WO2012066037A1 - Thyristorbauelement - Google Patents

Thyristorbauelement Download PDF

Info

Publication number
WO2012066037A1
WO2012066037A1 PCT/EP2011/070258 EP2011070258W WO2012066037A1 WO 2012066037 A1 WO2012066037 A1 WO 2012066037A1 EP 2011070258 W EP2011070258 W EP 2011070258W WO 2012066037 A1 WO2012066037 A1 WO 2012066037A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
regions
type well
highly
well
Prior art date
Application number
PCT/EP2011/070258
Other languages
English (en)
French (fr)
Inventor
Wolfgang Reinprecht
Original Assignee
Austriamicrosystems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems Ag filed Critical Austriamicrosystems Ag
Priority to US13/885,672 priority Critical patent/US8796732B2/en
Publication of WO2012066037A1 publication Critical patent/WO2012066037A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7436Lateral thyristors

Definitions

  • Thyristor component The present invention relates to a thyristor component, in particular in the manner of an SCR (silicon controlled rectifier) for use as ESD protection.
  • SCR silicon controlled rectifier
  • Thyristorbauiana manner of a SCR are very effective to protect against ESD (electrostatic discharge), as the cu ⁇ engined terminal voltage tungsdissipation high discharge currents with limited performance enables on silicon.
  • ESD electrostatic discharge
  • a disadvantage that occurs is the current localization, which results in that the operating characteristics of the device are not stable enough.
  • a location-independent as possible Trig ⁇ like and a uniform current distribution are required for highly efficient ESD protection elements.
  • CN 101257005 describes an SCR as an ESD protection device. This device has a sequence of highly n-type and high-p-type regions which are located in an n-doped region and in a p-doped region at the top of a semiconductor device. At the boundary between the n-doped region and the p-doped region is a high n-type region.
  • Object of the present invention is to provide a material suitable for ESD protection component with a mög ⁇ lichst uniform in the triggered state current distribution.
  • the Thyristorbauelement with the Merk ⁇ paint of claim 1.
  • Embodiments emerge from the dependent claims.
  • the thyristor device is an n-type well on an upper side of a p-type Halbleitersubstra ⁇ tes. At least on two opposite sides, a p-type well is adjacent to the n-type well. Highly n-type regions and highly p-type regions are disposed in the n-type well between the opposite sides in alternating sequence, wherein the respective outer in the ⁇ ser sequence regions are highly n-type.
  • a further high-n-type region and a further high-p-type region are arranged on both sides of the n-type well, wherein the highly n-type region is arranged at a smaller distance from the n-type well as the high p-type region.
  • Connection contacts are located on the high n-type regions and the high p-type regions of the n-type well with the exception of the p-type well nearest ⁇ lying highly n-type outer regions. These non-contacted high-n-type outer regions each form an electrical resistance that steadily increases from the lateral ends of the outer regions to the center thereof. Consequently, the resistance in the middle is greatest, which improves the ignition behavior of the device.
  • the connection contacts are electrically connected with each other. Other contacts are located on the other high n-type regions and on the other high
  • P-type regions of the p-type well wherein the further connection contacts are also electrically connected to each other.
  • three high n-type regions and two high p-type regions are arranged in the n-type well.
  • the high n-type outer regions of the n-type well are spaced from the p-type well.
  • electrically conductive field plates are disposed over portions of the p-type well adjacent to the n-type well, and the field plates are electrically isolated from the n-type well and the p-type well.
  • the field plates favor switching on or igniting the component in the areas covered by the field plates.
  • the interaction between the field plates and the electrical resistance of the non-contacted high n-type outer regions of the n-type well causes the device to ignite in the center of the region in question.
  • the field plates are electrically conductively connected to the connection contacts on the highly n-conducting regions and on the highly p-conducting regions of the n-conducting well.
  • the highly n-type outer regions of the n-type well are spaced apart from the p-type well, and the field plates are also disposed over regions of the n-type well each between a high n -leading outer region of the n-type well and the p-type well.
  • the n-type well, the p-type well, the high n-type regions, the other high n-type regions, the high p-type regions, and the other high p-type regions are arranged mirror-symmetrically.
  • the highly n-type regions and the high-p-type regions are strip-shaped and aligned parallel to one another.
  • a high n-type inner region may be connected to the high n-type outer regions at opposite ends, and the outer regions may have electrical resistances increasing from the ends of the outer regions toward the center, respectively.
  • the Thyristorbauelement can len in further investigationssbeispie be switched as ESD protection.
  • the connection contacts can be connected as a connection of an operating voltage and the other connection contacts as a ground connection.
  • FIG. 1 shows a cross section through an embodiment of the thyristor component.
  • FIG. 2 shows an exemplary embodiment of the thyristor component in a plan view.
  • FIG. 3 shows a circuit diagram which represents essential electrical functions of the thyristor component.
  • FIG. 4 shows a circuit diagram according to FIG. 3 with the illustration of an additional field-effect transistor function.
  • a semiconductor substrate 1 shows in cross-section, a semiconductor substrate 1, on its upper side 10 an n-type well 20 between Antei ⁇ len a p-type well is 30. Between the wells 20, 30 there is a pn junction.
  • the semiconductor substrate 1 may be doped in particular p-type.
  • high n-type regions 21, 23 and high p-type regions 22 are alternately arranged on the upper side 10. Those areas 23 which ⁇ each of the p-guide the tray 30 are closest, are hereinafter referred to as the outer areas of the 23rd
  • These outer regions 23 are n-conductive and, in the illustrated embodiment, are spaced from the p-type well 30 by a boundary region 24 of the n-type well 20.
  • the outer regions 23 may in particular extend in a strip-shaped manner in the direction perpendicular to the plane of the drawing of FIG. 1 and are preferably connected to the inner high-n-conducting region 21 at their ends present in front of and behind the plane of the drawing of FIG.
