강한 상호작용에 의해 유도되는 혈관내피세포의 이동을 억제하지 못한다는 것을 의미한다. 이러한 이유로 신생혈관 억제제로 허가된 아바스틴 (Avastain™)이나 루센티스 (Lucent is™) 등이 당뇨망막병증 치료에 효과를 보이지 않는 것으로 생각된다.
또한, 신생혈관형성과 노인성 황반변성 (AMD)이 종래 연구에서 상당한 연관이 있는 것으로 알려져 있으나, VEGF 차단제로 알려진 많은 신생혈관형성 약물들이 노인성 황반변성에 전부 효과를 나타내지는 않는 것으로 보고되었다 (Wataru Matsumiya et al . , Journal of Ophthalmology, Volume 2011, Article ID 742020, p. 1-6). 이는 노인성 황반변성 역시 VEGF에 의한 매개 경로 이외의 다른 경로로도 야기될 수 있음을 의미하는 것이다.
따라서, 종래 알려진 신생혈관 억제제와는 근본적으로 다른 기전을 통해 당뇨망막병증 또는 노인성 황반변성을 억제할 수 있는 새로운 치료제가 필요하다. 세포외기질 단백질 중 피브로넥틴 (fibronectin)은 콜라겐 다음으로 그 양이 많이 존재하는데 (Badylak, SF. et al ., Semin. Cell. Dev. Biol., 13: 377-383, 2002), 특히 당뇨망막병증 환자의 망막ᅳ 유리체 그리고 새롭게 형성된 모세혈관에서 발현이 증가되는 것으로 보고되고 있다 (Roy, S. et al. , Invest. Ophthalmol. Vis. Sci. , 37: 258-266, 1996; Probst , K.et al · ' Br. J. Ophthalmol. , 88: 667-672, 2004; Casaroli, M. RP. et al . , Exp. Eye Res. , 60: 5-17, 1995; George, B. et al. , Curr. Eye Res. , 34: 134-144, 2009). 추가로 당뇨 랫트에서 혈당을 조절할 경우 피브로넥틴의 발현이 감소되는 것으로 보고되었다 (Cher i an, S. et al. , Invest. Ophthalmol. Vis. Sci. , 50: 943-949, 2009). 이러한 점에서 피브로넥틴을 억제하거나 피브로넥틴에 의해 매개되는 병적 경로를 조절함으로써 당뇨망막병증을 치료할 수 있을 것으로 여겨진다. 혈관내피세포와 세포외기질 단백질과의 상호작용은 신생혈관형성 과정 전반에서 일어난다. 그러므로 피브로넥틴 또는 다른 세포외기질 단백질에 의해 매개되는 신생혈관형성의 조절이 당뇨망막병증의 망막 신생혈관형성을 치료하는데 효과적일 것으로 생각된다.. 일반적으로 크링글 (kringle) 도메인은 성장 인자, 단백질분해효소 또는 웅고 인자 같은 단백질들의 기능을 매개한다 (Kim, JS. et al . , Bioche . Biophys. Res. Co mun. , 313: 534-540, 2004) . 대부분의 크링글 도메인 함유 단백질들은 혈관의 성장을 억제하는 특성들을 가지고 있으며, 대표적인 크링글 함유 단백질인 안지오스타틴은 항-신생혈관형성 효과를 유지하기 위해 도메인 내의 이황화 결합이 필수적임이 보고되었다 (Cao, Y. et al., Curr. Med. Chew. Anticancer Agents, 2: 667-681, 2002). 본 발명자들은 당뇨망막병증 또는 노인성 황반변성 치료제를 찾기 위해 연구하던 중, 크링글 도메인 단백질인 LK8 단백질이 망막 신생혈관형성을 효과적으로 억제하고, 종래 알려진 항신생혈관 억제제와는 다른 기전에 의해 당뇨망막병증 또는 .노인성 황반변성을 예방 또는 치료할 수 있음을 확인하고 본 발명을 완성하였다. 발명의 요약 따라서, 본 발명의 목적은 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료에 사용될 수 있는 약학 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질을 유효성분으로 포함하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물을 제공한다. 도면의 간단한설명 도 1은 LK8 단백질의 망막혈관 및 망막에 대한 안전성을 평가하기 위해 사람 혈관내피세포 (A)와 사람 망막모세포종 (B)에 LK8 단백질을 처리하여 세포독성을 확인한 그래프이다.
도 2는 생체 내에서 LK8 단백질의 망막 독성올 확인하기 위해 마우스 안구내로 LK8 단백질을 주사한 후 염증 세포와 사멸 세포의 증가를 면역화학조직염색법으로 확인한사진 및 그래프이다. 도 3은 당뇨망막병증 또는 노인성 황반변성과 유사한 마우스의 신생혈관형성 모델인 산소유도망막병증 모델을 이용하여 LK8 단백질의 망막신생혈관형성 억제 효능을 확인한사진 및 그래프이다.
도 4는 생체외 조건에서 혈관내피세포성장인자에 의해 유도되는 사람 혈관내피세포의 관 형성 실험에서 LK8 단백질의 관 형성 억제 효능을 확인한 사진 및 그래프이다.
도 5는 사람혈관내피세포를 이용한 창상 이동 실험에서 혈관내피세포성장인자에 의해 유도되는 세포의 이동을 LK8 단백질 처리에 의해 효과적으로 억제함을 확인한사진 및 그래프이다.
도 6은 다양한 세포외기질단백질 (비트로넥틴, 콜라겐 및 피브로넥틴)이 덮힌 조건에서 LK8 단백질의 세포이동억제 효능을 확인한 그래프이다,
도 7은 다양한 세포외기질단백질 (비트로넥틴, 콜라겐 및 피브로넥틴)이 덮힌 플레이트에 혈관내피세포가 부착될 때 LK8 단백질의 부착 억제 효능올 확인한사진이다.
도 8은 실험에 사용한 사람혈관내피세포의 표면에 발현하는 인테그린의 발현 정도를 확인한 그래프이다.
도 9는 LK8 단백질의 세포이동억제 효능과 인테그린과의 관련성을 확인하기 위해 다양한 인테그린 항체를 전처리한후 LK8 단백질의 세포이동 억제 효능을 확인한 그래프이다.
도 10은 LK8 단백질의 사람혈관내피세포 부착 억제 효능과 인테그린과의 관련성을 재확인하기 위해 다양한 인테그린 항체와 LK8 단백질올 처리하여 사람혈관내피세포의 부착 정도를 확인한 그래프이다.
도 11은 LK8 단백질과 인테그린 이종이합체와의 결합을 단백질칩으로 확인한사진 및 그래프이다.
도 12는 인간혈관내피세포에 베타 1과 베타 3 siRNA를 진핵형질전환하여 일시적으로 발현올 억제시킨 후 LK8 단백질의 이동억제 효능을 확인한 사진 및 그래프이다. 도 13은 세포외기질단백질인 피브로넥틴과 인간혈관내피세포가 부착된 후 일정 시간 안에 LK8 단백질이 인테그린 베타 1과 상호작용함을 확인한사진이다. 도 14는 세포외기질단백질인 피브로넥틴 플레이트에 인간혈관내피세포가 부착될 때 전달되는 신호전달체계를 LK8 단백질이 억제시키는지 여부를 웨스턴 블롯으로 확인한사진이다.
