WO2012059009A1 - 下行信道反馈信息反馈方法和装置及用户配对方法和装置 - Google Patents

下行信道反馈信息反馈方法和装置及用户配对方法和装置 Download PDF

Info

Publication number
WO2012059009A1
WO2012059009A1 PCT/CN2011/081111 CN2011081111W WO2012059009A1 WO 2012059009 A1 WO2012059009 A1 WO 2012059009A1 CN 2011081111 W CN2011081111 W CN 2011081111W WO 2012059009 A1 WO2012059009 A1 WO 2012059009A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
channel quality
channel
users
error
Prior art date
Application number
PCT/CN2011/081111
Other languages
English (en)
French (fr)
Inventor
崔琪楣
李世渊
陶小峰
王超
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20151025.2A priority Critical patent/EP3661087A1/en
Priority to RU2013125764/08A priority patent/RU2013125764A/ru
Priority to BR112013010368A priority patent/BR112013010368A2/pt
Priority to JP2013535262A priority patent/JP5549785B2/ja
Application filed by 索尼公司 filed Critical 索尼公司
Priority to KR1020137014374A priority patent/KR20130087551A/ko
Priority to AU2011325625A priority patent/AU2011325625B2/en
Priority to CA2815711A priority patent/CA2815711A1/en
Priority to MX2013004708A priority patent/MX2013004708A/es
Priority to EP11837535.1A priority patent/EP2637340B1/en
Priority to US13/878,581 priority patent/US10298297B2/en
Publication of WO2012059009A1 publication Critical patent/WO2012059009A1/zh
Priority to ZA2013/03230A priority patent/ZA201303230B/en
Priority to AU2016200309A priority patent/AU2016200309B2/en
Priority to US16/362,707 priority patent/US11043991B2/en
Priority to US17/337,421 priority patent/US20210288695A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector

