WO2012065333A2 - 一种鞋用超轻改性热塑性橡胶te材料 - Google Patents

一种鞋用超轻改性热塑性橡胶te材料 Download PDF

Info

Publication number
WO2012065333A2
WO2012065333A2 PCT/CN2010/079990 CN2010079990W WO2012065333A2 WO 2012065333 A2 WO2012065333 A2 WO 2012065333A2 CN 2010079990 W CN2010079990 W CN 2010079990W WO 2012065333 A2 WO2012065333 A2 WO 2012065333A2
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
ethylene
eva
thermoplastic
ultra
Prior art date
Application number
PCT/CN2010/079990
Other languages
English (en)
French (fr)
Inventor
林官斌
Original Assignee
福建安健致远国际贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建安健致远国际贸易有限公司 filed Critical 福建安健致远国际贸易有限公司
Publication of WO2012065333A2 publication Critical patent/WO2012065333A2/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/10Footwear characterised by the material made of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • This invention relates to thermoplastic rubber materials, and more particularly to a modified thermoplastic rubber TE material for making a shoe outsole.
  • thermoplastic rubber TPR is a thermoplastic elastomer TPE 58-65%, poly ⁇ .
  • the TPR of the traditional formula is mainly due to the main
  • the formula is chemical raw material TPE, so the weight is heavy, the tortuosity and resilience are poor, the proportion of traditional TPR 0.8-1.1, after twists and turns about 50,000 times without damage, resilience is about 50-70 degrees does not collapse, NBS wear about 20-42%.
  • the traditional EVA typical formula is ethylene (E) and vinyl acetate (VA) EVA 70-80%, nano calcium CCR10-15%, filler 5-8%, zinc oxide ZnO1-5%, etc., the main ingredients It is EVA.
  • the production process is recorded when the mold is used to test the mold. The data is recorded according to the test mode. The EVA material particles are put into the fixed solution and the fixed weight is poured into the corresponding weight. After the mold is heated, the mold is heated for 6-7 minutes (the temperature is 180-185 degrees), and then the mold is taken out to remove the finished bottom. Because the periphery of the primary shape is smooth, it is necessary to rough the periphery of the primary shape and put it in the corresponding number.
  • the EVA outsole made by this traditional formula is light in weight, but its main component is EVA, so the abrasion resistance is about 15-20%, and the production process is complicated, so the production capacity is not high and the cost is relatively high.
  • Ultra-light modified thermoplastic rubber TE material for shoes including thermoplastic elastomer TPE, thermoplastic styrene butadiene rubber SBS, poly alpha methyl styrene resin ATL, ethylene (E) and vinyl acetate (VA) EVA, benzene Block copolymer SEBS composed of ethylene (S)-ethylene (E) and butene (B)-styrene (S), ethylene octene copolymer POE, the mass ratio of which is: thermoplastic elastomer TPE15-30, Block copolymers of styrene (S)-ethylene (E) and butene (B)-styrene (S) SEBS5-10, ethylene (E) and vinyl acetate (VA) EVA 20-40, ethylene Octene copolymer POE5-15, thermoplastic styrene butadiene rubber SBS15-25, polyalphamethylstyrene resin ATL1-5.
  • the above-mentioned ultra-light modified thermoplastic rubber TE material for shoes including softener 1-15, zinc oxide (ZnO) 1-5, anti-violeting agent UV1-3, antioxidant (ANTIOXIDANTS) 1-3, titanium White powder (TITANIUMDIOXIDE) 1-3, ultra-light foaming powder 1-3, low-temperature expansion agent 1-3, white foaming agent 1-3.
  • an ultra-light modified thermoplastic rubber TE material for shoes which comprises a thermoplastic elastomer TPE, a thermoplastic styrene butadiene rubber SBS, a poly alpha methyl styrene resin ATL, and an ethylene (E).
  • the environmentally friendly filler powder has a mass ratio of thermoplastic copolymer TPE15-30, block copolymer composed of styrene (S)-ethylene (E) and butene (B)-styrene (S).
  • SEBS5-10 ethylene (E) and vinyl acetate (VA) EVA20-40, thermoplastic styrene butadiene rubber SBS15-25, poly alpha methyl styrene resin ATL1-5, dry and ground mixture of plant stem and stem Environmentally friendly filling powder 9-20.
  • the above-mentioned ultra-light modified thermoplastic rubber TE material for shoes further comprises softening oil 1-15, ultralight foaming powder 1-3, low temperature expanding agent 1-3, white foaming 1-3.
  • the environmentally-friendly filling powder is obtained by drying and grinding 2-6 kinds of wastes of corn cob, wheat straw, straw, rice bran, leaves and branches, and the grinding fineness is 600. -800 mesh.
  • the invention has the advantages that: in addition to improving the physical properties of the existing conventional TPR, the TE material involved in the first scheme has better tortuosity, lighter weight, better resilience and lower cost than the conventional TPR. It also greatly reduces the use of chemical materials and saves labor costs.