도 15는 인테그린 매개 신호전달체계의 억제제를 처리한 후 LK8 단백질의 효능을 확인한 그래프이다. 발명의 상세한 설명 이하, 본 발명을 상세히 설명한다. 본원에 사용된 "LK8" 단백질은 아포리포단백질 (a)의 크링글 영역 중 KV38 크링글에 해당하는 "KV38" 의 재조합 단백질을 지칭하지만, "LK8" 및 "KV38" 은 달리 나타내지 않는 한, 상호교환적으로 사용될 수 있다. 본 발명의 L 8 단백질은 서열번호 1의 아미노산을 갖는다.
본원에 사용된 LK8 단백질의 특성 및 제조방법은 대한민국 특허 제 10— 0595364호 및 제 10-0595864호에 개시되어 있다. 상기 특허에 개시된 바와 같이, LK8은 LK8을 포함하는 발현백터 (예: MSLK8)로 숙주세포 (예: 사카로마이세스 세레비지애)를 형질전환시킨 다음 적절한 조건 하에서 배양시켜 수득할 수 있다. 본 기술분야의 숙련자라면, 상기 특허 등에 예시된 방법 이외에도 본 기술분야에 알려진 발현 백터, 숙주세포, 조건 등을 이용하여 LK8 단백질을 수득할 수 있을 것이다. 상기 언급된 특허 등은 LK8 단백질의 종양 치료 효능을 언급하고 있으나, 본원발명의 당뇨망막병증 또는 노인성 황반변성에 대한 구체적인 효과는 전혀 개시하고 있지 않다. 본 발명은 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질올 유효성분으로 포함하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학조성물을 제공한다.
본 발명에 있어서, LK8 단백질은 시험관내 (//7 vitro) 및 생체내 o)에서 혈관내피세포의 부착 및 이동을 억제하여 망막신생혈관형성을 억제하는 효과를 나타낸다. 상기 효과는 본 발명의 LK8 단백질이 혈관내피세포의 인테그린과 피브로넥틴의 결합을 방해하는 기전을 통해 달성된다. 본 발명의 바람직한 실시예에 기재된 바와 같이, LK8 단백질을 안구 내에 투여하면 망막신생혈관형성에 있어서 상당한 억제효과가 있다 (도 3 참조). 따라서, 본 발명의 LK8 단백질은 망막신생혈관형성을 억제할 수 있으며, 상기와 같은 기전을 통해 당뇨망막병증 또는 노인성 황반변성을 예방 또는 치료하는데 유용하게 사용될 수 있다.
한편, 본 발명의 LK8 단백질은 기존에 사용하던 레이저광응고술 (laser photocoagulation)을 대체하여 사용할 수 있다. 레이저광응고술을 신생혈관형성 당뇨망막병증 환자에게 사용할 경우 망막신경세포의 사멸을 유도하여 시력이 악화되고 시력의 개선을 기대할 수 없으나, LK8 단백질을 투여할 경우 망막신경세포의 생존에 영향을 주지 않아 시력 악화를 막고 시력 개선 효과를 얻을 수 있다 (도 2 참조).
즉, LK8 단백질은 안구구성세포 및 망막구성세포의 생존에 영향을 주지 않고 신생혈관형성을 억제하는데 작용하기 때문에 안구내 투여 시 발생할 수 있는 부작용을 막아 당뇨망막병증 또는 노인성 황반변성의 치료를 극대화 할 수 있는 가능성을 가지고 있다. 본 발명의 LK8 단백질을 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물은 임상투여시에 유리체강내 투여가 가능하다. 한편, 본 발명에 따른 약학 조성물은 상기 LK8 또는 약학적으로 허용되는 담체와 함께 적합한 형태로 제형화함으로써 제공될 수 있다. "약학적으로 허용되는" 담체란 생리학적으로 허용되고 인간에게 투여될 때, 부작용을 일으키지 않는 비독성의 물질을 말한다.
한편, 본 발명에 따른 약학 조성물은 투여 경로에 따라 적합한 담체와 함께 제형화될 수 있다. 상기 본 발명에 따른 약학 조성물은 바람직하게는 비경구적으로 투여될 수 있다. 비경구적 투여 경로로는 예를 들면, 정맥, 점안, 망막 또는 유리체강 등의 여러 경로가 포함된다. 바람직하게는 점안, 망막 내 또는 유리체강 내로 투여될 수 있다.
비경구적 투여의 경우, 본 발명의 약학 조성물은 당업계에 공지된 방법에 따라 적합한 비경구용 담체와 함께 흔합되어 안과 국소 투여용 또는 주사용 제형으로 제조될 수 있다. 안과 국소 투여용 제형은 안과용액제, 안과겔제ᅳ 스프레이, 연고, 관류 및 삽입체를 포함할 수 있다. 본 발명의 LK8 단백질의 국소 전달 제제는 소정의 치료 효과를 얻기에 층분히 오랫동안 안정해야 한다. 또한, 제제는 안구 표면 구조를 침투하여 질병 부위에 상당량 축적되어야 한다. 또한, 국소 전달된 제제는 과량의 국소 독성을 유발해서는 안된다.
점안제 형태의 안과용액제는 주로 수성 매체로 구성된다. 극성이 다양한 광범위한 약물올 수용하기 위해서, 완층제, 유기 담체, 무기 담체, 유화제, 습윤제 등을 첨가할 수 있다. 안과 국소 제제용의 약학적으로 허용가능한 완층제는 포스페이트, 보레이트, 아세테이트 및 글루코로네이트 완충제를 포함한다. 약물 담체는 물, 저급 알칸올과 물의 흔합물, 식물성유, 폴리알킬렌 글리콜, 석유계 젤리, 에틸샐를로스, 에틸 을레이트, 카르복시메틸셀를로스, 폴리비닐피를리돈 및 이소프로필 미리스트레이트를 포함할 수 있다. 안과 스프레이는 일반적으로 점안제와 동일한 결과를 산출하며, 유사한 방식으로 제형화할 수 있다. 일부 안과 약물은 안구 장벽을 통한 침투성이 불량하여, 점안제 또는 스프레이로서 투여할 수 없다. 따라서, 연고를 사용하여 접촉시간을 연장하고 흡수되는 약물의 양올 늘릴 수 있다. 결막 낭 (sac)에 폴리에틸렌 관을 배치하여 약물 용액을 안구에 연속하여 일정하게 관류시킬 수 있다. 안구의 연속 관주를 생성하기 위해서 미니펌프 시스템을 통해 관류액의 유속을 조정할 수 있다. 삽입체는 일반적으로 열린 각막에 부착되기 보다는 상부 맹관에 배치되거나또는 덜 빈번하게는 하부 결막 낭에 배치된다는 점 이외에는 각막에 배치되는 소프트 콘택트렌즈와 유사하다. 삽입체는 일반적으로 약물을 방출하면서 누액중에 용해되거나 붕해되는 생물학적 가용 물질로 제조된다.