Definitions

  • the present invention generally relates to the field of communications, and in particular, to feedback of downlink channel feedback information of a user and user pairing of a base station in a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • multi-antenna transmission is divided into single-user MIMO (SU-MIMO) transmission mode and multi-user MIMO (MU-MIMO) transmission mode.
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user MIMO
  • a base station transmits multiple data streams on the same time-frequency resource to the same user.
  • the base station transmits multiple data streams on the same time-frequency resource to different users, and increases system capacity by simultaneously transmitting data for multiple users.
  • the precoding technique is a signal processing technique that uses channel state information to preprocess the transmitted symbols at the transmitting end to achieve interference cancellation and system capacity enhancement.
  • Precoding requires the base station to know the transmission channel information and determine the precoding matrix based on the transmission channel information.
  • the precoding technique can be a codebook based precoding technique.
  • the codebook is the same for the user terminal (UE) and the base station (BS).
  • the user informs the base station of the precoding matrix used by the user by feeding back a Precoding Matrix Indication (PMI) to the base station.
  • PMI Precoding Matrix Indication
  • the PMI can be included in the user's need to feed back the downlink channel feedback information to the base station.
  • the downlink channel feedback information is information that is fed back to the base station by the user through the uplink channel and is used to reflect the state of the downlink channel.
  • the downlink channel feedback information that the user feeds back to the base station may include: a PMI for indicating a precoding matrix; and a base station for selecting the transmission data.
  • the feedback channel quality indicator (CQI) of the modulation coding mode In the LTE standard, in the case of MU-MIMO transmission, the PMI and CQI in the downlink channel feedback information fed back by the user to the base station are obtained for optimizing PMI and CQI based on the SU-MIMO case.
  • the use of PMI based on SU-MIMO transmission during MU-MIMO transmission may affect the selection of paired users in MU-MIMO transmission and thus affect communication performance.
  • the base station determines whether the MU-MIMO transmission or the SU-MIMO transmission is performed according to the downlink channel feedback information.
  • the base station obtains a precoding matrix according to the PMI in the downlink channel feedback information, and selects a suitable modulation and coding mode for the user according to the CQI in the downlink channel feedback information.
  • the base station needs to select a paired user for the user according to the downlink channel feedback information fed back by the user, and then according to the PMI and CQI included in the downlink channel feedback information fed back for each paired user selected by the user.
  • a precoding matrix for the user is obtained and a suitable modulation coding scheme is selected for the user.
  • An object of the present invention is to provide feedback of downlink channel feedback information, which may further increase user parameter error in MU-MIMO transmission in downlink channel feedback information in MU-MIMO downlink channel feedback.
  • the information of the quality indication error caused by (for example, signal-to-noise ratio error, synchronization difference, position difference, etc.), thereby achieving more accurate downlink channel feedback information to the base station.
  • the base station can more accurately obtain a CQI and a modulation and coding scheme more suitable for the user. Therefore, the demodulation error rate can be reduced and system performance can be improved.
  • another object of the present invention is to provide a user pairing on the base station side, which utilizes parameter errors from the user for characterizing the user in MU-MIMO transmission (eg, SNR error, synchronization) Information on the quality indication error caused by differences, position differences, etc., thereby enabling more accurate modulation coding and pairing. Therefore, the user can reduce the bit error rate and improve system performance.
  • parameter errors eg, SNR error, synchronization
  • an embodiment of the present invention provides a feedback method for downlink channel feedback information of a MIMO system, including: a user in the system calculates a multi-user channel shield quantity indication error of the user, the multi-user channel
  • the quality indication error is used to reflect the difference of the channel meanity indication in the case of multi-user multiple input multiple output transmission and the single user multiple input multiple output transmission; the multi-user channel quality indication error is increased to
  • the downlink channel feedback information including the precoding matrix indication and the channel quality indicator is fed back to the base station for scheduling.
  • Another embodiment of the present invention further provides a method for pairing users by using MIMO, including: a downlink channel feedback information receiving step, and receiving downlink channel feedback information from a user,
  • the downlink channel feedback information includes a precoding matrix indication, a channel quality indicator, and a multi-user channel memand indication error, where the multi-user channel shield quantity indication error is used to reflect that the user is
  • the transmission user includes all current transmission users that are allowed to enter the multi-user MIMO mode; a correlation calculation step of calculating the correlation between each paired user and each of the other users of the transmission user, and according to the correlation Select one or more users as optional pairing users; a pairing user selecting step, selecting a pairing user from the optional pairing users according to the multi-user channel quality indication error; repeating the above correlation calculation step and the pairing user selection step, Until a predetermined number of paired users are selected.
  • Another embodiment of the present invention further provides a communication method in a multiple input multiple output system, including: a user feeding back downlink channel feedback information to a base station; and determining, by the base station, whether to use a single user multiple input multiple output transmission mode or using multiple User multiple input and multiple transmission mode; in case of single user multiple input multiple output transmission mode, the base station uses the precoding matrix indication in the feedback downlink channel feedback information to obtain the precoding matrix of the user, and uses the feedback downlink channel.
  • the channel quality indicator in the feedback information is used to select a modulation coding mode for the user; in the case of using the multi-user multiple input multiple output transmission mode, the base station performs pairing for the user, based on downlink channel feedback information fed back by the user and its paired user a precoding matrix indication to obtain a precoding matrix for multi-user multiple input multiple output transmission mode, based on channel quality indication and multi-user in downlink channel feedback information fed back by each user of the user and its paired users Channel quality indication error to select a modulation and coding mode corresponding to each user;
  • the user uses the feedback method according to the feedback method to feed back downlink channel feedback information to the base station, and the base station uses the foregoing pairing method to perform user pairing.
  • an embodiment of the present invention provides a feedback device for downlink channel feedback information of a MIMO system, including: a multi-user channel quality indication error calculation unit configured to calculate a multi-user channel shield indication of the user Error, the multi-user channel quality indication error is used to reflect the difference of the channel quality indication of the user in the case of multi-user multiple input multiple output transmission and single user multiple input multiple output transmission; downlink channel feedback information feedback And configured to add the multi-user channel quality indication error to the downlink channel feedback information including the precoding matrix indication and the channel quality indicator, and feed back to the base station for scheduling.
  • a multi-user channel quality indication error calculation unit configured to calculate a multi-user channel shield indication of the user Error, the multi-user channel quality indication error is used to reflect the difference of the channel quality indication of the user in the case of multi-user multiple input multiple output transmission and single user multiple input multiple output transmission
  • downlink channel feedback information feedback And configured to add the multi-user channel quality indication error to the downlink channel feedback information including the precoding matrix indication and the channel
  • An embodiment of the present invention provides an apparatus for pairing users in a MIMO system, including: a downlink channel feedback information receiving unit configured to receive downlink channel feedback information from a user, the downlink channel feedback information. Include a precoding matrix indication, a channel quality indicator, and a multi-user channel shield indication error, wherein the multi-user channel quality indication error is used to reflect the The difference in channel quality indication in the case of multi-user MIMO, multi-input and multi-out transmission, and the initial pairing user selection unit, configured to select a multi-user channel quality indicator from the transmission users
  • the user with the smallest error is the paired user, and the transmission user includes all current transmission users that allow the iT multi-user MIMO multi-transmission mode; the correlation calculation unit, the correlation, and the selection of one or more users according to the correlation As an optional pairing user;
  • the pairing user selecting section is configured to select a pairing user from the selectable pairing users according to the multi-user channel quality indication error;
  • the correlation calculating section and the pairing user selecting section are configured to
  • an embodiment of the present invention further provides a terminal of a feedback apparatus including the downlink feedback information and a base station including the apparatus for pairing the user, and communication including at least one of the terminal and at least one of the base stations. system.
  • Embodiments of the present invention also provide computer program code for causing a computing device to perform a process of any of the above methods when executed by a computing device, and computer readable storage medium and computer having the computer program code stored thereon Program product.
  • FIG. 1 is a schematic diagram showing a SU-MIMO case and a MU-MIMO case in a chirp system
  • FIG. 2 is a flow chart showing a feedback method of downlink channel feedback information according to an embodiment of the present invention
  • FIG. 3 is a flow chart showing a process of calculating the multi-user channel quality indication error based on a signal to noise ratio, in accordance with one embodiment of the present invention
  • FIG. 4 is a flow chart showing a process of pairing users according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing a communication method in a MIMO system according to an embodiment of the present invention.
  • FIG. 6 shows a feedback device for downlink channel feedback information for a MIMO system in accordance with an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a multi-user channel quality indication error calculation section according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an apparatus for pairing users in a MU-MIMO transmission mode in a MIMO system according to an embodiment of the present invention
  • FIG. 9 is a block diagram of an exemplary structure of a general-purpose personal computer in which a method and/or apparatus according to an embodiment of the present invention may be implemented.
  • FIG. 2 is a flow chart showing a downlink channel feedback information feedback method according to an embodiment of the present invention.
  • the user in the MIMO system calculates the multi-user channel shield indication error of the user.
  • the multi-user channel quality indication error may reflect an error between the channel quality indication of the user in the case of MU-MIMO transmission and the channel quality indication in the case of SU-MIMO transmission. This error can be caused by differences in parameters of the user in the MU-MIMO transmission (eg, signal-to-noise ratio error, synchronization difference, position difference, etc.).
  • the user in the MIMO system feeds back the multi-user signal indication error with the downlink channel feedback information to the base station.
  • the downlink channel feedback information fed back by the user to the base station may include: a PMI for indicating a precoding matrix; and a CQI for a base station to select a modulation and coding mode of the transmission data.
  • the user can use various known methods to obtain PMI and CQL in the downlink channel feedback information.
  • the user can find a precoding matrix corresponding to the user based on the measured channel information matrix, and further generate a PMI for indicating the precoding matrix.
  • the user can obtain the value of the associated CQI based on the measured SNR, for example.
  • the multi-user channel quality indication error is further fed back to the base station, so that the user can be more accurately reflected in the case of the MU-MIMO transmission. Error in channel quality indication in the case of SU-MIMO transmission.
  • the user feeds back more accurate downlink channel feedback information to the base station, so that the base station can more accurately obtain the CQI and the modulation and coding mode more suitable for the user. Therefore, it is possible to reduce the user's demodulation error rate and improve system performance in the communication system.
  • the multi-user channel quality indication error can be calculated by considering various parameters and employing any suitable method.
  • the multi-user channel quality indication error may be calculated based on a signal to noise ratio.
  • FIG. 3 is a flow chart showing a process of calculating the multi-user channel quality indication error based on a signal to noise ratio, in accordance with one embodiment of the present invention.
  • the user can measure its channel status. Thereby, the channel information matrix and the signal to noise ratio of the user can be obtained.
  • the user can obtain the precoding matrix of the user based on the measured channel information matrix.
  • the precoding matrix can be obtained by measuring the obtained channel information matrix based on the following formula (1).
  • H denotes a channel information matrix obtained by the user through measurement
  • W1 denotes a precoding matrix
  • i denotes a position of the precoding matrix in the codebook, by which the position can be obtained from the codebook Precoding matrix
  • the size of the codebook is ⁇
  • step S304 the quantization error can be calculated.
  • the quantization error is a parameter reflecting an error between the measured channel information matrix and the obtained precoding matrix.
  • the quantization error can be characterized in terms of a channel information matrix and a precoding matrix.
  • the quantization error can be calculated according to the following equation (2).
  • step S306 the minimum interference level for the user is calculated.
  • the possible pairing user may be, for example, a user satisfying an orthogonal condition
  • the orthogonal condition may be, for example, a precoding matrix corresponding to a possible pairing user orthogonal to a precoding matrix corresponding to the user.
  • the minimum interference level can be calculated according to the following equation (3).
  • Equation (3) Wj denotes the precoding matrix of any possible paired users, the meanings of H and ⁇ are the same as in equation (1), and a represents the minimum interference level.
  • step S308 the signal to noise ratio of the user in the multi-user situation is calculated.
  • the above-described quantization error, minimum interference level, and measured signal-to-noise ratio can be utilized to calculate the signal-to-noise ratio of the user in a multi-user situation.
  • the signal to noise ratio in a multi-user scenario can be calculated based on equation (4).
  • SNR represents the signal-to-noise ratio measured by the user
  • SNR M1 MIMO represents the expected signal-to-noise ratio of the user in the multi-user case
  • e represents the quantization error
  • a represents the minimum interference level.
  • step S310 the multi-user channel quality indication error of the user in multi-user MIMO transmission can be calculated.
  • the multi-user channel quality indication error may be calculated based on the signal-to-noise ratio measured by the user and the calculated signal-to-noise ratio of the user in the MU-MIMO mode.
  • the multi-user channel quality indication error may be calculated based on equation (5).
  • V CQI(SNR) - CQI(SNR MU _ MIM0 ) ( 5 )
  • SNR represents the signal-to-noise ratio measured by the user
  • SNR MU - MIMO meter extracts the signal-to-noise ratio of the user in the case of MU-MIMO transmission
  • CQI ( ) represents the signal-to-noise ratio The relevant channel shield quantity indication function
  • V represents the multi-user channel quality indication error of the user.
  • the calculation of the multi-user channel quality indication error has been described using only the signal-to-noise ratio as an example, but the above description is merely an example, and the present invention is not limited thereto.
  • the calculation of the multi-user channel quality indication error may also take into account the effects of other parameters (e.g., time parameters (e.g., time synchronization differences, etc.), position parameters, etc.).
  • the calculation of the multi-user channel shield indication error can also be implemented based on time parameters or based on a combination of time parameters and signal to noise ratio.
  • embodiments of the present invention also provide a method for pairing users in a MIMO-MIMO transmission mode implemented in a MIMO system implemented at a base station side.
  • FIG. 4 shows a flow chart of a method of pairing users in a MU-MIMO transmission mode in a MIMO system, in accordance with one embodiment of the present invention.
  • the base station receives downlink channel feedback information from the user.
  • the downlink channel feedback information received by the base station from the user may include a precoding matrix indication, a channel shield quantity indication, and a multi-user channel quality indication error, where the multi-user channel quality The indication error is used to reflect the user's multi-user multiple input and multiple transmission The difference in channel quality indication in the case of single-user multiple-input multiple-out transmission.
  • the multi-user channel quality indication error can be calculated using the method of the above-described embodiment of the present invention.
  • the base station selects an initial paired user from among the transmission users.
  • the base station may select the user with the smallest multi-user channel shield indication error in the transmission user as the initial paired user.
  • the transmission user may be defined as one or more users of the users currently performing data transmission that may be allowed to enter the multi-user MIMO mode.
  • the MU-MIMO transmission mode (i.e., determining the transmission user) may be based, for example, on the user's channel conditions, rate requirements, current resource allocation, and the like.
  • the base station calculates a correlation between each paired user and each of the remaining transmission users obtained at step S404, and selects one or more users according to the correlation as Optional pairing user.
  • Equation (6) can be used to calculate the correlation between each paired user and each of the remaining transmission users.
  • wl represents the precoding matrix of the paired user
  • w2 represents a precoding matrix of the transmission user
  • each user's precoding matrix can be based on the downlink channel feedback information fed back by each user. PMI got it.
  • the base station can select one or more users from the remaining transmission users as the optional pairing users based on the calculated correlation.
  • the base station may select one or more users whose correlation is below a predetermined threshold as an optional pairing user.
  • the base station may also select one or more users with the least correlation as the optional pairing users.
  • step S408 the base station selects a paired user from among the optional paired users.
  • the base station may indicate a multi-user channel quality error according to each optional pairing user. Poor to make a choice.
