WO2012057080A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2012057080A1
WO2012057080A1 PCT/JP2011/074435 JP2011074435W WO2012057080A1 WO 2012057080 A1 WO2012057080 A1 WO 2012057080A1 JP 2011074435 W JP2011074435 W JP 2011074435W WO 2012057080 A1 WO2012057080 A1 WO 2012057080A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hydraulic pump
motor generator
detection means
battery
Prior art date
Application number
PCT/JP2011/074435
Other languages
English (en)
French (fr)
Inventor
健司 宮川
緒方 永博
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to US13/881,996 priority Critical patent/US9547286B2/en
Priority to EP11836214.4A priority patent/EP2634315B1/en
Priority to CN201180051417.5A priority patent/CN103180520B/zh
Publication of WO2012057080A1 publication Critical patent/WO2012057080A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/025Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the friction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0809Electrical loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the technology of a power transmission device using an engine and a motor.
  • Patent Document 1 Conventionally, techniques relating to a power transmission device provided in a construction vehicle such as a hydraulic shovel and the like to drive a load by power from a power source are known. For example, it is as described in Patent Document 1.
  • the power transmission device described in Patent Document 1 includes an engine as a power source, and a hydraulic pump driven by power from the engine and discharging hydraulic fluid.
  • the hydraulic pump When the hydraulic pump is driven by the power from the engine, the hydraulic pump discharges the hydraulic fluid.
  • Supply of hydraulic fluid from the hydraulic pump to the working hydraulic actuator and the hydraulic motor drives the working hydraulic actuator and the hydraulic motor.
  • the work machine can be operated by driving the work hydraulic actuator. In addition, by driving the hydraulic motor, the work vehicle can be made to travel.
  • the rated output of the engine is set in accordance with the absorption horsepower of the hydraulic pump at the time of heavy load work in order to prevent the occurrence of an engine stall at the time of heavy load work. That is, the rated output of the engine is set to a value larger than the maximum value of absorption horsepower of the hydraulic pump.
  • heavy load work refers to work in which the absorption horsepower of the hydraulic pump is relatively large.
  • excitation loading work which excavates the ground with a hydraulic shovel equipped with a power transmission device and loads it on a dump
  • running earth removal work which pushes away soil with a dozer while running the hydraulic shovel There is.
  • the light load operation refers to an operation in which the absorption horsepower of the hydraulic pump is relatively small.
  • the light load operation there is a "sparing operation” for removing the soil placed on the ground by a hydraulic shovel equipped with a power transmission device, a “crane operation” for suspending and moving a load, and the like.
  • An object of the present invention is to provide a power transmission device capable of improving energy efficiency while improving fuel efficiency, reducing noise, and improving heat balance performance.
  • a battery a drive state in which the input / output shaft is rotated by supplying power from the battery, or power generated by rotating the input / output shaft by power from the engine charges the battery.
  • a motor generator switchable to a power generation state, at least one load driven by the engine and / or the motor generator, and switching means for switching the motor generator to either the power generation state or the drive state;
  • the charge state detection means for detecting the charge amount of the battery, the absorption horsepower detection means for detecting absorption horsepower of the load, the absorption horsepower detected by the absorption horsepower detection means, and the above detected by the charge state detection means
  • the motor generator is switched by the switching unit based on the charge amount of the battery.
  • Conductive state or is intended to anda controller for switching to one of the driving state.
  • the control device is such that the absorption horsepower detected by the absorption horsepower detection means is less than a switching output threshold set to a value lower than the maximum output of the engine, and the charge state detection means When the charge amount of the battery detected by the battery is less than the overcharge threshold, the switching means switches the motor generator to the power generation state, and the absorption horsepower detected by the absorption horsepower detection means is the switching output threshold or more. In the above case, the switching means switches the motor generator to the driving state.
  • the motor generator can switch to a neutral state in which neither the rotation of the input / output shaft nor the charging of the battery is performed by the supplied electric power, and the control device outputs the rated output of the engine.
  • the rated output of the engine can be raised if the charge amount of the battery is less than the overdischarge threshold even if the absorption horsepower detected by the absorption horsepower detection means is equal to or greater than the switching output threshold. While switching the motor generator to the neutral state.
  • the load is at least one hydraulic pump for driving a working hydraulic actuator by discharging hydraulic fluid
  • the absorption horsepower detection means is a pressure detection means for detecting the discharge pressure of the hydraulic pump.
  • a volume detection means for detecting the displacement of the hydraulic pump, and a pump rotational speed detection means for detecting the rotational speed of the hydraulic pump, wherein the control device comprises the pressure detection means and the volume detection means.
