WO2012066909A1 - 水性分散液及びその製造方法 - Google Patents

水性分散液及びその製造方法 Download PDF

Info

Publication number
WO2012066909A1
WO2012066909A1 PCT/JP2011/074540 JP2011074540W WO2012066909A1 WO 2012066909 A1 WO2012066909 A1 WO 2012066909A1 JP 2011074540 W JP2011074540 W JP 2011074540W WO 2012066909 A1 WO2012066909 A1 WO 2012066909A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
composite oxide
particles
aluminum
yttrium
Prior art date
Application number
PCT/JP2011/074540
Other languages
English (en)
French (fr)
Inventor
麻美 吉田
健司 鈴岡
八島 勇
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2012544166A priority Critical patent/JPWO2012066909A1/ja
Publication of WO2012066909A1 publication Critical patent/WO2012066909A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to an aqueous dispersion containing a complex oxide containing lanthanoid or yttrium and aluminum, and a method for producing the same.
  • the aqueous dispersion liquid of the present invention is suitably used as a raw material for forming a thin film useful for various optical materials by drying it as a coating film.
  • a lanthanoid such as rare earth aluminum garnet or yttrium aluminum garnet or a composite oxide containing yttrium and aluminum is a material having a high refractive index and Abbe number in the wavelength region of ultraviolet light including the wavelength region of visible light to infrared light. It has been known. Taking advantage of these characteristics, the composite oxide is used as an optical material in various fields.
  • Patent Document 1 describes yttrium aluminum garnet fine powder used as a raw material for a laser oscillator and the like.
  • This fine powder is obtained by adding a mineral salt aqueous solution in which an yttrium salt and an aluminum salt are mixed in an alkaline carbonate aqueous solution so as to have a garnet composition to crystallize a water-insoluble salt of yttrium and aluminum. It is obtained by baking the salt.
  • This reference describes that the average primary particle size of the fine powder is 0.01 to 0.2 ⁇ m.
  • This fine powder is press-molded into a molded body having a predetermined shape by a mold, and then sintered to obtain an optical product having a predetermined shape.
  • Patent Document 2 describes a rare earth element / aluminum garnet powder containing rare earth elements such as Y, Yb, Er or Nd as rare earth elements. This powder describes that this powder has an average particle diameter D 50 of 1.8 ⁇ m or less. Similarly to the fine powder described in Patent Document 1, this powder is press-molded into a molded body having a predetermined shape by a mold, and then sintered to obtain an optical product having a predetermined shape.
  • Patent Documents 1 and 2 each aim to produce an optical product by sintering a molded body obtained by press molding a powder. Therefore, it is not easy to manufacture a thin optical product using the techniques described in these documents.
  • a dispersion liquid in which powder as a raw material is dispersed in a liquid and apply the dispersion liquid onto a substrate.
  • the powders described in these documents have a relatively large particle size, when a dispersion is prepared using the powder, the dispersibility of the particles in the dispersion cannot be said to be good. Precipitation is likely to occur in the liquid.
  • an object of the present invention is to provide an aqueous dispersion capable of easily forming a thin film useful in the field of optical materials.
  • the present invention is an aqueous dispersion containing particles made of a lanthanoid or a composite oxide containing yttrium and aluminum, wherein the maximum particle diameter D max of the particles is 100 nm or less, and the pH of the aqueous dispersion is 1
  • the present invention provides an aqueous dispersion characterized by ⁇ 7.
  • the present invention also provides a method for producing the aqueous dispersion as described above.
  • An aqueous dispersion comprising a lanthanoid or a composite oxide containing yttrium and aluminum, particles having a BET specific surface area of 10 to 300 m 2 / g are dispersed in an aqueous medium, and the pH is adjusted to 1 to 7.
  • a method for producing a liquid is provided.
  • the aqueous dispersion of the present invention has high dispersibility of particles, high stability that does not easily generate precipitates even after long-term storage, and high transparency.
  • FIG. 1 is an XRD diffractogram of the lutetium aluminum composite oxide particles obtained in Examples 1 to 4 and Comparative Example 1.
  • FIG. FIGS. 2 (a), 2 (b), 2 (c) and 2 (d) are diagrams showing the reflectance of the lutetium aluminum composite oxide particles obtained in Examples 1 to 4, respectively.
  • FIG. 3 is a diagram showing a visible transmission curve for the aqueous dispersion of Example 2.
  • FIG. FIG. 4 is a diagram showing the reflectance of the lutetium aluminum composite oxide particles obtained in Comparative Example 1.
  • FIG. 5 is an XRD diffractogram of the composite oxide particles containing lanthanoids or yttrium and aluminum obtained in Examples 6 to 8.
  • FIGS. 6 (a), 6 (b) and 6 (c) are graphs showing the reflectance of the composite oxide particles containing lanthanoids or yttrium and aluminum obtained in Examples 6 to 8, respectively.
  • the aqueous dispersion of the present invention contains composite oxide (hereinafter also referred to as metal composite oxide) particles containing lanthanoid or yttrium and aluminum as a dispersoid.
  • Lanthanoids that can be used in the present invention include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • one kind of lanthanoid or yttrium and aluminum can be used in combination.
  • One or more lanthanoids, yttrium and aluminum can be used in combination.
  • preferred combinations of the lanthanoid and yttrium include, for example, a combination of yttrium and lutetium, a combination of yttrium and ytterbium, and yttrium, gadolinium, and lutetium. And the like.
  • a combination of aluminum and one or more elements selected from lanthanoids can be used as the metal composite oxide.
  • Preferred combinations of lanthanoids include a combination of gadolinium and lutetium and a combination of ytterbium and gadolinium. Particularly preferably used combinations are a combination of Lu and Al, a combination of Y and Al, and a combination of Gd and Al because of their high properties as an optical material.
  • the metal composite oxide used in the present invention preferably has a garnet composition or a perovskite composition from the viewpoints of high transmittance, high refractive index and low wavelength dispersion in the visible light wavelength region.
  • the garnet composition refers to a composition represented by A 3 B 5 O 12 (wherein A represents a trivalent metal element and B represents a trivalent metal element).
  • the perovskite composition means a composition represented by ABO 3 (wherein A represents a trivalent metal element and B represents a trivalent metal element).
  • Examples of the metal composite oxide having a garnet composition include Lu 3 Al 5 O 12 , Y 3 Al 5 O 12 , La 3 Al 5 O 12 , Yb 3 Al 5 O 12 , Er 3 Al 5 O 12 , and Ho 3 Al. 5 O 12 , Tb 3 Al 5 O 12 , Gd 3 Al 5 O 12 , Eu 3 Al 5 O 12 and the like can be mentioned. Among these, it is preferable to use Lu 3 Al 5 O 12, Y 3 Al 5 O 12, La 3 Al 5 O 12.
  • Examples of the metal composite oxide having a perovskite composition include LuAlO 3 , YAlO 3 , LaAlO 3 , CeAlO 3 , PrAlO 3 , NdAlO 3 , SmAlO 3 , EuAlO 3 , GdAlO 3 , TbAlO 3 , and HoAlO 3 .
  • LuAlO 3 , YAlO 3 , or LaAlO 3 A metal composite oxide having a garnet composition or a perovskite composition can be suitably obtained, for example, by a production method described later.
  • the metal composite oxide used in the present invention may have a crystal structure or may be amorphous.
  • the crystal structure includes, for example, a cubic structure.
  • the cubic structure include a garnet structure and a perovskite structure.
  • the metal composite oxide having a garnet structure include those exemplified as the metal composite oxide having the garnet composition described above.
  • the metal composite oxide having a perovskite structure include those exemplified as the metal composite oxide having the above-described perovskite composition.
  • a metal composite oxide having a garnet structure or a perovskite structure can be suitably obtained by, for example, a production method described later.
  • the metal composite oxide used in the present invention may contain a group 13 trivalent metal element excluding aluminum (hereinafter also referred to as “group 13 metal element”). It is because the structure of metal oxide particles is stabilized by containing these metal elements. Examples of such metal elements include Ga, In, and Tl. These metal elements can be used alone or in combination of two or more.
  • the content of these group 13 metal elements in the metal composite oxide is such that the metal composite oxide is, for example, A 3 B x Al 5-x O 12 (wherein A represents a lanthanoid or yttrium, and B represents a group 13 metal.
  • X in the formula is preferably an amount satisfying 0.001 ⁇ x ⁇ 2.5, particularly 0.01 ⁇ x ⁇ 2.
  • the metal composite oxide has a perovskite composition represented by, for example, AB x Al 1-x O 3 (wherein A represents lanthanoid or yttrium and B represents a group 13 metal element), x in the formula Is preferably such that 0.001 ⁇ x ⁇ 0.5, particularly 0.01 ⁇ x ⁇ 0.4.
  • Metal oxide particles containing a Group 13 metal element can be suitably obtained by a production method described later.
  • the aqueous dispersion of the present invention is highly transparent, and in order to make the aqueous dispersion transparent, the maximum particle size of the metal composite oxide particles contained in the aqueous dispersion D max is important.
  • the maximum particle size D max of the metal composite oxide particles needs to be 100 nm or less, preferably 95 nm or less, more preferably 85 nm or less, more preferably 70 nm or less, and particularly preferably 50 nm or less. .
  • the lower limit of the maximum particle diameter Dmax is not particularly limited, and the lower the better, the better.
  • the maximum particle diameter D max of the metal composite oxide particles is measured by a dynamic light scattering method using a photon correlation method. For example, it is measured using a nano track particle size distribution measuring device manufactured by Nikkiso Co., Ltd. or a Zetasizer Nano ZS manufactured by Malvern.
  • the maximum particle diameter D max of the metal composite oxide particles contained in the aqueous dispersion is as described above, and the volume-converted average particle diameter D 50 of the particles is preferably 1 to 70 nm, more preferably 1 to 50 nm.
  • the thickness is preferably 10 to 50 nm, particularly preferably 10 to 40 nm, and most preferably 10 to 30 nm.
  • the average particle size D 50 is in this range, thereby further improving the transparency of the aqueous dispersion.
  • the average particle diameter D 50 is measured by the maximum particle diameter D max the same method.
  • the concentration of the metal composite oxide particles contained in the aqueous dispersion is preferably 1 to 50% by weight, particularly 1 to 30% by weight. By adjusting to this concentration range, the metal composite oxide particles are highly dispersed, and even if stored for a long period of time, the formation of precipitates is not recognized.
  • the aqueous dispersion may further contain metal oxide particles having a high refractive index in addition to the metal composite oxide particles.
  • metal oxide particles include Mg, Ca, Ti, Zn, Zr, Ta, Nb, Ga, Ge, Sn, In, Hf, Y, and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and other metal oxides. These metal oxides can be used alone or in combination of two or more. These metal oxides can be used in an amount of about 0.1 to 50% by weight with respect to the whole particles as a solid content contained in the aqueous dispersion.
