WO2012065435A1 - 一种传送网中的路径回切方法及装置 - Google Patents

一种传送网中的路径回切方法及装置 Download PDF

Info

Publication number
WO2012065435A1
WO2012065435A1 PCT/CN2011/075716 CN2011075716W WO2012065435A1 WO 2012065435 A1 WO2012065435 A1 WO 2012065435A1 CN 2011075716 W CN2011075716 W CN 2011075716W WO 2012065435 A1 WO2012065435 A1 WO 2012065435A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
protection switching
local node
switching request
working path
Prior art date
Application number
PCT/CN2011/075716
Other languages
English (en)
French (fr)
Inventor
吴少勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/885,639 priority Critical patent/US9071513B2/en
Priority to EP11840871.5A priority patent/EP2632081B1/en
Publication of WO2012065435A1 publication Critical patent/WO2012065435A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a path failback method and apparatus in a transport network. Background technique
  • MSP Multiplex Section Protection
  • G.841 In the multiplex section protection of the l:n mode, 1+n paths are set between the two network nodes, one of which protects the path and one of which is the working path.
  • a series of protection switching requests are specified in G.841, such as: Signal Fail (SF), Signal Degrade (SD), Wait To Restore (WTR), No Request (No Request) , NR), etc.
  • G.841 specifies different priorities for different protection switching requests. The priorities of the four protection switching requests are successively decreased, the SF has the highest priority, and the NR has the lowest priority.
  • the node After receiving the remote protection switching request, the node first compares the local protection switching request with the remote protection switching request, outputs a higher priority protection switching request, and then performs the status according to the output of the highest priority protection switching request.
  • Machine operation and send K bytes and perform protection switching actions.
  • Figure 1 shows a 1:1 multiplex section protection diagram.
  • both node S1 and node S2 will be Select the working path to send and receive traffic.
  • the working path of the node S1 to the node S2 fails, as shown in FIG. 2, the node S2 detects the local working path SF, generates a local working path SF protection switching request, and the node S2 has no other protection switching request, so the local working The path SF is the highest priority protection switching request.
  • the highest priority protection switching request of the node S2 is the local working path SF.
  • the node S2 performs the operation of the state machine, sends K bytes on the protection path, and switches to receive and send traffic on the protection path, where the K byte contains the working path SF protection switching request of the node S2 and the information switched to the protection path. .
  • the node S1 After receiving the K byte on the protection path, the node S1 extracts the protection switching request, and the local highest priority protection switching request of the node S1 is NR, which is lower than the remote protection switching request, so the highest priority protection switching of the node S1
  • the request is the working path SF
  • the node S1 performs the operation of the state machine, and according to the received K byte switching to the protection path information, switches to the protection path to receive and transmit traffic, and the node S1 also sends on the protection path.
  • K bytes where the K byte protection switching request is a reverse request (RR), and information to switch to the protection path.
  • the reverse request is used to confirm that the protection switching request of the opposite node is received.
  • the traffic is sent and received on the protection path.
  • the node S2 detects the local working path SF clearing, and generates a protection switching request for the local working path SF clearing, and the request is also the local highest priority protection switching request, which is received by the node S2.
  • the remote protection switching request is an RR.
  • the RR does not participate in the priority comparison of the protection switching request. Therefore, the highest priority protection switching request of the node S2 is cleared by the local working path SF, and the node S2 performs the operation of the state machine.
  • the node S2 After entering the WTR state, after the WTR state expires, the node S2 performs a failback operation, and sends a K byte to notify the node S1 to also perform the failback. After both the node S1 and the node S2 perform the failback, the traffic is performed on the working path. Send and receive.
  • the G.841 protocol solves the problem of l:n multiplex section protection well, but the actual network is more complicated, especially in the case where the link in both directions of the working path between the two nodes is faulty at the same time. At the time, the G.841 protocol had some drawbacks.
  • the link in both directions of the working path between node S 1 and node S2 is a working path SF protection switching request.
  • the node S1 and the node S2 simultaneously detect the local working path SF clearing.
  • the local protection switching request and the remote protection switching request are compared, since the remote protection switching request is the working path SF and the priority is higher than the local protection switching request, neither the node S1 nor the node S2 can respond to the protection switching request cleared by the working path SF. Instead, it responds to the remote protection switching request, and sends an RR request to the opposite node.
  • the node S1 and the node S2 After receiving the RR request from the peer, the node S1 and the node S2 do not enter the WTR state according to the state machine, so the two nodes cannot follow the normal flow. When entering the WTR state, it is not possible to normally switch back to the working path to receive and send traffic.
  • the G.841 protocol has a defect that cannot be switched back when the link in the two directions of the working path between the two nodes is faulty at the same time, and there is no solution at present.
  • the embodiment of the present invention provides a path back-cutting method and device in a transport network, which can not be cut back from the protection path when the link in the two directions of the working path between the nodes in the transport network is recovered at the same time. The problem with the working path.