  • the absorption horsepower of the hydraulic pump is calculated based on the detected value by the pump rotational speed detecting means.
  • the switching output threshold value is set to a value included in a low fuel consumption area set in advance.
  • the present invention can switch the operating state of the motor generator according to the absorption horsepower of the load and the charge amount of the battery. For example, when the absorption horsepower of the load is large, the drive of the load can be assisted by the motor generator, or when the absorption horsepower of the load is small, the battery can be charged by the power of the engine. As a result, the fuel efficiency, the noise reduction, and the heat balance performance can be improved, and the energy efficiency can be improved.
  • the motor generator when the absorption horsepower of the load is equal to or higher than the switching output threshold (in the case of a so-called heavy load operation), the motor generator can be switched to the driving state to drive the load by the engine and motor generator.
  • the motor generator when the load absorption horsepower is less than the switching output threshold (so-called light load operation or non-operation) and the battery charge amount is less than the overcharge threshold, the motor generator is switched to the power generation state to output
  • the battery can be charged by the power of the engine which can afford.
  • the battery can be charged when there is a margin in the output of the engine, and energy efficiency can be improved.
  • the overcharge threshold it is possible to prevent the battery from being excessively charged.
  • the fluctuation range of the output of the engine in the driving state and the power generation state of the motor generator becomes smaller, and it is possible to suppress the deterioration of the fuel efficiency caused by the fluctuation of the output of the engine.
  • the present invention can prevent the excessive discharge of the battery by stopping the drive of the motor generator when the charge amount of the battery is less than the overdischarge threshold, and can prevent the occurrence of the engine stall. It is possible to prevent the decrease in workability.
  • the present invention relates to a power transmission apparatus applied to a work vehicle or the like for driving a working hydraulic actuator using a hydraulic pump, wherein the operating state of the motor generator is switched according to the absorption load of the hydraulic pump and the charge amount of the battery. it can. As a result, the fuel efficiency, the noise reduction, and the heat balance performance can be improved, and the energy efficiency can be improved.
  • the engine output can be limited to the vicinity of the low fuel consumption region even when the load absorption horsepower is increased above the switching output threshold. This can further improve the fuel efficiency of the engine.
  • Power transmission device 21 First hydraulic pump (load, hydraulic pump) 22 2nd hydraulic pump (load, hydraulic pump) 50 motor generator 60 battery 70 inverter (switching means) 100 main controller (control device) 110 Absorbing horsepower detection means 111 First pressure detection means (pressure detection means) 112 Second pressure detection means (pressure detection means) 113 First volume detection means (volume detection means) 114 Second volume detection means (volume detection means) 115 Pump rotational speed detecting means 117 Charge state detecting means
  • the power transmission 1 transmits power from a drive source to drive various actuators.
  • the power transmission device 1 includes an engine 10, a first hydraulic pump 21, a second hydraulic pump 22, a clutch 15, a control valve 30, a working hydraulic actuator 40, an operating means 35, a motor generator 50, a battery 60, an inverter 70, and a cell motor 80.
  • the absorption horsepower detection means 110, the operation state detection means 116, the charge state detection means 117, the engine speed setting means 121, the idle stop selection means 122, the engine controller unit 101, and the main controller 100 are provided.
  • the power transmission device 1 which concerns on this embodiment shall be equipped with a hydraulic shovel
  • this invention is not limited to this. That is, it may be equipped with construction vehicles other than hydraulic shovels, agricultural vehicles, industrial vehicles, and the like.
  • the present invention is not limited to vehicles, and may be included in machines and devices that transmit power from a drive source to drive various actuators.
  • the engine 10 is a drive source.
  • the power from the engine 10 can be taken out from an output shaft 11 provided to the engine 10.
  • the engine 10 which concerns on this embodiment shall be a diesel engine, this invention is not limited to this, A gasoline engine may be sufficient.
  • the first hydraulic pump 21 is an embodiment of a load and a hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic fluid.
  • the first hydraulic pump 21 is a variable displacement pump capable of changing the discharge amount of hydraulic oil by changing the inclination angle of the movable swash plate 21a.
  • the inclination angle of the movable swash plate 21a can be changed by an actuator (not shown) or a manual operation.
  • the first hydraulic pump 21 is rotationally driven by the power input from the input shaft 23 provided to the first hydraulic pump 21.
  • a gear 23 a is fixed to the input shaft 23.
  • One end of an oil passage 25 is connected to the discharge port of the first hydraulic pump 21.