  • an appropriate amount of environmentally-friendly filler powder is added to the TE material to replace the ethylene octene copolymer POE and the zinc oxide ZnO filler, the anti-purifying agent, the antioxidant, the titanium dioxide, and the like. Retaining the original physical properties of TE materials, and creating a new TE environmentally friendly material for the purpose of protecting the ecological environment and effectively utilizing waste resources.
  • the large bottom made of TE material and TE environment-friendly material has a small specific gravity, so it effectively saves cooling time.
  • the production capacity is 20%-30% higher than the traditional TPR and 3-4 times higher than the traditional EVA.
  • Example 1 component test results Traditional TPR Traditional EVA Ultra-light TE outsole or ultra-light TE environmental protection outsole proportion 0.8-1.1 0.4-0.5 0.5-0.85 0.65 Bottom twist (normal temperature) No damage after 50,000 times No damage after 50,000 times No damage after 50,000-80,000 times 58,000 times without damage Resilience 50-70 degrees does not collapse 35-60 degrees does not collapse 35-70 degrees does not collapse 45 degrees does not collapse NBS wear resistance 20-42% 15-20% 15-50% 42%
  • the above-mentioned ultra-light TE large-bottom specific gravity is 0.65, and the weight is lighter than the conventional TPR.
  • the main reason is that the original conventional TPR thermoplastic elastomer TPE ratio is reduced by 23%, and the EVA component is increased by 20%; the tortuosity is better than the conventional TPR.
  • the raw materials of the following components are placed in a mixer to make TE pellets, and then the TE pellets are poured into the raw material bucket, and the pellets of different colors are heated and divided into injections according to the color requirements. After the final cooling of the machine of the good mold, the finished product is pulled out.
  • Thermoplastic elastomer TPE (model 1475) 17%, styrene (S)-ethylene (E) and butene (B)-styrene (S) block copolymer SEBS (model 3000S) 5%, ethylene (E) and vinyl acetate (VA) EVA (model 7350) 25%, ethylene octene copolymer POE 15%, thermoplastic styrene butadiene rubber SBS 15%, poly alpha methyl styrene resin ATL 2%, softening oil (for White oil) 5%, zinc oxide ZnO1%, anti-purifying agent 2%, antioxidant 2%, ultralight foaming powder (model A-9) 3%, low temperature expansion agent 3%, white foam 3%, Titanium dioxide 2%.
  • test results of this embodiment are compared as follows: Test items Comparison of conventional component test results
  • Example 2 component test results Traditional TPR Traditional EVA Ultra-light TE outsole or ultra-light TE environmental protection outsole proportion 0.8-1.1 0.4-0.5 0.5-0.85 0.5 Bottom twist (normal temperature) No damage after 50,000 times No damage after 50,000 times No damage after 50,000-80,000 times 60,000 times without damage
  • Resilience 50-70 degrees does not collapse 35-60 degrees does not collapse 35-70 degrees does not collapse 40 degrees does not collapse NBS wear resistance 20-42% 15-20% 15-50% 18%
  • the above-mentioned ultra-light TE large-bottom specific gravity is 0.5, and the weight is lighter than that of the conventional TPR mainly because the original conventional TPR thermoplastic elastomer TPE ratio is reduced by 17%, and the EVA component is increased by 25%; the tortuosity is better than the conventional TPR.
  • the raw materials of the following components are placed in a mixer to make TE pellets, and then the TE pellets are poured into the raw material bucket, and the pellets of different colors are heated and divided into injections according to the color requirements. After the final cooling of the machine of the good mold, the finished product is pulled out.
  • Thermoplastic elastomer TPE (model 1475) 28%, styrene (S)-ethylene (E) and butene (B)-styrene (S) block copolymer SEBS (model 3000S) 5%, ethylene (E) and vinyl acetate (VA) EVA (model 7350) 20%, ethylene octene copolymer POE 6%, thermoplastic styrene butadiene rubber SBS 14%, poly alpha methyl styrene resin ATL 2%, softening oil (for White oil) 15%, zinc oxide ZnO1%, anti-purifying agent 2%, antioxidant 2%, titanium dioxide 2%, ultra-light foaming powder (model A-9) 1%, low temperature expansion agent 1%, white Foaming 1%.
  • test results of this embodiment are compared as follows: Test items Comparison of conventional component test results
  • Example 3 component test results Traditional TPR Traditional EVA Ultra-light TE outsole or ultra-light TE environmental protection outsole proportion 0.8-1.1 0.4-0.5 0.5-0.85 0.7 Bottom twist (normal temperature) No damage after 50,000 times No damage after 50,000 times No damage after 50,000-80,000 times 65,000 times without damage