  • the local node determines that the two faulty links on the working path between itself and the peer node are restored at the same time;
  • the local node enters the WTR state
  • the local node switches back the signal to the working path.
  • the local node determines that two faulty links on the working path between itself and the peer node are restored to normal at the same time, including:
  • the local node receives the protection switching request sent by the peer node, and determines that the protection switching request is a reverse request;
  • the local node determines the protection switching request sent to the peer node last time, or currently needs The protection switching request to be sent to the peer node is also a reverse request.
  • the local node determines that two fault links on the working path between itself and the peer node are restored to normal at the same time, and further includes:
  • the local node determines that it is in the SF state before sending a reverse request to the correspondent node.
  • the method further includes: before the WTR state ends, the local node reverts the signal to the working path, where the method further includes:
  • the local node monitors whether a protection switching request with a higher priority than the reverse requested protection switching request is received.
  • the local node switches back the signal to the working path, including:
  • the local node determines that there is no protection switching request with a higher priority than the reverse request protection switching request during the WTR state, the signal is switched back to the working path at the end of the WTR state.
  • a fault recovery determining unit configured to determine that two faulty links on the working path between the local node and the peer node return to normal at the same time
  • a WTR status entry unit for entering the local node into the WTR state
  • a failback unit is used to switch back the signal of the local node to the working path when the WTR state ends.
  • the fault recovery determining unit includes:
  • a first determining unit configured to determine that the protection switching request sent by the peer node received by the local node is a reverse request
  • the second determining unit is configured to determine a protection switching request sent by the local node to the peer node last time, or a protection switching request that is currently required to be sent to the opposite node, and is also a reverse request.
  • the fault recovery determining unit further includes: And a third determining unit, configured to determine that the local node is in an SF state before the local node sends a reverse request to the opposite node.
  • the device further includes:
  • the monitoring unit is configured to monitor, during the WTR state of the local node, whether the local node receives a protection switching request with a higher priority than the reverse request protection switching request.
  • the failback unit when the monitoring unit determines that the local node does not receive a protection switching request with a higher priority than the reverse request protection switching request during the WTR state, at the end of the WTR state, the signal is Cut back to the working path.
  • the local node determines that two fault links on the working path between itself and the peer node return to normal at the same time; the local node enters and waits to resume the WTR state; at the end of the WTR state, the local node switches back the signal to work.
  • the path such that when the link in both directions of the working path between the nodes in the transport network recovers simultaneously, the signal can be switched back from the protected path to the working path.
  • Figure 1 is a schematic diagram of multiplex section protection of 1:1
  • FIG. 2 is a schematic diagram of protection switching of a multiplex section of a local working path failure
  • FIG. 3 is a schematic diagram of protection switching of a multiplex section in which two nodes detect a fault
  • FIG. 4 is a schematic flowchart of a path backcutting method in a transport network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a multiplex section protection networking provided by an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a path failback method in a transport network according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a path switchback apparatus in a transport network according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a path failback method and apparatus in a transport network, which are used to avoid simultaneous link failure recovery in two directions of a working path between nodes in a transport network.
  • the protection of the multiplex section protection is normal and the work path is switched back to the working path.
  • a path backcutting method in a transport network includes the following steps:
  • the local node determines that two faulty links on the working path between itself and the peer node are restored to normal at the same time;
  • the local node determines that it and the peer node simultaneously generate a protection switching request for the working path SF clear.
  • the local node enters and waits to resume the WTR state.
  • the local node determines that two faulty links on the working path between itself and the peer node are restored to normal at the same time, including:
  • the local node receives the protection switching request sent by the peer node, and determines that the protection switching request is a reverse request;
  • the local node determines the protection switching request sent to the peer node last time, or the protection switching request currently sent to the opposite node, which is also a reverse request.
  • the local node determines that two faulty links on the working path between itself and the peer node are restored to normal at the same time, and further includes:
  • the local node determines that it is in the Signal Failure SF state either before or when a reverse request is sent to the correspondent node.
  • the local node when the WTR state ends, the local node returns the signal to the working path, and the method further includes:
  • the local node monitors whether a protection switching request with a higher priority than the reverse requested protection switching request is received. Preferably, when the WTR state ends, the local node switches back the signal to the working path, including:
  • the local node determines that there is no protection switching request with a higher priority than the reverse request protection switching request during the WTR state, the signal is switched back to the working path at the end of the WTR state.
  • the embodiment of the present invention optimizes the state machine of the multiplex section protection, and the node cannot enter the WTR state immediately after the working path failure recovery, for the scenario where the two nodes simultaneously recover from the protection path to the working path, but
  • the two nodes can enter the WTR state, and then, after the WTR state expires, can be switched back to work.
  • the path avoids the problem that the multiplex section protection cannot be switched back to the working path in the scenario where the working paths of the two nodes are simultaneously restored.