  • the aqueous dispersion of the present invention is also characterized by high stability when stored for a long period of time.
  • the pH of the aqueous dispersion is set to 1 to 7, preferably 2 to 6.5, more preferably 3 to 6.5, and still more preferably 3. It is set to 5 to 6.5, particularly preferably 4 to 6.
  • the pH of the aqueous dispersion is less than 1, the metal composite oxide particles may be dissolved.
  • the pH is more than 7, in the vicinity of pH 7 to 8, it is not easy to highly disperse the metal composite oxide particles, and precipitation occurs when stored immediately or for a long time.
  • the isoelectric point of the metal composite oxide particles used in the present invention is around pH 7-8.
  • the present inventors have found that the isoelectric point pH of the garnet-structured lutetium aluminum composite oxide particles is 7.4, and that of the perovskite structure gadolinium aluminum composite oxide particles is 8.2. Have confirmed.
  • the pH of the aqueous dispersion is a value at a temperature during storage or use of the aqueous dispersion.
  • a pH adjuster may be added to the aqueous dispersion.
  • the pH adjuster for example, an inorganic acid or an organic acid can be used.
  • inorganic acids include hydrofluoric acid, nitric acid, hydrochloric acid, and sulfuric acid.
  • the organic acid include acetic acid, propionic acid, butyric acid, and valeric acid. Of these, acetic acid and propionic acid are preferably used, and acetic acid is particularly preferably used. Since acetic acid is not a deleterious substance, it is easy to handle, and since it is a weak acid, pH adjustment is easy.
  • the amount of the pH adjusting agent added to the aqueous dispersion may be such that the pH of the aqueous dispersion is in the above range.
  • the aqueous dispersion uses an aqueous liquid as a medium.
  • aqueous liquid water itself or a water-soluble organic solvent added to water can be used.
  • water-soluble organic solvent for example, alcohols, polyols, cellosolve, carbitol, and ketones can be used. These organic solvents may be used as a mixture of two or more. Examples of alcohols include methanol, ethanol, butanol, propanol, and pentanol.
  • polyols examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, propanediol, butanediol, pentanediol, hexanediol, glycerol, hexanetriol, butanetriol, petriol, and glycerin.
  • cellosolve examples include methoxyethanol, ethoxyethanol, propoxyethanol, and butoxyethanol.
  • carbitol examples include methoxyethoxyethanol, ethoxyethoxyethanol, propoxyethoxyethanol, and butoxyethoxyethanol.
  • ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, and diacetone alcohol. These organic solvents can be added in an amount of about 0.1 to 50% by weight based on the entire aqueous liquid.
  • the aqueous dispersion of the present invention is characterized by being highly transparent in the visible light wavelength region (400 to 800 nm). Specifically, it has a high transparency such that the transmittance in the wavelength region of visible light is preferably 80% or more, more preferably 90% or more.
  • the aqueous dispersion of the present invention is very useful for the production of a transparent film having a high refractive index and low wavelength dispersion in the visible light wavelength region.
  • a transparent film having a high refractive index and low wavelength dispersion in the visible light wavelength region contributes to a reduction in the thickness of optical lenses such as sheet lenses.
  • the transparency of the aqueous dispersion can be measured using, for example, a spectrophotometer U-4000 manufactured by Hitachi High-Technologies Corporation using a cell having an optical path length of 1 cm.
  • the aqueous dispersion of the present invention has high stability even after long-term storage. For example, it has a stability that does not cause precipitation even when stored for 1 month at room temperature.
  • This production method is roughly divided into (i) a production process of metal composite oxide particles and (ii) a production process of an aqueous dispersion. Both of these steps will be described.
  • the metal composite oxide particles are mixed with an aqueous solution containing lanthanoid or yttrium and aluminum and an alkali (base) for neutralization to produce a coprecipitate containing lanthanoid or yttrium and aluminum. Obtained by firing.
  • a water-soluble lanthanoid compound is used as a lanthanoid source.
  • a water-soluble yttrium compound is used as the yttrium source.
  • a water-soluble aluminum compound is used as the aluminum source.
  • the target aqueous solution is obtained by dissolving in these waters.
  • a target aqueous solution can also be obtained by dissolving a lanthanoid compound or yttrium compound and an aluminum compound dissolved in a mineral acid such as hydrochloric acid in a mineral acid.
  • the concentration of the lanthanoid ion and yttrium ion in the aqueous solution is preferably 0.001 to 1 mol / liter, particularly 0.01 to 0.5 mol / liter.
  • the concentration of aluminum ions in the aqueous solution is preferably 0.001 to 2 mol / liter, particularly 0.02 to 1 mol / liter.
  • the molar ratio of the lanthanoid ion or yttrium ion to the aluminum ion in the aqueous solution should be a garnet composition or a perovskite composition.
  • the addition amount of these elements may be appropriately adjusted.
  • the molar ratio of lanthanoid ions or yttrium ions to aluminum ions in the aqueous solution is appropriately adjusted so that a cubic structure oxide is formed. You can do it.
  • the group 13 metal element may be further added to the above-described aqueous solution containing lanthanoid or yttrium and aluminum.
  • a water-soluble compound of a group 13 metal element may be used in addition to the lanthanoid compound or yttrium compound and the aluminum compound. What is necessary is just to adjust the usage-amount of the compound of a group 13 metal element suitably so that content of the group 13 metal element in metal complex oxide particle may become the above-mentioned range.
  • Examples of the alkali (base) added to an aqueous solution containing lanthanoid or yttrium and aluminum include ammonia water; an aqueous solution of an alkali metal hydroxide such as sodium hydroxide; sodium carbonate, potassium carbonate, sodium bicarbonate, ammonium bicarbonate. And carbonates such as ammonium carbonate;
  • the amount of alkali added is preferably such that the pH of the aqueous solution is 5 to 14, particularly 8 to 10. By setting the pH value within this range, a coprecipitate containing lanthanoid or yttrium and aluminum can be successfully obtained.
  • Neutralization of an aqueous solution containing lanthanoid or yttrium and aluminum is preferably performed by adding an aqueous solution containing lanthanoid or yttrium and aluminum to an alkaline aqueous solution from the viewpoint of successfully obtaining a coprecipitate.
  • the addition of the aqueous solution containing the lanthanoid or yttrium and aluminum may be performed at once or may be performed sequentially. The addition may be performed under heating, but it is usually sufficient to perform the addition at room temperature (for example, 25 ° C.).
  • the precursor is solid-liquid separated according to a conventional method, and then washed with water once or a plurality of times. Washing with water is preferably performed until the electrical conductivity of the liquid reaches, for example, 2000 ⁇ S / cm or less.
  • a small amount of aqueous ammonia may be added to the liquid from the viewpoint of efficiently precipitating the precursor.
  • the water-washed precursor is subjected to a crushing step after drying and moisture removal.
  • a mortar can be used simply.
  • the pulverization is preferably performed so that the size of the pulverized material passes through a sieve having a mesh size of 100 ⁇ m.
  • the crushed precursor is then subjected to a firing step.
  • metal composite oxide particles are obtained.
  • the firing process is an important process from the viewpoint of enhancing the transparency of the aqueous dispersion when the finally obtained metal composite oxide particles are dispersed in the aqueous liquid.
  • a BET specific surface area of the metal composite oxide particles obtained by calcining step 10 ⁇ 300m 2 / g, more preferably 20 ⁇ 300m 2 / g, more so preferably to be 20 ⁇ 250m 2 / g
  • Suitable firing conditions for obtaining metal composite oxide particles having a BET specific surface area in this range include, for example, an atmospheric temperature, a temperature of 400 to 1200 ° C., particularly 400 to 1000 ° C., a time of 1 to 24 hours, In particular, it is 1 to 10 hours.
  • the BET specific surface area can be measured by N 2 adsorption method using “Flowsorb 2300” manufactured by Shimadzu Corporation. In this specification, the amount of the measured powder was 0.3 g, and the pre-degassing condition was 10 minutes at 120 ° C. under atmospheric pressure.
  • metal composite oxide particles having a BET specific surface area in the above-mentioned preferred range can be obtained.
  • the specific surface area equivalent particle diameter of the metal composite oxide particles is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, and particularly preferably 20 nm or less.
  • a diffraction peak derived from the metal composite oxide is observed, and it is confirmed that the metal composite oxide particles have a crystal structure (see Example 1 described later). .
  • a diffraction peak by XRD measurement may not be clearly observed (see Examples 2 to 4 described later).
  • metal composite oxide particles obtained by firing are pulverized.
  • the pulverization may be dry or wet, but wet pulverization is preferable from the viewpoint of easily obtaining an aqueous dispersion.
  • wet pulverization is performed, the metal composite oxide particles and the aqueous liquid are mixed to form a slurry, and pulverization is performed by a media mill such as a bead mill.
  • a media mill such as a bead mill.
  • the aqueous liquid water or a solution obtained by adding a water-soluble organic solvent to water is used. Examples of the beads to be used include zirconia beads and alumina beads.
  • the metal composite oxide can be easily brought close to a monodispersed state.
  • the pH adjuster it is preferable to use one that can adjust the pH of the liquid to preferably 1 to 7, more preferably 2 to 6.
  • a pH adjuster for example, the inorganic acid or organic acid described above can be used, and acetic acid is particularly preferable.
  • the above pH adjuster may be added to an aqueous dispersion obtained by wet grinding instead of adding it to the slurry during wet grinding.
  • the amount added is preferably 1 to 7, more preferably 2 to 6.5, more preferably 3 to 6.5, particularly preferably the pH of the aqueous dispersion. Is from 3.5 to 6.5, most preferably from 4 to 6.
  • the target aqueous dispersion is obtained by separating the liquid and the beads.
  • the aqueous dispersion thus obtained is colorless and transparent and has a high visible light transmittance. Moreover, it is stable and does not cause precipitation even when stored for a long time.
  • the aqueous dispersion thus obtained can be obtained by using various optical materials by utilizing the high refractive index and low wavelength dispersibility of the metal composite oxide contained therein and the transparency to visible light of the aqueous dispersion. And can be used for electronic materials. For example, it can be used for optical system parts such as lenses, antireflection films, infrared transmission films and the like. Specifically, an aqueous dispersion is applied to the surface of various substrates such as transparent substrates and lenses to form a coating film, and the coating film is dried to provide high transparency, high refractive index, and low wavelength. A thin film having dispersibility can be formed.
  • the dried thin film may be fired as necessary under an inert atmosphere, an oxidizing atmosphere such as air, or a weakly reducing atmosphere (for example, a hydrogen-containing atmosphere having an explosion limit concentration or less).