  • Resilience 50-70 degrees does not collapse 35-60 degrees does not collapse 35-70 degrees does not collapse 35 degrees does not collapse NBS wear resistance 20-42% 15-20% 15-50% 42%
  • the above-mentioned ultra-light TE large-bottom specific gravity is 0.7, and the weight is lighter than the conventional TPR mainly because the original conventional TPR thermoplastic elastomer TPE ratio is reduced by 28%, and the EVA component is increased by 20%; the tortuosity is better than the conventional TPR.
  • the raw materials of the following components are placed in a mixer to make TE environmental protection particles, and then the TE environmental protection particles are poured into the raw material barrel, and the different colored materials are heated and divided according to the color requirements. After the final stage of cooling on the machine loaded with the mold, the finished product is pulled out.
  • Thermoplastic elastomer TPE (model 1475) 30%, ethylene (E) and vinyl acetate (VA) EVA (model 7350) 20%, thermoplastic styrene butadiene rubber SBS 25%, poly alpha methyl styrene resin ATL 2% , softening oil (white oil) 6%, ultralight foaming powder (model A-9) 1%, white foaming 1%, environmentally friendly filler powder 9%, styrene (S)-ethylene (E) and The block copolymer SEBS (model number 3000S) composed of butene (B)-styrene (S) was 5%, and the low temperature expansion agent was 1%.
  • test results of this embodiment are compared as follows: Test items Comparison of conventional component test results
  • Example 4 component test results Traditional TPR Traditional EVA Ultra-light TE outsole or ultra-light TE environmental protection outsole proportion 0.8-1.1 0.4-0.5 0.5-0.85 0.85 Bottom twist (normal temperature) No damage after 50,000 times No damage after 50,000 times No damage after 50,000-80,000 times 50,000 times without damage
  • Resilience 50-70 degrees does not collapse 35-60 degrees does not collapse 35-70 degrees does not collapse 50 degrees does not collapse NBS wear resistance 20-42% 15-20% 15-50% 45%
  • the above ultra-light TE environmental protection outsole we have added 15% environmentally friendly filler powder to replace the original ultra-light TE outsole ethylene octene copolymer POE and zinc oxide ZnO filler, anti-purifying agent, antioxidant, titanium dioxide, This not only preserves the original physical properties of the ultra-light TE outsole, but also achieves the purpose of protecting the ecological environment and effectively utilizing the abandoned resources.
  • the environmentally-friendly filling powders mentioned here mainly refer to agricultural wastes and forest wastes, such as: corn stalks, wheat stalks, straw, rice bran, leaves, branches, etc., and 2-6 kinds of wastes are dried and pulverized. Made of powder, the fineness of the mill is 600-800 mesh.
  • the traditional TPR nano-calcium CCR and polystyrene PS act as fillers, mainly for the purpose of reducing cost, but there is no way to increase the foaming effect by adding a foaming agent or a swelling agent, so the conventional TPR has a heavy specific gravity. , twists and turns, weaknesses with poor resilience.
  • the newly researched ultra-light TE outsole compensates for the weakness of traditional TPR heavy weight, tortuosity and poor resilience by adding new formulas such as EVA and POE, because EVA will play a role in swelling when mixed with low-temperature expansion agent, and POE
  • the raw material is similar in appearance to the EVA, and it can be foamed after being mixed with the ultra-light foaming powder, thereby reducing the specific gravity of the sole.
  • the typical EVA formula is ethylene (E) and vinyl acetate (VA) EVA 70-80%, nano calcium CCR10-15%, filler 5-8%, zinc oxide ZnO 1-5%, if 100% with EVA Without the addition of nano-calcium CCR and other fillers, the wear resistance is generally only 30-35%, and because the cost of using 100% EVA raw material is relatively high. Therefore, the traditional EVA outsole will reduce the cost by adding nano-calcium CCR and other fillers, but adding nano-calcium CCR and other fillers will reduce the original EVA wear resistance to 15-20%.
  • the ultra-light TE outsole of the present application further adds a thermoplastic styrene-butadiene rubber SBS raw material on the basis of adding EVA and zinc oxide.
  • the function of the thermoplastic styrene-butadiene rubber SBS is mainly to play a role of wear resistance and is compared with other K-gels. The lighter specific gravity can increase the wear resistance without increasing the specific gravity of the large base.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Description