  • FIG. 5 it is a networking diagram of a multiplex section protection according to an embodiment of the present invention.
  • the link in both directions in the working path between the node S1 and the node S2 is faulty.
  • the node S1 and the node S2 simultaneously detect the local working path SF clearing, and generate SF clearing.
  • the protection switching request when comparing the local protection switching request (SF clearing) and the remote (ie, from the opposite node) the highest priority protection switching request, since the remote protection switching request is the working path SF, the priority is higher than the local protection switching Request, therefore neither node S1 nor node S2 can respond to the protection switching request cleared by the working path SF, but respond to the protection switching request (SF request) from the opposite node, and will send an RR request to the opposite node, node S1 and After the node S2 receives the RR request from the peer end, according to the technical solution provided by the embodiment of the present invention, the node S1 determines the protection switching request sent to the node S2 recently, or the protection switching request that needs to be sent to the node S2, which is the RR request.
  • node S1 enters the WTR state.
  • node S2 also enters the WTR state, in the WTR state. After the expiration of node S1 and S2 will be switched back to the node working path, receive and transmit signals on the working path, The network is back to normal.
  • the path backcutting method of the transport network provided by the embodiment of the present invention specifically includes the following steps: S201: The local node receives the K byte of the peer node, and determines that the protection switching request carried in the reverse request is a reverse request;
  • the local node determines that the current state is an SF state.
  • the local node determines that the protection switching request included in the currently sent K byte is also a reverse request.
  • the local node enters a WTR state.
  • the local node determines whether a protection switching request (eg, SF) with a higher priority than the protection switching priority of the reverse request is received. If yes, execute S206; otherwise, execute S207.
  • a protection switching request eg, SF
  • the local node performs a higher priority protection switching request.
  • the local node switches the signal from the protection path to the working path.
  • the technical solution provided by the embodiment of the present invention is exemplified by the multiplex section protection in the 1:1 mode, but the multiplex section protection in the l:n mode is also applicable.
  • a path back-cutting device in a transport network includes: a fault recovery determining unit 101, configured to determine two fault links on a working path between a local node and a peer node at the same time Back to normal;
  • the WTR status entry unit 102 is configured to enter the local node into the WTR state
  • the failback unit 103 is configured to switch back the signal of the local node to the working path when the WTR state ends.