  • connection contacts 41, 42 are connected elek ⁇ trically conductive. They are also electrically connected in the illustrated embodiment with field plates 40, which are electrically isolated from the semiconductor material and in this embodiment over the boundary 25 between the n-type well 20 and the p-type well 30 and over to the n- conductive well 20 adjacent border regions 32 of the p-type well 30 ange- are orders.
  • the field plates 40 may be metal or electrically conductive doped polysilicon.
  • the p-type well 30 are located on the upper side 10 on both sides of the n-type well 20 each have a further highly n-type region 35 and another high p-type region 36.
  • the other highly n-type regions 35 are located in closer to the n-type well 20 than the other high p-type regions 36.
  • Areas 36 of the p-type well 30 are provided on the upper side 10 of the semiconductor substrate 1 with further connection contacts 45, 46.
  • the further connection contacts 45, 46 are electrically conductively connected to each other.
  • connection contacts 41, 42 may be provided for a connection P ⁇ D an operating voltage, and the further connection contacts 45, 46 may be provided for a ground terminal VSS.
  • the n-type well 20 forms an electrical n-resistance, and the p-type well 30 forms a p-type electrical resistance. If the semiconductor substrate 1 is doped p-type, 26 Zvi ⁇ rule of the n-type well 20 and the p-type material of the semiconductor substrate 1 is located on the border of a further pn junction.
  • FIG. 2 shows an exemplary embodiment of the component in a plan view.
  • the same reference numerals are used as in FIG. 1, and the position of the cross section of FIG. 1 is marked.
  • this embodiment of the device is bezüg ⁇ Lich of the central highly n-type region 21 in mirror symmetry.
  • the high n-type regions 21, 23, the further high-n-type regions 35, the high p-type Areas 22 and the other high p-type regions 36 are strip-shaped in this embodiment and aligned parallel to each other.
  • the outer regions 23 are connected at their lateral ends to the inner, highly n-conductive region 21 which is widened in each case in a T-shape. In the vicinity of the transition points between the inner region 21 and the outer regions 23, an electrical resistance occurs in the outer regions 23, which is referred to below as resistance Rd.
  • the terminals 41, 42 need not necessary ge ⁇ separated on the high n-type and high p-type regions 21 to be applied 22, the n-type well 20, but can optionally also be designed as a single continuous connecting contact.
  • the field plates 40 cover portions of the boundary regions 24, 32 between the highly n-conductive outer regions 23 of the n-type well 20 and the further highly n-conductive regions 35 of the p
  • the trough 30 between the troughs 20, 30 is thus at least partially covered by the field plates 40 in this example.
  • Figures 3 and 4 show versions of a circuit diagram schematically representing circuit functions of the thyristor device of Figure 1.
  • a thyristor is an interconnection of a pnp transistor 2 and a npn transistor 3.
  • transistors 2, 3, the base collector path of the PNP transistor 2 and the collector-base path of the NPN transistor 3 are common, according to the PN junction between the p-circuit node 7 and the n-circuit node 8 of the circuit diagram of Figures 3 and 4 and corresponding to the pn junction at the boundary 25 between the p-type well 30 and the n-type well 20 with the highly n-type outer regions 23 in the device according to the figure 1.
  • the gate of the field effect transistor is formed by the field plates 40.
  • the n-resistor Rd formed by the non-contacted high n-type outer region 23 makes itself noticeable between the connection P ⁇ D of the operating voltage and the boundary regions 24 of the n-type well 20.
  • the boundary regions 24 adjoin the p-type well 30 and correspond to the
  • Circuit node 8 The p-type resistor R30 formed by the p-type well 30 is interposed between the others
  • Terminal 46 which are located on the other high p-type regions 36 of the p-type well 30 and connected to the terminal VSS, and the boundary regions 32 of the p-type well 30 noticeable.
  • the boundary areas 32 are adjacent to the n-type well 20 and correspond to the p-scarf ⁇ processing node 7. It can be of advantage if the regions between the further highly n-type regions 35 of the p-type well 30 and the non-contacted high n-type outer regions 23 of the n-type well 20 of the field plates 40th is completely covered, but this need not be the case in perennialsbeispie ⁇ len.
  • the field plates 40 are preferably located above the boundary 25 between the n-type well 20 and the p-type well 30 and over the adjoining boundaries 32 of the p-type well 30.
  • a uniform current distribution is in the described device through the resistor Rd of the non-contact high n-type outer region 23 within the n-type well 20 between the boundary 25 to the p-type well 30 and formed by the high p-type regions 22 Anode causes. Because the terminals on the high n-type outer regions 23 are absent, there is a suitable electrical resistance Rd, which is the current from the high p-type regions 22, - or the emitter-base path of the pnp transistor 2 - to the further high n-type regions 35 of the p-type well 30 - and the VSS connections - controlled. Due to the non-contacted high n-type outer regions 23 of the n-type well 20 results in a triggering of the device required breakdown voltage, which is sufficiently high for use of the device as ESD protection.
  • the T-shaped configuration of the contacted n-type region 21 is prevented from breakthrough by a greater distance from the edge of the n-type well 20.
  • the contacted highly n-conductive regions 21 merge into the highly n-conductive outer regions 23 and, due to the low low resistance, uniform breakdown occurs at all four corner points 6 Compared to the non-contact region of the device, a stronger current is required to hold the snapback state is after the ignition of the Mainstream flow away from vertices 6 more in the middle. This measure prevents current localization.
  • the advantages of the thyristor component are in particular the trigger voltage which can be scaled by means of the border regions 24, the uniform current distribution effected by the contactless outer n + regions 23 and a gate formed by the field plates 40 above the base of the npn transistor 3, which in combination with the contactless n + Areas 23 a simultaneous current carrying both sides of the device upright ⁇ receives.
  • the operating characteristics of the device for use as ESD protection are also improved by the symmetrical design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thyristors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