一种鞋用超轻改性热塑性橡胶TE材料 技术领域:
本发明涉及热塑性橡胶材料,特别是制作鞋子大底的一种改性热塑性橡胶TE材料。
背景技术:
鞋底作为鞋子的重要组成部份,如何能使大底成本降低的前提下又能达到国际市场测试要求和消费者的需求已是重要竞争力之一。目前,在市场上可以购买的鞋底材料种类繁多,花样各异,橡胶、热塑性橡胶、聚氨酯或热塑性聚氨酯等等,而传统的热塑性橡胶TPR其典型的配方为热塑性弹性体TPE58-65%、聚α甲基苯乙烯树脂ATL3-5%、纳米钙CCR20-25%、聚苯乙烯PS12-16%、热塑性丁苯橡胶SBS2-5%、软化油5-10%、抗紫化剂UV(型号为301)1-3%、抗氧化剂ANTIOXIDANTS(型号为TM-3)1-3%、钛白粉TITANIUMDIOXIDE(型号为K930)1-5%、超轻发泡粉(型号为A-9)3-5‰、低温膨胀剂3-5‰、白发泡3-5‰等,其中以热塑性弹性体TPE为主,其生产流程为将相应配方原料放入密炼机密炼出TPR颗粒,然后将TPR颗粒倒入原料桶内,根据颜色的要求分次将不同颜色的粒料经过加温,分次射入装好模具的机台上最后冷却后拉出成品,此传统配方制作的TPR大底因主要的配方是化工原料TPE所以比重重、曲折性和回弹性较差,传统TPR的比重约为0.8-1.1,曲折约为5万次后无损坏、回弹性约为50-70度不塌陷、NBS耐磨约为20-42%。
而传统的EVA典型配方为乙烯(E)及乙烯基醋酸盐(VA)EVA70-80%、纳米钙CCR10-15%、填充料5-8%、氧化锌ZnO1-5%等,其主要成份是EVA,其生产流程为试模时试出模具所用的料量记录下来,依试模时记录数据,将EVA原料颗粒磅出重量后放置固定溶器内,将定重的料粒倒入相应的模具内后关模加热6-7分钟(温度在180-185度),然后开模取出成品底,因初形大底周边光滑,所以需将初形大底周边打粗后放在对应号码的模具内,平顺压入模具内并盖好推加热站加热10分钟左右(温度在170-180度左右),开模放入冷却站冷却5分钟左右后开模拉出成品底并将毛边修整。此传统配方制作的EVA大底特点是重量轻,但是因其主要成份为EVA所以耐磨性较差约为15-20%,而且制作流程较复杂所以产能不高,成本也相应的比较高。
发明内容:
本发明的目的在于克服上述缺陷,提供一种超轻改性热塑性橡胶TE材料。
一种鞋用超轻改性热塑性橡胶TE材料,包括热塑性弹性体TPE、热塑性丁苯橡胶SBS、聚α甲基苯乙烯树脂ATL,乙烯(E)及乙烯基醋酸盐(VA)EVA,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS、乙烯辛烯共聚物POE,其质量份数比为:热塑性弹性体TPE15-30,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS5-10、乙烯(E)及乙烯基醋酸盐(VA)EVA20-40、乙烯辛烯共聚物POE5-15、热塑性丁苯橡胶SBS15-25、聚α甲基苯乙烯树脂ATL1-5。
所述的一种鞋用超轻改性热塑性橡胶TE材料,包括软化剂1-15、氧化锌(ZnO)1-5、抗紫化剂UV1-3、抗氧化剂(ANTIOXIDANTS)1-3、钛白粉(TITANIUMDIOXIDE)1-3、超轻发泡粉1-3、低温膨胀剂1-3、白发泡剂1-3。
本发明的另一技术方案是:一种鞋用超轻改性热塑性橡胶TE材料,其包括热塑性弹性体TPE、热塑性丁苯橡胶SBS、聚α甲基苯乙烯树脂ATL、还添加有乙烯(E)及乙烯基醋酸盐(VA)EVA,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS、植物杆梗叶混合物干燥研磨而成的环保填充料粉,其质量份数配比为:热塑性弹性体TPE15-30,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS5-10、乙烯(E)及乙烯基醋酸盐(VA)EVA20-40、热塑性丁苯橡胶SBS15-25、聚α甲基苯乙烯树脂ATL1-5,植物杆梗叶混合物干燥研磨而成的环保填充料粉9-20。
进一步地,所述的一种鞋用超轻改性热塑性橡胶TE材料,还包括软化油1-15、超轻发泡粉1-3、低温膨胀剂1-3、白发泡1-3。
更进一步地,所述的环保填充料粉为将玉米杆、小麦杆、稻草、米糠、树叶、树枝其中2-6种废弃物晒干后混合研磨而成,所述的磨粉细度为600-800目。