한편, 주사용 제형은 멸균 수용액 (수용성인 경우) 또는 분산액과, 멸균 주사가능한 용액 또는 분산액의 즉석 제조를 위한 멸균 분말을 포함한다. 정맥내 투여의 경우, 적절한 담체는 생리 염수, 세균 발육 저지수, 크레모포어
EL (미국 뉴저지주 퍼시패니에 소재하는 바스프) 또는 인산염 완층 염수 (PBS)를 포함한다. 모든 경우에 조성물은 멸균되어야 하며, 쉽게 주사를 놓을 수 있을 정도의 유체여야 한다. 조성물은 제조 및 보관 조건 하에서 안정해야 하며, 세균 및 진균과 같은 미생물에 오염되지 않도톡 보존되어야 한다. 담체는 용매 또는, 예컨대 물, 에탄올, 폴리을 (예, 글리세를, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 및 이의 적절한 흔합물을 함유하는 분산매일 수 있다. 적당한 유동성은, 예컨대 레시틴과 같은 코팅을 이용하고, 분산액의 경우 필요한 입자 크기를 유지하며, 계면활성제를 사용하여 유지할 수 있다. 미생물 작용은 각종 항균제 및 항진균제, 예컨대 파라벤, 클로로부탄을, 페놀, 아스코르브산, 치메로살 등을 사용하여 예방할 수 있다. 많은 경우에, 조성물 중에 등장제ᅳ 예를 들어 당, 폴리알콜, 예컨대 만니틀, 소르비를, 염화나트륨을 포함하는 것이 바람직할 것이다. 주사가능한 조성물의 흡수는, 흡수를 지연하는 제제, 예를 들어 모노스테아르산알루미늄 및 젤라틴을 조성물 중에 함유시킴으로써 높일 수 있다. 멸균의 주사가능한 용액은 LK8 단백질을 적량으로, 필요에 따라 상기 열거한 성분 중 하나 또는 이의 조합물과 함께 적당한 용매 중에 첨가한 다음 여과 멸균하여 제조할 수 있다. 일반적으로, 염기성 분산매와 상기 열거된 필요한 다른 성분들을 함유하는 멸균 부형제 내로 활성 화합물을 도입하여 분산액을 제조한다. 멸균의 주사가능한 용액의 제조를 위한 멸균 분말의 경우, 제조 방법은 멸균 여과된 용액으로부터 활성 성분의 분말과 임의의 추가 소정 성분을 산출하는 진공 건조 및 동결 건조이다. 본 발명에 사용된 용어 '유효량'은 병적 상태의 동물 또는 환자에게 투여되는 경우 생물학적 또는 의학적 반웅을 유발하는 약물의 양을 의미한다. 적절한 반응은 질병 개시 방지, 질병 진행 방지 또는 질병 퇴행을 포함할 수 있다. 바람직한 구체예에서, 본 발명의 약학 조성물은 당뇨망막병증 또는 노인성 황반변성을 퇴행시킨다.
본 발명에 따른 약학 조성물의 투여량은 투여 경로, 투여 대상, 대상 질환 및 이의 중증정도, 연령, 성별 체중, 개인차 및 질병 상태에 따라 적절히 선택할 수 있다. 바람직하게는, 본 발명의 단백질을 포함하는 약학 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 할 때 1회 투여시 0.01 mg/mL 내지 100 mg/mL의 유효량으로 하루에 수 차례 반복투여될 수 있다.
또한, 본 발명의 약학 조성물에서, 본 발명의 LK8 단백질은 0.1 μΜ 내지 ΙΟμΜ의 양으로 사용될 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약제의 제조를 위한 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질의 용도를 제공한다.
나아가, 본 발명은 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질을 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료가 필요한 포유동물에게 투여하는 것을 포함하는, 포유동물의 당뇨망막병증의 예방 또는 치료 방법을 제공한다. 상기 포유동물은 가축, 영장류 및 인간을 포함하며, 바람직하게는 인간일 수 있다.
이하 본 발명을 실시예를 들어 상세히 설명하지만, 이는 본 발명을 예시하는 것일 뿐, 이로써 본 발명의 권리범위가 제한되는 것은 아니다. 실시예 1: LK8단백질의 제조
<!-!> LK8 발현카세트를 효모 염색체 내로 삽입시키기 위한 백터의 제조 LK8 단백질을 효율적으로 제조하기 위하여, GAL1 프로모터, α-인자 분비신호 (α-f actor secretion signal), LK8 cDNA 염기서열 및 CYCl 터미네이터를 포함하는 LK8 발현 카세트를 효모의 염색체 내로 삽입시키기 위한 재조합 백터를 제조하였다.
구체적으로, 효모의 염색체에 존재하는 전이요소 중에 하나인 δ 서열 내에 원하는 유전자를 삽입할 수 있는 ρδ-neo 백터 (Lee, FWF. (1997) Appl Microbiol Biotechnol, 48: 339)를 모백터로 이용하였다. 상기 ρδ-neo 백터는 상동재조합 (homologous recombination) 방법으로 백터를 다중삽입하기 위한 δ서열 및 삽입된 백터의 선별을 위한 네오마이신 저항유전자 (neo)를 포함한다. 이때, LK8 발현카세트와 ρδ-neo 백터의 서열 내에는 모두 Sail 제한효소 인식부위가 존재하는바, 재조합 백터에 존재하는 Sail 제한효소 인식부위는 효모 염색체로의 삽입을 위해 필수적으로 필요하기 때문에 DNA 블런트 키트 (DNA Blunt Kit; Takara 사)를 이용하여 LK8 발현카세트에 존재하는 Sail 제한효소 인식부위를 제거하였다. 한편, pMCLK8 백터 (ATCC 87833, USA)에서 GAL1 프로모터와 CYC1 터미네이터 양끝을 각각 절단하는 Sacl 및 Kpnl 제한효소를 이용하여 LK8 발현카세트를 분리하였다. 이때, ρδ-neo 백터에는 Kpnl 제한효소 인식부위가 존재하지 않기 때문에 DNA 블런트 키트를 사용하여 ρδ-neo 백터의 Xba I 제한효소 인식부위와 분리된 LK8 발현카세트의 Kpnl 제한효소 인식부위를 모두 블런트 말단 (blunt end)으로 만들었다. 이후, 상기 LK8 발현카세트를 상기와 같이 재조합된 ρδ-neo 백터에 도입하여 MSLK8 재조합 발현백터를 제조하였다.
<1-2> P6LK8 이 도입된 형질전환체의 제조 재조합 형질전환체를 제작하기 위한 숙주로는 사카로마이세스 세레비지애 (Saccharomyces cereviseae) 균주 중에서 BJ350KATCC 208280, USA)을 이용하였다.