  • This thin film is useful for further increasing the refractive index of the lens or as a thin lens itself.
  • the aqueous dispersion of the present invention is also suitably used as a raw material for a resin lens in which metal composite oxide particles contained therein are dispersed in a resin.
  • Example 1 Production of lutetium aluminum composite oxide particles 380 g of water was weighed into a glass container and heated to 80 ° C. To this, 13.5 g of 35% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added. Furthermore, 7.0 g of Lu 2 O 3 (manufactured by Japan Yttrium Co., Ltd.) and 14.2 g of AlCl 3 .hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and completely dissolved. Thereafter, the liquid temperature was adjusted to 90 ° C. The obtained aqueous solution is called aqueous solution A.
  • aqueous solution A The obtained aqueous solution A.
  • This precursor was calcined in the atmosphere at 1000 ° C. for 6 hours to obtain target lutetium aluminum composite oxide particles.
  • An XRD diffractogram of the lutetium aluminum composite oxide particles is shown in FIG.
  • the lutetium aluminum composite oxide particles showed a diffraction peak derived from Lu 3 Al 5 O 12 and had a garnet structure. It was 25 m ⁇ 2 > / g when the BET specific surface area of this lutetium aluminum complex oxide particle was measured.
  • the specific surface area equivalent particle size of the lutetium aluminum composite oxide particles was 36 nm.
  • the reflectance of the lutetium aluminum composite oxide particles with respect to visible light was measured using a spectrophotometer U-4000 manufactured by Hitachi High-Technologies Corporation. The measurement results are shown in FIG. As is clear from the figure, the absorption edge is near 200 nm, and the transparency in the visible light region could be confirmed.
  • the obtained aqueous dispersion was colorless and transparent.
  • a red laser wavelength 650 nm
  • the Tyndall phenomenon was observed, and it was confirmed that the lutetium aluminum composite oxide particles were highly dispersed.
  • the obtained aqueous dispersion was scooped into a collodion film and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the primary particle diameter of the lutetium aluminum composite oxide particles was 20 nm.
  • the maximum particle size D max and the volume-converted average particle size D 50 were measured using a nanotrack particle size distribution measuring device manufactured by Nikkiso Co., Ltd. As a result, the maximum particle size D max was 90 nm, and the volume-converted average particle size D 50 was 48 nm.
  • Examples 2 to 4 Lutetium aluminum composite oxide particles were obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were adopted as the firing conditions for the precursor. The same measurement as in Example 1 was performed on the obtained particles. The results are shown in Table 1 and FIGS. As is clear from the results shown in FIG. 1, all of the obtained particles were amorphous. From the results of elemental analysis, it was confirmed that all of the obtained particles had a garnet composition. Further, as apparent from the results shown in FIG. 2, the obtained particles all have an absorption edge near 200 nm, and the transparency in the visible light region could be confirmed. Although not shown in the figure, the reflectance curves of Al 2 O 3 and Lu 2 O 3 are different in shape from the curves shown in FIGS. 2 (a) to 2 (d). In the examples, it was confirmed that there was no byproduct of Al 2 O 3 and Lu 2 O 3 .
  • Example 2 an aqueous dispersion was obtained in the same manner as in Example 1 using the obtained particles.
  • the obtained aqueous dispersion was subjected to the same measurement as in Example 1.
  • the results are shown in Table 1.
  • the visible light transmission curve for the aqueous dispersion of Example 2 is shown in FIG.
  • Example 5 In a 50 ml resin container, put 1.5 g of the lutetium aluminum composite oxide particles obtained in Example 1 and 15 g of pure water to obtain a slurry, and then add acetic acid to the container to adjust the pH of the slurry. Adjusted to 2. Further, 0.1 mm ⁇ zirconia beads were added, the container was sealed, and wet pulverization was performed with a paint shaker. Wet grinding was performed for 3 hours. Finally, the liquid was passed through a 0.2 ⁇ m membrane filter to remove the coarse particles, thereby obtaining a target aqueous dispersion (sol) of lutetium aluminum composite oxide particles. The pH of this aqueous dispersion was 4.
  • the obtained aqueous dispersion was scooped into a collodion film and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the primary particle diameter of the lutetium aluminum composite oxide particles was 20 nm.
  • the solid content concentration of the lutetium aluminum composite oxide particles after weighing out this aqueous dispersion and drying at 200 ° C. is 8.1%, and it is confirmed that a glassy transparent solid content remains. It was done.
  • the obtained aqueous dispersion was subjected to the same measurement as in Example 1. The results are shown in Table 1. When this aqueous dispersion was stored at room temperature (25 ° C.) for 1 month and the storage stability was examined, no precipitation was observed and it was confirmed that the highly dispersed state was maintained.
  • Example 1 Lutetium aluminum composite oxide particles were obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were adopted as the firing conditions for the precursor. The same measurement as in Example 1 was performed on the obtained particles. The results are shown in Table 1 and FIGS. Further, an aqueous dispersion was obtained in the same manner as in Example 1 using the obtained particles. The obtained aqueous dispersion was subjected to the same measurement as in Example 1. The results are shown in Table 1. This aqueous dispersion was cloudy, and precipitation was observed immediately, confirming that the storage stability was poor.
  • Example 6 (1) Production of Yttrium Aluminum Composite Oxide Particles 380 g of water was weighed into a glass container and heated to 80 ° C. To this, 31.5 g of 35% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added. Furthermore, 9.5 g of Y 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd.) and 34.0 g of AlCl 3 .hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and completely dissolved. Then, it cooled and liquid temperature was 25 degreeC. The resulting aqueous solution is referred to as aqueous solution B.
  • aqueous solution B The resulting aqueous solution B.
  • precursor particles were obtained in the same manner as in Example 1.
  • the precursor particles were amorphous.
  • This precursor was calcined at 1000 ° C. for 3 hours in the air to obtain target yttrium aluminum composite oxide particles.
  • An XRD diffractogram of this yttrium aluminum composite oxide particle is shown in FIG. As is apparent from the figure, the yttrium aluminum composite oxide particles show a diffraction peak derived from Y 3 Al 5 O 12 and have a garnet structure.
  • the visible light reflectance of the yttrium aluminum composite oxide particles was measured with a spectrophotometer U-4000 manufactured by Hitachi High-Technologies Corporation. The measurement results are shown in FIG. As is clear from the figure, the absorption edge was less than 200 nm, and the transparency in the visible light region could be confirmed.
  • the obtained aqueous dispersion was colorless and transparent.
  • a Tyndall phenomenon was observed, and it was confirmed that the yttrium aluminum composite oxide particles were highly dispersed.
  • the obtained aqueous dispersion was scooped into a collodion film and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Example 7 (1) Production of Gadolinium Aluminum Composite Oxide Particles 365 g of water was weighed into a glass container and heated to 80 ° C. To this, 16.1 g of 35% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added. Further, 7.8 g of Gd 2 O 3 (manufactured by Kanto Chemical Co., Inc.) and 10.38 g of AlCl 3 .hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and completely dissolved. Then, it cooled and liquid temperature was 25 degreeC. The resulting aqueous solution is referred to as aqueous solution C.
  • aqueous solution C The resulting aqueous solution C.
  • precursor particles were obtained in the same manner as in Example 1.
  • the precursor particles were amorphous.
  • FIG. 5 shows an XRD diffractogram of the gadolinium aluminum composite oxide particles.
  • the gadolinium aluminum composite oxide particles show a diffraction peak derived from GdAlO 3 and have a perovskite structure.
  • the reflectance of the gadolinium aluminum composite oxide particles with respect to visible light was measured using a spectrophotometer U-4000 manufactured by Hitachi High-Technologies Corporation. The measurement results are shown in FIG. As is clear from the figure, the absorption edge is near 200 nm, and the transparency in the visible light region could be confirmed.
  • the obtained aqueous dispersion was colorless and transparent.
  • a red laser wavelength 650 nm
  • a Tyndall phenomenon was observed, and it was confirmed that the gadolinium aluminum composite oxide particles were highly dispersed.
  • the obtained aqueous dispersion was scooped into a collodion film and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Example 6 The same measurements as in Example 6 were performed on the gadolinium aluminum composite oxide particles obtained in (1) and the aqueous dispersion obtained in (2). The results are shown in Table 2.
  • the aqueous dispersion obtained in (2) was stored at room temperature (25 ° C.) for 1 month and examined for storage stability. As a result, no precipitation was observed and it was confirmed that the highly dispersed state was maintained. It was.
  • Example 8 (1) Production of lanthanum aluminum composite oxide particles 365 g of water was weighed into a glass container and heated to 80 ° C. To this, 17.6 g of 35% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added. Further, 7.7 g of La 2 O 3 (manufactured by Kanto Chemical Co., Inc.) and 11.35 g of AlCl 3 .hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and completely dissolved. Then, it cooled and liquid temperature was 25 degreeC. The resulting aqueous solution is called aqueous solution D.
  • aqueous solution D The resulting aqueous solution D.
  • precursor particles were obtained in the same manner as in Example 1.
  • the precursor particles were amorphous.
  • This precursor was calcined in the atmosphere at 950 ° C. for 3 hours to obtain target lanthanum aluminum composite oxide particles.
  • An XRD diffractogram of this lanthanum aluminum composite oxide particle is shown in FIG. As is clear from the figure, the lanthanum aluminum composite oxide particles show a diffraction peak derived from LaAlO 3 and have a perovskite structure.
  • the reflectance of the lanthanum aluminum composite oxide particles with respect to visible light was measured using a spectrophotometer U-4000 manufactured by Hitachi High-Technologies Corporation. The measurement results are shown in FIG. As is clear from the figure, the absorption edge is near 200 nm, and the transparency in the visible light region could be confirmed.
  • the obtained aqueous dispersion was colorless and transparent.
  • a red laser wavelength 650 nm
  • a Tyndall phenomenon was observed, and it was confirmed that the lanthanum aluminum composite oxide particles were highly dispersed.
  • the obtained aqueous dispersion was scooped into a collodion film and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Example 6 The same measurements as in Example 6 were performed on the lanthanum aluminum composite oxide particles obtained in (1) and the aqueous dispersion obtained in (2). The results are shown in Table 2.
  • the aqueous dispersion obtained in (2) was stored at room temperature (25 ° C.) for 1 month and examined for storage stability. As a result, no precipitation was observed and it was confirmed that the highly dispersed state was maintained. It was.