本发明的优点在于:第一种方案所涉及的TE材料除了提高现有传统TPR的物性以外,大底曲折性更好、重量更轻,回弹性更好且成本与传统TPR相差不大,同时又大大减少了化工材料的使用和节约人力成本。本发明的方案二在TE材料的基础上加入适量的环保填充料粉代替原有TE材料的乙烯辛烯共聚物POE和氧化锌ZnO填充物、抗紫化剂、抗氧化剂、钛白粉,这样即保留TE材料原有的物性,又可以达到保护生态环境并有效利用废弃资源的目的生成一种新的TE环保型材料。同时TE材料和TE环保型材料所制成的大底因重量比重小,所以有效节约冷却时间,产能比传统TPR高20%-30%,比传统EVA高3-4倍。
具体实施方式:
此实施例最终大底的测试结果对比如下:
测试项目 常规组分测试结果对比 实施例1组分 测试结果
传统TPR 传统EVA 超轻TE大底或者 超轻TE环保大底
比重 0.8-1.1 0.4-0.5 0.5-0.85 0.65
整底曲折(常温) 5万次后无损坏 5万次后无损坏 5-8万次后无损坏 5.8万次无损坏
 回弹性 50-70度不塌陷 35-60度不塌陷 35-70度不塌陷 45度不塌陷
NBS耐磨 20-42% 15-20% 15-50% 42%
上述超轻TE大底比重为0.65,重量相对于传统TPR变轻了主要是因为减少原传统TPR热塑性弹性体TPE比例为23%,增加了20%EVA成份;曲折相对于传统TPR变好主要是由于我们取消了原传统TPR纳米钙组分的使用,而加入了SBS、EVA等新的配方和适当比例的TPE成份;回弹性相对于传统TPR变好主要是因为加入了超轻发泡粉(型号为A-9)、SEBS等新配方;耐磨性能相对于传统EVA变好主要是我们加入了适量的TPE和SEBS的成份代替了传统EVA大底纳米钙成份和降低了EVA的用量比例。
实施例2
将以下各组分重量百分比的原料放入密炼机密炼出TE颗粒,然后将TE颗粒倒入原料桶内,根据颜色的要求分次将不同颜色的粒料经过加温,分次射入装好模具的机台上最后冷却后拉出成品。
热塑性弹性体TPE(型号为1475)17%、苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS(型号为3000S)5%、乙烯(E)及乙烯基醋酸盐(VA)EVA(型号为7350)25%、乙烯辛烯共聚物POE15%、热塑性丁苯橡胶SBS15%、聚α甲基苯乙烯树脂ATL2%、软化油(为白油)5%、氧化锌ZnO1%、抗紫化剂2%、抗氧化剂2%、超轻发泡粉(型号为A-9)3%、低温膨胀剂3%、白发泡3%、钛白粉2%。
此实施例最终大底的测试结果对比如下:
测试项目 常规组分测试结果对比 实施例2组分 测试结果
传统TPR 传统EVA 超轻TE大底 或者 超轻TE环保大底
比重 0.8-1.1 0.4-0.5 0.5-0.85 0.5
整底曲折(常温) 5万次后无损坏 5万次后无损坏 5-8万次后无损坏 6万次无损坏
回弹性 50-70度不塌陷 35-60度不塌陷 35-70度不塌陷 40度不塌陷
NBS耐磨 20-42% 15-20% 15-50% 18%
上述超轻TE大底比重为0.5,重量相对于传统TPR变轻了主要是因为减少原传统TPR热塑性弹性体TPE比例为17%,增加了25%EVA成份;曲折相对于传统TPR变好主要是由于我们取消了原传统TPR纳米钙组分的使用,而加入了SBS、EVA等新的配方和适当比例的TPE成份;回弹性相对于传统TPR变好主要是因为加入了超轻发泡粉(型号为A-9)、SEBS等新配方,此种TE大底配方可以代替传统EVA作为大底的中底部份,这样可以实现在原有TPR生产工艺的基础上直接一体成型同时保持EVA比重轻、曲折好、回弹性佳等效果,避开了传统EVA制造工艺繁琐、产能低和需二次再组合的缺点,进而大大节省大底成本、提高大底生产效率和实现节省能源的目的。
实施例3
将以下各组分重量百分比的原料放入密炼机密炼出TE颗粒,然后将TE颗粒倒入原料桶内,根据颜色的要求分次将不同颜色的粒料经过加温,分次射入装好模具的机台上最后冷却后拉出成品。
热塑性弹性体TPE(型号为1475)28%、苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS(型号为3000S)5%、乙烯(E)及乙烯基醋酸盐(VA)EVA(型号为7350)20%、乙烯辛烯共聚物POE6%、热塑性丁苯橡胶SBS14%、聚α甲基苯乙烯树脂ATL2%、软化油(为白油)15%、氧化锌ZnO1%、抗紫化剂2%、抗氧化剂2%、钛白粉2%、超轻发泡粉(型号为A-9)1%、低温膨胀剂1%、白发泡1%。