  • the second hydraulic pump 22 is an embodiment of the load and hydraulic pump according to the present invention, and is rotationally driven by the transmitted power to discharge hydraulic oil.
  • the second hydraulic pump 22 is a variable displacement pump capable of changing the discharge amount of the hydraulic oil by changing the inclination angle of the movable swash plate 22a.
  • the inclination angle of the movable swash plate 22a can be changed by an actuator not shown or by manual operation.
  • the second hydraulic pump 22 is rotationally driven by the power input from the input shaft 24 provided to the second hydraulic pump 22.
  • a gear 24 a is fixed to the input shaft 24.
  • the gear 24 a meshes with a gear 23 a fixed to the input shaft 23 of the first hydraulic pump 21.
  • One end of an oil passage 26 is connected to the discharge port of the second hydraulic pump 22.
  • the number of teeth of the gear 24a is set equal to the number of teeth of the gear 23a.
  • the first hydraulic pump 21 and the second hydraulic pump 22 according to the present embodiment are swash plate type hydraulics whose discharge amount of hydraulic fluid can be changed by changing the inclination angles of the movable swash plate 21a and the movable swash plate 22a.
  • it is a pump
  • the present invention is not limited to this. That is, it is also possible to use a diagonal axis hydraulic pump whose discharge amount of hydraulic fluid can be changed by changing the inclination angle of the central axis of the cylinder block.
  • the clutch 15 is interposed between the output shaft 11 of the engine 10 and the input shaft 23 of the first hydraulic pump 21 to connect and disconnect the power transmitted between the output shaft 11 and the input shaft 23.
  • the clutch 15 When the clutch 15 is connected, the output shaft 11 and the input shaft 23 are connected. In this case, the output shaft 11 and the input shaft 23 can rotate at the same rotational speed, and the engine 10 and the first hydraulic pump 21 and the second hydraulic pump 22 can rotate at the same rotational speed.
  • the clutch 15 is disconnected, the connection between the output shaft 11 and the input shaft 23 is released, and the rotational power is not transmitted to the input shaft 23 even if the output shaft 11 of the engine 10 rotates.
  • various clutches such as a hydraulic clutch and an electromagnetic clutch, can be applied.
  • the control valve 30 is for appropriately switching the direction and flow rate of the hydraulic oil supplied from the first hydraulic pump 21 and the second hydraulic pump 22.
  • the control valve 30 suitably includes a direction switching valve, a pressure compensation valve, and the like.
  • the other end of the oil passage 25 is connected to the control valve 30, and the hydraulic oil discharged from the first hydraulic pump 21 through the oil passage 25 is supplied to the control valve 30.
  • the other end of the oil passage 26 is connected to the control valve 30, and hydraulic oil discharged from the second hydraulic pump 22 through the oil passage 26 is supplied to the control valve 30.
  • the working hydraulic actuator 40 is driven by hydraulic oil supplied from the first hydraulic pump 21 and the second hydraulic pump 22 via the control valve 30.
  • the working hydraulic actuator 40 according to the present embodiment includes a boom cylinder 41, an arm cylinder 42, and a bucket cylinder 43 for operating a working machine of a hydraulic shovel, a pair of left and right traveling motors 44 and 45 for traveling, and turning. And a pivoting motor 46 for the purpose.
  • the operating means 35 is for switching the direction and flow rate of the hydraulic oil supplied to the working hydraulic actuator 40 via the control valve 30.
  • the operation signal electrical signal
  • various valves such as direction switching valves
  • a desired amount of hydraulic fluid can be supplied to the operator's desired working hydraulic actuator 40.
  • the operation means 35 which concerns on this embodiment shall operate the control valve 30 with an electric signal
  • this invention is not limited to this. That is, it may be a hydraulic operation means which applies a pilot pressure to the control valve 30 based on the operation of the operator and operates the control valve 30 by the pilot pressure.
  • hydraulic operating means are used as the operating means 35 as described above, the hydraulic pressure can be supplied to the hydraulic operating means even when the engine 10 is stopped by idle stop control described later.
  • a hydraulic pump for supplying hydraulic fluid to the operation means of the formula and an electric motor for driving the hydraulic pump are separately provided.
  • the motor generator 50 is rotationally driven as an electric motor to generate power when power is supplied, and generates power as a generator when power is supplied.
  • the motor generator 50 includes an input / output shaft 51, and a gear 51a is fixed to the input / output shaft 51.
  • the gear 51 a meshes with a gear 23 a fixed to the input shaft 23 of the first hydraulic pump 21.
  • the motor generator 50 can rotationally drive the input / output shaft 51 when power is supplied.