구체적으로, 알칼리 카타이온 효모 키드 (Alkali Cation Yeast Kit, Q-BIO gene 사)를 이용하여 실시예 <1-1>에서 제조된 MSLK8 재조합 발현백터로 효모를 형질전환시켰다. 이때, LK8 발현카세트가 효모 염색체 내에 다량으로 삽입되도록 하기 위해, 재조합 발현백터 DNA의 농도를 3 / 로 농축하여 형질전환에 사용하였다. MSLK8 재조합 발현백터로 형질전환된 효모를 G418 설페이트 (sulfate) 항생제가 함유된 YPD 플레이트 (2% 펩톤, 1% 효모 추출물, 2% 글루코스, 2% 아가)를 사용하여 선별하였다. 이때, G418 설페이트 항생제의 농도를 각각 5 g/ , 10 g/ 및 15 g/ 로 조정하여 상기 형질전환 효모 균주를 배양하였다. LK8 발현카세트가 효모의 염색체에 다량으로 삽입될 경우 높은 농도의 G418 설페이트 항생제 배지에서도 성장할 수 있으므로, 이를 이용하여 15 g /^의 G418 설페이트 항생제에 내성을 갖는 형질전환 효모 균주를 제조하였다. 상기 제조된 균주를 사카로마이세스 세레비지애 BJ3501/MSLK8 #36로 명명하였다.
<1-3> 재조합 균주의 배양
<1-3-1> 종균배양
상기 실시예 <1-2〉에서 제조된 사카로마이세스 세레비지애 BJ3501/MSLK8 #36 형질전환 균주를 멸균 보관 용기에 수 백 내지 수 천 개 분주한 후, 동일한 상태로 보관 관리하면서 재조합 단백질 생산시 종균으로서 종배양에 사용되도록 유지 관리하는 체계 ('워킹셀뱅크 (working cell bank) 시스템 '이라 함)를 구축하였다. 상기 형질전환 균주를 종균으로 사용하여 24시간 동안 적절한 균체량과 활성도 (20배로 회석시켰을 때, 0D 600 nm = 0.8 내지 1.2)를 얻어낼 수 있도록 YPD(1%의 효모 추출물, 2¾의 펩톤, 2%의 글루코스 포함) 배지에서 종균배양하였다. <l-3-2>회분배양
상기 YPD 배지에서 종균배양을 수행한 후, 초기 시작배지에 상기 실시예 <1-3-1>에서 수득한 종배양액을 접종하여 회분배양을 수행하였다. 회분배양 단계는 세포성장 및 LK8 발현 유도 물질로 사용되는 갈락토스의 적응 단계로서, 종배양액을 ι¾ 이상 접종하고, 탄소원으로 포도당 및 갈락토스를 사용하여 세포를 양적으로 증대시키면서 갈락토스 적웅기간을 주었다. 상기 과정에 사용된 초기 배양배지는 포도당 l~¾(w/v), 갈락토스 l~5%(w/v), 효모추출물 1 ~ 50 g/ ί , 카사미노에씨드 (casamino acid) 1 ~ 10 g/ ί , 우라실 0.1 ~ 5 g/£ 및 히스티딘 0.1 ~ 5 g/ 였다.
회분배양 단계 후반부에서 균체들의 왕성한 호흡작용으로 인해 용존산소량이 급격히 고갈되어 일반적으로 순산소를 공급하는 방법을 사용하나, 본 발명에서는 상기 배지조성에 따라 1 내지 3 wm의 공기공급량, 200 내지 1000 rpm의 교반속도인 물리적 조건을 조절하는 것을 회분배양 단계 후반부에서부터 배양 종료시까지 적용함으로써 용존산소량을 40% 이상으로 유지할 수 있었다. 이로 인하여 대규모 발효조에서 순산소를 사용하지 않고도 용존산소값을 일정수준 이상으로 유지하여 생산비용을 감소시킬 수 있었다. 그 결과, 홉광광도량 (600 ran) 30 이상의 균체량을 얻을 수 있었다.
<1-3-3>유가배양
유가배양단계는 발현 유도물질이면서 세포의 유일한 탄소원인 갈락토스를 첨가하여 유가배양시킴으로써 발효물질을 수득하는 단계이다.
구체적으로, 갈락토스 20 ~ 50%(w/v) , 효모추출물 1 ~ 50 g/ , 펩톤 1 ~ 30 g/ ί, 우라실 0.1~5g/£ 및 히스티딘 0.1~5g/£로 구성된 배지를 사용하였다. 이때, LK8 단백질의 대량 분비를 유도하기 위해 갈락토스를 1 /hr에서 30 /hr의 속도로 공급함으로써 배지 내에 잔존하는 갈락토스의 양을 5%(w/v) 이하로 유지시켰다. 상기와 같이 발효기간 중 발효조 내에 잔존하는 갈락토스 농도를 5 %(w/v) 이하 수준으로 유지함으로써 LK8의 발현 및 분비를 지속적으로 증가시킬 수 있었다. 상기 유가배양 과정을 통하여 발효 300시간 동안 배양 상등액 1 £당 수 백 rag 이상의 LK8 단백질을 얻을 수 있었다.
상기 종균배양, 회분배양 및 유가배양에 사용된 배지의 조성을 하기 표
1에 나타내었다.
<표 1>
배양 배지 조성
Figure imgf000016_0001
실시예 2: 망막구성세포 및 망막혈관구성세포에 대한 LK8단백질의 독성 안구 내로 투여되는 LK8 단백질의 안전성을 확인하기 위하여 신경망막층에서 기원하는 망막모세포종 세포주 (SNUOT-Rbl, Int J Oncol 2007 31(3): 585-92)와 인태반혈관내피세포 (HUVEC, Lonza C2517A, USA)를 대상으로 안전성올 시험하였다.
인태반혈관내피세포는 EGM-2 배지에서 배양하였고, SNUOT-Rbl 세포는 10% 소태아혈청이 첨가된 RPMI 1640 배지에서 배양하였다. 96 웰 플레이트에 5 X 103의 세포를 분주한 후 하룻밤 동안 배양하였다. 상기 배양된 세포에 LK8 단백질을 0.1, 1, 10 및 50 μΜ의 농도로 첨가하여 24시간 동안 배양하였다. 한편, 대조군의 경우에는 LK8 단백질을 첨가하지 않았다. 이후, 0.5 mg/ml의 MTT를 첨가하고, 4시간 후 MTT가 포함된 배지를 제거한 후 DMS0를 첨가하여 자색 포르마잔 생성물을 용출시켰다. 이후 560 nm에서 흡광도를 측정하여 세포 생존율을 확인하였다. 인태반혈관내피세포의 생존율을 도 1A에 나타내었고, 망막모세포종 세포의 생존율을 도 1B에 나타내었다.