此实施例最终大底的测试结果对比如下:
测试项目 常规组分测试结果对比 实施例3组分 测试结果
传统TPR 传统EVA 超轻TE大底 或者 超轻TE环保大底
比重 0.8-1.1 0.4-0.5 0.5-0.85 0.7
整底曲折(常温) 5万次后无损坏 5万次后无损坏 5-8万次后无损坏 6.5万次无损坏
回弹性 50-70度不塌陷 35-60度不塌陷 35-70度不塌陷 35度不塌陷
NBS耐磨 20-42% 15-20% 15-50% 42%
上述超轻TE大底比重为0.7,重量相对于传统TPR变轻了主要是因为减少原传统TPR热塑性弹性体TPE比例为28%,增加了20%EVA成份;曲折相对于传统TPR变好主要是由于我们取消了原传统TPR纳米钙组分的使用,而加入了SBS、EVA等新的配方和适当比例的TPE成份;回弹性相对于传统TPR变好主要是因为加入了超轻发泡粉(型号为A-9)、SEBS等新配方;耐磨性能相对于传统EVA变好主要是我们加入了适量的TPE和SEBS的成份代替了传统EVA大底纳米钙成份和降低了EVA的用量比例。
实施例4
将以下各组分重量百分比的原料放入密炼机密炼出TE环保颗粒,然后将TE环保颗粒倒入原料桶内,根据颜色的要求分次将不同颜色的粒料经过加温,分次射入装好模具的机台上最后冷却后拉出成品。
热塑性弹性体TPE(型号为1475)30%、乙烯(E)及乙烯基醋酸盐(VA)EVA(型号为7350)20%、热塑性丁苯橡胶SBS25%、聚α甲基苯乙烯树脂ATL2%、软化油(为白油)6%、超轻发泡粉(型号为A-9)1%、白发泡1%、环保填充料粉9%、苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS(型号为3000S)5%、低温膨胀剂1%。
此实施例最终大底的测试结果对比如下:
测试项目 常规组分测试结果对比 实施例4组分 测试结果
传统TPR 传统EVA 超轻TE大底 或者 超轻TE环保大底
比重 0.8-1.1 0.4-0.5 0.5-0.85 0.85
整底曲折(常温) 5万次后无损坏 5万次后无损坏 5-8万次后无损坏 5万次无损坏
回弹性 50-70度不塌陷 35-60度不塌陷 35-70度不塌陷 50度不塌陷
NBS耐磨 20-42% 15-20% 15-50% 45%
上述超轻TE环保大底,我们加入了15%环保填充料粉代替原有超轻TE大底的乙烯辛烯共聚物POE和氧化锌ZnO填充物、抗紫化剂、抗氧化剂、钛白粉,这样既保留超轻TE大底原有的物性,又可以达到保护生态环境并有效利用废弃资源的目的。此处所述的环保填充料粉主要是指农业废弃物及林木废弃物,例如:玉米杆、小麦杆、稻草、米糠、树叶、树枝等,将其中2-6种废弃物晒干后粉碎磨粉而成,所述的磨粉细度为600-800目。
超轻TE大底与传统TPR配方的比较如下:
传统TPR的纳米钙CCR、聚苯乙烯PS其作用为填充物,主要起降低成本的目的,但是其没办法通过添加发泡剂或膨胀剂使其产生发泡的效果,所以传统TPR存在比重重、曲折、回弹性较差的弱点。而新研究的超轻TE大底通过添加EVA和POE等新配方弥补了传统TPR比重重、曲折、回弹性较差的弱点,因为EVA与低温膨胀剂混合后会起到膨胀的作用,而POE原料与EVA外观相似,其与超轻发泡粉混合后可以发泡,从而降低鞋底的比重。同时,为了避免发泡后弹性不佳的问题,我们还添加了适量的苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS,SEBS加入后可以让大底手感更佳弹性更好,同时EVA和POE与原有的聚α甲基苯乙烯树脂ATL相结合,可以使EVA和POE发泡的更加均匀,因为ATL作用是增加原物料在模具内的流动性。
工业实用性
传统的EVA典型配方为乙烯(E)及乙烯基醋酸盐(VA)EVA70-80%、纳米钙CCR10-15%、填充料5-8%、氧化锌ZnO1-5%,若100%用EVA而不添加纳米钙CCR和其它的填充料,其耐磨一般也只能达到30-35%,而且因为使用100%EVA原料大底成本比较高。所以传统EVA大底会通过添加纳米钙CCR和其它的填充料来降低成本,但是加入纳米钙CCR和其它的填充料后又会使原有的EVA耐磨性更差降至15-20%。而本申请的超轻TE大底在添加EVA、氧化锌的基础上还相应添加了热塑性丁苯橡胶SBS原料,热塑性丁苯橡胶SBS的作用主要是起耐磨调节作用而且相对于其它的K胶比重较轻,可以实现在不增加大底比重的基础上增加其耐磨性。