  • the motor generator 50 can generate electric power when power is transmitted and the input / output shaft 51 is rotationally driven.
  • the battery 60 is a secondary battery capable of storing and discharging the power supplied to the motor generator 50 and other electric devices.
  • the inverter 70 is an embodiment of the switching means according to the present invention, and is capable of supplying power from the battery 60 to the motor generator 50 or supplying power from the motor generator 50 to the battery 60. It is.
  • the inverter 70 includes a circuit (inverter circuit) for converting direct current to alternating current and a circuit (converter circuit) for converting alternating current to direct current, and either one of the inverter circuit and the converter circuit is selected, or both are selected. It is possible not to.
  • inverter 70 converts direct current power supplied from battery 60 into alternating current, and supplies it to motor generator 50.
  • the electric power from the battery 60 can be supplied to the motor generator 50 by the inverter 70, whereby the motor generator 50 rotationally drives the input / output shaft 51. That is, in this case, the motor generator 50 can be used as a motor. In this case, the supply of power from motor generator 50 to battery 60 is cut off.
  • a state in which the motor generator 50 rotationally drives the input / output shaft 51 is referred to as a “driven state”.
  • inverter 70 converts the alternating current power supplied from motor generator 50 into direct current, and stores the power in battery 60.
  • the motor generator 50 by enabling the power from the motor generator 50 to be supplied to the battery 60 by the inverter 70, the motor generator 50 generates power by the power from the engine 10 and stores the power in the battery 60 (charging )be able to. That is, in this case, the motor generator 50 can be used as a generator. In this case, the supply of power from battery 60 to motor generator 50 is cut off.
  • a state in which motor generator 50 charges battery 60 will be referred to as a “power generation state”.
  • inverter 70 When neither the inverter circuit nor the converter circuit is selected, inverter 70 neither supplies power to motor generator 50 nor supplies power to battery 60. As described above, the motor generator 50 does not rotationally drive the input / output shaft 51 because the power supply to the motor generator 50 is not performed. Further, even if the input / output shaft 51 of the motor generator 50 is rotationally driven, the power supply to the battery 60 is not performed, so the battery 60 is not charged either, and the rotation of the input / output shaft 51 of the motor generator 50 at this time The resistance is smaller than the rotational resistance of the input / output shaft 51 in the power generation state.
  • a state where the motor generator 50 neither rotates the input / output shaft 51 nor charges the battery 60 will be referred to as a “neutral state”.
  • the cell motor 80 is a motor for starting the engine 10.
  • the cell motor 80 is driven by the power supplied from the battery 60.
  • the absorption horsepower detection means 110 is for detecting the absorption horsepower Lp by the first hydraulic pump 21 and the second hydraulic pump 22.
  • the absorption horsepower Lp refers to the horsepower necessary for driving the first hydraulic pump 21 and the second hydraulic pump 22.
  • the absorption horsepower detection unit 110 includes a first pressure detection unit 111, a second pressure detection unit 112, a first volume detection unit 113, a second volume detection unit 114, and a pump rotational speed detection unit 115.
  • the first pressure detection unit 111 is an embodiment of the pressure detection unit according to the present invention, and is a sensor that detects the discharge pressure P1 of the first hydraulic pump 21.
  • the first pressure detection means 111 is connected to the middle part of the oil passage 25, and by detecting the pressure in the oil passage 25, the discharge pressure P ⁇ b> 1 of the first hydraulic pump 21 can be detected.
  • the second pressure detection means 112 is an embodiment of the pressure detection means according to the present invention, and is a sensor for detecting the discharge pressure P2 of the second hydraulic pump 22.
  • the second pressure detection means 112 is connected to the middle part of the oil passage 26, and by detecting the pressure in the oil passage 26, the discharge pressure P2 of the second hydraulic pump 22 can be detected.
  • the first volume detection means 113 is an embodiment of the volume detection means according to the present invention, and is for detecting the displacement volume q1 of the first hydraulic pump 21.
  • the first volume detection means 113 is a sensor that detects the inclination angle of the movable swash plate 21 a of the first hydraulic pump 21.
  • the displacement volume q1 of the first hydraulic pump 21 is calculated by the main controller 100 described later based on the inclination angle of the movable swash plate 21a.
  • the second volume detection means 114 is an embodiment of the volume detection means according to the present invention, and is for detecting the displacement q2 of the second hydraulic pump 22.
  • the second volume detection means 114 is a sensor that detects the inclination angle of the movable swash plate 22 a of the second hydraulic pump 22. Based on the inclination angle of the movable swash plate 22a, a displacement q2 of the second hydraulic pump 22 is calculated by the main controller 100 described later.