  • the base station selects an optional pairing user with the smallest multi-user channel quality indication error in the downlink channel feedback information fed back from the optional pairing users as the pairing user.
  • step S410 the base station determines whether a predetermined number of paired users have been selected.
  • steps S406 and S408 are repeatedly performed to select the paired users from the transmission users again until the required number of paired users is reached.
  • the base station determines that the number of selected paired users has reached the predetermined number, the pairing process ends.
  • the base station utilizes the multi-user channel quality indication error fed back by the user. In this way, in the MU-MIMO transmission mode, the base station can achieve more accurate pairing. Therefore, system performance can be improved.
  • the embodiment of the present invention further provides a communication method in a MIMO system by the downlink channel feedback method according to the above embodiment of the present invention and the user pairing method according to the above embodiment of the present invention.
  • FIG. 5 is a flow chart showing a communication method in a MIMO system according to an embodiment of the present invention.
  • step S502 the user feeds back downlink channel feedback information to the base station.
  • the user can use the downlink channel feedback information feedback method according to the above embodiment to feed back downlink channel feedback information to the base station.
  • the downlink channel feedback information fed back by the user may include PMI, CQI, and multi-user channel quality indication error.
  • the multi-user channel quality indication error may reflect the difference between the user's MU-MIMO transmission and the channel quality indication in the case of SU-MIMO transmission.
  • the user can calculate the multi-user channel quality indication error, for example, according to equations (1) - (5).
  • the base station determines whether to adopt the SU-MIMO transmission mode or the MU-MIMO mode.
  • the base station can determine whether to adopt the SU-MIMO transmission mode or the MU-MIMO mode according to any existing strategy.
  • the base station may determine whether to adopt the SU-MIMO transmission mode or the MU-MIMO mode according to one or more factors of the user's rate requirement, current resource allocation status, channel condition, and the like.
  • the base station may obtain a precoding matrix based on the PMI in the downlink channel feedback information fed back by the user, based on the downlink channel feedback information, in step S506.
  • CQI selects the modulation coding method for the user. Since it is in the SU-MIMO transmission mode, the base station does not use the multi-user channel quality indication error for the MU-MIMO transmission mode in the downlink channel feedback information fed back by the user.
  • the base station can select a paired user for the user at step S508.
  • the base station can use the method of pairing users according to the above embodiment to select a paired user for the user.
  • the method of pairing users according to the above embodiment to select a paired user for the user.
  • the repetition is not repeated here to keep the description concise.
  • the base station calculates a precoding matrix in the MU-MIMO mode and selects an appropriate user modulation coding mode for each paired user.
  • the base station may obtain the precoding matrix in the MU-MIMO mode based on the precoding matrix of each paired user (obtained by the PMI fed back by each paired user respectively), and based on the CQI and multi-user channel quality of each paired user respectively.
  • the error is indicated to select each paired user modulation coding mode.
  • the base station may obtain a precoding matrix corresponding to each paired user in the PMI of each paired user, and then the base station further obtains a precoding matrix in the MU-MIMO transmission mode based on the precoding matrices.
  • a precoding matrix in the MU-MIMO transmission mode can be obtained based on the equation (7).
  • G denotes a precoding matrix in the MU-MIMO transmission mode
  • w1 denotes a precoding matrix corresponding to the user
  • w2 denotes a precoding matrix corresponding to the paired user.
  • the base station may calculate the CQI of the paired user in the MU-MIMO mode according to the CQI and the multi-user channel quantity indication error in the downlink channel feedback information of each paired user, and according to the paired user Select the modulation and coding method.
  • the error can be indicated according to CQI and multi-user channel shield.
  • CQI MimiMO represents a channel mean indication of the paired user in the MU-MIMO transmission mode
  • CQI represents the value of the CQI included in the downlink channel feedback information of the paired user
  • V represents the downlink channel feedback of the paired user.
  • the user can reduce the bit error rate and improve the performance of the system in the MU-MIMO transmission mode.
  • a device corresponding to the method is also provided.
  • FIG. 6 shows a downlink channel feedback information feedback apparatus for a MIMO system in accordance with an embodiment of the present invention.
  • the downlink channel feedback information feedback apparatus 600 includes: a multi-user channel quality indication error calculation unit 602 and a downlink channel feedback information feedback unit 604.
  • the multi-user channel quality indication error calculation section 602 can calculate the user's multi-user channel shield amount indication error.
  • the multi-user channel quality indication error may reflect an error between a channel quality indication of the user in the case of MU-MIMO transmission and a channel quality indication in the case of SU-MIMO transmission.
  • This error can be caused by differences in the parameters of the user in the MU-MIMO transmission (e.g., signal to noise ratio error, synchronization difference, position difference, etc.).
  • the downlink channel feedback information feedback unit 604 may add the multi-user channel quality indication error to the downlink channel feedback information including the PMI and the CQI, and feed back to the base station for scheduling.
  • the multi-user channel shield indication error is further fed back to the base station, so that the user can be more accurately reflected in the MU-MIMO transmission situation. Errors in channel quality indication in the case of SU-MIMO transmission.
  • the user can feed back more accurate downlink channel feedback information to the base station by using the downlink channel feedback information feedback device, so that the base station can more accurately obtain the CQI and the modulation and coding mode more suitable for the user. Therefore, it is possible to reduce the user's demodulation error rate in the communication system. And improve system performance.
  • the multi-user channel quality indication error calculation section 602 can calculate the multi-user channel quality indication error based on various suitable parameters.
  • the multi-user channel quality indication error calculation section may calculate the multi-user channel quality indication error based on a signal to noise ratio.
  • FIG. 7 is a schematic diagram showing a multi-user channel quality indication error calculation section according to an embodiment of the present invention.
  • the multi-user channel quality indication error calculation unit 700 includes a measurement unit 702, a quantization error calculation unit 704, a minimum interference level calculation unit 706, a multi-user mode signal-to-noise ratio calculation unit 708, and an error.
  • the measuring section 702 can measure its channel state. Thereby, the channel information matrix and the signal to noise ratio of the user can be obtained.
  • the quantization error calculation section 704 can calculate a quantization error, which is a parameter reflecting an error between the measured channel information matrix and the obtained precoding matrix.
  • the quantization error can be calculated according to the above formula (2).
  • the minimum interference level calculation unit 706 finds the user having the smallest interference level for the user among all possible matching users who may form a paired user with the user, and calculates the minimum interference level.
  • the minimum interference level can be calculated according to the formula (3) mentioned above.
  • the multi-user mode signal to noise ratio calculation section 708 can calculate the signal to noise ratio of the user in the case of multiuser.
  • the quantization error, the minimum interference level, and the measured signal-to-noise ratio can be utilized to calculate the signal-to-noise ratio of the user in a multi-user situation.
  • the signal-to-noise ratio in the multi-user case can be calculated based on the above-mentioned formula (4).
  • the error calculation section 710 can calculate a multi-user channel quality indication error of the user in multi-user MIMO transmission.
  • the multi-user channel quality indication error may be calculated based on a user-measured signal-to-noise ratio and the calculated signal-to-noise ratio of the user in the MU-MIMO mode.
  • the multi-user channel shield indication error may be calculated based on the above formula (5)
  • the multi-user channel quality indication error calculation section can calculate a multi-user channel quality indication error of a user in a MU-MIMO transmission situation based on a signal-to-noise ratio.
  • the multi-user channel quality indication error calculation section calculates the multi-user channel quality indication error based on the signal-to-noise ratio, but the above description is merely an example, and the present invention is not limited thereto.
  • the multi-user channel quality indication error calculation section may also be based on other parameters (e.g., time parameters, position parameters, etc.).
  • the multi-user channel shield amount indication error calculation section may perform calculation based on the time parameter or based on a combination of the time parameter and the signal-to-noise ratio.
  • embodiments of the present invention also provide an apparatus for pairing users in a MU-MIMO transmission mode in a MIMO system.
  • FIG. 8 shows a schematic diagram of an apparatus for pairing users in a MU-MIMO transmission mode in a MIMO system, in accordance with one embodiment of the present invention.
  • the apparatus 800 for pairing users includes: a downlink channel feedback information receiving unit 802, an initial pairing user selecting unit 804, a correlation calculating unit 806, and a pairing user selecting unit. 808.
  • the downlink channel feedback information receiving unit 802 can receive the downlink channel feedback information from the user.
  • the downlink channel feedback information received by the base station from the user may include a PMI, a CQI, and a multi-user signal indicating error, where the multi-user signaling indicator error is used to reflect The difference between the channel shield indication in the case of multi-user MIMO, multi-input multiple-out transmission, and single-user MIMO.
  • the multi-user channel quality indication error can be calculated using the method of the above-described embodiment of the present invention.
  • the initial pairing user selection unit 804 may select a user with the smallest multi-user channel quality indication error among the transmission users as the initial pairing user.
  • the transmission user may be defined as one or more users of the users currently performing data transmission that are allowed to enter the MU-MIMO transmission mode.
  • MU-MIM ⁇ transmission mode
  • transmission mode for example: can be used for the user's channel conditions, speed, ⁇ requirements, current Resource allocation, etc.
  • the correlation calculation section 806 can calculate the correlation between each paired user and each of the remaining transmission users, and select one or more users as the optional pairing users.
  • Equation (6) above can be used to calculate the correlation between each paired user and each of the remaining transmission users.
  • the correlation calculating section 806 can select one or more users from among the remaining transmission users as the optional pairing users based on the calculated correlation.
  • the correlation calculation section 806 can select one or more users whose correlation is below a predetermined threshold as an optional pairing user.
  • the relevance calculation section 806 may also select one or more users with the least relevance as the optional pairing users.
  • the pairing user selection section 808 can select a pairing user from the optional pairing users.
  • the base station can select according to the multi-user channel shield indication error of each optional pairing user.
  • the base station may select an optional pairing user whose multi-user channel quality indication error is the smallest in the feedback downlink channel feedback information as the pairing user.
  • the correlation calculation section 806 and the paired user selection section 808 can repeat the operation until a predetermined number of paired users are selected.
  • the base station utilizes the multi-user channel memand indication error fed back by the user. In this way, in the MU-MIMO transmission mode, the base station can achieve more accurate pairing. Therefore, system performance can be improved.
  • the downlink channel fed back by the user to the base station includes only one PMI indication (for example, a feedback scheme corresponding to a single codebook).
  • PMI indication for example, a feedback scheme corresponding to a single codebook.
  • the present invention is not limited thereto, and the downlink channel feedback method (device) and the user pairing method (device) according to the embodiments of the present invention may also be applied to other feedback schemes.
  • the user feeds back a PMI (ie, a single codebook feedback scheme) to the base station, and the PMI corresponds to a precoding matrix.
  • a PMI ie, a single codebook feedback scheme
  • the user feeds back two PMIs (ie, a dual codebook feedback scheme) to the base station, where one PMI corresponds to the transmission bandwidth information of the downlink channel, and the other PMI corresponds to the transmission bandwidth of the downlink channel.
  • Subband information; the precoding matrix is determined by the matrix corresponding to the two PMIs.
  • a downlink channel feedback information feedback method (device) according to an embodiment of the present invention and a pairing user selection method (device) according to an embodiment of the present invention are also applicable to the above-described silent codebook feedback scheme.
  • the dual codebook feedback scheme differs from the single codebook feedback scheme only in that the feedback format is different, that is, the downlink channel feedback information fed back by the user to the terminal includes two PMIs, CQIs, and Multi-user channel quality indication error.
  • the pairing processing of the base station in the MU-MIMO transmission mode is the same as the processing described above in connection with FIG.
  • the downlink channel feedback method (device) and the user pairing method (device) according to the embodiments of the present invention are not limited to the single codebook feedback scheme and the dual codebook feedback scheme described above, but may be extended to be applied to More feedback options.
  • the transmission bandwidth is further divided into at least one subband.
  • the PMI portion of the downlink channel feedback information that the user feeds back to the base station may include a PMI corresponding to the transmission bandwidth information, and at least one sub-band PMI corresponding to at least one of the transmission bandwidths, respectively.
  • a downlink channel feedback information feedback method (device) according to an embodiment of the present invention and a pairing user selection method (device) according to an embodiment of the present invention can also be applied to the above-described feedback scheme.
  • the user may utilize the processing according to the above-described embodiments of the present invention (for example, see FIG. 3 and the like) Equation (1) - (5)) to calculate the corresponding multi-user letter for each sub-band Road quality indication error.
  • the downlink channel feedback information that the user feeds back to the base station includes: a PMI part, where the PMI includes at least one of a PMI corresponding to the transmission bandwidth information of the downlink channel and a transmission bandwidth of the downlink channel. And corresponding at least one PMI; at least one multi-user channel quality indication error corresponding to at least one sub-band respectively; and, at least one CQI, respectively corresponding to at least one sub-band.
  • the PMI and CQI corresponding to each subband can be derived based on a channel information matrix and SNR measured by the user for each subband.
  • the matching processing of the base station in the MU-MIMO transmission mode is the same as the processing described above in connection with FIG.
  • the downlink channel feedback information feedback method (device) according to the embodiment of the present invention and the selection method (device) of the paired user according to the embodiment of the present invention may also be applied.
  • the description is not repeated here to keep the description concise.
  • an embodiment of the present invention also provides a communication terminal including a downlink channel feedback device according to the above embodiment of the present invention.
  • the terminal according to the embodiment of the present invention can feed back the multi-user channel quality indication error to the base station, so as to more accurately reflect the channel shield indication of the user in the case of MU-MIMO transmission and in the case of SU-MIMO transmission. Aspect of the error. Therefore, the performance of the MIMO system can be effectively improved.
  • a base station comprising means for pairing a user in a MU-MIMO transmission mode in a MIMO system according to the above-described embodiments of the present invention.
  • the base station according to an embodiment of the present invention can achieve more accurate pairing in the transmission mode of MU-MIMO. Therefore, system performance can be improved.
  • an embodiment of the present invention also provides a MIMO communication system including at least one communication terminal according to the above-described implementation of the present invention and at least one base station according to the above embodiment.
  • the MIMO system according to an embodiment of the present invention can achieve more accurate pairing in the MU-MIMO transmission mode. Therefore, system performance can be improved.
  • Each component module and unit in the above device may be implemented by software, firmware, hardware or a combination thereof.
  • the way to configure The specific means or manner in which the configuration can be used is well known to those skilled in the art and will not be described herein.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 900 shown in FIG. 9), when the computer is installed with various programs, Ability to perform various functions and the like.
  • a central processing unit (CPU) 901 executes various processes in accordance with a program stored in a read only memory (ROM) 902 or a program loaded from a storage portion 908 to a random access memory (RAM) 903.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 901 executes various processes and the like is also stored as needed.
  • the CPU 901, the ROM 902, and the RAM 903 are connected to one another via a bus 904.
  • Input/output interface 905 is also coupled to bus 904.
  • the following components are connected to the input/output interface 905: an input portion 906 (including a keyboard, a mouse, etc.), an output portion 907 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker Etc.), storage portion 908 (including hard disk, etc.), communication portion 909 (including network interface cards such as LAN cards, modems, etc.).
  • the communication section 909 performs communication processing via a network such as the Internet.
  • the drive 910 can also be connected to the input/output interface 905 as needed.
  • a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 910 as needed, so that the computer program read therefrom is installed into the storage portion 908 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a detachable shield 911.
  • such a storage medium is not limited to the detachable shield 911 shown in FIG. 9 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 911 include a magnetic disk (including a floppy disk (registered trademark)), a compact disk (including a compact disk read only memory (CD-ROM), and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 902, a hard disk included in the storage portion 508, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the present invention also proposes a program product for storing a machine readable instruction code.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • the storage barrier includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