Claims (5)

  1. 一种鞋用超轻改性热塑性橡胶TE材料,包括热塑性弹性体TPE、热塑性丁苯橡胶SBS、聚α甲基苯乙烯树脂ATL,其特征在于还包括:乙烯(E)及乙烯基醋酸盐(VA)EVA,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS、乙烯辛烯共聚物POE,其质量份数比为:热塑性弹性体TPE15-30,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS5-10、乙烯(E)及乙烯基醋酸盐(VA)EVA20-40、乙烯辛烯共聚物POE5-15、热塑性丁苯橡胶SBS15-25、聚α甲基苯乙烯树脂ATL1-5。
  2. 根据权利要求1所述的一种鞋用超轻改性热塑性橡胶TE材料,其特征在于还包括软化剂1-15、氧化锌(ZnO)1-5、抗紫化剂UV1-3、抗氧化剂(ANTIOXIDANTS)1-3、钛白粉(TITANIUMDIOXIDE)1-3、超轻发泡粉1-3、低温膨胀剂1-3、白发泡剂1-3。
  3. 一种鞋用超轻改性热塑性橡胶TE材料,其包括热塑性弹性体TPE、热塑性丁苯橡胶SBS、聚α甲基苯乙烯树脂ATL、其特征在于:还添加有乙烯(E)及乙烯基醋酸盐(VA)EVA,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS、植物杆梗叶混合物干燥研磨而成的环保填充料粉,其质量份数配比为:热塑性弹性体TPE15-30,苯乙烯(S)-乙烯(E)和丁烯(B)-苯乙烯(S)构成的嵌段共聚物SEBS5-10、乙烯(E)及乙烯基醋酸盐(VA)EVA20-40、热塑性丁苯橡胶SBS15-25、聚α甲基苯乙烯树脂ATL1-5。
  4. 根据权利要求3所述的一种鞋用超轻改性热塑性橡胶TE材料,其特征在于还包括软化油1-15、超轻发泡粉1-3、低温膨胀剂1-3、白发泡1-3、植物杆梗叶混合物干燥研磨而成的环保填充料粉9-20。
  5. 根据权利要求3所述的一种鞋用超轻改性热塑性橡胶TE材料,其特征在于:所述的环保填充料粉为将玉米杆、小麦杆、稻草、米糠、树叶、树枝其中2-6种废弃物晒干后混合研磨而成,所述的磨粉细度为600-800目。
PCT/CN2010/079990 2010-11-17 2010-12-20 一种鞋用超轻改性热塑性橡胶te材料 WO2012065333A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105488831A CN102031010A (zh) 2010-11-17 2010-11-17 一种超轻改性热塑性橡胶te材料
CN201010548883.1 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012065333A2 true WO2012065333A2 (zh) 2012-05-24