Abstract

 本発明の水性分散液は、ランタノイド又はイットリウムとアルミニウムとを含む複合酸化物からなる粒子を含む。該粒子の最大粒径Dmaxが100nm以下であり、該水性分散液のpHが1~7である。この水性分散液の可視光の波長領域(400~800nm)における透過率は好適には80%以上である。前記粒子の体積換算平均粒径D50が1~70nmであることも好適である。前記粒子がガーネット組成又はペロブスカイト組成を有することも好適である。

Description

水性分散液及びその製造方法
 本発明は、ランタノイド又はイットリウムとアルミニウムとを含有する複合酸化物を含む水性分散液及びその製造方法に関する。本発明の水性分散液は、これを塗膜にして乾燥させることで、各種光学材料に有用な薄膜を形成するための原料として好適に用いられる。
 希土類アルミニウムガーネットやイットリウムアルミニウムガーネット等のランタノイド又はイットリウムとアルミニウムとを含む複合酸化物は、可視光の波長領域を含む紫外光から赤外光の波長領域において屈折率及びアッベ数が高い材料であることが知られている。これらの特性を生かし、前記の複合酸化物は光学材料として種々の分野で利用されている。
 例えば特許文献1には、レーザー用発振子等の原料として用いられるイットリウムアルミニウムガーネット微粉体が記載されている。この微粉体は、アルカリ性の炭酸塩水溶液中に、イットリウム塩とアルミニウム塩とをガーネット組成となるように混合した鉱酸塩水溶液を添加してイットリウムとアルミニウムとの水不溶性塩を晶出させ、この塩を焼成することで得られる。この微粉体の一次粒子の平均粒径は0.01~0.2μmであると、同文献には記載されている。この微粉体は金型によって所定の形状を有する成形体にプレス成形され、次いで焼結されることで、所定の形状を有する光学製品となる。
 特許文献2には、希土類元素としてY、Yb、Er又はNd等の希土類元素を含む希土類元素・アルミニウムガーネット粉末が記載されている。この粉末は、平均粒径D50が1.8μm以下であると、同文献には記載されている。この粉末も特許文献1に記載の微粉体と同様に、金型によって所定の形状を有する成形体にプレス成形され、次いで焼結されることで、所定の形状を有する光学製品となる。
特開平10-101411号公報 特開2001-158620号公報
 特許文献1及び2に記載の技術はいずれも、粉体をプレス成形して得られた成形体を焼結することで、光学製品を製造することを目的としている。したがって、これらの文献に記載の技術を用いて薄い光学製品を製造することは容易ではない。薄い光学製品を製造するためには、例えば原料となる粉体を液体に分散させた分散液となし、該分散液を基板上に塗布することが考えられる。しかし、これらの文献に記載の粉体はその粒径が比較的大きいので、該粉体を用いて分散液を調製すると、分散液中での粒子の分散性が良好とは言えず、また分散液に沈殿の生成が生じやすい。
 したがって本発明の課題は、光学材料分野に有用な薄膜などを容易に形成することができる水性分散液を提供することにある。
 本発明は、ランタノイド又はイットリウムとアルミニウムとを含有する複合酸化物からなる粒子を含む水性分散液であって、該粒子の最大粒径Dmaxが100nm以下であり、該水性分散液のpHが1~7であることを特徴とする水性分散液を提供するものである。
 また本発明は、前記の水性分散液の好適な製造方法として、
 ランタノイド又はイットリウムとアルミニウムとを含む複合酸化物からなり、BET比表面積が10~300m2/gである粒子を水性媒体に分散させ、かつpHを1~7に調整することを特徴とする水性分散液の製造方法を提供するものである。
 本発明の水性分散液は、粒子の分散性が高く、かつ長期保存しても沈殿の生成が生じづらい安定性の高いものであり、更に透明性の高いものでもある。
図1は、実施例1~4及び比較例1で得られたルテチウムアルミニウム複合酸化物粒子のXRD回折図である。 図2(a)、図2(b)、図2(c)及び図2(d)はそれぞれ、実施例1~4で得られたルテチウムアルミニウム複合酸化物粒子の反射率を示す図である。 図3は、実施例2の水性分散液についての可視の透過曲線を示す図である。 図4は、比較例1で得られたルテチウムアルミニウム複合酸化物粒子の反射率を示す図である。 図5は、実施例6~8で得られたランタノイド又はイットリウムとアルミニウムとを含む複合酸化物粒子のXRD回折図である。 図6(a)、図6(b)及び図6(c)はそれぞれ、実施例6~8で得られたランタノイド又はイットリウムとアルミニウムとを含む複合酸化物粒子の反射率を示す図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の水性分散液には、分散質としてランタノイド又はイットリウムとアルミニウムとを含む複合酸化物(以下、金属複合酸化物とも言う。)粒子が含まれている。本発明において用いることができるランタノイドとしては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuが挙げられる。本発明においては、1種のランタノイド又はイットリウムとアルミニウムとを組み合わせて用いることができる。また、1種又は2種以上のランタノイドとイットリウムとアルミニウムとを組み合わせて用いることもできる。金属複合酸化物に1種又は2種以上のランタノイドとイットリウムとを含有させる場合、ランタノイド及びイットリウムの好ましい組み合わせとしては、例えばイットリウムとルテチウムとの組み合わせ、イットリウムとイッテルビウムとの組み合わせ、イットリウムとガドリニウムとルテチウムとの組み合わせ等が挙げられる。更に、金属複合酸化物として、ランタノイドの中から選択される1種又は2種以上の元素とアルミニウムとの組み合わせを用いることができる。ランタノイドの好ましい組み合わせとしては、ガドリニウムとルテチウムとの組み合わせや、イッテルビウムとガドリニウムとの組み合わせが挙げられる。特に好ましく用いられる組み合わせは、光学材料としての特性が高いことから、LuとAlとの組み合わせ、YとAlの組み合わせ及びGdとAlの組み合わせである。
 本発明に用いられる金属複合酸化物は、可視光の波長領域における高透過率、高屈折率及び低波長分散性の観点から、ガーネット組成又はペロブスカイト組成を有することが好ましい。本発明においてガーネット組成とはA3512(式中、Aは三価の金属元素を表し、Bは三価の金属元素を表す。)で表される組成をいう。また本発明においてペロブスカイト組成とはABO3(式中、Aは三価の金属元素を表し、Bは三価の金属元素を表す。)で表される組成をいう。ガーネット組成を有する金属複合酸化物としては、例えばLu3Al512、Y3Al512、La3Al512、Yb3Al512、Er3Al512、Ho3Al512、Tb3Al512、Gd3Al512、Eu3Al512等が挙げられる。これらの中でも、Lu3Al512、Y3Al512、La3Al512を用いることが好ましい。ペロブスカイト組成を有する金属複合酸化物としては、例えばLuAlO3、YAlO3、LaAlO3、CeAlO3、PrAlO3、NdAlO3、SmAlO3、EuAlO3、GdAlO3、TbAlO3、HoAlO3等が挙げられる。これらの中でも、LuAlO3、YAlO3、LaAlO3を用いることが好ましい。ガーネット組成又はペロブスカイト組成を有する金属複合酸化物は、例えば後述する製造方法によって好適に得ることができる。
 本発明に用いられる金属複合酸化物は、結晶構造を有するものであってもよく、あるいはアモルファスであってもよい。金属複合酸化物が結晶構造を有する場合には、その結晶構造としては、例えば立方晶構造が挙げられる。立方晶構造としては、ガーネット構造又はペロブスカイト構造が挙げられる。ガーネット構造を有する金属複合酸化物としては、上述のガーネット組成である金属複合酸化物として例示したものが挙げられる。ペロブスカイト構造を有する金属複合酸化物としては、上述のペロブスカイト組成である金属複合酸化物として例示したものが挙げられる。ガーネット構造又はペロブスカイト構造を有する金属複合酸化物は、例えば後述する製造方法によって好適に得ることができる。
 本発明に用いられる金属複合酸化物は、アルミニウムを除く13族の三価の金属元素(以下「13族金属元素」ともいう。)を含有していてもよい。これらの金属元素を含有することにより、金属酸化物粒子の構造が安定化するからである。このような金属元素としては、Ga、In及びTlが挙げられる。これらの金属元素は1種又は2種以上を用いることができる。金属複合酸化物におけるこれらの13族金属元素の含有量は、該金属複合酸化物が例えばA3xAl5-x12(式中、Aはランタノイド又はイットリウムを表し、Bは13族金属元素を表す)で表されるガーネット組成を有するときには、式中のxが0.001≦x≦2.5、特に0.01≦x≦2を満たすような量であることが好ましい。また金属複合酸化物が例えばABxAl1-x3(式中、Aはランタノイド又はイットリウムを表し、Bは13族金属元素を表す)で表されるペロブスカイト組成を有するときには、式中のxが0.001≦x≦0.5、特に0.01≦x≦0.4を満たすような量であることが好ましい。13族金属元素を含有する金属酸化物粒子は、後述する製造方法によって好適に得ることができる。
 後述するとおり、本発明の水性分散液は透明性の高いものであるところ、該水性分散液を透明なものとするためには、該水性分散液に含まれる金属複合酸化物粒子の最大粒径Dmaxが重要となる。詳細には、金属複合酸化物粒子の最大粒径Dmaxを100nm以下とすることが必要であり、好ましくは95nm以下、更に好ましくは85nm以下、一層好ましくは70nm以下、特に好ましくは50nm以下とする。最大粒径Dmaxが100nmを超えると、可視光の散乱によって水性分散液の透明性が低下する。最大粒径Dmaxの下限値に特に制限はなく、小さければ小さいほど好ましいが、20nm程度に最大粒径Dmaxが小さくなれば、水性分散液の透明性は十分に高くなる。金属複合酸化物粒子の最大粒径Dmaxは、光子相関法を利用した動的光散乱法によって測定される。例えば日機装株式会社製のナノトラック粒度分布測定装置やマルバーン社製ゼータサイザーナノZSを用いて測定される。
 水性分散液に含まれる金属複合酸化物粒子の最大粒径Dmaxは上述のとおりであるところ、該粒子の体積換算平均粒径D50は好ましくは1~70nm、更に好ましくは1~50nm、一層好ましくは10~50nm、特に好ましくは10~40nm、最も好ましくは10~30nmである。最大粒径Dmaxが上述の範囲であることに加えて、平均粒径D50がこの範囲であることによって、水性分散液の透明性が一層向上する。平均粒径D50は、最大粒径Dmaxと同様の方法で測定される。