도 1A 및 1B에서 보는 바와 같이, ~ 10 μΜ농도의 LK8 단백질로 처리된 군의 경우 대조군과 비슷한 세포 생존율을 나타내었다. 이는 LK8 단백질이 망막구성세포 및 망막혈관구성세포에 독성이 없음을 의미한다. 실시예 3: 마우스 안구의 망막에 대한 LK8단백질의 안전성 확인 안구내 투여 조건에서 LK8 단백질의 안전성올 확인하기 위하여, 8주령 암컷 C57BL/6 마우스 (Charles River Japan, Inc)의 우측 안구에 10 μΜ의 LK8 단백질을 주사한후 1주일 후에 안구를 적출하여 4%포르말린 용액에 고정시켰다. 상기 고정된 조직을 절단하여 헤마록실린 & 에오신으로 염색하거나 TUNEL 염색하여 조직을 분석하였다. 분석 결과, 도 2에서 보는 바와 같이, 118 단백질은 마우스의 망막조직에 독성을 나타내지 않았다. 실시예 4: 산소 유도 망막병증 모델에서의 신생혈관형성 억제 산소 유도 망막병증 모델에서 LK8 단백질의 신생혈관형성 억제를 확인하였다. 구체적으로, 갓 태어난 마우스 (C57BL/6)를 8마리씩 4 그룹으로 나눈 후, 각각 75% 산소 조건 하에서 5일간 키우고 일반 공기에서 2일간 추가로 키워, 망막신생혈관을 유도하였다. 망막신생혈관형성이 일반 공기로 옮긴 후 5일째에 최고에 달하기 때문에 0.1, 1 및 10 μΜ의 LK8 단백질을 일반 공기로 옮긴 2일째에 유리체강내로 투여하였다. 투여 후 3일 후에 마우스를 회생시킨 후 안구를 척출하여 실시예 2와 동일한 방법으로 고정시켰다. 4 μπι 두께로 자른 조직을 헤마특실린 & 에오신으로 염색하여 내경계막의 유리체강 부분쪽의 신생혈관을 계수하였다. 상기 결과를 도 3에 나타내었다.
도 3에서 보는 바와 같이, LK8 투여에 의해 전체적으로 혈관형성이 억제되었으며, 특히 0.1 μΜ의 농도 투여시 대조군 대비 약 50¾ 정도의 혈관형성 억제 효능을 나타내었고, 이는 1 μΜ의 농도에 최대 효능을 나타내었다. 실시예 5: 혈관내피세포 관 형성 억제 효능 혈관내피세포 관 형성 시험을 이용하여, LK8 단배질의 생체외 신생혈관형성 억제 효능을 확인하였다.
ΙχΙΟ5 개의 HUVEC 세포 (Lonza C2517A, USA)를 마트리젤 (matr igel)이 덮힌 플레이트 표면에 도말한 후 음성 대조군에는 LK8 단백질의 부형제 (100 mM NaCl , 150 mM 글리신, pH4.2)를 처리하고, 양성 대조군에는 혈관내피세포성장인자 (Calbiochem PF074, USA)를 10 ng/ml 농도로 처리하였으며 실험군은 LK8 단백질을 0.1, 1, 및 10 μΜ로 12시간 동안 처리하여 혈관내피세포성장인자에 의해 유도되는 관 형성 억제 효능을 확인하였다. 상기 결과를 도 4에 나타내었다. 도 4에서 보는 바와 같이, LK8 단백질은 농도의존적으로 HUVEC세포의 관 형성을 효과적으로 억제하였다. 실시예 6: 혈관내피세포 이동 억제 효능 신생혈관형성 기전의 하나인 세포 이동에 대한 LK8 단백질의 억제 효능을 확인하기 위하여, 혈관내피세포 창상 이동 시험을 수행하였다.
구체적으로, ΙχΙΟ6 개의 HUVEC 세포를 젤라틴이 덮힌 플레이트에 도말한 후 멸균된 칼을 이용하여 창상을 유발하였다. 떨어진 세포들을 세척하여 제거한 후 혈관내피세포 성장인자 (VEGF) 또는 혈관내피세포 성장인자와 LK8 단백질을 같이 처리하여 12시간 동안 배양하였다. 배지를 제거한 후 100% 메탄을로 세포를 고정시키고 김자 (Giemsa) 용액으로 세포를 염색하였다. 이후 광학현미경 (Carl Zeiss, Germany)를 이용하여 사진올 촬영하고 창상 부위로 이동한 세포를 계수하여 UC8 단백질의 효능을 확인하였다.
실험 결과, 도 5에서 보는 바와 같이, 0.1 uMLK8 단백질은 혈관내피세포 성장인자에 의해 유도된 세포 이동을 약 50% 정도 억제하였으며 LK8 단백질은 농도의존적으로 HUVEC세포의 이동을 억제시키는 것으로 나타났다. 실시예 7: 특이적 세포외기질 단백질 상의 혈관내피세포 이동 억제 효능 특이적 세포외기질단백질 상의 혈관내피세포 이동에 대한 LK8 단백질의 영향을 확인하기 위하여, 다양한 세포외기질 단백질이 덮힌 보이든 (Boyden) 측정기를 이용하여 LK8 단백질의 이동 억제 효능을 확인하였다.
8 μιτι 구멍이 있는 보이든 측정기를 비트로넥틴 (10 yg/tnl), 콜라겐 (10 Ug/ml), 및 피브로넥틴 (10 yg/ml)으로 각각 상온에서 2시간 동안 처리한 후 생리식염수로 세척하여 2시간 동안 건조시켰다. HUVEC 세포를 무혈청 EBM-2 배지로 하룻밤 동안 배양한 후 트립신 /EDTA로 처리하여 떨어뜨리고 트립신을 트립신 중화 용액으로 세척하여 제거한 후 세포들을 0. 소혈청알부민이 함유된 EBM-2 배지에 현탁하였다. 상기 현탁액에 LK8 단백질을 30분 동안 처리하고 0.3 i 에 ΙχΙΟ5 세포가 되도록 세포를 현탁한 후 세포외기질 단백질이 덮힌 보이든 측정기에 세포를 뿌려 37°C 배양기에서 4시간 동안 배양하였다. 배양 후 세포들을 4% 파라포름알데하이드로 고정시키고 크리스탈 바이을렛으로 염색한 후 염색된 세포로부터 크리스탈 바이올렛을 추출하여 595 nm에서 흡광도를 측정함으로서 LK8 단백질의 이동 억제 효능을 확인하였다.