  • the fault recovery determining unit 101 includes:
  • the first determining unit 201 is configured to determine that the protection switching request sent by the peer node received by the local node is a reverse request;
  • the second determining unit 202 is configured to determine a protection switching request that is sent by the local node to the peer node last time, or a protection switching request that is currently required to be sent to the opposite node, and is also a reverse request.
  • the fault recovery determining unit 101 further includes:
  • the third determining unit 203 is configured to determine that the local node is in an SF state before the local node sends a reverse request to the opposite node.
  • the device further comprises:
  • the monitoring unit 104 is configured to monitor, during the WTR state of the local node, whether the local node receives a protection switching request with a higher priority than the reverse request protection switching request.
  • the failback unit 103 when the monitoring unit 104 determines that the local node does not receive a protection switching request with a higher priority than the reverse request protection switching request during the WTR state, ends at the WTR state. When the signal is switched back to the working path.
  • the state machine of the multiplex section protection is optimized, and the node state is determined according to the priority of the remote protection switching request received in the multiplex section protection when the priority of the remote protection switching request is higher than the priority of the local protection switching request.
  • the protection switching request included in the K byte sent after the machine operation is a feature of the reverse request
  • the node receives the protection switching request of the opposite end as a reverse request
  • the protection switching request currently sent by the node is also a reverse request, if the node If the previous state is the SF state, the node enters the WTR state, which solves the problem that the G.841 protocol cannot be switched back when both ends of the fault recovery are detected.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Description

一种传送网中的路径回切方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种传送网中的路径回切方法及 装置。 背景技术
复用段保护( Multiplex Section Protection, MSP )是传送网中的一种保 护倒换技术, 由国际电讯联盟 ( International Telecommunication Union, ITU ) 在 G.841中定义, 目前已经广泛应用于传送网中。
在 l :n模式的复用段保护中, 两个网络节点之间设置 1+n条路径,其中 1条保护路径, n条工作路径。 在 G.841中规定了一系列的保护倒换请求, 例如: 信号故障 (Signal Fail, SF )、 信号降质 ( Signal Degrade, SD )、 等 待恢复(Wait To Restore, WTR )、 无请求(No Request, NR )等。 并且, G.841为不同的保护倒换请求规定了不同的优先级,前述四种保护倒换请求 的优先级依次递减, SF的优先级最高, NR的优先级最低。
节点在收到远程的保护倒换请求后, 首先将本地保护倒换请求和远程 的保护倒换请求进行比较, 输出较高优先级的保护倒换请求, 然后根据输 出的最高优先级的保护倒换请求, 进行状态机的运算, 并发送 K字节和进 行保护倒换动作等。