An zwei einander gegenüberliegenden Seiten grenzt eine p-leitende Wanne (30) an eine n-leitende Wanne (20) an. Hoch n-leitende Bereiche (21, 23) und hoch p-leitende Bereiche (22) sind in der n-Wanne in alternierender Folge derart angeordnet, dass äußere n-Bereiche (23) sich in einem geringeren Abstand zu der p-Wanne befinden als die p-Bereiche. Weitere n-Bereiche (35) und weitere p-Bereiche (36) sind in der p-Wanne beidseits der n-Wanne angeordnet, wobei der weitere n-Bereich jeweils in geringerem Abstand zu der n-Wanne angeordnet ist als der weitere p-Bereich. Anschlusskontakte (41, 42) befinden sich auf den n-Bereichen und auf den p-Bereichen der n-Wanne mit Ausnahme der der p-Wanne nächstliegenden äußeren n-Bereiche. Die Anschlusskontakte sind elektrisch leitend miteinander verbunden. Weitere Anschlusskontakte (45, 46) befinden sich auf den weiteren n-Bereichen und auf den weiteren p-Bereichen, wobei die weiteren Anschlusskontakte elektrisch leitend miteinander verbunden sind.

Description

Beschreibung
Thyristorbauelement Die vorliegende Erfindung betrifft ein Thyristorbauelement, insbesondere nach Art eines SCR (Silicon controlled recti- fier) zum Einsatz als ESD-Schutz.
Thyristorbauelemente nach Art eines SCR sind sehr effektiv als Schutz gegen ESD ( electrostatic discharge) , da die nied¬ rige Klemmspannung hohe Entladeströme bei begrenzter Leis- tungsdissipation auf Silizium ermöglicht. Ein auftretender Nachteil ist jedoch die Stromlokalisierung, was dazu führt, dass die Betriebseigenschaften des Bauelementes nicht stabil genug sind. Ein ortsunabhängig möglichst gleichmäßiges Trig¬ gern und eine gleichförmige Stromverteilung werden für hocheffiziente ESD-Schutzelemente gefordert.
In der CN 101257005 ist ein SCR als ESD-Schutz-Bauelement beschrieben. Dieses Bauelement weist eine Abfolge von hoch n-leitenden und hoch p-leitenden Bereichen auf, die sich in einem n-dotierten Bereich und in einem p-dotierten Bereich an der Oberseite eines Halbleiterbauelementes befinden. An der Grenze zwischen dem n-dotierten Bereich und dem p-dotierten Bereich befindet sich ein hoch n-leitender Bereich.
Aufgabe der vorliegenden Erfindung ist es, ein für ESD-Schutz geeignetes Bauelement mit einer im getriggerten Zustand mög¬ lichst gleichmäßigen Stromverteilung anzugeben.
Diese Aufgabe wird mit dem Thyristorbauelement mit den Merk¬ malen des Anspruches 1 gelöst. Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Bei dem Thyristorbauelement befindet sich eine n-leitende Wanne an einer Oberseite eines p-leitenden Halbleitersubstra¬ tes. Zumindest an zwei einander gegenüberliegenden Seiten grenzt eine p-leitende Wanne an die n-leitende Wanne an. Hoch n-leitende Bereiche und hoch p-leitende Bereiche sind in der n-leitenden Wanne zwischen den einander gegenüberliegenden Seiten in alternierender Folge angeordnet, wobei die in die¬ ser Folge jeweils äußeren Bereiche hoch n-leitend sind. In der p-leitenden Wanne sind beidseits der n-leitenden Wanne jeweils ein weiterer hoch n-leitender Bereich und ein weiterer hoch p-leitender Bereich angeordnet, wobei der hoch n-leitende Bereich jeweils in geringerem Abstand zu der n-leitenden Wanne angeordnet ist als der hoch p-leitende Bereich .
Anschlusskontakte befinden sich auf den hoch n-leitenden Bereichen und auf den hoch p-leitenden Bereichen der n-leitenden Wanne mit Ausnahme der der p-leitenden Wanne nächst¬ liegenden hoch n-leitenden äußeren Bereiche. Diese nicht kontaktierten hoch n-leitenden äußeren Bereiche bilden jeweils einen elektrischen Widerstand, der von den lateralen Enden der äußeren Bereiche stetig bis zu deren Mitte hin zunimmt. Folglich ist der Widerstand in der Mitte am größten, was das Zündverhalten des Bauelementes verbessert. Die An- Schlusskontakte sind elektrisch leitend miteinander verbunden. Weitere Anschlusskontakte befinden sich auf den weiteren hoch n-leitenden Bereichen und auf den weiteren hoch
p-leitenden Bereichen der p-leitenden Wanne, wobei die weiteren Anschlusskontakte ebenfalls elektrisch leitend miteinan- der verbunden sind. Bei Ausführungsbeispielen des Thyristorbauelementes sind drei hoch n-leitende Bereiche und zwei hoch p-leitende Bereiche in der n-leitenden Wanne angeordnet.
Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind die hoch n-leitenden äußeren Bereiche der n-leitenden Wanne in einem Abstand zu der p-leitenden Wanne angeordnet.
Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind elektrisch leitende Feldplatten über Bereichen der p-leitenden Wanne angeordnet, die an die n-leitende Wanne angrenzen, und die Feldplatten sind von der n-leitenden Wanne und von der p-leitenden Wanne elektrisch isoliert. Die Feldplatten begünstigen das Einschalten oder Zünden des Bauelementes in den von den Feldplatten überdeckten Bereichen. Die Wechselwirkung zwischen den Feldplatten und dem elektrischen Widerstand der nicht kontaktierten hoch n-leitenden äußeren Bereiche der n-leitenden Wanne bewirkt, dass das Bauelement in der Mitte des betreffenden Bereiches zündet.
Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind die Feldplatten mit den Anschlusskontakten auf den hoch n-leitenden Bereichen und auf den hoch p-leitenden Bereichen der n-leitenden Wanne elektrisch leitend verbunden.
Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind die hoch n-leitenden äußeren Bereiche der n-leitenden Wanne in einem Abstand zu der p-leitenden Wanne angeordnet, und die Feldplatten sind auch über Bereichen der n-leitenden Wanne angeordnet, die sich jeweils zwischen einem hoch n-leitenden äußeren Bereich der n-leitenden Wanne und der p-leitenden Wanne befinden. Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind die n-leitende Wanne, die p-leitende Wanne, die hoch n-leitenden Bereiche, die weiteren hoch n-leitenden Bereiche die hoch p-leitenden Bereiche und die weiteren hoch p-leiten den Bereiche spiegelsymmetrisch angeordnet.
Bei weiteren Ausführungsbeispielen des Thyristorbauelementes sind die hoch n-leitenden Bereiche und die hoch p-leitenden Bereiche streifenförmig ausgebildet und parallel zueinander ausgerichtet. Insbesondere kann hierbei ein hoch n-leitender innerer Bereich an einander gegenüberliegenden Enden mit den hoch n-leitenden äußeren Bereichen verbunden sein, und die äußeren Bereiche können elektrische Widerstände aufweisen, die von den Enden der äußeren Bereiche zur Mitte hin jeweils zunehmen .
Das Thyristorbauelement kann bei weiteren Ausführungsbeispie len als ESD-Schutz geschaltet sein. Die Anschlusskontakte können als Anschluss einer Betriebsspannung und die weiteren Anschlusskontakte als Masseanschluss geschaltet sein.
Es folgt eine genauere Beschreibung von Beispielen des Thyristorbauelementes anhand der beigefügten Figuren.
Die Figur 1 zeigt einen Querschnitt durch ein Ausführungsbei spiel des Thyristorbauelementes.
Die Figur 2 zeigt ein Ausführungsbeispiel des Thyristorbau¬ elementes in einer Aufsicht.
Die Figur 3 zeigt ein Schaltbild, das wesentliche elektrisch Funktionen des Thyristorbauelementes abbildet. Die Figur 4 zeigt ein Schaltbild gemäß der Figur 3 mit der Abbildung einer zusätzlichen Feldeffekttransistorfunktion.
Die Figur 1 zeigt im Querschnitt ein Halbleitersubstrat 1, an dessen Oberseite 10 eine n-leitende Wanne 20 zwischen Antei¬ len einer p-leitenden Wanne 30 angeordnet ist. Zwischen den Wannen 20, 30 befindet sich ein pn-Übergang. Das Halbleitersubstrat 1 kann insbesondere p-leitend dotiert sein. In der n-leitenden Wanne 20 sind an der Oberseite 10 im Wechsel hoch n-leitende Bereiche 21, 23 und hoch p-leitende Bereiche 22 angeordnet. Diejenigen Bereiche 23, die jeweils der p-leiten¬ den Wanne 30 nächstgelegen sind, werden im Folgenden als äußere Bereiche 23 bezeichnet. Diese äußeren Bereiche 23 sind n-leitend und in dem dargestellten Ausführungsbeispiel durch einen Grenzbereich 24 der n-leitenden Wanne 20 von der p-leitenden Wanne 30 beabstandet. Die äußeren Bereiche 23 können sich insbesondere streifenförmig in der Richtung senkrecht zu der Zeichenebene der Figur 1 erstrecken und sind an ihren vor und hinter der Zeichenebene der Figur 1 vorhandenen Enden vorzugsweise mit dem inneren hoch n-leitenden Bereich 21 verbunden.
Die übrigen hoch n-leitenden Bereiche 21 und hoch p-leitenden Bereiche 22 sind auf der Oberseite 10 mit Anschlusskontakten 41, 42 versehen. Diese Anschlusskontakte 41, 42 sind elek¬ trisch leitend miteinander verbunden. Sie sind in dem dargestellten Ausführungsbeispiel außerdem elektrisch leitend mit Feldplatten 40 verbunden, die von dem Halbleitermaterial elektrisch isoliert sind und in diesem Ausführungsbeispiel über der Grenze 25 zwischen der n-leitenden Wanne 20 und der p-leitenden Wanne 30 und über den an die n-leitende Wanne 20 angrenzenden Grenzbereichen 32 der p-leitenden Wanne 30 ange- ordnet sind. Die Feldplatten 40 können Metall oder elektrisch leitfähig dotiertes Polysilizium sein.