下行信道反馈信息反馈方法和装置及用户配对方法和装置 技术领域
[01]本发明总体上涉及通信领域, 尤其涉及一种多入多出 (MIMO ) 系统 中的用户的下行信道反馈信息的反馈和基站的用户配对。
背景技术
[02] 在 MIMO 系统中, 多天线传输分为单用户 MIMO ( SU-MIMO )传 输模式和多用户 MIMO ( MU-MIMO )传输模式。
[03] 如图 1所示, 在 SU-MIMO传输中, 基站(BS )将相同时频资源上的 多个数据流发送给相同的用户。 而在 MU-MIMO传输中, 基站将相同时 频资源上的多个数据流发送给不同的用户, 通过同时为多个用户传输数据 提高系统容量。
[04] 预编码技术是在发射端利用信道状态信息对发送符号进行预处理以 达到消除干扰, 提高系统容量目的的信号处理技术。 预编码需要基站知道 传输信道信息, 并根据传输信道信息确定预编码矩阵。 例如, 预编码技术 可以是基于码书的预编码技术。其中,码书对于用户终端( UE )和基站( BS ) 而言是相同的。 用户通过向基站反馈预编码矩阵指示(PMI )来向基站通 知该用户所使用的预编码矩阵。
[05] 在采用预编码技术的 MIMO传输技术中, PMI可以被包括在用户需 要向基站反馈下行信道反馈信息中。 所述下行信道反馈信息是由用户通过 上行信道向基站反馈的、 用于反映下行信道状态的信息。
[06] 例如, 在 LTE的 MIMO系统中, 在 SU-MIMO的下行信道反馈中, 用户向基站反馈的下行信道反馈信息可以包括: 用于指示预编码矩阵的 PMI;用于基站选择传输数据的调制编码方式的反馈信道质量指示( CQI )。 在 LTE标准中, 在 MU-MIMO传输的情形下, 用户向基站反馈的下行信 道反馈信息中的 PMI和 CQI是针对基于 SU-MIMO情形下的 PMI和 CQI 进行优化而获得的。 但是, 在 MU-MIMO传输时使用基于 SU-MIMO传 输获得的 PMI可能会影响 MU-MIMO传输时的配对用户的选择并进而影 响通信性能。
[07]此外, 从基站侧来说, 在用户反馈下行信道反馈信息后, 基站根据下 行信道反馈信息来确定 MU-MIMO 传输还是 SU-MIMO 传输。 对于 SU-MIMO传输,基站根据下行信道反馈信息中的 PMI来得到预编码矩阵, 并根据下行信道反馈信息中的 CQI来为用户选择合适的调制编码方式。而 对于 MU-MIMO 传输, 基站需要先根据用户反馈的下行信道反馈信息来 为该用户选择配对用户, 然后根据为该用户选择的各个配对用户反馈的下 行信道反馈信息中包括的 PMI和 CQI, 来得到用于该用户的预编码矩阵 并为该用户选择合适的调制编码方式。
发明内容
[08] 在下文中给出了关于本发明的简要概述, 以便提供关于本发明的某些 方面的基本理解。 应当理解, 这个概述并不是关于本发明的穷举性概述。 它并不是意图确定本发明的关键或重要部分, 也不是意图限定本发明的范 围。 其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
[09] 本发明的一个目的在于提供一种下行信道反馈信息的反馈, 其可以在 MU-MIMO的下行信道反馈中,在下行信道反馈信息中进一步增加用于表 征 MU-MIMO传输中用户参数误差(例如信噪比误差、 同步差异、 位置 差异等)所导致的质量指示误差的信息, 由此实现了向基站反馈更为准确 的下行信道反馈信息。 进而, 基站可以更为准确的得到更为适合用户的 CQI及调制编码方式。 因此, 可以降低解调误码率并提升系统性能。
[10] 相应地, 本发明的另一个目的在于提供一种基站侧的用户配对, 其利 用了来自用户的用于表征该用户在 MU-MIMO传输中的参数误差(例如 信噪比误差、 同步差异、 位置差异等)所导致的质量指示误差的信息, 由 此可以实现更为准确的调制编码和配对。 因此, 可以降低用户解调误码率 和提升系统性能。
[11] 为此, 本发明的一个实施例提供了一种 MIMO 系统的下行信道反馈 信息的反馈方法, 包括: 系统中的用户计算该用户的多用户信道盾量指示 误差, 所述多用户信道质量指示误差用于反映该用户在多用户多入多出传 输的情况下与在单用户多入多出传输的情况下的信道庸量指示的差异; 将 所述多用户信道质量指示误差增加到包括预编码矩阵指示和信道质量指 示的下行信道反馈信息中, 并反馈给基站以便进行调度。
[12] 本发明的另一个实施例还提供了一种 MIMO 的对用户进行配对的方 法, 包括: 下行信道反馈信息接收步骤, 从用户接收下行信道反馈信息, 所述下行信道反馈信息包括预编码矩阵指示、 信道质量指示以及多用户信 道庸量指示误差, 其中所述多用户信道盾量指示误差用于反映该用户在
MU-MIMO传输的情况下与在 SU-MIMO传输的情况下的信道盾量指示 的差异; 初始配对用户选择步骤, 从传输用户中选择多用户信道庸量指示 误差最小的用户作为配对用户, 所述传输用户包括所有允许进入多用户多 入多出传输模式的当前传输用户; 相关性计算步骤, 计算每个配对用户与 所述传输用户中的其它用户中的每个的相关性, 并根据相关性来选择一个 或多个用户作为可选配对用户; 配对用户选择步骤, 根据多用户信道质量 指示误差从可选配对用户中选择配对用户; 重复上述相关性计算步骤和配 对用户选择步骤, 直到选择出预定数目的配对用户为止。
[13] 本发明的另一个实施例还提供了一种多入多出系统中的通信方法, 包 括: 用户向基站反馈下行信道反馈信息; 基站判断使用单用户多入多出传 输模式还是使用多用户多入多出传输模式; 在使用单用户多入多出传输模 式的情况下, 基站使用反馈的下行信道反馈信息中的预编码矩阵指示来获 得该用户的预编码矩阵, 使用反馈的下行信道反馈信息中的信道质量指示 来为该用户选择调制编码方式; 在使用多用户多入多出传输模式的情况 下, 基站为该用户进行配对, 基于该用户和其配对用户反馈的下行信道反 馈信息中的预编码矩阵指示来得到用于多用户多入多出传输模式下的预 编码矩阵, 基于该用户和其配对用户中的每个用户反馈的下行信道反馈信 息中的信道质量指示和多用户信道质量指示误差来选取与所述每个用户 对应的调制编码方式; 其中, 用户采用根据上述的反馈方法来向基站反馈 下行信道反馈信息, 基站采用上述的配对方法来进行用户配对。
[14] 此外, 本发明的一个实施例提供了一种 MIMO 系统的下行信道反馈 信息的反馈装置, 包括: 多用户信道质量指示误差计算部, 被配置成计算 该用户的多用户信道盾量指示误差, 所述多用户信道质量指示误差用于反 映该用户在多用户多入多出传输的情况下与在单用户多入多出传输的情 况下的信道质量指示的差异; 下行信道反馈信息反馈部, 被配置成将所述 多用户信道质量指示误差增加到包括预编码矩阵指示和信道质量指示的 下行信道反馈信息中, 并反馈给基站以便进行调度。
[15] 本发明的一个实施例提供了一种 MIMO 系统中的对用户进行配对的 装置, 包括: 下行信道反馈信息接收部, 被配置成从用户接收下行信道反 馈信息, 所述下行信道反馈信息包括预编码矩阵指示、 信道质量指示以及 多用户信道盾量指示误差 , 其中所述多用户信道质量指示误差用于反映该 用户在多用户多入多出传输的情况下与在单用户多入多出传输的情况下 的信道质量指示的差异; 初始配对用户选择部, 被配置成从传输用户中选 择多用户信道质量指示误差最小的用户作为配对用户, 所述传输用户包括 所有允许iT多用户多入多出传输模式的当前传输用户; 相关性计算部, 关性, 并才艮据相关性来选择一个或多个用户作为可选配对用户; 配对用户 选择部, 被配置成根据多用户信道质量指示误差从可选配对用户中选择配 对用户; 所述相关性计算部和所述配对用户选择部被配置成重复进行操 作, 直到选择出预定数目的配对用户为止。
[16] 此外, 本发明的实施例还提供了包括上述下行反馈信息的反馈装置的 终端和包括上述对用户进行配对的装置的基站 , 以及包括至少一个所述终 端和至少一个所述基站的通信系统。
[17] 本发明的实施例还提供了在被计算设备执行时使计算设备能够执行 任意上述方法的处理过程的计算机程序代码, 以及其上存储有该计算机程 序代码的计算机可读存储介质及计算机程序产品。
[18]通过以下结合附图对本发明的最佳实施例的详细说明, 本发明的这些 以及其他优点将更加明显。
附图说明
[19] 本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解, 其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。 所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分, 而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
[20] 图 1是示出 ΜΙΜΟ系统中 SU-MIMO情形和 MU-MIMO情形的示意 图;
[21] 图 2是示出根据本发明一个实施例的下行信道反馈信息的反馈方法的 流程图;
[22] 图 3是示出根据本发明一个实施例的根据信噪比来计算所述多用户信 道质量指示误差的处理的流程图;
[23] 图 4是示出根据本发明一个实施例的对用户进行配对的处理的流程 图;
[24] 图 5是示出根据本发明实施例的在 MIMO 系统中的通信方法的流程 图;
[25] 图 6示出了根据本发明实施例的用于 MIMO 系统的下行信道反馈信 息的反馈装置;
[26] 图 7是示出根据本发明一个实施例的多用户信道质量指示误差计算部 的示意图;
[2刀 图 8示出了根据本发明一个实施例的在 MIMO系统中在 MU-MIMO 传输模式下对用户配对的装置的示意图;
[28]图 9是其中可以实现根据本发明实施例的方法和 /或装置的通用个人计 算机的示例性结构的框图。
具体实施方式
[29] 在下文中将结合附图对本发明的示范性实施例进行描述。 为了清楚和 简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应该了 解, 在开发任何这种实际实施例的过程中必须做出 艮多特定于实施方式的 决定, 以便实现开发人员的具体目标, 例如, 符合与系统及业务相关的那 些限制条件, 并且这些限制条件可能会随着实施方式的不同而有所改变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对得益 于^开内容的本领域技术人员来说, 这种开发工作仅仅是例行的任务。
[30] 在此, 还需要说明的一点是, 为了避免因不必要的细节而模糊了本发 明,在附图中仅仅示出了与根据本发明的方案密切相关的装置结构和 /或处 理步骤, 而省略了与本发明关系不大的其他细节。
[31] 图 2是示出根据本发明一个实施例的下行信道反馈信息反馈方法的流 程图。
[32] 如图 2所示, 在步骤 S202处, MIMO系统中的用户计算该用户的多 用户信道盾量指示误差。
[33] 其中, 多用户信道质量指示误差可以反映出该用户在 MU-MIMO传 输的情形下的信道质量指示与在 SU-MIMO传输的情形下的信道质量指示 之间的误差。 这种误差可以是由用户在 MU-MIMO 传输中的参数的差异 (例如信噪比误差、 同步差异、 位置差异等) 所带来的。 [34] 接着, 在步骤 S204处, MIMO系统中的用户将所述多用户信 ¾:量 指示误差与下行信道反馈信息一起反馈给基站。
[35] 其中,如 LTE所规定的那样,用户向基站反馈的下行信道反馈信息可 以包括: 用于指示预编码矩阵的 PMI; 用于基站选择传输数据的调制编码 方式的 CQI。
[36] 其中, 用户可以釆用各种已知的方法来获得下行信道反馈信息中的 PMI和 CQL
[37] 例如, 用户可以基于测量得到的信道信息矩阵来找到与该用户对应的 预编码矩阵, 进而可以生成用于表示该预编码矩阵的 PMI。 此外, 用户例 如可以基于测量到的 SNR来得到相关的 CQI的值。
[38] 可以看出, 在根据上述实施例的下行信道反馈信息反馈方法中, 进一 步向基站反馈了多用户信道质量指示误差, 从而可以更为准确地反映用户 在 MU-MIMO传输的情形下与在 SU-MIMO传输的情形下的信道质量指 示方面的误差。
[39] 这样, 用户向基站反馈了更为准确的下行信道反馈信息, 从而基站可 以更为准确地得到更为适合该用户的 CQI及调制编码方式。 因此,可以降 低通信系统中的用户解调误码率并提升系统性能。
[40] 在上述方法中, 可以考虑各种参数并采用任意合适的方法来计算所述 多用户信道质量指示误差。
[41] 例如, 在本发明的一个具体实施例中, 可以基于信噪比来计算所述多 用户信道质量指示误差。
[42] 图 3是示出根据本发明一个实施例的根据信噪比来计算所述多用户信 道质量指示误差的处理的流程图。
[43] 如图 3所示, 在步骤 S302处进行测量。
[44] 具体来说, 用户可以测量其信道状态。 由此可以得到该用户的信道信 息矩阵和信噪比。
[45] 用户可以基于测量出的信道信息矩阵来得到该用户的预编码矩阵。
[46] 例如, 可以基于以下的公式( 1 )来通过测量得到的信道信息矩阵来 得到预编码矩阵。
「471 ^ = max \ H•wi \ / \\ H \\ ( i )