실험 결과, 도 6에서 보는 바와 같이, 비트로넥틴과 콜라겐이 덮힌 보이든 측정기에서는 LK8 단백질의 억제 효능이 확인되지 않았으나 피브로넥틴이 덮힌 보이든 측정기에서는 LK8 단백질의 이동 억제 효능이 확인되었다. 이는 LK8 단백질이 피브로넥틴 상의 혈관내피세포의 이동을 억제함을 보여준다. 실시예 8: 혈관내피세포 부착 억제 효능 실시예 7의 결과를 재확인하기 위하여 각각의 세포외기질 단백질이 덮힌 플레이트에 상기 실시예 7과 동일한 방법으로 혈관내피세포를 뿌리고 일정 시간 후에 세포를 4% 파라포름알데하이드로 10분간 고정시킨 후 0.05% 트라이톤 -X 100을 5분 동안 처리하였다. 세포의 국소 부착을 확인하기 위하여 팩실린 (paxillin)에 대한 일차 항체 (Upstate 05-417, USA)를 처리하여 4°C에서 하룻밤 동안 반웅시키고, 다음날 생리식염수로 3회 세척하였다. 팩실린 염색을 위해 플루오레세인 (fluorescein)이 접합된 이차 항체 (KPL 02-18-06, UAS)를 처리하였고, 이와 동시에 세포의 골격을 유지시키는 액틴 스트레스 화이버의 형성을 확인하기 위하여 고정된 세포에 Texas-red가 접합된 팔로이딘 (phalloidin, Invitrogen T7471, USA)을 처리하였다. 염색이 완료된 세포는 형광형미경 (Olympus BX51, Japan)으로 촬영하여 세포 부착에 대한 LK8 단백질의 효능올 확인하였다. 실험결과를 도 7에 나타내었다. 도 7에서 보는 바와 같이, 동일 시간 안에 비트로넥틴과 피브로넥틴보다 콜라겐이 덮힌 플레이트에서 HUVEC 세포의 부착이 더딘 것으로 나타났다. 그러나 콜라겐과 비트로넥틴이 덮힌 플레이트에서 LK8 단백질에 의한 혈관내피세포 부착 억제 효능이 관찰되지 않았으며 피브로넥틴이 덮힌 플레이트에서 LK8 단백질에 의한 혈관내피세포의 부착 억제 효능이 관찰되었다. 상기 결과는 실시예 7의 결과와 마찬가지로, LK8 단백질이 피브로넥틴 상의 혈관내피세포의 부착을 억제함을 보여준다. 실시예 9: HUVEC세포에서의 다양한 인테그린의 발현 양상
LK8 단백질과 인테그린 단백질과의 관련성을 확인하기 위해 HUVEC 세포의 인테그린 발현 양상을 확인하였다.
HUVEC 세포를 0.5% BSA( Sigma A7906, USA)가 포함된 생리식염수에 현탁한 후 인테그린 베타 Chemicon MAB1951Z, USA), 베타 3(Chemicon MAB1957Z, USA), 알파 VCChemicon MAB1953Z, USA), 알파 3(Chemicon MAB1952Z) 그리고 알파 5(Chemicon AB1928, USA) 일차 항체 각각을 HUVEC 세포 현탁액에 처리하고 인테그린 베타 1, 베타 3, 알파 V, 알파 3 염색을 위해 2차 항체 (KPL 02-18-06, UAS)를 처리하였고 인테그린 알파 5 염색을 위해 2차 항체 (KPL 02-15-16, USA)를 처리하여 HUVEC 세포를 염색하였다. 염색된 세포를 FACS 칼리버 장비 (DB Immunocytometry Systems FACSCaliber, USA)를 이용하여 분석하였다.
분석 결과, HUVEC 세포는 인테그린 베타 1이 베타 3보다 많이 발현되며 알파 소단위들은 비슷하게 발현하는 것으로 확인되었다. 실시예 10: LK8 단백질의 인테그린 매개 세포이동 억제 효능
L 8 단백질의 세포이동 억제 효능에 있어 인테그린 단백질과의 관련성을 확인하기 위하여 실시예 7과 동일한 방법으로 HUVEC 세포를 준비한 후 각각의 인테그린 항체를 LK8 단백질 처리 전에 처리하였다. 이후의 방법은 실시예 7과 동일하게 수행하였으며 이를 통해 LK8 단백질의 세포이동 억제 효능을 관찰하였다.
실험 결과, 도 9에서 보는 바와 같이, 인테그린 베타 1 항체와 인테그린 알파 3 항체를 전처리하였을 때 LK8 단백질의 세포이동 억제 효능이 사라지는 것으로 나타났다. 상기 결과는 LK8 단백질의 세포이동 억제 효능이 인테그린 단백질과 관련됨을 보여준다. 실시예 11: LK8단백질의 인테그린 매개 혈관내피세포 부착 억제 효능
L 8 단백질의 혈관내피세포 부착 억제 효능에 있어 인테그린 단백질과의 관련성을 확인하기 위하여 실시예 8과 같이 세포를 준비하고, LK8 단백질 또는 각각의 인테그린 항체를 처리한 후 피브로넥틴이 덮힌 접시에 도말하였다. 이후 실시예 8과 동일하게 세포를 염색하고 관찰하였다.
실험 결과, LK8 단백질과 유사한 부착억제 효능이 인테그린 베타 1 항체와 인테그린 알파 3 항체를 처리한 세포에서 관찰되었다 (도 10). 상기 결과는 LK8 단백질의 세포 부착 억제 효능이 인테그린 단백질과 관련됨을 보여준다. 실시예 12: LK8단백질과 인테그린 단백질과의 결합
LK8 단백질과 인테그린과의 상호작용을 단백질칩을 이용하여 확인하였다. 구체적으로, 단백질칩 (Proteogen PPCA002, Korea) 표면에 이종결합 인테그린과 결합할 수 있는 항체 (항 -인테그린 알파 1 항체, Abeam ab34445, United Kingdom; 항-인테그린 알파 3 항체, Abeam ab23498, United Kingdom; 항-인테그린 알파 5항체 Abeam ab23589, United Kingdom; 항-인테그린 알파 V항체, Abeam abl6821, United Kingdom; 항-인테그린 베타 1 항체, Abeam ab7168, United Kingdom; 항-인테그린 베타 3 항체, Abeam ab7167( United Kingdom)를 붙인 후 각각의 이종결합 인테그린 (인테그린 알파 V베타 3, Chemicon CC1020, USA; 인테그린 알파 1베타 1, Chemicon CC1012, USA; 인테그린 알파 3베타 1, Chemicon CC1092, USA; 인테그린 알파 5베타 1, Chemicon CC1026, USA)을 접합하여 단백질칩을 완성하였다. 상기 단백질칩에 3.2에서 10000 nM농도의 Cy3가 접합된 LK8 단백질을 23°C에서 1시간 동안 처리한 후 형광스캐너 (Molecular Devices, USA)를 이용하여 결합한 LK8 단백질의 강도를 확인하였다. Cy3로 형광표지된 LK8의 농도를 변화시키며 결합곡선을 구하고 이로부터 결합상수를 계산하였다. BSA를 칩 표면에 고정화하고 Cy3로 표지된 LK8을 농도별로 처리한 것올 음성대조군으로 사용하여 인테그린과 결합된 LK8의 강도를 상대적으로 측정하였다. 양성 대조군으로는 LK8 단백질의 단클론 항체를 단백질칩에 결합시킨 후 Cy3가 접합된 LK8 단백질을 처리하였다.