  • the pump rotational speed detection unit 115 is a sensor that detects the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22.
  • the pump rotational speed detecting means 115 can detect the rotational speed of the gear 24 a fixed to the input shaft 24 of the second hydraulic pump 22, and in turn can detect the rotational speed Np of the second hydraulic pump 22.
  • the pump rotational speed detection unit 115 detects the rotational speed Np of the second hydraulic pump 22 to simultaneously perform the first hydraulic pressure. The rotational speed Np of the pump 21 is also detected.
  • the operation state detection unit 116 is a sensor that detects whether the operation unit 35 is operated.
  • the operation state detection means 116 is comprised of a potentiometer or the like, and can detect that the operation means 35 has been operated by the operator.
  • the operation state detection unit 116 directly detects that the operation unit 35 is operated by a potentiometer or the like, the present invention is not limited to this. That is, when the operation means 35 is hydraulic, it may be configured to detect that the operation means 35 is operated by detecting the pilot pressure for operating the control valve 30 with a pressure switch or the like. As described above, when the operation means 35 is hydraulic, the hydraulic operation can be supplied to the hydraulic operation means even when the engine 10 is stopped by idle stop control described later. A hydraulic pump for supplying hydraulic oil to the means and an electric motor for driving the hydraulic pump are separately provided.
  • the charge state detection means 117 detects the charge amount (remaining amount) C of the battery 60.
  • the charge state detection means 117 can detect information indicating the charge amount (remaining amount) C of the battery 60 (for example, voltage, specific gravity of battery liquid, etc.).
  • the engine speed setting means 121 sets the speed of the engine 10.
  • the engine speed setting means 121 is constituted by a dial switch and can be operated by the operator.
  • the operation amount of the engine speed setting means 121 can be detected by a sensor (not shown) provided in the engine speed setting means 121.
  • the engine speed setting means 121 is not limited to the dial switch, and may be a lever, a pedal or the like.
  • the idle stop selection means 122 is for selecting whether or not to perform idle stop control described later.
  • the idle stop selection means 122 is constituted by a dial switch and can be operated by the operator.
  • the idle stop selection means 122 switches to an "OFF" position where idle stop control is not performed, an "ON" position where idle stop control is performed, or a "motor drive” position where only the motor generator 50 is driven by stopping the engine 10. Can.
  • the position of the idle stop selection means 122 can be detected by a sensor (not shown) provided in the idle stop selection means 122.
  • An engine controller unit (hereinafter simply referred to as "ECU") 101 is an embodiment of the control device according to the present invention, and is for controlling the operation of the engine 10 based on various signals and programs. is there.
  • the ECU 101 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured as a one-chip LSI or the like.
  • the ECU 101 is connected to an engine rotational speed detecting unit (not shown) that detects the rotational speed Ne of the engine 10, and can acquire a detection signal of the rotational speed Ne of the engine 10 by the engine rotational speed detecting unit.
  • the ECU 101 is connected to the cell motor 80, transmits a control signal to the cell motor 80, and can start the engine 10 by rotating the crankshaft of the engine 10 by the cell motor 80.
  • the ECU 101 is connected to a speed control device (not shown) for adjusting the fuel injection amount of the engine 10, transmits a control signal to the speed control device, and adjusts the fuel injection amount of the engine 10 to adjust the rotation speed Ne.
  • the engine 10 can be stopped by changing the torque characteristics or stopping the fuel supply to the engine 10.
  • the main controller 100 is an embodiment of the control device according to the present invention, and transmits control signals to the clutch 15, the inverter 70, and the ECU 101 based on various signals and programs.
  • the main controller 100 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured as an one-chip LSI or the like.
  • the main controller 100 is connected to the first pressure detection unit 111, and can obtain a detection signal of the discharge pressure P1 of the first hydraulic pump 21 by the first pressure detection unit 111.
  • the main controller 100 is connected to the second pressure detection means 112, and can obtain a detection signal of the discharge pressure P2 of the second hydraulic pump 22 by the second pressure detection means 112.
  • the main controller 100 is connected to the first volume detection means 113, and can obtain a detection signal of the inclination angle of the movable swash plate 21a of the first hydraulic pump 21 by the first volume detection means 113.
  • the main controller 100 stores a map indicating the relationship between the inclination angle of the movable swash plate 21 a and the displacement q1 of the first hydraulic pump 21.
  • the main controller 100 calculates the displacement q1 of the first hydraulic pump 21 based on the detection signal of the inclination angle of the movable swash plate 21a.