i=\,...,B [48] 在等式(1 ) 中, H表示用户通过测量得到的信道信息矩阵, Wl表示 预编码矩阵, i表示该预编码矩阵在码本中的位置, 通过该位置可以从码 本中得到预编码矩阵, 该码本的大小为^
[49] 接着, 在步骤 S304处, 可以计算量化误差。
[50] 其中, 量化误差是反映测量得到的信道信息矩阵与得到的预编码矩阵 之间的误差的参量。
[51] 可以根据信道信息矩阵和预编码矩阵来表征所述量化误差。
[52] 例如, 可以^ L据以下的等式(2 )来计算量化误差。
\ HHw. \
e
[53] II II x ll wf II (2)
[54] 在等式(2 )中, !!和^的含义和等式(1 )中相同, e表示量化误差。
[55] 接着, 如图 3所示, 在步骤 S306处, 计算对该用户的最小干扰水平。
[56] 具体来说, 在可能和该用户形成配对用户的所有可能配对用户中, 找 出对该用户具有最小干扰水平的用户, 并计算出该最小干扰水平。
[57] 其中, 可能配对用户例如可以是满足正交条件的用户, 所述正交条件 例如可以是: 对应于可能配对用户的预编码矩阵与对应于该用户的预编码 矩阵正交。
[58] 例如, 可以才艮据以下的等式(3 )来计算最小干扰水平。
Figure imgf000009_0001
[60] 在等式(3 ) 中, Wj表示任意可能配对用户的预编码矩阵, H和 \^的 含义和等式(1 )中相同, a表示最小干扰水平。 在等式(3 )中, Wj*Wi H=0 代表正交条件。
[61] 接着, 如图 3所示, 在步驟 S308处, 计算该用户在多用户情形下的 信噪比。
[62] 具体说来, 可以利用上述的量化误差、 最小干扰水平以及测量得出的 信噪比来计算用户在多用户情形下的信噪比。
[63] 例如, 可以基于等式(4 )来计算多用户情形下的信噪比。 SNR / 2 x (e†
[64] 婦—層 o = ( 4 )
[65] 在等式(4 ) 中, SNR表示用户测量的信噪比, SNRMl MIMO表示预计 的该用户在多用户情形下的信噪比, e表示量化误差, a表示最小干扰水平。
[66] 接着, 参见图 3, 在步骤 S310, 可以计算该用户在多用户 MIMO传 输中的多用户信道质量指示误差。
[67] 具体来说, 可以基于用户测量的信噪比和上述计算出的用户在 MU-MIMO模式下的信噪比来计算所述多用户信道质量指示误差。
[68] 例如, 可以基于公式(5 )来计算所述多用户信道质量指示误差。
[69] V = CQI(SNR) - CQI(SNRMU_MIM0) ( 5 )
[70] 在等式(5 ) 中, SNR表示用户测量的信噪比, SNRMUMIMO 示计箅 出该用户在 MU-MIMO传输情形下的信噪比; CQI ( )表示与信噪比有关 的信道盾量指示函数; V表示该用户的多用户信道质量指示误差。
[71] 这样, 可以实现基于信噪比来计算用户在 MU-MIMO传输情形下的 多用户信道质量指示误差。
[72] 在以上描述中仅以信噪比为例对多用户信道质量指示误差的计算进 行了说明, 但以上描述仅仅是示例, 本发明不限于此。 例如, 多用户信道 质量指示误差的计算也还可以考虑其它参数(例如, 时间参数(如时间同 步差异等)、 位置参数等) 的影响。 例如, 多用户信道盾量指示误差的计 算也可以基于时间参数来实现, 或者基于时间参数与信噪比的结合来实 现。
[73] 相应地, 本发明的实施例还提供了一种在基站侧实施的在 MIMO 系 统中在 MU-MIMO传输模式下对用户配对的方法。
[74] 图 4示出了根据本发明一个实施例的在 MIMO系统中在 MU-MIMO 传输模式下对用户配对的方法的流程图。
[75] 如图 4所示, 在步骤 S402处, 基站从用户接收下行信道反馈信息。
[76] 在^ L据本发明的实施例中, 基站从用户接收到的下行信道反馈信息可 以包括预编码矩阵指示、 信道盾量指示以及多用户信道质量指示误差, 其 中所述多用户信道质量指示误差用于反映该用户在多用户多入多出传输 的情况下与在单用户多入多出传输的情况下的信道质量指示的差异。
[77] 作为一个优选的示例, 所述多用户信道质量指示误差可以利用才艮据本 发明上述实施例的方法来计算出。
[78] 接着, 在步骤 S404处, 基站从传输用户中选择初始的配对用户。
[79] 优选地, 基站例如可以选择在传输用户中多用户信道盾量指示误差最 小的用户作为初始的配对用户。
[80] 在本文中, 所述传输用户可以被定义为当前进行数据传输的用户中可 以允许进入多用户多入多出传输模式的一个或多个用户。
MU-MIMO传输模式(即确定所 ^述传输用户), 例如可以基于 ^该用户的信 道条件、 速率要求、 当前的资源分配情况等。
[82] 接着, 在步骤 S406处, 基站计算在步骤 S404处得到每个配对用户与 其余的传输用户中的每个传输用户之间的相关性, 并根据相关性来选择一 个或多个用户作为可选配对用户。
[83] 可以采用任意已知的方式来计算两个用户之间的相关性。
[84] 例如, 可以利用以下的公式(6 )来计算每个配对用户与其余的每个 传输用户之间的相关性。
Figure imgf000011_0001
[86] 在等式(6 ) 中, wl表示配对用户的预编码矩阵, 而 w2表示一个传 输用户的预编码矩阵, 每个用户的预编码矩阵可以根据各个用户反馈的下 行信道反馈信息中的 PMI得到。
[87] 在计算出相关性之后, 基站可以基于计算出的相关性来从其余的传输 用户中选择一个或多个用户作为可选配对用户。
[88] 在一个示例中, 基站可以选择相关性在预定阔值以下的一个或多个用 户作为可选配对用户。
[89] 在另一个示例中, 基站也可以选择相关性最小的一个或多个用户作为 可选配对用户。
[90] 接着, 在步骤 S408, 基站从可选配对用户中选择配对用户。
[91] 具体来说, 基站可以根据各个可选配对用户的多用户信道质量指示误 差来进行选择。
[92] 例如, 基站从可选配对用户中选择反馈的下行信道反馈信息中的多用 户信道质量指示误差最小的可选配对用户作为配对用户。
[93] 接着, 在步骤 S410, 基站判断是否已经选出预定数目的配对用户。
[94] 如果基站确定选出的配对用户的数目还没有达到预定数目, 则重复执 行步骤 S406和 S408以便再从传输用户中选择出配对用户, 直到达到所需 数目的配对用户。
[95] 如果基站确定选出的配对用户的数目已经达到预定数目, 则此次配对 处理结束。
[96] 在上述的用户配对过程中, 基站利用了用户反馈的多用户信道质量指 示误差。 这样, 在 MU-MIMO 的传输模式下, 基站可以实现更为准确的 配对。 因此, 可以提升系统性能。
[97] 此外, 通过根据本发明上述实施例的下行信道反馈方法和根据本发明 上述实施例的用户配对方法, 本发明的实施例还提供一种在 MIMO 系统 中的通信方法。
[98] 图 5是示出根据本发明实施例的在 MIMO系统中的通信方法的流程 图。
[99] 如图 5所示, 在步骤 S502处, 用户向基站反馈下行信道反馈信息。
[100] 例如, 用户可以利用根据上述实施例的下行信道反馈信息反馈方法来 向基站反馈下行信道反馈信息。
[101] 在这种情况下, 用户所反馈的下行信道反馈信息可以包括 PMI、 CQI 以及多用户信道质量指示误差。 其中所述多用户信道质量指示误差可以反 映该用户在 MU-MIMO传输的情况下与在 SU-MIMO传输的情况下的信 道质量指示的差异。
[102] 具体说来, 用户例如可以根据公式( 1 ) - ( 5 )来计算所述多用户信道 质量指示误差。
[103] 接着, 在步骤 S504处, 基站判断是采用 SU-MIMO传输模式还是采 用 MU-MIMO模式。
[104] 基站可以才艮据任意现有的策略来判断采用 SU-MIMO传输模式还是采 用 MU-MIMO模式。 [105] 例如, 基站可以根据用户的速率要求、 当前的资源分配状态、 信道条 件等中的一个或多个因素来判断采用 SU-MIMO 传输模式还是采用 MU-MIMO模式。
[106] 参见图 5,在基站判定采用 SU-MIMO传输模式的情况下,在步骤 S506 处,基站可以基于用户反馈的下行信道反馈信息中的 PMI得到预编码矩阵 而基于下行信道反馈信息中的 CQI 为用户选择调制编码方式。 由于是在 SU-MIMO传输模式下, 基站并未使用用户反馈的下行信道反馈信息中的 用于 MU-MIMO传输模式的多用户信道质量指示误差。
[107] 参见图 5, 在用户判定采用 MU-MIMO传输模式的情况下, 在步骤 S508处, 基站可以为用户选择配对用户。
[108] 例如, 基站可以利用 据上述实施例的对用户进行配对的方法来为用 户选择配对用户。 关于配对用户选择的处理的详细细节可以参见上文参照 图 4进行的描述, 在此不再进行重复以使说明书保持简洁。
[109] 接着, 在步骤 S510处, 基站计算 MU-MIMO模式下的预编码矩阵并 为各个配对用户选择合适的用户调制编码方式。
[110] 例如, 基站可以基于各个配对用户的预编码矩阵(分别通过各个配对 用户反馈的 PMI得到)得到 MU-MIMO模式下的预编码矩阵, 而分别基 于各个配对用户的 CQI和多用户信道质量指示误差来选取各个配对用户 调制编码方式。
[111] 例如,基站可以 居每个配对用户的 PMI得到与每个配对用户对应的 预编码矩阵, 之后, 基站进一步基于这些预编码矩阵来得到 MU-MIMO 传输模式下的预编码矩阵。
[112] 例如, 可以基于公式(7 )来得到 MU-MIMO传输模式下的预编码矩 阵。
[113] G = [w17w2]([w17w2 [w, , w2 ( 7 )
[114] 在公式(7 ) 中, G表示 MU-MIMO传输模式下的预编码矩阵, wl 表示与该用户对应的预编码矩阵, w2表示与配对用户对应的预编码矩阵。
[115] 此夕卜,基站可以根据每个配对用户的下行信道反馈信息中的 CQI和多 用户信道 量指示误差来计算该配对用户在 MU-MIMO模式下的 CQI, 并据此为该配对用户选取调制编码方式。
[116] 例如, 可以根据公式(8 )来根据 CQI和多用户信道盾量指示误差来 计算用户在 MU-MIMO模式下的 CQL
[117] CQIMU_MMO = CQI -V
[118] 其中, CQIMimiMO表示配对用户在 MU-MIMO传输模式下的信道庸 量指示, CQI表示该配对用户的下行信道反馈信息中包括的 CQI的值, 而 V表示该配对用户的下行信道反馈信息中的多用户信道质量指示误差。
[119] 这样, 在采用根据本发明上述实施例的通信方法的 MIMO 系统中, 由于考虑了用户在 MU-MIMO传输的情况下与在 SU-MIMO传输的情况 下的信道盾量指示的差异, 所以可以降低在 MU-MIMO传输模式下用户 解调误码率并提升系统的性能。
[120] 此外, 根据本发明的实施例, 还提供与方法相应的装置。
[121] 图 6示出了根据本发明实施例的用于 MIMO系统的下行信道反馈信 息反馈装置。
[122] 如图 6所示, 根据本发明实施例的下行信道反馈信息反馈装置 600包 括: 多用户信道质量指示误差计算部 602和下行信道反馈信息反馈部 604。
[123] 多用户信道质量指示误差计算部 602可以计算用户的多用户信道盾量 指示误差。
[124] 其中, 多用户信道质量指示误差可以反映出用户在 MU-MIMO传输 的情形下的信道质量指示与在 SU-MIMO传输的情形下的信道质量指示之 间的误差。 这种误差可以是由用户在 MU-MIMO传输中的参数中的差异 (例如信噪比误差、 同步差异、 位置差异等)所带来的。
[125] 下行信道反馈信息反馈部 604可以将所述多用户信道质量指示误差增 加到包括 PMI和 CQI的下行信道反馈信息中, 并反馈给基站以便进行调 度。
[126] 可以看出, 在根据上述实施例的下行信道反馈信息反馈装置中, 进一 步向基站反馈了多用户信道盾量指示误差 , 从而可以更为准硝地反映用户 在 MU-MIMO传输的情形下与在 SU-MIMO传输的情形下的信道质量指 示方面的误差。
[127] 这样, 通过这种下行信道反馈信息反馈装置, 用户可以向基站反馈更 为准确的下行信道反馈信息, 从而基站可以更为准确地得到更为适合该用 户的 CQI及调制编码方式。 因此,可以降低通信系统中的用户解调误码率 并提升系统性能。
[128] 在图 6所示的下行信道反馈信息反馈装置中, 多用户信道质量指示误 差计算部 602可以基于各种合适的参数来计算所述多用户信道质量指示误 差。
[129] 例如, 在本发明的另一个实施例中, 多用户信道质量指示误差计算部 可以基于信噪比来计算所述多用户信道质量指示误差。
[130] 图 7是示出根据本发明一个实施例的多用户信道质量指示误差计算部 的示意图。
[131] 如图 7所示, 所述多用户信道质量指示误差计算部 700包括: 测量部 702、 量化误差计算部 704、 最小干扰水平计算部 706、 多用户模式信噪比 计算部 708和误差计算部 710。
[132] 其中, 测量部 702可以测量其信道状态。 由此可以得到该用户的信道 信息矩阵和信噪比。
[133] 量化误差计算部 704可以计算量化误差, 其中, 量化误差是反映测量 得到的信道信息矩阵与得到的预编码矩阵之间的误差的参量。