图 1所示为 1 :1的复用段保护示意图,节点 S1和节点 S2之间有 1条工 作路径和 1条保护路径, 当工作路径和保护路径都为完好时, 节点 S1和节 点 S2都会选择工作路径发送和接收流量。 当节点 S1到节点 S2的工作路径 发生故障时, 如图 2所示, 节点 S2检测到本地工作路径 SF, 产生本地工 作路径 SF保护倒换请求, 节点 S2没有其他保护倒换请求, 因此本地工作 路径 SF是最高优先级保护倒换请求, 由于节点 S2的远程保护倒换请求为 NR, 优先级低于本地工作路径 SF, 因此节点 S2的最高优先级保护倒换请 求为本地工作路径 SF。 节点 S2进行状态机的运算, 在保护路径上发送 K 字节, 切换到保护路径上接收和发送流量, 其中 K字节中包含了节点 S2 的工作路径 SF保护倒换请求和切换到保护路径的信息。 节点 S1在保护路 径上收到 K字节后,提取出其中的保护倒换请求, 节点 S1的本地最高优先 级保护倒换请求为 NR, 低于远程保护倒换请求, 因此节点 S1的最高优先 级保护倒换请求为工作路径 SF, 节点 S1 进行状态机的运算, 并根据接收 到的 K字节的切换到保护路径的信息,切换到保护路径上接收和发送流量, 另外节点 S1还要在保护路径上发送 K字节, 其中 K字节的保护倒换请求 为反向请求( Reverse Request, RR ), 以及切换到保护路径的信息。 其中, 所述反向请求, 用以确认收到对端节点的保护倒换请求。
当节点 S1和节点 S2切换完成后, 流量在保护路径进行发送和接收。 当节点 S1到节点 S2的工作路径故障恢复时,节点 S2检测到本地工作路径 SF清除, 产生本地工作路径 SF清除的保护倒换请求, 该请求也是本地最 高优先级保护倒换请求, 由于节点 S2收到的远程保护倒换请求为 RR, 根 据 G.841的定义, RR不参与保护倒换请求的优先级比较, 因此节点 S2的 最高优先级保护倒换请求为本地工作路径 SF清除, 节点 S2进行状态机的 运算, 进入 WTR状态, 在 WTR状态到期后, 节点 S2进行回切操作, 并 发送 K字节通知节点 S1也进行回切, 在节点 S1和节点 S2都进行回切后, 流量在工作路径上进行发送和接收。
G.841协议很好地解决了 l :n复用段保护的问题, 但是由于实际网络比 较复杂, 尤其是出现两端节点之间的工作路径的两个方向上的链路同时故 障恢复等场景时, G.841协议存在一些缺陷。
如图 3所示, 当节点 S 1和节点 S2之间的工作路径的两个方向的链路 都故障后,节点 SI和节点 S2收到的远程保护倒换请求都是工作路径 SF保 护倒换请求, 当两个方向的链路同时恢复时, 节点 S1和节点 S2同时检测 到本地工作路径 SF清除,在比较本地保护倒换请求和远程保护倒换请求时, 由于远程保护倒换请求是工作路径 SF, 优先级高于本地保护倒换请求, 因 此节点 S1和节点 S2都不能够响应工作路径 SF清除的保护倒换请求,而是 响应远程的保护倒换请求, 并且会向对端节点发送 RR请求, 节点 S1和节 点 S2收到对端的 RR请求后, 按照状态机不会进入 WTR状态, 因此两端 节点不能按照正常流程进入 WTR状态,也不能正常回切到工作路径上接收 和发送流量。
因此, G.841协议在两端节点之间工作路径的两个方向的链路同时故障 恢复等场景时, 存在无法回切的缺陷, 而目前尚没有解决方案。 发明内容
本发明实施例提供了一种传送网中的路径回切方法及装置, 用以避免 传送网中的节点之间工作路径的两个方向上的链路同时故障恢复时, 无法 从保护路径回切到工作路径的问题。
本发明实施例提供的一种传送网中的路径回切方法, 包括:
本地节点确定自身和对端节点之间工作路径上的两个故障链路同时恢 复正常;
本地节点进入 WTR状态;
在 WTR状态结束时, 本地节点将信号回切到工作路径。
其中, 所述本地节点确定自身和对端节点之间工作路径上的两个故障 链路同时恢复正常, 包括:
本地节点收到对端节点发送的保护倒换请求, 并确定该保护倒换请求 为反向请求; 且,
本地节点确定最近一次向对端节点发送的保护倒换请求, 或者当前需 要向对端节点发送的保护倒换请求, 也为反向请求。
进一步地, 所述本地节点确定自身和对端节点之间工作路径上的两个 故障链路同时恢复正常, 还包括:
本地节点确定在向对端节点发送反向请求之前, 处于 SF状态。
其中,所述在 WTR状态结束时,本地节点将信号回切到工作路径之前, 所述方法还包括:
在 WTR状态期间,本地节点监测是否收到比反向请求的保护倒换请求 优先级更高的保护倒换请求。
进一步地,所述在 WTR状态结束时,本地节点将信号回切到工作路径, 包括:
本地节点当确定在 WTR状态期间没有收到比反向请求的保护倒换请 求优先级更高的保护倒换请求时, 在 WTR状态结束时, 将信号回切到工作 路径。
本发明实施例提供的一种传送网中的路径回切装置, 包括:
故障恢复确定单元, 用于确定本地节点和对端节点之间工作路径上的 两个故障链路同时恢复正常;
WTR状态进入单元, 用于将本地节点进入 WTR状态;
回切单元, 用于在 WTR状态结束时, 将本地节点的信号回切到工作路 径。
其中, 所述故障恢复确定单元包括:
第一确定单元, 用于确定本地节点收到的对端节点发送的保护倒换请 求为反向请求;
第二确定单元, 用于确定本地节点最近一次向对端节点发送的保护倒 换请求, 或者当前需要向对端节点发送的保护倒换请求, 也为反向请求。
进一步地, 所述故障恢复确定单元还包括: 第三确定单元, 用于确定在本地节点向对端节点发送反向请求之前, 本地节点处于 SF状态。
进一步地, 所述装置还包括:
监测单元, 用于在本地节点处于 WTR状态期间, 监测本地节点是否收 到比反向请求的保护倒换请求优先级更高的保护倒换请求。
其中, 所述回切单元, 当通过所述监测单元确定本地节点在 WTR状态 期间没有收到比反向请求的保护倒换请求优先级更高的保护倒换请求时, 在 WTR状态结束时, 将信号回切到工作路径。
本发明实施例, 本地节点确定自身和对端节点之间工作路径上的两个 故障链路同时恢复正常; 本地节点进入等待恢复 WTR状态; 在 WTR状态 结束时, 本地节点将信号回切到工作路径, 从而在传送网中的节点之间的 工作路径的两个方向上的链路同时故障恢复时, 可以将信号从保护路径回 切到工作路径。 附图说明
图 1为 1 : 1的复用段保护示意图;
图 2为本地工作路径故障的复用段保护切换示意图;
图 3为两端节点检测到故障的复用段保护切换示意图;
图 4为本发明实施例提供的传送网中的路径回切方法的流程示意图; 图 5为本发明实施例提供的复用段保护组网示意图;
图 6为本发明实施例提供的传送网中的路径回切方法的流程示意图; 图 7为本发明实施例提供的传送网中的路径回切装置的结构示意图。 具体实施方式
本发明实施例提供了一种传送网中的路径回切方法及装置, 用以避免 传送网中的节点之间工作路径的两个方向上的链路同时故障恢复时, 无法 从保护路径回切到工作路径的问题。 使得在复用段保护中出现两端节点同 时恢复等场景时, 能够保障复用段保护的运行正常, 回切到工作路径。
下面结合附图对本发明实施例提供的技术方案进行说明。
参见图 4, 本发明实施例提供的一种传送网中的路径回切方法, 包括步 骤:
5101、 本地节点确定自身和对端节点之间工作路径上的两个故障链路 同时恢复正常;
即本地节点确定自身和对端节点同时产生工作路径 SF清除的保护倒换 请求。
5102、 本地节点进入等待恢复 WTR状态;
S103、 在 WTR状态结束时, 本地节点将信号回切到工作路径。
较佳地, 所述本地节点确定自身和对端节点之间工作路径上的两个故 障链路同时恢复正常, 包括:
本地节点收到对端节点发送的保护倒换请求, 并确定该保护倒换请求 为反向请求; 且,