In der p-leitenden Wanne 30 befinden sich an der Oberseite 10 beidseits der n-leitenden Wanne 20 jeweils ein weiterer hoch n-leitender Bereich 35 und ein weiterer hoch p-leitender Bereich 36. Die weiteren hoch n-leitenden Bereiche 35 befinden sich in geringerem Abstand zu der n-leitenden Wanne 20 als die weiteren hoch p-leitenden Bereiche 36. Die weiteren hoch n-leitenden Bereiche 35 und die weiteren hoch p-leitenden
Bereiche 36 der p-leitenden Wanne 30 sind auf der Oberseite 10 des Halbleitersubstrates 1 mit weiteren Anschlusskontakten 45, 46 versehen. Die weiteren Anschlusskontakte 45, 46 sind elektrisch leitend miteinander verbunden.
Die Anschlusskontakte 41, 42 können für einen Anschluss PÄD einer Betriebsspannung vorgesehen sein, und die weiteren Anschlusskontakte 45, 46 können für einen Masseanschluss VSS vorgesehen sein. Die n-leitende Wanne 20 bildet einen elekt- rischen n-Widerstand, und die p-leitende Wanne 30 bildet einen elektrischen p-Widerstand . Falls das Halbleitersubstrat 1 p-leitend dotiert ist, befindet sich an der Grenze 26 zwi¬ schen der n-leitenden Wanne 20 und dem p-leitenden Material des Halbleitersubstrates 1 ein weiterer pn-Übergang.
Die Figur 2 zeigt ein Ausführungsbeispiel des Bauelementes in einer Aufsicht. In der Figur 2 sind dieselben Bezugszeichen verwendet wie in der Figur 1, und die Position des Querschnitts der Figur 1 ist markiert. In der Figur 2 ist erkenn- bar, dass dieses Ausführungsbeispiel des Bauelementes bezüg¬ lich des mittleren hoch n-leitenden Bereiches 21 spiegelsymmetrisch ist. Die hoch n-leitenden Bereiche 21, 23, die weiteren hoch n-leitenden Bereiche 35, die hoch p-leitenden Bereiche 22 und die weiteren hoch p-leitenden Bereiche 36 sind in diesem Ausführungsbeispiel streifenförmig ausgebildet und parallel zueinander ausgerichtet. Die äußeren Bereiche 23 sind bei diesem Ausführungsbeispiel an ihren lateralen Enden mit dem dort jeweils T-förmig verbreiterten inneren hoch n-leitenden Bereich 21 verbunden. In der Nähe der Übergangsstellen zwischen dem inneren Bereich 21 und den äußeren Bereichen 23 tritt in den äußeren Bereichen 23 ein elektrischer Widerstand auf, der im Folgenden als Widerstand Rd bezeichnet wird.
Die Anschlusskontakte 41, 42 brauchen nicht notwendig ge¬ trennt auf den hoch n-leitenden und hoch p-leitenden Bereichen 21, 22 der n-leitenden Wanne 20 aufgebracht zu werden, sondern können gegebenenfalls auch als ein einzelner durchgehender Anschlusskontakt ausgebildet sein. Das Entsprechende gilt für diejenigen weiteren Anschlusskontakte 45, 46, die jeweils auf derselben Seite bezüglich der n-leitenden Wanne 20 angeordnet sind.
Bei dem in der Figur 2 dargestellten Ausführungsbeispiel überdecken die Feldplatten 40 entsprechend der Darstellung der Figur 1 Anteile der Grenzbereiche 24, 32 zwischen den hoch n-leitenden äußeren Bereichen 23 der n-leitenden Wanne 20 und den weiteren hoch n-leitenden Bereichen 35 der p-leitenden Wanne 30. Die Grenze 25 zwischen den Wannen 20, 30 wird in diesem Beispiel somit zumindest teilweise von den Feldplatten 40 überdeckt. Die Figuren 3 und 4 zeigen Versionen eines Schaltbildes, das Schaltungsfunktionen des Thyristorbauelementes der Figur 1 schematisch wiedergibt. Bei einem Thyristor handelt es sich um eine Zusammenschaltung eines pnp-Transistors 2 und eines npn-Transistors 3. Diesen Transistoren 2, 3 sind die Basis- Kollektorstrecke des pnp-Transistors 2 und die Kollektor- Basis-Strecke des npn-Transistors 3 gemeinsam, entsprechend dem pn-Übergang zwischen dem p-Schaltungsknoten 7 und dem n-Schaltungsknoten 8 des Schaltbildes der Figuren 3 und 4 beziehungsweise entsprechend dem pn-Übergang an der Grenze 25 zwischend der p-leitenden Wanne 30 und der n-leitenden Wanne 20 mit den hoch n-leitenden äußeren Bereichen 23 in dem Bauelement gemäß der Figur 1. Bei denjenigen Ausführungsbeispie- len, bei denen die Feldplatten 40 vorgesehen sind, ist zwischen dem p-Schaltungsknoten 7 und dem n-Schaltungsknoten 8 die Schaltungsfunktion eines Feldeffekttransistors 9 entspre¬ chend Figur 4 vorhanden. Das Gate des Feldeffekttransistors wird durch die Feldplatten 40 gebildet.