[134] 例如, 可以根据上文提及的公式(2 )来计算量化误差。
[135] 最小干扰水平计算部 706在可能和该用户形成配对用户的所有可能配 对用户中, 找出对该用户具有最小干扰水平的用户, 并计算出该最小干扰 水平。
[136] 例如, 可以根据上文提及的公式(3 )来计算最小干扰水平。
[137] 多用户模式信噪比计算部 708可以计算用户在多用户情形下的信噪 比。
[138] 具体说来, 可以利用量化误差、 最小干扰水平以及测量得出的信噪比 来计算用户在多用户情形下的信噪比。
[139] 例如, 可以基于上文提及的公式(4 )来计算多用户情形下的信噪比。
[140] 误差计算部 710可以计算用户在多用户 MIMO传输中的多用户信道 质量指示误差。
[141] 具体来说, 可以基于用户测量的信噪比和上述计算出的用户在 MU-MIMO模式下的信噪比来计算所述多用户信道质量指示误差。
[142] 例如, 可以基于上述的公式(5 )来计算所述多用户信道盾量指示误 [143] 这样, 根据本发明实施例的多用户信道质量指示误差计算部可以实现 基于信噪比来计算用户在 MU-MIMO 传输情形下的多用户信道质量指示 误差。
[144] 在以上描述中多用户信道质量指示误差计算部是基于信噪比来计算 多用户信道质量指示误差, 但以上描述仅仅是示例, 本发明不限于此。 例 如, 多用户信道质量指示误差计算部也还可以基于其它参数(例如, 时间 参数、 位置参数等)。 例如, 多用户信道盾量指示误差计算部可以基于时 间参数来进行计算, 或者基于时间参数与信噪比的结合来进行计算。
[145] 相应地, 本发明的实施例还提供一种在 MIMO系统中在 MU-MIMO 传输模式下对用户配对的装置。
[146] 图 8示出了根据本发明一个实施例的在 MIMO系统中在 MU-MIMO 传输模式下对用户配对的装置的示意图。
[147] 如图 8所示, 根据本发明实施例的用于对用户配对的装置 800包括: 下行信道反馈信息接收部 802、 初始配对用户选择部 804、 相关性计算部 806、 配对用户选择部 808。
[148] 其中, 下行信道反馈信息接收部 802可以从用户接收下行信道反馈信 白
[149] 在^ I据本发明的实施例中, 基站从用户接收到的下行信道反馈信息可 以包括 PMI、 CQI以及多用户信i 量指示误差, 其中所述多用户信 量指示误差用于反映该用户在多用户多入多出传输的情况下与在单用户 多入多出传输的情况下的信道盾量指示的差异。
[150] 作为一个优选的示例, 所述多用户信道质量指示误差可以利用才艮据本 发明上述实施例的方法来计算出。
[152] 优选地, 初始配对用户选择部 804例如可以选择在传输用户中多用户 信道质量指示误差最小的用户作为初始的配对用户。
[153] 在本文中, 所述传输用户可以被定义为当前进行数据传输的用户中允 许进入 MU-MIMO传输模式的一个或多个用户。
MU-MIM^)传输模式, 例如可以:于该用户的信道条件、 速、^要求、 当前 的资源分配情况等。
[155] 相关性计算部 806可以计算每个配对用户与其余的传输用户中的每个 用户之间的相关性, 并^ ^居相关性来选择一个或多个用户作为可选配对用 户。
[156] 可以采用任意已知的方式来计算两个用户之间的相关性。
[157] 例如, 可以利用上述公式(6 )来计算每个配对用户与其余的每个传 输用户之间的相关性。
[158] 在计算出相关性之后, 相关性计算部 806可以基于计算出的相关性来 从其余的传输用户中选择一个或多个用户作为可选配对用户。
[159] 在一个示例中, 相关性计算部 806可以选择相关性在预定阈值以下的 一个或多个用户作为可选配对用户。
[160] 在另一个示例中, 相关性计算部 806也可以选择相关性最小的一个或 多个用户作为可选配对用户。
[161] 接着, 参见图 8, 配对用户选择部 808可以从可选配对用户中选择配 对用户。
[162] 具体来说, 基站可以根据各个可选配对用户的多用户信道盾量指示误 差来进行选择。
[163] 例如, 基站可以选择反馈的下行信道反馈信息中的多用户信道质量指 示误差最小的可选配对用户作为配对用户。
[164] 如图 8所示, 相关性计算部 806和配对用户选择部 808可以重复进行 操作, 直到选择出预定数目的配对用户为止。
[165] 在上述的用户配对过程中, 基站利用了用户反馈的多用户信道庸量指 示误差。 这样, 在 MU-MIMO 的传输模式下, 基站可以实现更为准确的 配对。 因此, 可以提升系统性能。
[166] 为了便于理解本发明的构思而提供了以上的实施例。 但是, 以上描述 仅仅为示例, 本发明不限于此, 还可以在不离开本发明基本构思的情况下 进行各种改型。
[167] 例如, 在以上的描述中, 用户向基站反馈的下行信道进行中仅包括一 个 PMI指示(例如, 对应于单码本的反馈方案)。但是, 本发明不限于此, 根据本发明实施例的下行信道反馈方法(装置)和用户配对方法(装置) 也可以应用于其它的反馈方案中。 [168] 汉码本反馈的应用示例
[169] 按照 LTE-A的规定,在 2天线或 4天线的基站配置,用户向基站反馈 一个 PMI (即单码本反馈方案), 该 PMI对应于一个预编码矩阵。 而在基 站 8天线的配置中, 用户向基站反馈两个 PMI (即双码本反馈方案), 其 中, 一个 PMI对应于下行信道的传输带宽信息, 而另一个 PMI对应于下 行信道的传输带宽中的子带信息;预编码矩阵则由这两个 PMI对应的矩阵 共同决定。
[170] 根据本发明实施例的下行信道反馈信息反馈方法(装置)和根据本发 明实施例的配对用户的选择方法(装置)也可以应用于上述的默码本反馈 方案中。
[171] 在采用默码本反馈方案的情况下, 用户计算多用户信道质量指示误差 的处理和以上结合图 3描述的、 使用等式( 1 ) - ( 5 )的在单码本反馈方案 的情况下的处理相同。
[172] 在反馈下行信道反馈信息时, 双码本反馈方案与单码本反馈方案的不 同之处仅仅在于反馈格式不同, 即用户向终端反馈的下行信道反馈信息中 包括两个 PMI、 CQI和多用户信道质量指示误差。
[173] 另一方面, 在采用双码本反馈方案的情况下, 基站在 MU-MIMO传 输模式下的配对处理与以上结合图 4描述的处理相同。
[174] 此外, 根据本发明实施例的下行信道反馈方法(装置)和用户配对方 法(装置)也不仅仅限于上述的单码本反馈方案和双码本反馈方案, 而是 还可以扩展应用于更多的反馈方案中。
[175] 其它反馈方案的应用示例
[176] 例如, 在已知的另一种反馈方案中, 传输带宽又被进一步划分为至少 一个子带。 在这种情况下, 用户向基站反馈的下行信道反馈信息的 PMI 部分可以包括与传输带宽信息对应的 PMI、分别与传输带宽中的至少一个 子带对应的至少一个子带 PMI。
[177] 根据本发明实施例的下行信道反馈信息反馈方法(装置)和根据本发 明实施例的配对用户的选择方法(装置)也可以应用于上述的反馈方案中。
[178] 在上述的反馈方案( PMI部分包括与传输带宽中的至少一个子带对应 的至少一个子带 PMI )中,用户可以利用根据本发明上述实施例的处理(例 如, 参见图 3和等式(1 ) - ( 5 ) )来针对每个子带来计算相应的多用户信 道质量指示误差。
[179] 因此, 在上述的反馈方案中, 用户向基站反馈的下行信道反馈信息包 括: PMI部分, 其包括与下行信道的传输带宽信息对应的 PMI、 与下行信 道的传输带宽中的至少一个子带对应的至少一个 PMI; 至少一个多用户信 道质量指示误差, 分别与至少一个子带对应; 以及, 至少一个 CQI, 分别 与至少一个子带对应。
[180] 其中, 与每个子带对应的 PMI和 CQI可以基于用户为每个子带测量 的信道信息矩阵和 SNR得出。
[181] 另一方面, 在上述反馈方案中, 基站在 MU-MIMO传输模式下的配 对处理与以上结合图 4描述的处理相同。
[182] 显然, 除了以上作为示例提出的两种反馈方案以外, 根据本发明实施 例的下行信道反馈信息反馈方法(装置)和根据本发明实施例的配对用户 的选择方法(装置)还可以应用于其它或将来可能出现的反馈方案中, 在 此不再贅述以使说明书保持简洁。
[183] 此外, 本发明的实施例还提供了一种通信终端, 其包括根据本发明上 述实施例的下行信道反馈装置。 这样, 根据本发明实施例的终端可以向基 站反馈多用户信道质量指示误差, 从而可以更为准确地反映用户在 MU-MIMO传输的情形下与在 SU-MIMO传输的情形下的信道盾量指示 方面的误差。 因而, 可以有效地提升 MIMO系统的性能。
[184] 根据本发明的实施例还提供了一种基站, 其包括根据本发明上述实施 例的在 MIMO系统中在 MU-MIMO传输模式下对用户配对的装置。这样, 根据本发明实施例的基站可以在 MU-MIMO 的传输模式下实现更为准确 的配对。 因此, 可以提升系统性能。
[185] 进一步, 本发明的实施例还提供了一种 MIMO通信系统, 其包括至 少一个根据本发明上述实施的通信终端和至少一个根据上述实施例的基 站。 这样, 根据本发明实施例的 MIMO系统可以在 MU-MIMO的传输模 式下实现更为准确的配对。 因此, 可以提升系统性能。
[186] 另外, 应理解, 本文所述的各种示例和实施例均是示例性的, 本发明 不限于此。 在本说明书中, "第一,,、 "第二" 等表述仅仅是为了将所描述 的特征在文字上区分开, 以清楚地描述本发明。 因此, 不应将其视为具有 任何限定性的含义。
[187] 上述装置中各个组成模块、 单元可通过软件、 固件、 硬件或其组合的 方式进行配置。 配置可使用的具体手段或方式为本领域技术人员所熟知, 在此不再赘述。 在通过软件或固件实现的情况下, 从存储介质或网络向具 有专用硬件结构的计算机(例如图 9所示的通用计算机 900 )安装构成该 软件的程序, 该计算机在安装有各种程序时, 能够执行各种功能等。
[188] 在图 9中,中央处理单元 (CPU)901根据只读存储器 (ROM)902中存储 的程序或从存储部分 908加载到随机存取存储器 (RAM)903的程序执行各 种处理。 在 RAM903中, 也根据需要存储当 CPU 901执行各种处理等等 时所需的数据。 CPU 901、 ROM 902和 RAM 903经由总线 904彼此连接。 输入 /输出接口 905也连接到总线 904。
[189] 下述部件连接到输入 /输出接口 905: 输入部分 906 (包括键盘、 鼠标 等等) 、 输出部分 907 (包括显示器, 比如阴极射线管 (CRT)、 液晶显示 器 (LCD)等, 和扬声器等)、 存储部分 908 (包括硬盘等)、 通信部分 909 (包括网络接口卡比如 LAN卡、 调制解调器等) 。 通信部分 909经由网 络比如因特网执行通信处理。根据需要, 驱动器 910也可连接到输入 /输出 接口 905。 可拆卸介质 911比如磁盘、 光盘、 磁光盘、 半导体存储器等等 根据需要被安装在驱动器 910上, 使得从中读出的计算机程序根据需要被 安装到存储部分 908中。
[190] 在通过软件实现上述系列处理的情况下, 从网络比如因特网或存储介 质比如可拆卸介盾 911安装构成软件的程序。
[191] 本领域的技术人员应当理解, 这种存储介质不局限于图 9所示的其中 存储有程序、 与设备相分离地分发以向用户提供程序的可拆卸介盾 911。 可拆卸介质 911 的例子包含磁盘(包含软盘 (注册商标))、 光盘(包含光盘只 读存储器 (CD-ROM)和数字通用盘 (DVD))、 磁光盘(包含迷你盘 (MD)(注 册商标))和半导体存储器。或者,存储介质可以是 ROM 902、存储部分 508 中包含的硬盘等等, 其中存有程序, 并且与包含它们的设备一起被分发给 用户。
[192] 本发明还提出一种存储有机器可读取的指令代码的程序产品。 所述指 令代码由机器读取并执行时, 可执行上述根据本发明实施例的方法。
[193] 相应地, 用于承载上述存储有机器可读取的指令代码的程序产品的存 储介质也包括在本发明的公开中。所述存储介盾包括但不限于软盘、光盘、 磁光盘、 存储卡、 存储棒等等。
[194] 最后, 还需要说明的是, 术语 "包括"、 "包含" 或者其任何其他变体 意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品 或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者 是还包括为这种过程、 方法、 物品或者设备所固有的要素。 此外, 在没有 更多限制的情况下, 由语句 "包括一个……,, 限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
95]以上虽然结合附图详细描述了本发明的实施例, 但是应当明白, 上面 所描述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。 对 于本领域的技术人员来说, 可以对上述实施方式作出各种修改和变更而没 有背离本发明的实质和范围。 因此, 本发明的范围仅由所附的权利要求及 其等效含义来限定。