  • the main controller 100 is connected to the second volume detection means 114, and can obtain a detection signal of the tilt angle of the movable swash plate 22a of the second hydraulic pump 22 by the second volume detection means 114.
  • the main controller 100 stores a map indicating the relationship between the inclination angle of the movable swash plate 22a and the displacement q2 of the second hydraulic pump 22.
  • the main controller 100 calculates the displacement q2 of the second hydraulic pump 22 based on the detection signal of the inclination angle of the movable swash plate 22a.
  • the main controller 100 is connected to the pump rotational speed detection unit 115, and can obtain a detection signal of the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 by the pump rotational speed detection unit 115.
  • the main controller 100 is connected to the operation state detection means 116, and can obtain a detection signal indicating that the operation means 35 has been operated by the operation state detection means 116.
  • the main controller 100 is connected to the charge state detection means 117, and can obtain a detection signal of the charge amount (remaining amount) C of the battery 60 by the charge state detection means 117.
  • the main controller 100 is connected to the ECU 101, and can acquire a detection signal of the rotation speed Ne of the engine 10 by the ECU 101 (more specifically, an engine rotation speed detection unit connected to the ECU 101). Further, the main controller 100 can transmit a control signal to the ECU 101 to start or stop the engine 10 and to instruct the target rotation speed of the engine 10.
  • the main controller 100 is connected to a sensor provided in the engine rotational speed setting unit 121, and can obtain a detection signal of an operation amount of the engine rotational speed setting unit 121 by the sensor.
  • the main controller 100 is connected to a sensor provided in the idle stop selection means 122, and can obtain a detection signal of the position of the idle stop selection means 122 by the sensor.
  • the main controller 100 is connected to the clutch 15 and can transmit a control signal to the effect that the clutch 15 is engaged or disengaged.
  • the main controller 100 is connected to the inverter 70, and can transmit, to the inverter 70, a control signal indicating that either one or neither of the inverter circuit and the converter circuit is selected.
  • the main controller 100 transmits a control signal to start the engine 10 to the ECU 101.
  • the ECU 101 having received the control signal transmits a control signal to the cell motor 80 to start the engine 10.
  • the main controller 100 transmits to the ECU 101 a control signal indicating that the engine 10 is to be stopped.
  • the ECU 101 having received the control signal transmits the control signal to the speed control apparatus to stop the engine 10.
  • the main controller 100 determines the target number of revolutions of the engine 10 based on the operation amount of the engine revolution number setting means 121.
  • the main controller 100 transmits the target rotational speed of the engine 10 to the ECU 101 as a control signal.
  • the ECU 101 having received the control signal transmits a control signal to the speed control apparatus, and adjusts the rotation speed Ne of the engine 10 such that the rotation speed Ne of the engine 10 becomes the target rotation speed.
  • the power of the engine 10 is transmitted to the first hydraulic pump 21 via the output shaft 11, the clutch 15, and the input shaft 23.
  • the power from the engine 10 is also transmitted to the second hydraulic pump 22 via the gear 23 a, the gear 24 a and the input shaft 24.
  • the first hydraulic pump 21 and the second hydraulic pump 22 rotate at the same rotational speed Np.
  • hydraulic fluid is discharged from the first hydraulic pump 21 and the second hydraulic pump 22.
  • the hydraulic fluid is supplied to the control valve 30 via the oil passage 25 and the oil passage 26.
  • the control valve 30 supplies hydraulic fluid to the operator's desired working hydraulic actuator 40 based on the operation signal from the operation means 35.
  • the motor generator 50 when the control signal indicating that the main controller 100 selects the inverter circuit is sent to the inverter 70, the motor generator 50 is switched to the driving state. In this case, the motor generator 50 rotationally drives the input / output shaft 51 by the power of the battery 60 to generate power. The power is transmitted to the first hydraulic pump 21 through the input / output shaft 51, the gear 51a, the gear 23a, and the input shaft 23, and is transmitted to the second hydraulic pump 22 through the gear 24a and the input shaft 24. Be done. That is, in this case, the first hydraulic pump 21 and the second hydraulic pump 22 can be driven by the power from the motor generator 50 in addition to the power from the engine 10.
  • motor generator 50 is switched to the power generation state.
  • motor generator 50 is rotationally driven by the power from engine 10 transmitted through gear 51 a and input / output shaft 51 to generate electric power.
  • the electric power is stored in the battery 60 through the inverter 70. That is, in this case, the first hydraulic pump 21 and the second hydraulic pump 22 are driven by the power from the engine 10, and the motor generator 50 is rotationally driven to store the electric power in the battery 60.