Der durch den nicht kontaktierten hoch n-leitenden äußeren Bereich 23 gebildete n-Widerstand Rd macht sich zwischen dem Anschluss PÄD der Betriebsspannung und den Grenzbereichen 24 der n-leitenden Wanne 20 bemerkbar. Die Grenzbereiche 24 grenzen an die p-leitende Wanne 30 an und entsprechen dem
Schaltungsknoten 8. Der durch die p-leitende Wanne 30 gebildete p-Widerstand R30 macht sich zwischen den weiteren
Anschlusses 46, die sich auf den weiteren hoch p-leitenden Bereichen 36 der p-leitenden Wanne 30 befinden und mit dem Anschluss VSS verbunden sind, und den Grenzbereichen 32 der p-leitenden Wanne 30 bemerkbar. Die Grenzbereiche 32 grenzen an die n-leitende Wanne 20 an und entsprechen dem p-Schal¬ tungsknoten 7. Es kann von Vorteil sein, wenn die Bereiche zwischen den weiteren hoch n-leitenden Bereichen 35 der p-leitenden Wanne 30 und den nicht kontaktierten hoch n-leitenden äußeren Bereichen 23 der n-leitenden Wanne 20 von den Feldplatten 40 vollständig überdeckt wird, was aber bei Ausführungsbeispie¬ len nicht der Fall sein muss. Die Feldplatten 40 befinden sich vorzugsweise über der Grenze 25 zwischen der n-leitenden Wanne 20 und der p-leitenden Wanne 30 und über den sich daran anschließenden Grenzbereichen 32 der p-leitenden Wanne 30.
Eine gleichmäßige Stromverteilung wird in dem beschriebenen Bauelement durch den Widerstand Rd des kontaktlosen hoch n-leitenden äußeren Bereich 23 innerhalb der n-leitenden Wanne 20 zwischen der Grenze 25 zu der p-leitenden Wanne 30 und der durch die hoch p-leitenden Bereiche 22 gebildeten Anode bewirkt. Weil die Anschlusskontakte auf den hoch n-leitenden äußeren Bereichen 23 fehlen, ist ein geeigneter elektrischer Widerstand Rd vorhanden, der den Strom von den hoch p-leitenden Bereichen 22, - beziehungsweise der Emitter- Basis-Strecke des pnp-Transistors 2 - zu den weiteren hoch n-leitenden Bereichen 35 der p-leitenden Wanne 30 - beziehungsweise den VSS-Anschlüssen - kontrolliert. Aufgrund der nicht kontaktierten hoch n-leitenden äußeren Bereiche 23 der n-leitenden Wanne 20 ergibt sich eine zum Triggern des Bauelementes erforderliche Durchbruchspannung, die für einen Einsatz des Bauelementes als ESD-Schutz ausreichend hoch ist.
Die T-förmige Ausbildung des kontaktierten n-leitenden Be- reichs 21 wird durch einen größeren Abstand zur Kante der n-leitenden Wanne 20 am Durchbruch gehindert. An den vier Eckpunkten 6 (Figur 2) gehen die kontaktierten hoch n-leitenden Bereiche 21 in die hoch n-leitenden äußeren Bereiche 23 über und, bedingt durch den günstigen niedrigen Widerstand kommt es zum gleichmäßigen Durchbruch an allen vier Eckpunkten 6. Weil dort im Vergleich zu dem kontaktlosen Bereich des Bauelementes ein stärkerer Strom erforderlich ist, um den Snapback-Zustand zu halten, wird nach dem Zündvorgang der Hauptstromfluss weg von den Eckpunkten 6 mehr in die Mitte verlagert. Durch diese Maßnahme wird eine Stromlokalisierung verhindert . Die Vorteile des Thyristorbauelementes sind insbesondere die mittels der Grenzbereiche 24 skalierbare Triggerspannung, die mittels der kontaktlosen äußeren n+-Bereiche 23 bewirkte gleichmäßige Stromverteilung und ein durch die Feldplatten 40 über der Basis des npn-Transistors 3 gebildetes Gate, das in Verbindung mit den kontaktlosen n+-Bereichen 23 ein gleichzeitiges Stromführen beider Seiten des Bauelementes aufrecht¬ erhält. Die Betriebseigenschaften des Bauelementes für den Einsatz als ESD-Schutz werden durch den symmetrischen Aufbau ebenfalls verbessert.
Bezugs zeichenliste
1 Halbleitersubstrat
2 pnp-Transistor
3 npn-Transistor
6 Eckpunkt des Bauelementes
7 p-Schaltungsknoten
8 n-Schaltungsknoten
9 Feldeffekttransistor
10 Oberseite des Halbleitersubstrats
20 n-leitende Wanne
21 hoch n-leitender Bereich der n-leitenden Wanne
22 hoch p-leitender Bereich der n-leitenden Wanne
23 äußerer hoch n-leitender Bereich der n-leitenden Wanne 24 Grenzbereich der n-leitenden Wanne
25 Grenze zwischen n- und p-leitenden Wannen
26 Grenze zwischen n-leitender Wanne und Halbleitersubstrat 30 p-leitende Wanne
32 Grenzbereich der p-leitenden Wanne
35 weiterer hoch n-leitender Bereich
36 weiterer hoch p-leitender Bereich
40 Feldplatte
41 Anschlusskontakt
42 Anschlusskontakt
45 weiterer Anschlusskontakt
46 weiterer Anschlusskontakt
PÄD Masseanschluss
Rd Widerstand der äußeren Bereiche 23
R30 Widerstand der p-leitenden Wanne 30
VSS Anschluss einer Betriebsspannung