Claims

权 利 要求 书
1. 一种多入多出通信系统的下行信道反馈信息的反馈方法, 包括: 系统中的用户计算该用户的多用户信道质量指示误差 , 所述多用户信 道质量指示误差用于反映该用户在多用户多入多出传输的情况下与在单 用户多入多出传输的情况下的信道质量指示的差异;
将所述多用户信道质量指示误差增加到包括预编码矩阵指示和信道 质量指示的下行信道反馈信息中, 并反馈给基站以便进行调度。
2. 如权利要求 1所述的方法, 其中, 计算多用户信道质量指示误差的 处理包括: 基于所述用户的信噪比来计算所述多用户信道质量指示误差。
3. 如权利要求 2所述的方法, 其中, 计算多用户信道质量指示误差的 处理包括:
测量所述用户的信道状态, 得到信道信息矩阵和信噪比;
根据信道信息矩阵和基于该信道信息矩阵得到的预编码矩阵来计算 量化误差;
在与所述用户的信道正交的信道中找出具有最小干扰水平的信道; 计算该用户在多用户多入多出传输的情况下的信噪比;
才艮据基于测量得出的信噪比和计算出的该用户在多用户多入多出传 输的情况下的信噪比来计算多用户信道质量指示误差。
4. 如权利要求 3所述的方法, 其中, 计算该用户在多用户多入多出传 输的情况下的信噪比的处理包括:
利用所述量化误差、 所述最小干扰水平以及所述测量得出的信噪比来 计算该用户在多用户多入多出传输的情况下的信噪比。
5. 如权利要求 1所述的方法,其中,在 2天线和 4天线的基站配置中, 所述预编码矩阵指示对应于一个预编码矩阵; 在 8天线的基站配置中, 所 述预编码矩阵指示包括: 对应下行信道的反馈带宽信息的第一预编码矩阵 指示和对应下行信道的反馈带宽中的子带信息的第二预编码矩阵指示。
6. 如权利要求 5所述的方法, 其中, 所述第二预编码矩阵指示包括分 别与至少一个子带对应的至少一个子带预编码矩阵指示, 所述多用户信道 质量指示误差包括分别与所述至少一个子带对应的至少一个子带多用户 信道质量指示误差, 所述信道质量指示包括分别与所述至少一个子带对应 的至少一个子带信道廣量指示。
7. 一种多入多出通信系统的对用户进行配对的方法, 包括:
下行信道反馈信息接收步骤, 从通信系统的用户接收下行信道反馈信 息, 所述下行信道反馈信息包括预编码矩阵指示、 信道质量指示以及多用 户信道质量指示误差, 其中所述多用户信道质量指示误差用于反映该用户 在多用户多入多出传输的情况下与在单用户多入多出传输的情况下的信 道质量指示的差异;
初始配对用户选择步骤, 从传输用户中选择多用户信道质量指示误差 最小的用户作为初始的配对用户, 所述传输用户包括所有允许进入多用户 多入多出传输模式的当前传输用户;
相关性计算步骤, 计算每个配对用户与所述传输用户中的其它用户中 的每个的相关性, 并根据相关性来从所述其它用户中选择一个或多个用户 作为可选配对用户;
配对用户选择步骤, 根据多用户信道廣量指示误差从可选配对用户中 选择配对用户;
重复上述相关性计算步骤和配对用户选择步骤, 直到选择出预定数目 的配对用户为止。
8. 如权利要求 7所述的方法,其中,在 2天线和 4天线的基站配置中, 所述预编码矩阵指示对应于一个预编码矩阵; 在 8天线的基站配置中, 所 述预编码矩阵指示包括: 对应下行信道的反馈带宽信息的第一预编码矩阵 指示和对应下行信道的反馈带宽中的子带信息的第二预编码矩阵指示。
9. 如权利要求 8所述的方法, 其中, 所述第二预编码矩阵指示包括分 别与至少一个子带对应的至少一个子带预编码矩阵指示, 所述多用户信道 质量指示误差包括分别与所述至少一个子带对应的至少一个子带多用户 信道庸量指示误差, 所述信道廣量指示包括分别与所述至少一个子带对应 的至少一个子带信道质量指示。
10. —种多入多出系统中的通信方法, 包括:
用户向基站反馈下行信道反馈信息;
基站判断使用单用户多入多出传输模式还是使用多用户多入多出传 输模式;
在使用单用户多入多出传输模式的情况下, 基站使用反馈的下行信道 反馈信息中的预编码矩阵指示来获得该用户的预编码矩阵, 使用反馈的下 行信道反馈信息中的信道盾量指示来为该用户选择调制编码方式;
在使用多用户多入多出传输模式的情况下, 基站为该用户进行配对, 基于配对用户反馈的下行信道反馈信息中的预编码矩阵指示来得到用于 多用户多入多出传输模式下的预编码矩阵, 基于配对用户中的每个用户反 馈的下行信道反馈信息中的信道盾量指示和多用户信道盾量指示误差来 选取与所述每个用户对应的调制编码方式;
其中, 用户采用如下方法来向基站反馈下行信道反馈信息:
系统中的用户计算该用户的多用户信道质量指示误差 , 所述多用 户信道质量指示误差用于反映该用户在多用户多入多出传输的情况下与 在单用户多入多出传输的情况下的信道质量指示的差异;
将所述多用户信道质量指示误差增加到包括预编码矩阵指示和信 道质量指示的下行信道反馈信息中, 并反馈给所述基站以便进行调度, 基站采用包括以下步骤的方法来进行用户配对:
下行信道反馈信息接收步骤, 从系统的用户接收下行信道反馈信 息, 所述下行信道反馈信息包括所述预编码矩阵指示、 信道盾量指示以及 多用户信道廣量指示误差;
初始配对用户选择步骤,从传输用户中选择多用户信道质量指示误 差最小的用户作为初始的配对用户, 所述传输用户包括所有允许进入多用 户多入多出传输模式的当前传输用户; 相关性计算步骤,计算每个配对用户与所述传输用户中的其它用户 中的每个的相关性, 并根据相关性来从所述其它用户中选择一个或多个用 户作为可选配对用户;
配对用户选择步骤,根据多用户信道盾量指示误差从可选配对用户 中选择配对用户;
重复上述相关性计算步骤和配对用户选择步骤,直到选择出预定数 目的配对用户为止。
11. 一种多入多出通信系统的下行信道反馈信息的反馈装置, 包括: 多用户信道质量指示误差计算部, 被配置成计算该用户的多用户信道 质量指示误差, 所述多用户信道质量指示误差用于反映该用户在多用户多 入多出传输的情况下与在单用户多入多出传输的情况下的信道质量指示 的差异;
下行信道反馈信息反馈部, 被配置成将所述多用户信道质量指示误差 增加到包括预编码矩阵指示和信道质量指示的下行信道反馈信息中, 并反 馈给基站以便进行调度。
12. 如权利要求 11所述的装置, 其中, 多用户信道质量指示误差计算 部被进一步配置成: 基于所述用户的信噪比来计算所述多用户信道质量指 示误差。
13. 如权利要求 12所述的装置, 其中, 多用户信道质量指示误差计算 部包括:
测量部, 被配置成测量所述用户的信道状态, 得到信道信息矩阵和信 噪比;
量化误差计算部, 被配置成根据信道信息矩阵和基于信道信息矩阵得 到的预编码矩阵来计算量化误差;
最小干扰水平计算部, 被配置成在与所述用户的信道正交的信道中找 出具有最小干扰水平的信道;
多用户模式信噪比计算部, 被配置成计算该用户在多用户多入多出传 输的情况下的信噪比;
误差计算部, 被配置成根据基于测量得出的信噪比和计算出的该用户 在多用户多入多出传输的情况下的信噪比来计算多用户信道质量指示误 差。
14. 如权利要求 13所述的装置, 其中, 多用户模式信噪比计算部被进 一步配置成:
利用所述量化误差、 所述最小干扰水平以及所述测量得出的信噪比来 计算该用户在多用户多入多出传输的情况下的信噪比。
15. 一种多入多出通信系统中的对用户进行配对的装置, 包括: 下行信道反馈信息接收部, 被配置成从用户接收下行信道反馈信息, 所述下行信道反馈信息包括预编码矩阵指示、 信道质量指示以及多用户信 道质量指示误差, 其中所述多用户信道质量指示误差用于反映该用户在多 用户多入多出传输的情况下与在单用户多入多出传输的情况下的信道质 量指示的差异;
初始配对用户选择部 , 被配置成从传输用户中选择多用户信道质量指 示误差最小的用户作为配对用户, 所述传输用户包括所有允许进入多用户 多入多出传输模式的当前传输用户;
相关性计算部, 被配置成计算每个配对用户与所述传输用户中的其它 用户中的每个的相关性, 并根据相关性来选择一个或多个用户作为可选配 对用户;
配对用户选择部, 被配置成 居多用户信道质量指示误差从可选配对 用户中选择配对用户;
所述相关性计算部和所述配对用户选择部被配置成重复进行操作, 直 到选择出预定数目的配对用户为止。
16. 如权利要求 15所述的装置, 其中, 在 2天线和 4天线的基站配置 中,所述预编码矩阵指示对应于一个预编码矩阵;在 8天线的基站配置中, 所述预编码矩阵指示包括: 对应下行信道的传输带宽信息的第一预编码矩 阵指示和对应下行信道的传输带宽中的子带信息的第二预编码矩阵指示。
17. 如权利要求 16所述的装置, 其中, 第二预编码矩阵指示包括分别 与至少一个子带对应的至少一个子带预编码矩阵指示, 多用户信道质量指 示误差包括分别与所述至少一个子带对应的至少一个子带多用户信道质 量指示误差, 信道质量指示包括分别与所述至少一个子带对应的至少一个 子带信道盾量指示。
18. 一种用户终端, 包括下行信道反馈信息的反馈装置, 所述下行信 道反馈信息的反馈装置包括:
多用户信道质量指示误差计算部, 被配置成计算该用户的多用户信道 质量指示误差, 所述多用户信道质量指示误差用于反映该用户在多用户多 入多出传输的情况下与在单用户多入多出传输的情况下的信道质量指示 的差异;
下行信道反馈信息反馈部, 被配置成将所述多用户信道质量指示误差 增加到包括预编码矩阵指示和信道质量指示的下行信道反馈信息中, 并反 馈给基站以便进行调度。
19. 一种基站, 包括对用户进行配对的装置, 所述对用户进行配对的 装置包括:
下行信道反馈信息接收部, 被配置成从用户接收下行信道反馈信息, 所述下行信道反馈信息包括预编码矩阵指示、 信道质量指示以及多用户信 道质量指示误差, 其中所述多用户信道质量指示误差用于反映该用户在多 用户多入多出传输的情况下与在单用户多入多出传输的情况下的信道质 量指示的差异;
初始配对用户选择部 , 被配置成从传输用户中选择多用户信道质量指 示误差最小的用户作为配对用户, 所述传输用户包括所有允许进入多用户 多入多出传输模式的当前传输用户;
相关性计算部, 被配置成计算每个配对用户与所述传输用户中的其它 用户中的每个的相关性, 并根据相关性来选择一个或多个用户作为可选配 对用户;
配对用户选择部, 被配置成 居多用户信道质量指示误差从可选配对 用户中选择配对用户;
所述相关性计算部和所述配对用户选择部被配置成重复进行操作, 直 到选择出预定数目的配对用户为止。
20. 一种通信系统, 包括至少一个用户终端和至少一个基站, 其中所 述用户终端包括下行信道反馈信息的反馈装置, 所述下行信道反馈信息的 反馈装置包括:
多用户信道质量指示误差计算部, 被配置成计算该用户的多用户 信^:量指示误差, 所述多用户信道质量指示误差用于反映该用户在多用 户多入多出传输的情况下与在单用户多入多出传输的情况下的信道质量 指示的差异;
下行信道反馈信息反馈部, 被配置成将所述多用户信道质量指示 误差增加到包括预编码矩阵指示和信道质量指示的下行信道反馈信息中, 并反馈给基站以便进行调度;
所述基站包括对用户进行配对的装置, 所述对用户进行配对的装置包 括:
下行信道反馈信息接收部, 被配置成从用户接收下行信道反馈信 息, 所述下行信道反馈信息包括所述预编码矩阵指示、 信道盾量指示以及 多用户信道质量指示误差;
初始配对用户选择部,被配置成从传输用户中选择多用户信道质量 指示误差最小的用户作为配对用户, 所述传输用户包括所有允许进入多用 户多入多出传输模式的当前传输用户;
相关性计算部,被配置成计算每个配对用户与所述传输用户中的其 它用户中的每个的相关性, 并才艮据相关性来选择一个或多个用户作为可选 配对用户;
配对用户选择部,被配置成根据多用户信道质量指示误差从可选配 对用户中选择配对用户;
所 目关性计算部和所述配对用户选择部被配置成重复进行操作, 直到选择出预定数目的配对用户为止。
PCT/CN2011/081111 2010-11-05 2011-10-21 下行信道反馈信息反馈方法和装置及用户配对方法和装置 WO2012059009A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AU2011325625A AU2011325625B2 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
BR112013010368A BR112013010368A2 (pt) 2010-11-05 2011-10-21 métodos e aparelhos para realimentar informação de realimentação, e para pareamento de usuário em um sistema de comunicação múltiplas entradas-múltiplas saídas, e, método para comunicação em um sistema múltiplas entradas-múltiplas saídas
JP2013535262A JP5549785B2 (ja) 2010-11-05 2011-10-21 ダウンリンクチャンネルのフィードバック情報のフィードバック方法と装置、並びにユーザペアリング方法と装置
MX2013004708A MX2013004708A (es) 2010-11-05 2011-10-21 Metodo y dispositivo para realimentar informacion de realimentacion de canal de enlace descendente, y metodo y dispositivo para unificacion de usuarios.
KR1020137014374A KR20130087551A (ko) 2010-11-05 2011-10-21 다운링크 채널 피드백 정보를 피드백하기 위한 방법 및 디바이스, 및 사용자 페어링을 위한 방법 및 디바이스
RU2013125764/08A RU2013125764A (ru) 2010-11-05 2011-10-21 Способ и устройство подачи по каналу обратной связи информации обратной связи нисходящего канала передачи и способ и устройство согласования устройств пользователей
CA2815711A CA2815711A1 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
EP20151025.2A EP3661087A1 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
EP11837535.1A EP2637340B1 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user matching
US13/878,581 US10298297B2 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
ZA2013/03230A ZA201303230B (en) 2010-11-05 2013-05-03 Method and device for feeding back downlink channel feedback information,and method and device for user matching
AU2016200309A AU2016200309B2 (en) 2010-11-05 2016-01-20 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
US16/362,707 US11043991B2 (en) 2010-11-05 2019-03-25 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
US17/337,421 US20210288695A1 (en) 2010-11-05 2021-06-03 Method and device for feeding back downlink channel feedback information, and method and device for user pairing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010544399.1 2010-11-05
CN201010544399.1A CN102468939B (zh) 2010-11-05 2010-11-05 下行信道反馈信息反馈方法和装置及用户配对方法和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/878,581 A-371-Of-International US10298297B2 (en) 2010-11-05 2011-10-21 Method and device for feeding back downlink channel feedback information, and method and device for user pairing
US16/362,707 Continuation US11043991B2 (en) 2010-11-05 2019-03-25 Method and device for feeding back downlink channel feedback information, and method and device for user pairing