 水性分散液に含まれる金属複合酸化物粒子の濃度は、1~50重量%、特に1~30重量%であることが好ましい。この濃度範囲に調整することで、金属複合酸化物粒子が高度に分散し、長期間保存しても沈殿の生成等が認められなくなる。
 水性分散液は、金属複合酸化物粒子に加え、高屈折率を有する金属酸化物の粒子を更に含んでいてもよい。そのような金属酸化物としては、例えばMg、Ca、Ti、Zn、Zr、Ta、Nb、Ga、Ge、Sn、In、Hf、Y、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)などの金属の酸化物が挙げられる。これらの金属酸化物は、1種又は2種以上を用いることができる。これらの金属酸化物は、水性分散液に含まれる固形分としての粒子全体に対して、0.1~50重量%程度用いることができる。
 本発明の水性分散液は、長期間保存したときの安定性が高いものであることによっても特徴づけられる。水性分散液の安定性を高めるために、本発明においては水性分散液のpHを1~7に設定し、好ましくは2~6.5、更に好ましくは3~6.5、一層好ましくは3.5~6.5、特に好ましくは4~6に設定する。水性分散液のpHが1未満の場合には、金属複合酸化物粒子が溶解してしまうおそれがある。pHが7超の場合のうちpH7~8付近においては、金属複合酸化物粒子を高度に分散させることが容易でなく、直ちに又は長期間保存すると沈殿を生じる。この理由は、本発明で用いている金属複合酸化物粒子の等電点が、pH7~8付近にあるからである。事実、本発明者らは、ガーネット構造のルテチウムアルミニウム複合酸化物粒子の等電点pHが7.4であり、ペロブスカイト構造のガドリニウムアルミニウム複合酸化物粒子の等電点pHが8.2であることを確認している。なお、前記の水性分散液のこのpHは、水性分散液の保存中又は使用時における温度での値のことである。
 水性分散液のpHを上述の範囲内に調整するためには、水性分散液にpH調整剤を添加すればよい。pH調整剤としては、例えば無機酸や有機酸を用いることができる。無機酸としては、例えばフッ酸、硝酸、塩酸及び硫酸などが挙げられる。有機酸としては、例えば酢酸、プロピオン酸、酪酸及び吉草酸などが挙げられる。これらのうち、酢酸やプロピオン酸を用いることが好ましく、特に酢酸を用いることが好ましい。酢酸は、劇物でないので取り扱い性がよく、また弱酸であるのでpH調整が行いやすいからである。水性分散液へのpH調整剤の添加量は、水性分散液のpHが上述の範囲となるような量とすればよい。
 水性分散液は、水性液を媒体とするものである。水性液としては、水そのものの他、水に水溶性有機溶媒を添加したものを用いることができる。水溶性有機溶媒としては、例えばアルコール類や、ポリオール類、セロソルブ、カルビトール、ケトン類を用いることができる。これらの有機溶媒は、2種以上混合して使用してもよい。アルコール類としては、例えばメタノール、エタノール、ブタノール、プロパノール、ペンタノールが挙げられる。ポリオール類としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオール、グリセリンが挙げられる。セロソルブとしては、例えばメトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノールが挙げられる。カルビトールとしては、例えばメトキシエトキシエタノール、エトキシエトキシエタノール、プロポキシエトキシエタノール、ブトキシエトキシエタノールが挙げられる。ケトン類としては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ジアセトンアルコールが挙げられる。これらの有機溶媒は、水性液全体に対して、0.1~50重量%程度添加することができる。
 本発明の水性分散液は、可視光の波長領域(400~800nm)において高透明性であることによって特徴づけられる。詳細には、可視光の波長領域における透過率が好ましくは80%以上、更に好ましくは90%以上という高透明性のものである。このように透明性の高い水性分散液を用いて塗膜を形成すると、乾燥後の塗膜の透明性が極めて高くなる。したがって、本発明の水性分散液は、可視光の波長領域において高屈折率及び低波長分散性を有する透明膜の製造に非常に有用である。可視光の波長領域において高屈折率及び低波長分散性を有する透明膜は、例えばシート状レンズを始めとして、光学レンズの薄型化に寄与する。水性分散液の透明性は、光路長1cmのセルを用い、例えば(株)日立ハイテクノロジーズ社製の分光光度計U-4000によって測定することができる。
 高透明性を有することに加え、本発明の水性分散液は、長期保存しても安定性が高いものである。例えば、室温下に1ヶ月間保存しても沈殿が生じない程度の安定性を有している。
 次に、本発明の水性分散液の好適な製造方法について説明する。本製造方法は、(i)金属複合酸化物粒子の製造工程及び(ii)水性分散液の製造工程に大別される。これら両工程についてそれぞれ説明する。
 まず、(i)の金属複合酸化物粒子の製造工程について説明する。金属複合酸化物粒子は、ランタノイド又はイットリウム及びアルミニウムを含む水溶液とアルカリ(塩基)とを混合して中和を行い、ランタノイド又はイットリウムとアルミニウムとを含む共沈物を生成させ、該共沈物を焼成することで得られる。ランタノイド又はイットリウムとアルミニウムとを含む水溶液を調製するためには、ランタノイド源として例えば水溶性のランタノイド化合物を用いる。またイットリウム源として水溶性イットリウム化合物を用いる。更にアルミニウム源として水溶性のアルミニウム化合物を用いる。これら水に溶解することで、目的とする水溶液が得られる。別の調製方法として、塩酸等の鉱酸に溶解するランタノイド化合物又はイットリウム化合物及びアルミニウム化合物を、鉱酸に溶解することでも、目的とする水溶液が得られる。いずれの方法を採用する場合であっても、水溶液中でのランタノイドイオン及びイットリウムイオンの濃度は、0.001~1mol/リットル、特に0.01~0.5mol/リットルとすることが好ましい。水溶液中でのアルミニウムイオンの濃度は、0.001~2mol/リットル、特に0.02~1mol/リットルとすることが好ましい。
 目的とする金属複合酸化物がガーネット組成又はペロブスカイト組成を有するようにするためには、前記の水溶液中でのランタノイドイオン又はイットリウムイオンとアルミニウムイオンとのモル比が、ガーネット組成又はペロブスカイト組成となるように、これらの元素の添加量を適宜調整すればよい。
 目的とする金属複合酸化物が立方晶構造を有するためには、前記の水溶液中でのランタノイドイオン又はイットリウムイオンとアルミニウムイオンとのモル比を適宜調整して立方晶構造の酸化物が生成するようにすればよい。
 目的とする金属複合酸化物に13族金属元素を含有させるためには、上述のランタノイド又はイットリウムとアルミニウムとを含む水溶液に、更に13族金属元素を含有させればよい。例えば、上述のランタノイド又はイットリウムとアルミニウムを含む水溶液を調製するときに、前記のランタノイド化合物又はイットリウム化合物及び前記のアルミニウム化合物に加えて、13族金属元素の水溶性化合物を用いればよい。13族金属元素の化合物の使用量は、金属複合酸化物粒子中の13族金属元素の含有量が上述の範囲となるように適宜調整すればよい。
 ランタノイド又はイットリウムとアルミニウムとを含む水溶液に添加するアルカリ(塩基)としては、例えばアンモニア水;水酸化ナトリウム等のアルカリ金属の水酸化物の水溶液;炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム、炭酸アンモニウム等の炭酸塩;などが挙げられる。アルカリの添加量は、水溶液のpHが5~14、特に8~10となるような量とすることが好ましい。pHの値をこの範囲とすることによって、ランタノイド又はイットリウムとアルミニウムとを含む共沈物を首尾良く得ることができる。
 ランタノイド又はイットリウムとアルミニウムとを含む水溶液の中和は、アルカリの水溶液中にランタノイド又はイットリウムとアルミニウムとを含む水溶液を添加することで行うことが、共沈物を首尾良く得ることができる点から好ましい。ランタノイド又はイットリウムとアルミニウムとを含む水溶液の添加は、一括添加でもよく、逐次添加でもよい。添加は加熱下に行ってもよいが、通常は室温(例えば25℃)下に行えば十分である。
 前記の中和によって、ランタノイド又はイットリウムとアルミニウムとを含む共沈物が液中に生じる。この共沈物を、本発明者らがXRD測定したところ、アモルファス状態であることが判明した。したがって、この共沈物の詳細については現在のところ十分に明らかになっていない。この共沈物を用い、次に述べる焼成操作によって目的とする金属複合酸化物を得る。したがって、以下の説明では、この共沈物のことを「前駆体」と呼ぶこととする。
 前駆体は、常法に従い固液分離された後、1回又は複数回水洗される。水洗は、液の導電率が例えば2000μS/cm以下になるまで行うことが好ましい。前駆体の固液分離を例えばデカンテーションで行う場合には、前駆体を効率的に沈殿させる観点から、液にアンモニア水を少量添加してもよい。
 水洗された前駆体は、乾燥に付され水分が除去された後、解砕工程に付される。前駆体の解砕には、簡易的には例えば乳鉢を用いることができる。解砕は、解砕物の大きさが目開き100μmメッシュの篩を通過する程度とすることが好ましい。
 解砕された前駆体は、次いで焼成工程に付される。これによって、金属複合酸化物粒子が得られる。焼成工程は、最終的に得られる金属複合酸化物粒子を水性液に分散させたときに、水性分散液の透明性を高める点から重要な工程である。詳細には、焼成工程によって得られる金属複合酸化物粒子のBET比表面積が好ましくは10~300m2/g、更に好ましくは20~300m2/g、一層好ましくは20~250m2/gとなるように焼成を行うことで、透明性の高い水性分散液が容易に得られる。この範囲のBET比表面積を有する金属複合酸化物粒子を得るための好適な焼成条件としては、例えば大気雰囲気下、温度が400~1200℃、特に400~1000℃で、時間が1~24時間、特に1~10時間である。なお、BET比表面積は、例えば島津製作所社製の「フローソーブ2300」を用い、N2吸着法で測定することができる。本明細書では、測定粉末の量を0.3gとし、予備脱気条件は大気圧下、120℃で10分間とした。