本地节点确定最近一次向对端节点发送的保护倒换请求, 或者当前需 要向对端节点发送的保护倒换请求, 也为反向请求。
较佳地, 所述本地节点确定自身和对端节点之间工作路径上的两个故 障链路同时恢复正常, 还包括:
本地节点确定当前或者在向对端节点发送反向请求之前, 处于信号故 障 SF状态。
较佳地, 所述在 WTR状态结束时, 本地节点将信号回切到工作路径之 前, 该方法还包括:
在 WTR状态期间,本地节点监测是否收到比反向请求的保护倒换请求 优先级更高的保护倒换请求。 较佳地, 所述在 WTR状态结束时, 本地节点将信号回切到工作路径, 包括:
本地节点当确定在 WTR状态期间没有收到比反向请求的保护倒换请 求优先级更高的保护倒换请求时, 在 WTR状态结束时, 将信号回切到工作 路径。
由此可见, 本发明实施例针对复用段保护的状态机进行了优化, 针对 两端节点同时从保护路径恢复到工作路径等场景, 节点无法在工作路径故 障恢复后立即进入 WTR状态,但是可以在接收到对端节点发送的反向请求 时, 通过对比接收和发送的反向请求, 以及先前的状态, 使得两端节点能 够进入 WTR状态, 继而在 WTR状态到期后, 能够回切到工作路径, 从而 避免了复用段保护在两端节点工作路径同时恢复等场景下无法回切到工作 路径的问题。
例如, 参见图 5 , 为本发明实施例提供的一种复用段保护的组网图。 节 点 S1和节点 S2之间的工作路径中两个方向的链路都有故障, 当这两个链 路同时恢复正常时, 节点 S1和节点 S2同时检测到本地工作路径 SF清除, 并产生 SF清除的保护倒换请求, 在比较本地保护倒换请求(SF清除)和 远程(即来自对端节点的) 最高优先级保护倒换请求时, 由于远程保护倒 换请求是工作路径 SF, 优先级高于本地保护倒换请求, 因此节点 S1 和节 点 S2都不能够响应工作路径 SF清除的保护倒换请求, 而是响应来自对端 节点的保护倒换请求(SF请求), 并且会向对端节点发送 RR请求, 节点 S1和节点 S2收到对端的 RR请求后, 根据本发明实施例提供的技术方案, 节点 S1判断最近一次向节点 S2发送的保护倒换请求, 或当前需要向节点 S2发送的保护倒换请求, 为 RR请求, 并且之前的状态为 SF, 因此节点 S1 进入 WTR状态, 同理,节点 S2也会进入 WTR状态,在 WTR状态到期后, 节点 S1和节点 S2都会回切到工作路径, 在工作路径上接收和发送信号, 网络恢复正常。
参见图 6, 本发明实施例提供的传送网的路径回切方法具体包括步骤: S201、 本地节点收到对端节点的 K字节, 并确定其中携带的保护倒换 请求为反向请求;
S202、 本地节点确定当前状态为 SF状态;
S203、 本地节点确定当前发送的 K字节中包含的保护倒换请求也是反 向请求。
S204、 本地节点进入 WTR状态。
5205、本地节点在 WTR状态期间, 判断是否收到比反向请求的保护倒 换优先级更高优先级的保护倒换请求 (例如 SF ), 如果是, 则执行 S206; 否则, 执行 S207。
5206、 本地节点执行更高优先级的保护倒换请求。
5207、在 WTR状态到期后, 本地节点将信号从保护路径回切到工作路 径。
本发明实施例提供的技术方案,虽然以 1 :1模式的复用段保护为例进行 的说明, 但对于 l :n模式的复用段保护同样适用。
参见图 7, 本发明实施例提供的一种传送网中的路径回切装置, 包括: 故障恢复确定单元 101 ,用于确定本地节点和对端节点之间工作路径上 的两个故障链路同时恢复正常;
WTR状态进入单元 102 , 用于将本地节点进入 WTR状态;
回切单元 103 , 用于在 WTR状态结束时, 将本地节点的信号回切到工 作路径。
较佳地, 所述故障恢复确定单元 101包括:
第一确定单元 201 ,用于确定本地节点收到的对端节点发送的保护倒换 请求为反向请求; 第二确定单元 202 ,用于确定本地节点最近一次向对端节点发送的保护 倒换请求, 或者当前需要向对端节点发送的保护倒换请求, 也为反向请求。
较佳地, 所述故障恢复确定单元 101还包括:
第三确定单元 203 , 用于确定在本地节点向对端节点发送反向请求之 前, 本地节点处于 SF状态。
较佳地, 该装置还包括:
监测单元 104, 用于在本地节点处于 WTR状态期间, 监测本地节点是 否收到比反向请求的保护倒换请求优先级更高的保护倒换请求。
较佳地, 所述回切单元 103 , 当通过所述监测单元 104确定本地节点在 WTR状态期间没有收到比反向请求的保护倒换请求优先级更高的保护倒换 请求时, 在 WTR状态结束时, 将信号回切到工作路径。
综上所述, 本发明实施例, 优化了复用段保护的状态机, 根据复用段 保护中当接收到的远程保护倒换请求的优先级高于本地保护倒换请求的优 先级时, 节点状态机运算后发送的 K字节中包含的保护倒换请求为反向请 求的特征, 节点收到对端的保护倒换请求为反向请求, 并且节点当前发出 的保护倒换请求也是反向请求时, 如果节点先前的状态为 SF状态, 则节点 进入 WTR状态, 解决了 G.841协议在两端同时检测到故障恢复等场景时无 法回切的问题。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施 例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个 或多个其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不 限于磁盘存储器和光学存储器等 )上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流 程图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中 的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专 用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个 机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产 生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方 框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的 功能的步骤。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种传送网中的路径回切方法, 其特征在于, 所述方法包括: 本地节点确定自身和对端节点之间工作路径上的两个故障链路同时恢 复正常;
本地节点进入等待恢复 WTR状态;
在 WTR状态结束时, 本地节点将信号回切到工作路径。
2、 根据权利要求 1所述的方法, 其特征在于, 所述本地节点确定自身 和对端节点之间工作路径上的两个故障链路同时恢复正常, 包括:
本地节点收到对端节点发送的保护倒换请求, 并确定该保护倒换请求 为反向请求; 且,
本地节点确定最近一次向对端节点发送的保护倒换请求, 或者当前需 要向对端节点发送的保护倒换请求, 也为反向请求。
3、 根据权利要求 2所述的方法, 其特征在于, 所述本地节点确定自身 和对端节点之间工作路径上的两个故障链路同时恢复正常, 还包括:
本地节点确定在向对端节点发送反向请求之前,处于信号故障 SF状态。
4、 根据权利要求 1所述的方法, 其特征在于, 所述在 WTR状态结束 时, 本地节点将信号回切到工作路径之前, 所述方法还包括:
在 WTR状态期间,本地节点监测是否收到比反向请求的保护倒换请求 优先级更高的保护倒换请求。
5、 根据权利要求 4所述的方法, 其特征在于, 所述在 WTR状态结束 时, 本地节点将信号回切到工作路径, 包括:
本地节点当确定在 WTR状态期间没有收到比反向请求的保护倒换请 求优先级更高的保护倒换请求时, 在 WTR状态结束时, 将信号回切到工作 路径。
6、 一种传送网中的路径回切装置, 其特征在于, 所述装置包括: 故障恢复确定单元, 用于确定本地节点和对端节点之间工作路径上的 两个故障链路同时恢复正常;
WTR状态进入单元, 用于将本地节点进入 WTR状态;
回切单元, 用于在 WTR状态结束时, 将本地节点的信号回切到工作路 径。
7、 根据权利要求 6所述的装置, 其特征在于, 所述故障恢复确定单元 包括:
第一确定单元, 用于确定本地节点收到的对端节点发送的保护倒换请 求为反向请求;
第二确定单元, 用于确定本地节点最近一次向对端节点发送的保护倒 换请求, 或者当前需要向对端节点发送的保护倒换请求, 也为反向请求。
8、 根据权利要求 7所述的装置, 其特征在于, 所述故障恢复确定单元 还包括:
第三确定单元, 用于确定在本地节点向对端节点发送反向请求之前, 本地节点处于 SF状态。
9、 根据权利要求 6所述的装置, 其特征在于, 所述装置还包括: 监测单元, 用于在本地节点处于 WTR状态期间, 监测本地节点是否收 到比反向请求的保护倒换请求优先级更高的保护倒换请求。
10、 根据权利要求 9所述的装置, 其特征在于, 所述回切单元, 当通 过所述监测单元确定本地节点在 WTR状态期间没有收到比反向请求的保 护倒换请求优先级更高的保护倒换请求时, 在 WTR状态结束时, 将信号回 切到工作路径。
PCT/CN2011/075716 2010-11-19 2011-06-14 一种传送网中的路径回切方法及装置 WO2012065435A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/885,639 US9071513B2 (en) 2010-11-19 2011-06-14 Path switch-back method and apparatus in transport network
EP11840871.5A EP2632081B1 (en) 2010-11-19 2011-06-14 Path switch-back method and apparatus in transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010552933.3 2010-11-19
CN201010552933.3A CN102006188B (zh) 2010-11-19 2010-11-19 一种传送网中的路径回切方法及装置

Publications (1)

Publication Number Publication Date
WO2012065435A1 true WO2012065435A1 (zh) 2012-05-24

Family

ID=43813280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075716 WO2012065435A1 (zh) 2010-11-19 2011-06-14 一种传送网中的路径回切方法及装置

Country Status (4)

Country Link
US (1) US9071513B2 (zh)
EP (1) EP2632081B1 (zh)
CN (1) CN102006188B (zh)
WO (1) WO2012065435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580884A (zh) * 2012-07-19 2014-02-12 中兴通讯股份有限公司 保护配置的方法、系统、发送端设备及接收端设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006188B (zh) * 2010-11-19 2014-07-16 中兴通讯股份有限公司 一种传送网中的路径回切方法及装置
CN102882590A (zh) * 2011-07-15 2013-01-16 中兴通讯股份有限公司 一种双向工作路径故障消失后的处理方法及装置、系统
WO2012162982A1 (zh) * 2011-09-20 2012-12-06 华为技术有限公司 一种aps业务通道切换方法、系统及自动保护倒换设备
US9843511B2 (en) * 2013-07-31 2017-12-12 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for selecting path from paths between label edge routers
CN105227339B (zh) * 2014-07-02 2019-11-12 南京中兴新软件有限责任公司 自动保护倒换aps状态处理方法、装置及aps节点
CN104202184A (zh) * 2014-08-22 2014-12-10 中国联合网络通信集团有限公司 一种快速回切业务的方法和装置
CN106301857B (zh) * 2015-06-08 2019-10-25 华为技术有限公司 一种网络保护的方法、网络节点及系统
US10382301B2 (en) * 2016-11-14 2019-08-13 Alcatel Lucent Efficiently calculating per service impact of ethernet ring status changes
CN108667643A (zh) * 2017-03-30 2018-10-16 华为技术有限公司 一种通信故障恢复方法及第一通信网元
CN109639549B (zh) * 2017-10-09 2021-11-05 中兴通讯股份有限公司 一种环网保护的实现方法和环网保护系统
CN116405375B (zh) * 2023-06-09 2023-08-25 深圳和润达科技有限公司 基于多路径网络的数据传输和供电方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870471A (zh) * 2006-05-10 2006-11-29 中兴通讯股份有限公司 基于光环网复用段共享保护中抑制自激的系统和方法
CN101047440A (zh) * 2006-05-10 2007-10-03 华为技术有限公司 一种业务路径返回的方法
CN101162949A (zh) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 避免环路自激的光环网通道共享保护的系统和方法