Publications (1)

Publication Number Publication Date
WO2012059009A1 true WO2012059009A1 (zh) 2012-05-10

Family

ID=46024012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081111 WO2012059009A1 (zh) 2010-11-05 2011-10-21 下行信道反馈信息反馈方法和装置及用户配对方法和装置

Country Status (12)

Country Link
US (3) US10298297B2 (zh)
EP (2) EP3661087A1 (zh)
JP (1) JP5549785B2 (zh)
KR (1) KR20130087551A (zh)
CN (1) CN102468939B (zh)
AU (2) AU2011325625B2 (zh)
BR (1) BR112013010368A2 (zh)
CA (1) CA2815711A1 (zh)
MX (1) MX2013004708A (zh)
RU (1) RU2013125764A (zh)
WO (1) WO2012059009A1 (zh)
ZA (1) ZA201303230B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
CN102468939B (zh) * 2010-11-05 2015-07-08 索尼公司 下行信道反馈信息反馈方法和装置及用户配对方法和装置
JP5900707B2 (ja) * 2012-09-18 2016-04-06 日本電気株式会社 Dlmu−mimo通信システムにおける伝送能力向上方法
KR102112608B1 (ko) * 2013-04-05 2020-05-19 삼성전자 주식회사 거대 다중 안테나 시스템의 송수신 장치 및 방법
EP3000186A1 (en) * 2013-05-23 2016-03-30 Nokia Technologies OY Adaptive mimo feasibility feedback
US9735919B2 (en) * 2014-05-09 2017-08-15 Qualcomm Incorporated Updates to MU-MIMO rate adaptation algorithm
CN106416346B (zh) 2014-05-29 2020-06-16 索尼公司 设备和方法
US9780847B2 (en) * 2015-03-27 2017-10-03 Qualcomm Incorporated Channel feedback design for frequency selective channels
CN110034800A (zh) * 2018-01-11 2019-07-19 中国移动通信有限公司研究院 信道信息的处理方法、基站、终端及计算机存储介质
US10880931B2 (en) * 2018-10-12 2020-12-29 Realtek Semiconductor Corp. User pairing method, wireless station and wireless system
CN112312332B (zh) * 2019-07-26 2022-04-05 大唐移动通信设备有限公司 一种多用户配对方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084092A (ko) * 2007-03-14 2008-09-19 삼성전자주식회사 다중안테나 시스템에서 피드백 정보 제공 장치 및 방법
CN101667896A (zh) * 2009-09-18 2010-03-10 上海第二工业大学 基于码本的多用户mimo通信系统的用户选择方法
CN101741523A (zh) * 2009-12-11 2010-06-16 中国科学技术大学 多用户多天线系统反馈码字空间距离阈值的有限反馈方法
CN101789849A (zh) * 2010-01-08 2010-07-28 中兴通讯股份有限公司 信道状态信息的反馈传输方法及用户终端

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941186B2 (en) * 2006-07-25 2011-05-10 Samsung Electronics Co., Ltd. Apparatus and method for scheduling multiuser/single user in multiple input multiple output (MIMO) system
MY148998A (en) * 2007-04-30 2013-06-28 Interdigital Tech Corp Feedback signaling error detection and checking in mimo wireless communication systems
US8179775B2 (en) * 2007-08-14 2012-05-15 Texas Instruments Incorporated Precoding matrix feedback processes, circuits and systems
JP4900087B2 (ja) * 2007-07-02 2012-03-21 日本電気株式会社 マルチユーザmimo通信のユーザ選択方法
KR100979935B1 (ko) * 2007-07-09 2010-09-03 삼성전자주식회사 다중 입출력 무선통신 시스템에서 스트림별 유효 신호대잡음비 생성 장치 및 방법
CN101378277B (zh) * 2007-08-29 2016-04-06 上海贝尔股份有限公司 多用户预编码及调度方法和实现该方法的基站
WO2009026769A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Wireless communication system and wireless communication method
US8045508B2 (en) * 2008-02-14 2011-10-25 Lg Electronics Inc. Rank feedback method for multiple-input multiple-output transmission
WO2010013961A2 (en) * 2008-07-30 2010-02-04 Lg Electronics Inc. Method and apparatus of monitoring pdcch in wireless communication system
KR101001015B1 (ko) * 2008-09-25 2010-12-14 한국전자통신연구원 다운링크 송신 모드를 적응적으로 결정하는 다중 안테나 무선 통신 시스템
KR101065706B1 (ko) * 2008-11-23 2011-09-19 엘지전자 주식회사 무선 이동 통신 시스템에서 제어 정보를 전송하는 방법
US8046450B1 (en) * 2009-03-13 2011-10-25 Hewlett-Packard Development Company, L.P. Associating network ports of a computer system with network ports of a network device
US8934426B2 (en) * 2009-04-21 2015-01-13 Apple Inc. Method and apparatus for determining channel quality index in multiple user-MIMO communication networks
CN101599788B (zh) * 2009-05-15 2013-02-13 华为技术有限公司 Lte系统中确定信道反馈信息的方法及装置
JP5320170B2 (ja) * 2009-06-05 2013-10-23 株式会社日立製作所 無線通信システム、基地局及び端末
US9094252B2 (en) * 2009-07-31 2015-07-28 Lg Electronics Inc. Method and apparatus for feedback transmission in wireless communication system
US8750205B2 (en) * 2009-08-07 2014-06-10 Texas Instruments Incorporated Multiple rank CQI feedback for cellular networks
US20110194504A1 (en) * 2009-08-12 2011-08-11 Qualcomm Incorporated Method and apparatus for supporting single-user multiple-input multiple-output (su-mimo) and multi-user mimo (mu-mimo)
CN101997583B (zh) * 2009-08-21 2015-07-01 索尼株式会社 用于协作多点传输的上行多用户mimo用户配对方法和装置
US8406332B2 (en) * 2010-01-18 2013-03-26 Research In Motion Limited Downlink transmission in a multiple-user multiple-input multiple-output (“MU-MIMO”) wireless communication system
CN102158263B (zh) * 2010-02-11 2015-12-02 索尼公司 基于码书的信道信息反馈方法、设备和系统
US20110319027A1 (en) * 2010-06-25 2011-12-29 Motorola, Inc. Method for channel quality feedback in wireless communication systems
EP2612533B1 (en) * 2010-08-31 2014-07-02 Fujitsu Limited Scheduling for coordinated multi-cell mimo systems
CA2810262C (en) * 2010-09-15 2017-02-14 Huawei Technologies Co., Ltd. System and method for channel state information feedback in wireless communications systems
CN102468939B (zh) * 2010-11-05 2015-07-08 索尼公司 下行信道反馈信息反馈方法和装置及用户配对方法和装置
WO2012065278A1 (en) * 2010-11-15 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Two-dimensional ue pairing in mimo systems
EP2479914B1 (en) * 2011-01-21 2015-03-04 Alcatel Lucent Method and transmitter element for transmitting channel information for link adaption, method and receiver element for receiving the channel information
ES2523134T3 (es) * 2012-01-13 2014-11-21 Nec Europe Ltd. Método para hacer funcionar una red inalámbrica, una red inalámbrica y un dispositivo
KR101755138B1 (ko) * 2013-01-21 2017-07-06 닛본 덴끼 가부시끼가이샤 통신 시스템, 제어 장치, 및 네트워크 토폴로지 관리 방법
US11006303B2 (en) * 2016-08-11 2021-05-11 Lg Electronics Inc. Channel state reporting method in wireless communication system and device therefor
CN114008987A (zh) * 2019-05-02 2022-02-01 诺基亚技术有限公司 时间敏感联网系统中通信网络的集成
EP3963840A1 (en) * 2019-05-03 2022-03-09 Nokia Technologies Oy Method and apparatus for port management of ethernet bridges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084092A (ko) * 2007-03-14 2008-09-19 삼성전자주식회사 다중안테나 시스템에서 피드백 정보 제공 장치 및 방법
CN101667896A (zh) * 2009-09-18 2010-03-10 上海第二工业大学 基于码本的多用户mimo通信系统的用户选择方法
CN101741523A (zh) * 2009-12-11 2010-06-16 中国科学技术大学 多用户多天线系统反馈码字空间距离阈值的有限反馈方法
CN101789849A (zh) * 2010-01-08 2010-07-28 中兴通讯股份有限公司 信道状态信息的反馈传输方法及用户终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on a unified design of CQI/PMI/RI feedback for LTE-A", 3GPP TSG-RAN WG1 MEETING #60 R1-101165, 22 February 2010 (2010-02-22) - 26 February 2010 (2010-02-26), pages 1 - 4, XP050598054 *

Also Published As

Publication number Publication date
EP2637340A1 (en) 2013-09-11
US10298297B2 (en) 2019-05-21
US20190222269A1 (en) 2019-07-18
KR20130087551A (ko) 2013-08-06
AU2016200309B2 (en) 2018-02-22
JP5549785B2 (ja) 2014-07-16
US11043991B2 (en) 2021-06-22
EP2637340A4 (en) 2017-06-14
CN102468939A (zh) 2012-05-23
MX2013004708A (es) 2013-05-22
AU2011325625A1 (en) 2013-05-02
ZA201303230B (en) 2013-09-25
RU2013125764A (ru) 2014-12-10
EP2637340B1 (en) 2020-03-04
EP3661087A1 (en) 2020-06-03
CN102468939B (zh) 2015-07-08
JP2013546241A (ja) 2013-12-26
US20210288695A1 (en) 2021-09-16
CA2815711A1 (en) 2012-05-10
BR112013010368A2 (pt) 2016-08-02
US20130201862A1 (en) 2013-08-08
AU2016200309A1 (en) 2016-02-11
AU2011325625B2 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2012059009A1 (zh) 下行信道反馈信息反馈方法和装置及用户配对方法和装置
US11757513B2 (en) Multi-resolution CSI feedback
US8923427B2 (en) Codebook sub-sampling for frequency-selective precoding feedback
US11419137B2 (en) Transmissions based on scheduling indications
US20140348253A1 (en) Mixed rank downlink multi-user interference alignment scheme
US9258039B2 (en) Devices for sending and receiving quantization quality feedback
WO2011098015A1 (zh) 基于码书的信道信息反馈方法、设备和系统
US9686005B2 (en) Method and apparatus for feeding back channel estimation in multi-input multi-output system
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR20110138979A (ko) 피드백 손실을 고려하는 다중 사용자 mimo 통신 시스템
CN111865372B (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
CN111756422A (zh) 指示信道状态信息的方法以及通信装置
KR20150044379A (ko) 다중안테나 다중사용자 무선 통신시스템을 위한 확률적 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011837535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13878581

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2815711

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013535262

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004708

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2011325625

Country of ref document: AU

Date of ref document: 20111021

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014374

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013125764

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010368

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130426