  • motor generator 50 When the control signal indicating that neither the inverter circuit nor the converter circuit is selected is transmitted to inverter 70 by main controller 100, motor generator 50 is switched to the neutral state. In this case, although motor generator 50 is rotationally driven by the power from engine 10 transmitted via gear 51 a and input / output shaft 51, charging of battery 60 is not performed. Therefore, the rotational resistance of the input / output shaft 51 of the motor generator 50 is smaller than that in the power generation state.
  • FIGS. 2-4 the control aspect of the power transmission device 1 is demonstrated in detail using FIGS. 2-4.
  • FIG. 2 shows a torque characteristic line of the engine 10 and an equal fuel consumption curve of the engine 10.
  • the horizontal axis in FIG. 2 indicates the rotational speed Ne of the engine 10, and the vertical axis indicates the torque Tr of the engine 10.
  • thick solid line X in FIG. 2 represents the original torque characteristic line of the engine 10
  • thick broken line Y represents the torque characteristic line after changing the original torque characteristic line X of the engine 10
  • thin solid line Z represents the engine 10
  • the equal fuel consumption curves are shown respectively.
  • the original torque characteristic line of the engine 10 is indicated by a thick solid line X.
  • the torque characteristic line is a line connecting maximum torque points set for each engine speed.
  • the torque characteristic line X includes the rated output (rating point) Px of the engine 10, and the output of the engine 10 is maximized at the rated output Px.
  • the equal fuel consumption curve of the engine 10 is shown by a thin solid line Z.
  • the equivalent fuel consumption curve is the fuel consumption per output of the engine 10 (hereinafter simply referred to as “fuel consumption”) (g / kWh) measured for each rotation speed and each load, and the same fuel consumption It is what connected the point.
  • fuel consumption the fuel consumption per output of the engine 10 (hereinafter simply referred to as “fuel consumption”) (g / kWh) measured for each rotation speed and each load, and the same fuel consumption It is what connected the point.
  • fuel consumption in the equal fuel consumption curve Z1 in FIG. 2 is taken as a reference (100%)
  • the same fuel consumption curve Z is shown every time the fuel consumption increases by 2%.
  • a region in which the fuel consumption amount is 102% or less with respect to Z1 is defined as a “fuel consumption region”.
  • the low fuel consumption region refers to a region where the fuel consumption of the engine 10 is less than a predetermined value (the fuel consumption of the engine 10 is relatively small) in FIG.
  • the "predetermined value” referred to here is a value that can be arbitrarily set by the operator using the power transmission device 1, and may be set appropriately according to the vehicle, device, etc. to which the power transmission device 1 is applied.
  • the predetermined value is arbitrarily set (for example, 105% of the ideal fuel consumption) Can be set).
  • the torque characteristic line after changing the original torque characteristic line X of the engine 10 is indicated by a broken line Y.
  • the ECU 101 can adjust the fuel injection amount of the engine 10 so that the rated output (rating point) Py of the engine 10 is included in the above-described low fuel consumption region. Thereby, the original torque characteristic line X of the engine 10 can be changed to the torque characteristic line Y.
  • the rated output Py on the torque characteristic line Y is set to a value smaller than the rated output Px on the torque characteristic line X.
  • the engine 10 according to the present embodiment is operated in a state in which the ECU 101 sets one of the torque characteristic line X and the torque characteristic line Y.
  • step S101 of FIG. 3 the main controller 100 absorbs the horsepower of the first hydraulic pump 21 and the second hydraulic pump 22 based on the discharge pressure P1, the discharge pressure P2, the displacement volume q1, the displacement volume q2, and the rotational speed Np. Calculate Lp.
  • the main controller 100 proceeds to step S102.
  • step S102 the main controller 100 determines whether or not the absorption horsepower Lp is smaller than the switching output threshold Dp1 set in advance.
  • the switching output threshold value Dp1 in the present embodiment is set to the same value as the rated output Py of the torque characteristic line Y shown in FIG. That is, the switching output threshold Dp1 is set to a value included in the low fuel consumption region.
  • step S102 when the main controller 100 determines that the absorption horsepower Lp is less than the switching output threshold Dp1, the process proceeds to step S103.
  • step S104 When the main controller 100 determines that the absorption horsepower Lp is not less than the switching output threshold Dp1, that is, is greater than or equal to the switching output threshold Dp1, the process proceeds to step S104.
  • step S103 the main controller 100 determines whether the charge amount C is less than a preset overcharge threshold Dc1.