 上述の条件で焼成されることによって、上述の好適な範囲のBET比表面積を有する金属複合酸化物粒子が得られる。この金属複合酸化物粒子の比表面積換算粒径は、好ましくは100nm以下、更に好ましくは50nm以下、一層好ましくは40nm以下、特に好ましくは20nm以下である。この金属複合酸化物粒子は、前駆体と異なり、XRD測定すると、金属複合酸化物に由来する回折ピークが観察され、結晶構造を有していることが確認される(後述する実施例1参照)。焼成条件によっては、XRD測定による回折ピークが明確に観察されない場合もある(後述する実施例2~4参照)。
 次に、(ii)の水性分散液の製造工程について説明する。本工程においては、まず焼成によって得られた金属複合酸化物粒子を粉砕する。粉砕は、乾式でも湿式でもよいが、湿式粉砕することが、水性分散液を簡便に得る点から好ましい。湿式粉砕を行う場合には、金属複合酸化物粒子と水性液とを混合してスラリーとなし、ビーズミル等のメディアミルによって粉砕を行う。水性液としては、水又は水に水溶性有機溶媒を添加したものが用いられる。使用するビーズとしては、例えばジルコニアビーズやアルミナビーズ等が挙げられる。この場合、各種のpH調整剤をスラリーに添加して粉砕操作を行うことで、金属複合酸化物を単分散状態に近づけやすくなる。pH調整剤としては、液のpHを好ましくは1~7、更に好ましくは2~6に調整できるものを用いることが好ましい。そのようなpH調整剤としては、例えば、先に述べた無機酸や有機酸を用いることができ、特に好ましいものは酢酸である。
 上述のpH調整剤は、これを湿式粉砕時にスラリーに添加することに代えて、湿式粉砕して得られた水性分散液に添加してもよい。pH調整剤を水性分散液に添加する場合、その添加量は、水性分散液のpHが、好ましくは1~7、更に好ましくは2~6.5、一層好ましくは3~6.5、特に好ましくは3.5~6.5、最も好ましくは4~6となるようにする。
 湿式粉砕後、液とビーズとを分離することで、目的とする水性分散液が得られる。このようにして得られた水性分散液は無色透明であり、可視光の透過率が高いものである。また、長期間保存しても沈殿の生じない安定なものである。
 このようにして得られた水性分散液は、それに含まれる金属複合酸化物が有する高屈折率及び低波長分散性や、水性分散液が有する可視光に対する透明性を利用して、各種の光学材料や電子材料に用いることができる。例えば、レンズ等の光学系部品、反射防止膜、赤外線透過膜等に用いることができる。具体的には、水性分散液を各種の基板、例えば透明基板やレンズ等の表面に塗布して塗膜を形成し、該塗膜を乾燥させることで、高透明性、高屈折率及び低波長分散性を有する薄膜を形成することができる。乾燥後の薄膜を、必要に応じて不活性雰囲気下、大気等の酸化性雰囲気下又は弱還元性雰囲気下(例えば爆発限界濃度以下の含水素雰囲気下)に焼成してもよい。この薄膜は、レンズの屈折率を更に高めるために、あるいは薄型レンズそのものとして有用である。更に本発明の水性分散液は、それに含まれる金属複合酸化物粒子が樹脂中に分散されてなる樹脂レンズの原料としても好適に用いられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。
  〔実施例1〕
(1)ルテチウムアルミニウム複合酸化物粒子の製造
 ガラス容器に380gの水をはかり取り80℃に加熱した。この中へ、35%塩酸(和光純薬株式会社製)13.5gを添加した。更に、Lu23(日本イットリウム株式会社製)7.0g及びAlCl3・六水和物(和光純薬株式会社製)14.2gを添加し、これを完全に溶解させた。その後、液温を90℃に調整した。得られた水溶液を水溶液Aとよぶ。
 別のガラス容器に360gの水をはかり取り、25%アンモニア水(和光純薬株式会社製)37.3gを添加した。この水溶液に、水溶液Aを逐次添加した。添加終了後10分間エージングを行い、室温まで冷却した。水溶液の添加速度は5ml/分とした。この操作によって、液中に沈殿物が生成した。このときの液のpHは8.9であった。この液を、上澄みの導電率が100μS/cm以下になるまでデカンテーション洗浄した。洗浄においては効率的な沈殿のために、スポイトを用いてアンモニアを数滴添加した。
 洗浄終了後、減圧濾過によって固液分離を行い、ケーキを得た。このケーキを大気中で120℃・5時間乾燥し水分を除去した。このようにして得られた乾燥ケーキを乳鉢で解砕し、次いで目開き75μmのメッシュで分級し、前駆体粒子を得た。この前駆体粒子のXRD回折図を図1に示す。同図から明らかなように、この前駆体粒子はアモルファスであった。
 この前駆体を大気中で1000℃・6時間焼成し、目的とするルテチウムアルミニウム複合酸化物粒子を得た。このルテチウムアルミニウム複合酸化物粒子のXRD回折図を図1に示す。同図から明らかなように、このルテチウムアルミニウム複合酸化物粒子はLu3Al512に由来する回折ピークを示すものであり、ガーネット構造を有するものであった。このルテチウムアルミニウム複合酸化物粒子のBET比表面積を測定したところ、25m2/gであった。このルテチウムアルミニウム複合酸化物粒子の比表面積換算粒径は36nmであった。
 このルテチウムアルミニウム複合酸化物粒子の可視光に対する反射率を(株)日立ハイテクノロジーズ社製分光光度計U-4000を用いて測定した。測定結果を図2(a)に示す。同図から明らかなように、吸収端は200nm付近であり、可視光領域の透明性を確認することができた。
(2)水性分散液の製造
 50mlの樹脂製容器に、前記の(1)で得られたルテチウムアルミニウム複合酸化物粒子1.4gと、純水14gとを入れてスラリーを得、次いで該容器に酢酸を添加して該スラリーのpHを3に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmのメンブランフィルターに通し粗粒を除去して、目的とするルテチウムアルミニウム複合酸化物粒子の水性分散液(ゾル)を得た。この水性分散液のpHは6であった。得られた水性分散液は無色透明であり、これに赤色レーザ(波長650nm)を照射したところ、チンダル現象が観察され、ルテチウムアルミニウム複合酸化物粒子が高度に分散していることが確認された。
 得られた水性分散液をコロジオン膜にすくい取り、透過型電子顕微鏡(TEM)観察したところ、ルテチウムアルミニウム複合酸化物粒子の一次粒子径は20nmであった。また、日機装株式会社製のナノトラック粒度分布測定装置を用いてその最大粒径Dmax及び体積換算平均粒径D50を測定した。その結果、最大粒径Dmaxは90nmであり、体積換算平均粒径D50は48nmであった。
 この水性分散液を少量はかり取り、200℃で乾燥させた後のルテチウムアルミニウム複合酸化物粒子の固形分濃度は8.5%であり、ガラス質の透明な固形分が残存することが確認された。また、この水性分散液の可視光に対する透明性を(株)日立ハイテクノロジーズ社製分光光度計U-4000によって測定したところ、可視光の波長領域(波長400~800nm)における透過率は85%以上であった(最低値がλ=400nmで85%)。
 更に、この水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
  〔実施例2ないし4〕
 前駆体の焼成条件として表1に示す条件を採用する以外は実施例1と同様にして、ルテチウムアルミニウム複合酸化物粒子を得た。得られた粒子について実施例1と同様の測定を行った。その結果を表1並びに図1及び図2に示す。図1に示す結果から明らかなように、得られた粒子はいずれもアモルファスであった。元素分析の結果から、得られた粒子はいずれもガーネット組成を有することが確認された。また図2に示す結果から明らかなように、得られた粒子はいずれも吸収端が200nm付近であり、可視光領域の透明性を確認することができた。なお図には示していないが、Al23及びLu23の反射率の曲線は、図2(a)~(d)に示す曲線とは、その形状が異なるものであり、各実施例においてはAl23及びLu23の副生がないことが確認された。
 更に、得られた粒子を用い、実施例1と同様にして水性分散液を得た。得られた水性分散液について実施例1と同様の測定を行った。その結果を表1に示す。また、実施例2の水性分散液についての可視光の透過曲線を図3に示す。各実施例の水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
   〔実施例5〕
 50mlの樹脂製容器に、実施例1で得られたルテチウムアルミニウム複合酸化物粒子1.5gと、純水15gとを入れてスラリーを得、次いで該容器に酢酸を添加して該スラリーのpHを2に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmのメンブランフィルターに通し粗粒を除去して、目的とするルテチウムアルミニウム複合酸化物粒子の水性分散液(ゾル)を得た。この水性分散液のpHは4であった。得られた水性分散液をコロジオン膜にすくい取り、透過型電子顕微鏡(TEM)観察したところ、ルテチウムアルミニウム複合酸化物粒子の一次粒子径は20nmであった。また、この水性分散液を少量はかり取り、200℃で乾燥させた後のルテチウムアルミニウム複合酸化物粒子の固形分濃度は8.1%であり、ガラス質の透明な固形分が残存することが確認された。得られた水性分散液について実施例1と同様の測定を行った。その結果を表1に示す。この水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
  〔比較例1〕
 前駆体の焼成条件として表1に示す条件を採用する以外は実施例1と同様にして、ルテチウムアルミニウム複合酸化物粒子を得た。得られた粒子について実施例1と同様の測定を行った。その結果を表1並びに図1及び図4に示す。更に、得られた粒子を用い、実施例1と同様にして水性分散液を得た。得られた水性分散液について実施例1と同様の測定を行った。その結果を表1に示す。この水性分散液は白濁しており、直ちに沈殿が観察され、保存安定性が悪いものであることが確認された。
  〔比較例2〕
 50mLの樹脂製容器に、実施例1で得られたルテチウムアルミニウム複合酸化物粒子1.5gと純水20gとを入れてスラリーを得、次いで硝酸を使用し、該スラリーのpHを0.5に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmメンブレンフィルターに通し粗粒を除去して、目的とする水性分散液を得た。この水性分散液のpHは0.7であった。得られた水性分散液について実施例1と同様の測定を行った。その結果を表1に示す。この水性分散液に赤色レーザ(波長650nm)を照射したところ、チンダル現象が観察されず、ルテチウムアルミニウム複合酸化物粒子が溶解してしまっていることが確認された。
  〔比較例3〕