Family

ID=43884489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079990 WO2012065333A2 (zh) 2010-11-17 2010-12-20 一种鞋用超轻改性热塑性橡胶te材料

Country Status (2)

Country Link
CN (1) CN102031010A (zh)
WO (1) WO2012065333A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417652A (zh) * 2011-09-27 2012-04-18 江苏达胜高聚物有限公司 一种新型光伏线缆用无卤低烟绝缘材料及其生产工艺
CN106009463A (zh) * 2016-06-17 2016-10-12 广东锐铂耐特新材料有限公司 一种合成橡胶发泡材料及其制备方法
US20170267847A1 (en) * 2016-03-15 2017-09-21 Nike, Inc. Foam compositions and uses thereof
WO2019236500A1 (en) * 2018-06-04 2019-12-12 Nike Innovate C.V. Two part sole structures and uses thereof
CN112341683A (zh) * 2020-11-19 2021-02-09 莆田市新元鞋业有限公司 一种用于鞋底的环保回收料及制备方法
CN115286862A (zh) * 2021-08-09 2022-11-04 温州市优联新材料有限公司 一种柔软质轻鞋底材料及其制备方法
US11523655B2 (en) 2018-12-03 2022-12-13 Nike, Inc. High energy return foam compositions having improved abrasion resistance and uses thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276909A (zh) * 2011-08-09 2011-12-14 泉州斯达纳米科技发展有限公司 橡塑自粘合大底贴片
CN102516697B (zh) * 2011-12-08 2013-08-14 温州市海滨秀龙鞋材有限公司 软木牛筋底
CN102626996A (zh) * 2012-04-17 2012-08-08 晋江市五里艇源鞋塑有限公司 一种双色鞋底的成型工艺及制备方法
CN102718996B (zh) * 2012-06-18 2013-12-18 温州市华川高分子材料有限公司 一种改性热塑性橡胶合成的超轻发泡tpr材料及其制备方法
CN102850611A (zh) * 2012-09-24 2013-01-02 吴江市信许塑料鞋用配套有限公司 一种防滑鞋底材料的制备方法
CN103254545A (zh) * 2012-10-16 2013-08-21 张云鹏 一种热塑性复合加胶高发泡材料及其制备方法
CN104356672A (zh) * 2014-10-29 2015-02-18 正业包装(中山)有限公司 一种具有弹性和阻隔性的回收纸板纤维复合材料及其制备方法
US10918161B2 (en) 2016-11-04 2021-02-16 Totes Isotoner Corporation Footwear sole, boot and sandal
CN110028714A (zh) * 2019-04-30 2019-07-19 温州市宜和鞋材有限公司 一种超轻一次成型复合鞋底的配方及制备工艺
CA3105086A1 (en) * 2020-01-17 2021-07-17 Totes Isotoner Corporation Footwear sole, boot and sandal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417652A (zh) * 2011-09-27 2012-04-18 江苏达胜高聚物有限公司 一种新型光伏线缆用无卤低烟绝缘材料及其生产工艺
US11643535B2 (en) 2016-03-15 2023-05-09 Nike, Inc. Foam compositions and uses thereof
US11780997B2 (en) 2016-03-15 2023-10-10 Nike, Inc. Foam compositions and uses thereof
US11739201B2 (en) 2016-03-15 2023-08-29 Nike, Inc. Foam compositions and uses thereof
US11149138B2 (en) 2016-03-15 2021-10-19 Nike, Inc. Foam compositions and uses thereof
US10947371B2 (en) 2016-03-15 2021-03-16 Nike, Inc. Foam compositions and uses thereof
US20170267847A1 (en) * 2016-03-15 2017-09-21 Nike, Inc. Foam compositions and uses thereof
US10947372B2 (en) 2016-03-15 2021-03-16 Nike, Inc. Foam compositions and uses thereof
US10927242B2 (en) 2016-03-15 2021-02-23 Nike, Inc. Foam compositions and uses thereof
CN106009463A (zh) * 2016-06-17 2016-10-12 广东锐铂耐特新材料有限公司 一种合成橡胶发泡材料及其制备方法
US11439198B2 (en) 2018-06-04 2022-09-13 Nike, Inc. Two part sole structures and uses thereof
WO2019236500A1 (en) * 2018-06-04 2019-12-12 Nike Innovate C.V. Two part sole structures and uses thereof
US11523655B2 (en) 2018-12-03 2022-12-13 Nike, Inc. High energy return foam compositions having improved abrasion resistance and uses thereof
US11986044B2 (en) 2018-12-03 2024-05-21 Nike, Inc. High energy return foam compositions having improved abrasion resistance and uses thereof
CN112341683A (zh) * 2020-11-19 2021-02-09 莆田市新元鞋业有限公司 一种用于鞋底的环保回收料及制备方法
CN115286862A (zh) * 2021-08-09 2022-11-04 温州市优联新材料有限公司 一种柔软质轻鞋底材料及其制备方法
CN115286862B (zh) * 2021-08-09 2024-03-22 温州市优联新材料有限公司 一种柔软质轻鞋底材料及其制备方法

Also Published As

Publication number Publication date
CN102031010A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2012065333A2 (zh) 一种鞋用超轻改性热塑性橡胶te材料
CN107286629B (zh) 一种环保型人造草坪填充用热塑性弹性体颗粒及其制备方法
CN106883503A (zh) 一种橡塑复合发泡材料及其制备方法和应用
CN102532675B (zh) 一种鞋用发泡材料
CN1673265A (zh) 止滑耐磨eva鞋材
CN102964768B (zh) 一种橡塑改性环保材料及其制备方法
CN105566730A (zh) 一种聚乙酸乙烯酯改性发泡体
CN112592568B (zh) 一种质轻高耐磨的运动鞋鞋底材料及其制备方法
CN103232629B (zh) 低成本绝缘橡胶电缆料及其制备工艺
CN103183898A (zh) 人造草坪用热塑性弹性体材料及其制备方法
CN101565517B (zh) 改性环保热可塑丁苯橡胶鞋底材料及其制备方法
CN102852314A (zh) 一种橡胶撒花卷材地板的制造方法
CN107254096A (zh) 一种石墨烯改性高分子柔软抗变形复合发泡材料及其制备方法
CN106700380A (zh) 一种弹性粒子、其制备方法及其应用
CN102924761A (zh) 一种氧化锌预分散母胶粒的胎面胶及其制备方法
CN104804228A (zh) 一种用于鞋底的合成轻质胶材料及其制备方法
CN106117766B (zh) 一种高回弹耐老化eva发泡材料及其制备方法
CN102127283B (zh) 用于注塑成型塑格拼接地板的聚丙烯复合物及其制备方法
CN104194287A (zh) 一种含椰壳粉的改性聚己二酸/对苯二甲酸丁二酯复合材料及其制备方法
CN101199374A (zh) 一种环保鞋底及其制作方法
CN105602036A (zh) 一种丁腈橡胶粉末及其制备方法
CN116003949B (zh) 一种复合材料耐磨鞋底
CN106928562A (zh) 应用于进口挤出设备的氯化聚乙烯护套配方及挤出工艺
CN107524067B (zh) 一种sbs弹性体环保型跑道
CN103790336A (zh) 一种抗静电橡胶地板的生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859677

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859677

Country of ref document: EP

Kind code of ref document: A2