Claims

Patentansprüche
1. Thyristorbauelement mit
- einem p-leitenden Halbleitersubstrat (1),
- einer n-leitenden Wanne (20) an einer Oberseite (10) des Halbleitersubstrates (1),
- einer p-leitenden Wanne (30), die zumindest an zwei einander gegenüberliegenden Seiten an die n-leitende Wanne (20) angrenzt,
- hoch n-leitenden Bereichen (21, 23) und hoch p-leitenden Bereichen (22), die streifenförmig ausgebildet und parallel zueinander in der n-leitenden Wanne (20) in alternierender Folge angeordnet sind, wobei die in dieser Folge jeweils äußeren Bereiche (23) hoch n-leitend sind, ein hoch n-leiten- der innerer Bereich (21) an einander gegenüberliegenden Enden mit den hoch n-leitenden äußeren Bereichen (23) verbunden ist und die äußeren Bereiche (23) elektrische Widerstände aufwei¬ sen, die von den Enden der äußeren Bereiche (23) zur Mitte hin jeweils zunehmen,
- weiteren hoch n-leitenden Bereichen (35) und weiteren hoch p-leitenden Bereichen (36), die streifenförmig ausgebildet und parallel zueinander in der p-leitenden Wanne (30) angeordnet sind, wobei die weiteren hoch n-leitenden Bereiche
(35) in geringerem Abstand zu der n-leitenden Wanne (20) angeordnet sind als die weiteren hoch p-leitenden Bereiche
(36) ,
- Anschlusskontakten (41, 42) auf den hoch n-leitenden Bereichen (21) und auf den hoch p-leitenden Bereichen (22) der n-leitenden Wanne (20) mit Ausnahme der hoch
n-leitenden äußeren Bereiche (23), wobei die Anschluss¬ kontakte (41, 42) elektrisch leitend miteinander verbunden sind, und - weiteren Anschlusskontakten (45, 46) auf den weiteren hoch n-leitenden Bereichen (35) und auf den weiteren hoch p-leitenden Bereichen (36) der p-leitenden Wanne (30), wobei die weiteren Anschlusskontakte (45, 46) elektrisch leitend miteinander verbunden sind.
2. Thyristorbauelement nach Anspruch 1, bei dem
elektrisch leitende Feldplatten (40) über Bereichen (32) der p-leitenden Wanne (30) angeordnet sind, wobei diese Bereiche (32) an die n-leitende Wanne (20) angrenzen, und
die Feldplatten (40) von der n-leitenden Wanne (20) und von der p-leitenden Wanne (30) elektrisch isoliert sind.
3. Thyristorbauelement nach Anspruch 2, bei dem
die Feldplatten (40) mit den Anschlusskontakten (41, 42) auf den hoch n-leitenden Bereichen (21) und auf den hoch
p-leitenden Bereichen (22) der n-leitenden Wanne (20) elektrisch leitend verbunden sind.
4. Thyristorbauelement nach Anspruch 2 oder 3, bei dem die hoch n-leitenden äußeren Bereiche (23) der n-leitenden Wanne (20) in einem Abstand zu der p-leitenden Wanne (30) angeordnet sind und
die Feldplatten (40) auch über Bereichen (24) der n-leitenden Wanne (20) angeordnet sind, die sich zwischen den hoch n-lei¬ tenden äußeren Bereichen (23) der n-leitenden Wanne (20) und der p-leitenden Wanne (30) befinden.
PCT/EP2011/070258 2010-11-19 2011-11-16 Thyristorbauelement WO2012066037A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/885,672 US8796732B2 (en) 2010-11-19 2011-11-16 Thyristor component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010051961.8 2010-11-19
DE102010051961A DE102010051961A1 (de) 2010-11-19 2010-11-19 Thyristorbauelement