 50mLの樹脂製容器に、実施例1で得られたルテチウムアルミニウム複合酸化物粒子2.5gと純水30gとを入れてスラリーを調整した。この時のpHは7.0であった。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmメンブレンフィルターに通し粗粒を除去して、目的とする水性分散液を得た。この水性分散液のpHは7.3であった。得られた水性分散液について、実施例1と同様の測定を行った。その結果を表1に示す。得られた水性分散液は白濁しており、直ちに沈殿が観察され、安定性が悪いものであることが確認された。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、各実施例で得られた水性分散液は、透明性が高く、かつ1ヶ月保存しても沈殿の生成が観察されず、高分散状態が維持されていることが判る。比較例1で得られた水性分散液では粒子を分散させることができなかった。
  〔実施例6〕
(1)イットリウムアルミニウム複合酸化物粒子の製造
 ガラス容器に380gの水をはかり取り80℃に加熱した。この中へ35%塩酸(和光純薬株式会社製)31.5gを添加した。更に、Y23(和光純薬株式会社製)9.5g及びAlCl3・六水和物(和光純薬株式会社製)34.0gを添加し、これを完全に溶解させた。その後、冷却し液温を25℃とした。得られた水溶液を水溶液Bと呼ぶ。
 別のガラス容器に300gの水をはかり取り、炭酸アンモニウム(関東化学社製)57.7gを添加し、溶解させた。この水溶液に、前記水溶液Bを逐次添加し添加終了後10分間のエージングを行った。添加は25℃で行った。この操作によって、液中に沈殿物が生成した。反応終了後のpHは7.8であった。この液を上澄みの導電率が100μS/cm以下になるまでデカンテーション洗浄を行った。
 洗浄終了後、実施例1と同様にして前駆体粒子を得た。この前駆体粒子はアモルファスであった。
 この前駆体を大気中1000℃・3時間焼成し、目的とするイットリウムアルミニウム複合酸化物粒子を得た。このイットリウムアルミニウム複合酸化物粒子のXRD回折図を図5に示す。同図から明らかなように、このイットリウムアルミニウム複合酸化物粒子はY3Al512に由来する回折ピークを示すものであり、ガーネット構造を有するものであった。
 このイットリウムアルミニウム複合酸化物粒子の可視光に対する反射率を(株)日立ハイテクノロジーズ社製分光光度計U-4000によって測定した。測定結果を図6(a)に示す。同図から明らかなように、吸収端は200nm未満であり、可視光領域の透明性を確認することができた。
(2)水性分散液の製造
 50mlの樹脂製容器に、前記の(1)で得られたイットリウムアルミニウム複合酸化物粒子2.5gと、純水20gとを入れてスラリーを得、次いで該容器にプロピオン酸を添加して該スラリーのpHを3に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmのメンブレンフィルターに通し粗粒を除去して、目的とするイットリウムアルミニウム複合酸化物粒子の水性分散液(ゾル)を得た。この水性分散液のpHは6であった。得られた水性分散液は無色透明であり、これに赤色レーザー(波長650nm)を照射したところ、チンダル現象が観察され、イットリウムアルミニウム複合酸化物粒子が高度に分散していることが確認された。
 得られた水性分散液をコロジオン膜にすくい取り、透過型電子顕微鏡(TEM)観察したところ、イットリウムアルミニウム複合酸化物粒子の一次粒子径は18nmであった。
 この水性分散液を少量はかり取り、200℃で乾燥させた後のイットリウムアルミニウム複合酸化物粒子の固形分濃度は9.2%であり、ガラス質の透明な固形分が残存することが確認された。
 (1)で得られたイットリウムアルミニウム複合酸化物粒子及び(2)で得られた水性分散液について、実施例1と同様の測定を行った。ただし、水性分散液の最大粒径Dmax及び体積換算平均粒径D50の測定は、マルバーン社製ゼータサイザーナノZSにて行った。その結果を下記の表2に示す。なお、水性分散液の最低透過率はλ=400nmにおける透過率であった。(2)で得られた水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
   〔実施例7〕
(1)ガドリニウムアルミニウム複合酸化物粒子の製造
 ガラス容器に365gの水をはかり取り80℃に加熱した。この中へ、35%塩酸(和光純薬株式会社製)16.1gを添加した。更に、Gd23(関東化学社製)7.8g及びAlCl3・六水和物(和光純薬株式会社製)10.38gを添加し、これを完全に溶解させた。その後、冷却し液温を25℃とした。得られた水溶液を水溶液Cと呼ぶ。
 別のガラス容器に370gの水をはかり取り、炭酸水素アンモニウム(和光純薬株式会社製)29.25gを添加し、溶解させた。この水溶液に前記水溶液Cを逐次添加し、添加終了後10分間のエージングを行った。水溶液の添加は25℃で行った。この操作によって、液中に沈殿物が生成した。反応終了後のpHは6.6であった。この液を上澄みの導電率が100μS/cm以下になるまでデカンテーション洗浄を行った。
 洗浄終了後、実施例1と同様にして、前駆体粒子を得た。この前駆体粒子はアモルファスであった。
 この前駆体を大気中1000℃・3時間焼成し、目的とするガドリニウムアルミニウム複合酸化物粒子を得た。このガドリニウムアルミニウム複合酸化物粒子のXRD回折図を図5に示す。同図から明らかなように、このガドリニウムアルミニウム複合酸化物粒子はGdAlO3に由来する回折ピークを示すものであり、ペロブスカイト構造を有するものであった。
 このガドリニウムアルミニウム複合酸化物粒子の可視光に対する反射率を(株)日立ハイテクノロジーズ社製分光光度計U-4000を用いて測定した。測定結果を図6(b)に示す。同図から明らかなように、吸収端は200nm付近であり、可視光領域の透明性を確認することができた。
(2)水性分散液の製造
 50mLの樹脂製容器に、前記の(1)で得られたガドリニウムアルミニウム複合酸化物粒子2.5gと純水20gとを入れてスラリーを得、次いで該容器に酢酸を添加して該スラリーのpHを3に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmのメンブレンフィルターに通し粗粒を除去して、目的とするガドリニウムアルミニウム複合酸化物粒子の水性分散液(ゾル)を得た。この水性分散液のpHは5であった。得られた水性分散液は無色透明であり、これに赤色レーザー(波長650nm)を照射したところ、チンダル現象が観察され、ガドリニウムアルミニウム複合酸化物粒子が高度に分散していることが確認された。
 得られた水性分散液をコロジオン膜にすくい取り、透過型電子顕微鏡(TEM)観察したところ、ガドリニウムアルミニウム複合酸化物粒子の一次粒子径は11nmであった。
 この水性分散液を少量はかり取り、200℃で乾燥させた後のガドリニウムアルミニウム複合酸化物粒子の固形分濃度は9.1%であり、ガラス質の透明な固形分が残存することが確認された。
 (1)で得られたガドリニウムアルミニウム複合酸化物粒子及び(2)で得られた水性分散液について、実施例6と同様の測定を行った。その結果を表2に示す。(2)で得られた水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
〔実施例8〕
(1)ランタンアルミニウム複合酸化物粒子の製造
 ガラス容器に365gの水をはかり取り80℃に加熱した。この中へ、35%塩酸(和光純薬株式会社製)17.6gを添加した。更に、La23(関東化学社製)7.7g及びAlCl3・六水和物(和光純薬株式会社製)11.35gを添加し、これを完全に溶解させた。その後、冷却し液温を25℃とした。得られた水溶液を水溶液Dと呼ぶ。
 別のガラス容器に370gの水をはかり取り、炭酸水素アンモニウム(和光純薬株式会社製)31.9gを添加し、溶解させた。この水溶液に前記水溶液Dを逐次添加し、添加終了後、10分間のエージングを行った。添加は25℃で行った。この操作によって、液中に沈殿物が生成した。反応終了後のpHは6.9であった。この液を上澄みの導電率が100μS/cm以下になるまでデカンテーション洗浄を行った。
 洗浄終了後、実施例1と同様にして、前駆体粒子を得た。この前駆体粒子はアモルファスであった。
 この前駆体を大気中950℃・3時間焼成し、目的とするランタンアルミニウム複合酸化物粒子を得た。このランタンアルミニウム複合酸化物粒子のXRD回折図を図5に示す。同図から明らかなように、このランタンアルミニウム複合酸化物粒子は、LaAlO3に由来する回折ピークを示すものであり、ペロブスカイト構造を有するものであった。
 このランタンアルミニウム複合酸化物粒子の可視光に対する反射率を、(株)日立ハイテクノロジーズ社製分光光度計U-4000を用いて測定した。測定結果を図6(c)に示す。同図から明らかなように、吸収端は200nm付近であり、可視光領域の透明性を確認することができた。
(2)水性分散液の製造
 50mLの樹脂製容器に、前記の(1)で得られたランタンアルミニウム複合酸化物粒子2.5gと純水20gとを入れてスラリーを得、次いで該容器に酢酸を添加して該スラリーのpHを3に調整した。更に0.1mmφのジルコニアビーズを入れ、容器を密栓した後、ペイントシェーカーによって湿式粉砕を行った。湿式粉砕は3時間行った。最後に液を0.2μmのメンブレンフィルターに通し粗粒を除去して、目的とするランタンアルミニウム複合酸化物粒子の水性分散液(ゾル)を得た。この水性分散液のpHは6であった。得られた水性分散液は無色透明であり、これに赤色レーザー(波長650nm)を照射したところ、チンダル現象が観察され、ランタンアルミニウム複合酸化物粒子が高度に分散していることが確認された。
 得られた水性分散液をコロジオン膜にすくい取り、透過型電子顕微鏡(TEM)観察したところ、ランタンアルミニウム複合酸化物粒子の一次粒子径は17nmであった。
 この水性分散液を少量はかり取り、200℃で乾燥させた後のランタンアルミニウム複合酸化物粒子の固形分濃度は8.8%であり、ガラス質の透明な固形分が残存することが確認された。
 (3)(1)で得られたランタンアルミニウム複合酸化物粒子及び(2)で得られた水性分散液について、実施例6と同様の測定を行った。その結果を表2に示す。(2)で得られた水性分散液を常温(25℃)で1ヶ月保存して保存安定性を調べたところ、沈殿の生成は観察されず、高分散状態が維持されていることが確認された。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなとおり、実施例6ないし8で得られた水性分散液も、実施例1ないし5で得られた水性分散液と同様、透明性が高く、かつ1ヶ月保存しても沈殿の生成が観察されず、高分散状態が維持されていることが判る。