CN102006188A (zh) * 2010-11-19 2011-04-06 中兴通讯股份有限公司 一种传送网中的路径回切方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264156A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 同期通信網の障害検出方式
JPH11252016A (ja) * 1998-03-03 1999-09-17 Nec Corp 光通信用ノード及びこれにより構成されるリング構成の波長分割多重光伝送装置
US6269452B1 (en) * 1998-04-27 2001-07-31 Cisco Technology, Inc. System and method for fault recovery for a two line bi-directional ring network
US20030117950A1 (en) * 2001-12-26 2003-06-26 Huang Gail G Link redial for mesh protection
US20040179472A1 (en) * 2003-03-14 2004-09-16 Farid Khalilzadeh Shared path protection method and system
US20050058060A1 (en) * 2003-09-16 2005-03-17 Nortel Networks Limited K-byte extension and tunnel identifying scheme for tunnel-based shared mesh protection
EP1686122B1 (en) * 2003-10-28 2012-11-21 Nihon Starch Co., Ltd. Antitumor agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870471A (zh) * 2006-05-10 2006-11-29 中兴通讯股份有限公司 基于光环网复用段共享保护中抑制自激的系统和方法
CN101047440A (zh) * 2006-05-10 2007-10-03 华为技术有限公司 一种业务路径返回的方法
CN101162949A (zh) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 避免环路自激的光环网通道共享保护的系统和方法
CN102006188A (zh) * 2010-11-19 2011-04-06 中兴通讯股份有限公司 一种传送网中的路径回切方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2632081A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580884A (zh) * 2012-07-19 2014-02-12 中兴通讯股份有限公司 保护配置的方法、系统、发送端设备及接收端设备

Also Published As

Publication number Publication date
US9071513B2 (en) 2015-06-30
EP2632081A4 (en) 2017-07-19
CN102006188B (zh) 2014-07-16
EP2632081B1 (en) 2018-08-08
US20130235718A1 (en) 2013-09-12
EP2632081A1 (en) 2013-08-28
CN102006188A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2012065435A1 (zh) 一种传送网中的路径回切方法及装置
EP2224644B1 (en) A protection method, system and device in the packet transport network
EP2245472B1 (en) System and method for network recovery from multiple link failures
EP1845656A1 (en) A method for implementing master and backup transmission path
US20080068988A1 (en) Packet communication method and packet communication device
WO2006025296A1 (ja) 障害回復方法およびネットワーク装置ならびにプログラム
US20140071810A1 (en) Communication system and processing method therefor
US9013977B2 (en) Method and system for reducing traffic disturbance in a communication network caused by intermittent failure
US20090290487A1 (en) Communication apparatus and path switching method
JP2011066564A (ja) データ中継装置、及びリング型通信システム
CN101192959B (zh) 一种自动交换光网络组播业务连接的恢复方法
CN101197591B (zh) 用于ason的保护恢复方法和装置
JP5012485B2 (ja) 冗長方法及びスイッチ装置
WO2016169214A1 (zh) 一种隧道保护切换的方法和装置
WO2010133065A1 (zh) 基于无源光网络的保护系统和方法
JP5176623B2 (ja) イーサネットの伝送方法、伝送装置およびシステム
JP2006222632A (ja) 光クロスコネクト装置と伝送装置の連係方式
JP5168499B2 (ja) 通信ネットワークシステム及びパスの高信頼化方法
JP4190170B2 (ja) 迂回経路設定システム
CN101262400A (zh) 一种桥模式弹性分组环冗余保护的方法和系统
CN104081723A (zh) 用于网络保护的方法和装置
CN102014033B (zh) 环网故障节点实现业务恢复的方法和系统
EP2023568B1 (en) Telecommunication system with traffic protection mechanism
CN101192986A (zh) 一种自动交换光网络组播业务组播树的恢复方法
WO2012155667A1 (zh) 一种双向工作路径故障消失后的处理方法及装置、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885639

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011840871

Country of ref document: EP