실험 결과, 도 11에서 보는 바와 같이, LK8 단백질은 인테그린 알파 3베타 1 이종결합체와 가장 잘 결합하는 것으로 나타났다. 실시예 13: LK8단백질의 인테그린 베타 1매개 세포 이동 억제 효능
LK8 단백질의 세포이동 억제 효능에 있어 인테그린 알파 3베타 1과의 관련성을 명확하게 확인하기 위하여, 인테그린 베타 1 특이적인 siRNA(Dharmacon M-004124-02, USA)와 베타 3 특이적인 s i RNA(Dharmacon M-004506-00 , USA) 4 yg을 HUVEC 세포에 진핵형질전환시킨 후 24시간 동안 배양하였다. 배양한 세포를 획득하여 일부는 인테그린의 발현 억제를 확인하기 위하여 용혈시키고, 나머지는 LK8 단백질을 처리한 후 피브로넥틴이 덮힌 보이든 측정기에 뿌려 실시예 7과 동일한 방법으로 세포이동 억제를 관찰하였다.
실험 결과, 도 12에서 보는 바와 같이, 특이적인 인테그린 베타 1 또는 베타 3 siRNA로 진핵형질전환된 HUVEC 세포에서 인테그린의 발현이 현저히 감소되었다. 또한 각각 인테그린 발현이 감소한 HUVEC 세포에서의 LK8 단백질의 억제 효능을 관찰한 결과 인테그린 베타 1의 발현이 감소된 HUVEC 세포의 이동만이 LK8 단백질에 의해 영향을 받지 않는 것으로 나타났다. 상기 결과는 인테그린 베타 1이 L 8 단백질의 세포 이동 억제 효능에 관련됨을 보여준다. 실시예 14: 인테그린 베타 1단백질과 LK8단백질과의 결합
HUVEC 세포가 피브로넥틴이 덥힌 플레이트에 부착시 LK8 단백질의 결합을 확인하기 위하여, HUVEC 세포를 실시예 8과 동일한 방법으로 준비한 후 LK8 단백질을 처리한 세포를 0, 30, 90 및 120분간 부착시켰다. 부착된 세포를 회수하여 용출시키고, 상기 용출액을 인테그린 베타 1 항체와 4°C에서 2시간 동안 반응시킨 후, 단백질 G-세파로즈 비드를 첨가하여 추가로 1시간 반응시켰다. 반웅액을 원심분리한 다음, 단백질 G-세파로즈 비드에 결합한 단백질을 분리하여 전기영동한 후 LK8 단백질에 대한 항체를 처리하여 인테그린 베타 1 단백질과 결합한 LK8 단백질을 확인하였다.
그 결과, 도 13 상단에서 보는 바와 같이, HUVEC 세포가 피브로넥틴에 결합하여 세포 표면의 인테그린이 이종결합체를 형성할 때 LK8 단백질이 인테그린 베타 1 단백질에 잘 결합하는 것으로 확인되었다.
한편, 세포표면에서의 인테그린 베타 1과 LK8 단백질과의 결합을 확인하기 위하여 HUVEC 세포를 트립신 /EDTA로 처리하여 떨어뜨리고 트립신을 트립신 중화 용액으로 세척하여 제거한 후, 세포들을 0.5% 소혈청알부민이 함유된 EBM-2 배지에 현탁하였다. 상기 현탁액에 LK8 단백질올 90분 동안 처리한 후 피브로넥틴이 덮힌 플레이트에 혈관내피세포를 뿌리고 일정 시간 후에 세포를 4% 파라포름알데하이드로 10분간 고정시킨 후 0.05% 트라이톤 X-100을 5분 동안 처리하였다. 인테그린 베타 1과 LK8을 염색하기 위하여 항-인테그린 베타 1 항체 (Chemicon MAB1951Z, USA)와 LK8 단클론 항체 (clone #11-18, 목암연구소 제조)를 밤새 처리하였다. 다음 날 생리식염수로 3회 세척한 후 인테그린 베타 1 염색을 위해 2차 항체 (KPL 02-18-06, USA)와 LK8 염색을 위해 2차 항체 (KPL 03-18-06, USA)를 처리하였다. 생리식염수로 3회 세척한 후 염색이 완료된 세포를 형광현미경 (Olympus BX51, Japan)으로 촬영하여 인테그린 베타 1 항체와 LK8 단백질이 HUVEC세포의 동일한 표면에 결합하는지를 확인하였다.
그 결과, 도 13 하단에서 보는 바와 같이, 인테그린 베타 1 항체에 의해 염색된 부위 (도 13 하단 좌측부)와 LK8에 의해 염색된 부위 (도 13 하단 중간부)가 겹쳐 나타났으며 (도 13 하단 우측부), 이는 LK8 단백질이 인테그린 베타 1에 결합함을 보여준다 실시예 15: 인테그린 매개 신호전달체계에 대한 LK8단백질의 영향 인테그린 베타 1 단백질 매개 신호전달체계에 대한 LK8 단백질의 영향을 확인하기 위하여, 실시예 7과 동일한 방법으로 HUVEC 세포를 준비한 후 현탁 세포에 1, 3 및 5 μΜ의 LK8 단백질을 처리하고, 상기 세포를 피브로넥틴이 덮힌 플레이트에 부착시킨 후 회수하여 용출시켰다. 용출액을 전기영동하여 FAK의 특이적 타이로신 인산화, JNK의 인산화 그리고 ERK1/2의 인산화를 확인하였다. FAK의 특이적 타이로신 인산화를 확인하기 위해 397 타이로신 인산화 FAK(Upstate MAB1144, USA), 576/577타이로신 인산화 FAKCCell signaling #3281, USA) 및 925 타이로신 인산화 FAKCCell signaling #3284, USA) 항체를 처리하였으며, ERK1/2 인산화를 확인하기 위해 인산화 ERKl/2(Cell signaling #4370, USA) 항체를 처리하였다. 또한 JNK의 인산화를 확인하기 위해, 인산화 JNK항체 (Cell signaling 9251, USA)를 처리하였다. 한편, FAK(Upstate 05-537, USA), ERKl/2(Cell signaling #4695, USA), JNK( Santa cruz SC-571, USA) 항체를 각각 처리하여 전기영동한 단백질량을 보정하였다.
그 결과 LK8 단백질 처리군에서 FAK의 인산화와 JNK의 인산화가 감소함을 확인하였다 (도 14의 A와 D). 그러나 ERK1/2의 인산화는 변화가 없었다 (도 14의 B).
인테그린 신호전달체계에서 FAK 아래에 존재하는 pl30CAS 단백질의 변화를 확인하기 위하여 HUVEC 용출액과 단백질 -G-아가로즈 (Invitrogen 15920-010, USA) 그리고 pl30CAS항체 (Upstate 05-469, USA)를 섞어 반응시켰다. 이 과정을 통해 HUVEC 용출액으로부터 pl30CAS 항체에 결합하는 단백질을 분리하여 전기영동을 하였으며 타이로신 특이적 항체 (Upstate 05-321, USA)를 이용한 웨스턴블럿팅을 통해 pl30CAS의 특이적 타이로신의 인산화를 확인하였다. 그 결과, LK8 단백질 처리군에서 pl30CAS의 인산화가 감소함을 확인하였다 (도 14의 C).