Claims (8)

  1.  ランタノイド又はイットリウムとアルミニウムとを含有する複合酸化物からなる粒子を含む水性分散液であって、該粒子の最大粒径Dmaxが100nm以下であり、該水性分散液のpHが1~7であることを特徴とする水性分散液。
  2.  可視光の波長領域における透過率が80%以上である請求項1に記載の水性分散液。
  3.  前記粒子の体積換算平均粒径D50が1~70nmである請求項1又は2に記載の水性分散液。
  4.  前記粒子がガーネット組成又はペロブスカイト組成を有する請求項1ないし3のいずれか一項に記載の水性分散液。
  5.  前記粒子が更にアルミニウムを除く13族の三価の金属元素を含有する請求項1ないし4のいずれか一項に記載の水性分散液。
  6.  請求項1記載の水性分散液の製造方法であって、ランタノイド又はイットリウムとアルミニウムとを含む複合酸化物からなり、BET比表面積が10~300m2/gである粒子を水性媒体に分散させ、かつpHを1~7に調整することを特徴とする水性分散液の製造方法。
  7.  ランタノイド又はイットリウムとアルミニウムとを含む水溶液に塩基を添加して該水溶液のpHを5~14に調整することでランタノイド又はイットリウムとアルミニウムとを含む沈殿物を生成させ、
     該沈殿物を大気雰囲気下に焼成して前記の粒子を得る請求項6に記載の製造方法。
  8.  請求項1に記載の水性分散液を基板の表面に塗布して塗膜を形成し、該塗膜を乾燥させることを特徴とする透明薄膜の製造方法。
PCT/JP2011/074540 2010-11-17 2011-10-25 水性分散液及びその製造方法 WO2012066909A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544166A JPWO2012066909A1 (ja) 2010-11-17 2011-10-25 水性分散液及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256993 2010-11-17
JP2010256993 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012066909A1 true WO2012066909A1 (ja) 2012-05-24

Family

ID=46083848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074540 WO2012066909A1 (ja) 2010-11-17 2011-10-25 水性分散液及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2012066909A1 (ja)
WO (1) WO2012066909A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202916A (ja) * 2018-05-24 2019-11-28 信越化学工業株式会社 焼結用複合酸化物粉末の製造方法及び透明セラミックスの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101411A (ja) * 1996-09-24 1998-04-21 Kounoshima Kagaku Kogyo Kk イットリウムアルミニウムガーネット微粉体の製造方法
JPH10114519A (ja) * 1996-08-20 1998-05-06 Kounoshima Kagaku Kogyo Kk イットリウムアルミニウムガーネット粉末の製造方法
JPH11130428A (ja) * 1998-07-27 1999-05-18 Natl Inst For Res In Inorg Mater 易焼結性のイットリウムアルミニウムガーネット粉末 の製造方法
JP2001270775A (ja) * 2000-03-27 2001-10-02 National Institute For Materials Science Yag透明焼結体の製造法
JP2007514856A (ja) * 2003-12-18 2007-06-07 スリーエム イノベイティブ プロパティズ カンパニー アルミナ−イットリア粒子およびその製造方法
JP2007254723A (ja) * 2006-02-23 2007-10-04 Fujifilm Corp Eu含有無機化合物、これを含む発光性組成物と発光体、固体レーザ装置、発光装置
JP2008087977A (ja) * 2006-09-29 2008-04-17 Sharp Corp 複合酸化物ナノ粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114519A (ja) * 1996-08-20 1998-05-06 Kounoshima Kagaku Kogyo Kk イットリウムアルミニウムガーネット粉末の製造方法
JPH10101411A (ja) * 1996-09-24 1998-04-21 Kounoshima Kagaku Kogyo Kk イットリウムアルミニウムガーネット微粉体の製造方法
JPH11130428A (ja) * 1998-07-27 1999-05-18 Natl Inst For Res In Inorg Mater 易焼結性のイットリウムアルミニウムガーネット粉末 の製造方法
JP2001270775A (ja) * 2000-03-27 2001-10-02 National Institute For Materials Science Yag透明焼結体の製造法
JP2007514856A (ja) * 2003-12-18 2007-06-07 スリーエム イノベイティブ プロパティズ カンパニー アルミナ−イットリア粒子およびその製造方法
JP2007254723A (ja) * 2006-02-23 2007-10-04 Fujifilm Corp Eu含有無機化合物、これを含む発光性組成物と発光体、固体レーザ装置、発光装置
JP2008087977A (ja) * 2006-09-29 2008-04-17 Sharp Corp 複合酸化物ナノ粒子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202916A (ja) * 2018-05-24 2019-11-28 信越化学工業株式会社 焼結用複合酸化物粉末の製造方法及び透明セラミックスの製造方法

Also Published As

Publication number Publication date
JPWO2012066909A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
Guo et al. Simple route to (NH 4) x WO 3 nanorods for near infrared absorption
Li et al. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics
Wen et al. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics
Wen et al. Synthesis of yttria nanopowders for transparent yttria ceramics
JP5464840B2 (ja) ジルコニア微粒子の製造方法
US11339057B2 (en) Preparation of sinterable complex oxide powder and manufacturing of transparent ceramics
Li et al. Fabrication of 5 at.% Yb:(La0. 1Y0. 9) 2O3 transparent ceramics by chemical precipitation and vacuum sintering
EP3878817A1 (en) Zirconia powder, method for producing zirconia powder, method for producing zirconia sintered body, and zirconia sintered body
Liu et al. Synthesis of nanostructured Nd: Y2O3 powders by carbonate-precipitation process for Nd: YAG ceramics
Wang et al. Densification of zirconia doped yttria transparent ceramics using co-precipitated powders
King et al. Phase and luminescence behaviour of Ce-doped zirconia nanopowders for latent fingerprint visualisation
Hua et al. Effect of calcium oxide doping on the microstructure and optical properties of YAG transparent ceramics
Ahlawat Influence of multi-step annealing on nanostructure and surface morphology of Y2O3: SiO2 powder
EP4036060A1 (en) Composite oxide powder, method for producing composite oxide powder, method for producing solid electrolyte object, and method for producing lithium ion secondary battery
JP6207862B2 (ja) 希土類リン酸塩粉末及びその製造方法並びに該粉末を含む分散液
WO2012066909A1 (ja) 水性分散液及びその製造方法
Dhannia et al. Effect of aluminium doping and annealing on structural and optical properties of cerium oxide nanocrystals
JP2016500362A (ja) セラミック材料
Farahmandjou et al. Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method
Sidorowicz et al. Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm: YAG
JP2009274897A (ja) 酸化ジルコニウム水和物粒子及びそれを用いた分散体と分散膜
JP5562162B2 (ja) ランタノイド元素の酸化物を含む水性分散液
de Jesús Morales-Ramírez et al. Influence of annealing temperature on structural and optical properties of Lu2O3: Eu3+, Tb3+ transparent films
JP2013082852A (ja) 水性分散液及びその製造方法
JP2013014497A (ja) 水性分散液及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544166

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841132

Country of ref document: EP

Kind code of ref document: A1