Publications (1)

Publication Number Publication Date
WO2012066037A1 true WO2012066037A1 (de) 2012-05-24

Family

ID=44993564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070258 WO2012066037A1 (de) 2010-11-19 2011-11-16 Thyristorbauelement

Country Status (3)

Country Link
US (1) US8796732B2 (de)
DE (1) DE102010051961A1 (de)
WO (1) WO2012066037A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024354B2 (en) * 2013-08-06 2015-05-05 Amazing Microelectronics Corp. Silicon-controlled rectification device with high efficiency
US20180308836A1 (en) * 2017-04-24 2018-10-25 Macronix International Co., Ltd. Electrostatic discharge protection device and method for electrostatic discharge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014803A1 (en) * 1998-09-03 2000-03-16 Koninklijke Philips Electronics N.V. Low trigger and holding voltage scr device for esd protection
US6479871B2 (en) * 2000-04-12 2002-11-12 Infineon Technologies Ag Electrostatic discharge (ESD) latch-up protective circuit for an integrated circuit
CN101257005A (zh) 2007-03-01 2008-09-03 和舰科技(苏州)有限公司 一种保护静电放电的硅控整流器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498357B2 (en) * 2001-02-09 2002-12-24 United Microelectronics Corp. Lateral SCR device for on-chip ESD protection in shallow-trench-isolation CMOS process
US7042028B1 (en) * 2005-03-14 2006-05-09 System General Corp. Electrostatic discharge device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014803A1 (en) * 1998-09-03 2000-03-16 Koninklijke Philips Electronics N.V. Low trigger and holding voltage scr device for esd protection
US6479871B2 (en) * 2000-04-12 2002-11-12 Infineon Technologies Ag Electrostatic discharge (ESD) latch-up protective circuit for an integrated circuit
CN101257005A (zh) 2007-03-01 2008-09-03 和舰科技(苏州)有限公司 一种保护静电放电的硅控整流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WESTE & ESHRAGHIAN: "Principles of CMOS VLSI Design", 31 December 1985, ADDISON-WESLEY, USA, XP002665845 *

Also Published As

Publication number Publication date
US20130307020A1 (en) 2013-11-21
US8796732B2 (en) 2014-08-05
DE102010051961A1 (de) 2012-05-24

Similar Documents

Publication Publication Date Title
DE69325608T2 (de) Halbleiterbauelement mit einem Schutzmittel
DE3011557C2 (de) Zweipoliger Überstromschutz
EP1019964B1 (de) Integrierte halbleiterschaltung mit schutzstruktur zum schutz vor elektrostatischer entladung
DE2932152C2 (de)
DE69118242T2 (de) Halbleiteranordnung mit einem Hochspannungs-MOS-Transistor mit einem abgeschirmten Überkreuzungspfad für einen Hochspannungsverbindungsbus
DE102014110366B4 (de) Mos-leistungstransistor mit integriertem gatewiderstand
EP1703560A2 (de) ESD-Schutzschaltung mit skalierbarer Stromfestigkeit und Spannungsfestigkeit
DE69305909T2 (de) Leistungsanordnung mit isoliertem Gate-Kontakt-Gebiet
DE102017126853B4 (de) Halbleitervorrichtung mit Puffergebiet
CN101414630A (zh) 横向扩散金属氧化物晶体管
CH668505A5 (de) Halbleiterbauelement.
DE102016113129B3 (de) Halbleitervorrichtung, die eine Superjunction-Struktur in einem SiC-Halbleiterkörper enthält
DE19654163B4 (de) Schutzvorrichtung für eine Halbleiterschaltung
DE102010005715B4 (de) Transistoranordnung als ESD-Schutzmaßnahme
DE2226613A1 (de) Halbleiterbauelement
EP0096651B1 (de) Zweipoliger Überstromschutz
DE102008035536A1 (de) ESD-Bauelement (Electro Static Discharge - Elektrostatische Entladung) und Verfahren zum Herstellen eines ESD-Bauelents
DE112014001296T5 (de) Leistungshalbleitervorrichtung und entsprechendes Modul
DE112019002288T5 (de) Halbleitervorrichtung
DE102015107680A1 (de) Integrierte Schaltung mit lateralem Feldeffekttransistor mit isoliertem Gate
EP1284019B1 (de) Halbleiter-leistungsbauelement
WO2012066037A1 (de) Thyristorbauelement
DE102006028721B3 (de) Halbleiterschutzstruktur für eine elektrostatische Entladung
DE2149039C2 (de) Halbleiterbauelement
US20060102984A1 (en) Passivation structure with voltage equalizing loops

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11784654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13885672

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11784654

Country of ref document: EP

Kind code of ref document: A1