상기 실험결과는 LK8 단백질이 인테그린에 결합하여 피브로넥틴과의 결합을 방해함으로써 인테그린 신호전달체계에 관련된 FAK, pl30CAS, JNK 단백질의 특이적 인산화를 억제함을 보여준다. 실시예 16: 단백질 억제제를 이용한신호전달체계 분석 상기 실시예 15의 결과를 재확인하기 위하여 실시예 7과 동일한 방법으로 세포를 준비하여 JNK 억제제 (SP600125)(Calbiochem 420119, USA), PI3K 억제제 (LY204002)(Calbiocheni 440202, USA) 및 ERK1/2 억제제 (U0126)(Calbiochem 662005, USA)를 전처리한 후 LK8 백질을 처리하였다. 상기 세포들을 피브로넥틴이 덮힌 보이든 측정기에 뿌려 LK8 단백질에 의한 세포이동 억제 효능을 확인하였다.
그 결과, PI3K 억제제와 ERK1/2 억제제를 처리한 HUVEC 세포에서는 LK8 단백질에 의한 세포이동 억제가 관찰되었지만 J K 억제제를 처리한 세포군에서는 LK8 단백질의 이동억제 효능이 사라짐을 확인하였다 (도 15).
상기 실험결과는 PI3K와 ERK1/2억제제를 처리한 조건에서 LK8 단백질이 세포이동을 억제하였기 때문에 LK8 단백질이 PI3K 및 ERK1/2의 역할에 영향을 주지 않았음을 의미하는 것이다. JNK 억제제를 처리하였을 때 LK8 단백질에 의한 세포이동억제 효능이 사라진 것은 LK8 단백질에 의해 JNK의 역할이 억제되어야 함에도 불구하고 이미 JNK억제제에 의해 JNK의 능력이 사라져 LK8의 효능이 나타나지 않은 것으로서, 이는 LK8 단백질에 의한 세포이동억제에 JNK 단백질이 관여한다는 것을 보여준다.

Claims

특허청구범위 청구항 1. 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 2. 제 1항에 있어서, 상기 LK8 단백질이 망막 신생혈관형성을 억제하는 것을 특징으로 하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 3. 제 1항에 있어서, 상기 LK8 단백질이 혈관내피세포 이동 및 부착을 억제하는 것을 특징으로 하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 4. 제 1항에 있어서, 상기 LK8 단백질이 혈관내피세포의 인테그린과 피브로넥틴의 결합을 방해하는 것을 특징으로 하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 5. 제 1항에 있어서, 상기 LK8 단백질이 0.1 μΜ 내지 10 μΜ의 양으로 사용되는 것을 특징으로 하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 6. 제 1항에 있어서, 상기 약학 조성물이 안구 내로 투여되는 것을 특징으로 하는, 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물. 청구항 7. 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약제의 제조를 위한서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질의 용도. 청구항 8. 서열번호 1로 표시되는 아미노산 서열을 갖는 LK8 단백질을 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료가 필요한 포유동물에게 투여하는 것을 포함하는, 포유동물의 당뇨망막병증의 예방 또는 치료 방법.
PCT/KR2011/008761 2010-11-16 2011-11-16 Lk8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물 WO2012067427A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41423910P 2010-11-16 2010-11-16
US61/414,239 2010-11-16

Publications (3)

Publication Number Publication Date
WO2012067427A2 WO2012067427A2 (ko) 2012-05-24
WO2012067427A9 true WO2012067427A9 (ko) 2012-06-28
WO2012067427A3 WO2012067427A3 (ko) 2012-09-13

Family

ID=46084516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008761 WO2012067427A2 (ko) 2010-11-16 2011-11-16 Lk8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물

Country Status (1)

Country Link
WO (1) WO2012067427A2 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725473B2 (ja) * 1999-09-15 2005-12-14 モーガン バイオテクノロジー リサーチ インスティテュート 新規血管形成阻害剤
US7285277B2 (en) * 2002-03-15 2007-10-23 Mogam Biotechnology Research Institute Anticancer agent
KR100595364B1 (ko) * 2003-02-20 2006-07-03 재단법인 목암생명공학연구소 Lk8 단백질을 유효성분으로 포함하는 항암제
KR100888022B1 (ko) * 2006-12-21 2009-03-09 재단법인 목암생명공학연구소 면역글로불린 Fc와 인간 아포리포단백질(a)크링글절편의 융합단백질 LK8­Fc

Also Published As

Publication number Publication date
WO2012067427A3 (ko) 2012-09-13
WO2012067427A2 (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
US11401516B2 (en) Channel modulators
Meekins et al. Corneal endothelial cell migration and proliferation enhanced by Rho kinase (ROCK) inhibitors in in vitro and in vivo models
CN101316602B (zh) 羊膜制品和纯化的组合物及其使用方法
TWI532480B (zh) 以斑馬魚模組進行藥物篩選之方法及篩選所得藥物
JP2020526574A5 (ko)
Mietzner et al. Causative glaucoma treatment: promising targets and delivery systems
Liu et al. siRNA silencing of gene expression in trabecular meshwork: RhoA siRNA reduces IOP in mice
US20160166532A1 (en) Carnitine palmitoyltransferase 1 inhibitors for inhibition of pathological angiogenesis
KR20190120197A (ko) 치료 및 신경보호 펩티드
Gerhart et al. Depletion of Myo/Nog cells in the lens mitigates posterior capsule opacification in rabbits
CN106714821B (zh) Jnk信号转导途径的细胞穿透肽抑制剂用于治疗多种疾病的新用途
CN108350458A (zh) 用豹蛙酶和/或两栖酶治疗病毒性结膜炎
US9782381B2 (en) Molecular targets for healing or treating wounds
JP6440107B2 (ja) 細胞シートの製造方法、組成物、細胞培養補助剤、及び細胞培養方法
US20200376019A1 (en) miR29 MIMICS FOR THE TREATMENT OF OCULAR FIBROSIS
US20120071628A1 (en) Topical therapeutic agent for ophthalmic diseases comprising compound capable of binding specifically to dna sequence
WO2012067427A9 (ko) Lk8 단백질을 유효성분으로 포함하는 당뇨망막병증 또는 노인성 황반변성의 예방 또는 치료용 약학 조성물
CN108721315B (zh) 小分子核酸miR-21在治疗青光眼中的应用
US20030144236A1 (en) Novel specific inhibitor of the cyclin kinase inhibitor p21 (wafl/cip1)
EP2485739B1 (en) Methods and compositions for maintenance of a functional wound
US20240299440A1 (en) Novel treatments for ocular disorders
CN111712244A (zh) 包含(t)ew-7197的治疗或预防角膜内皮疾患的组合物或方法
US20240035033A1 (en) Prevention and treatment of age-related macular degeneration through suppression of cathepsin s expression
KR20190115332A (ko) 리보핵산분해효소 5 고발현된 각막 내피세포를 포함하는 3차원 각막 내피 이식체 제조방법
Liu Dendrimer-based Delivery of Peptides and Antibodies for Choroidal Neovascularization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841716

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841716

Country of ref document: EP

Kind code of ref document: A2