  • the overcharge threshold Dc1 is an arbitrarily set value, and is set to a value that can prevent the battery 60 from being excessively charged.
  • step S103 determines in step S103 that the charge amount C is less than the overcharge threshold Dc1
  • step S105 If the main controller 100 determines that the charge amount C is not less than the overcharge threshold Dc1, that is, if it is equal to or more than the overcharge threshold Dc1, the process proceeds to step S106.
  • step S105 the main controller 100 transmits a control signal to the ECU 101, and the ECU 101 sets the torque characteristic line of the engine 10 to Y (see FIG. 2) (when the torque characteristic line of the engine 10 is originally Y, Maintain the torque characteristic line Y). After performing the above processing, the main controller 100 proceeds to step S109.
  • step S109 the main controller 100 transmits a control signal to the effect that the converter circuit is selected to the inverter 70, and switches the motor generator 50 to the power generation state.
  • step S106 the main controller 100 transmits a control signal to the ECU 101, and the ECU 101 sets the torque characteristic line of the engine 10 to Y (see FIG. 2) (if the torque characteristic line of the engine 10 is originally Y, Maintain the torque characteristic line Y). After performing the above processing, the main controller 100 proceeds to step S110.
  • step S110 main controller 100 transmits to inverter 70 a control signal indicating that neither the converter circuit nor the inverter circuit is selected, and switches motor generator 50 to the neutral state.
  • step S104 the main controller 100 determines whether or not the charge amount C is less than a preset overdischarge threshold Dc2.
  • the overdischarge threshold value Dc2 is an arbitrarily set value, is a value smaller than the overcharge threshold value Dc1, and is set to a value capable of preventing excessive discharge of the battery 60.
  • step S104 determines in step S104 that the charge amount C is less than the overdischarge threshold Dc2, the process proceeds to step S107. If the main controller 100 determines that the charge amount C is not less than the overdischarge threshold Dc2, that is, if it is equal to or more than the overdischarge threshold Dc2, the process proceeds to step S108.
  • step S107 the main controller 100 transmits a control signal to the ECU 101, and the ECU 101 sets the torque characteristic line of the engine 10 to X (see FIG. 2) (if the torque characteristic line of the engine 10 is originally X, The torque characteristic line X is maintained as it is. After performing the above processing, the main controller 100 proceeds to step S111.
  • step S111 the main controller 100 transmits a control signal indicating that neither the converter circuit nor the inverter circuit is selected to the inverter 70, and switches the motor generator 50 to the neutral state.
  • step S108 the main controller 100 transmits a control signal to the ECU 101, and the ECU 101 sets the torque characteristic line of the engine 10 to Y (see FIG. 2) (if the torque characteristic line of the engine 10 is originally Y, Maintain the torque characteristic line Y). After performing the above processing, the main controller 100 proceeds to step S112.
  • step S112 the main controller 100 transmits a control signal to the effect that the inverter circuit is selected to the inverter 70, and switches the motor generator 50 to the driving state.
  • steps S109 to S112 will be described with reference to FIGS. 2 to 4.
  • FIG. 4 shows a change (variation) of absorption horsepower Lp of the first hydraulic pump 21 and the second hydraulic pump 22 when the power transmission 1 according to the present embodiment is applied to a hydraulic shovel.
  • the horizontal axis in FIG. 4 represents the working time t of the hydraulic shovel, and the vertical axis represents the change in the absorption horsepower Lp.
  • the absorption horsepower Lp of the first hydraulic pump 21 and the second hydraulic pump 22 is the progress of the working time t (change in work content) It fluctuates with the For example, when performing a so-called heavy load operation such as “excitation loading operation” in which the ground is excavated by hydraulic excavator and loaded on dump, or “travel unloading operation” in which soil is pushed away by dozer while traveling hydraulic excavator The absorption horsepower Lp becomes large like Tm.
  • FIG. 4 also shows values of the switching output threshold Dp1 (rated output Py) and the rated output Px in addition to the absorption horsepower Lp of the first hydraulic pump 21 and the second hydraulic pump 22.
  • Dp1 rated output Py
  • Px the switching output threshold
  • the rated output Py of the engine 10 is obtained. Is set to a value smaller than the rated output Px (see FIG. 2).
  • the rated output Py in this case is set to a value lower than the maximum value of the absorption horsepower Lp, as shown in FIG.
  • step S102 in FIG. 3 When it is determined in step S102 in FIG. 3 that the absorption horsepower Lp is less than the switching output threshold Dp1, that is, in the region Tu in FIG. 4, the absorption horsepower with respect to the rated output Py on the torque characteristic line Y of the engine 10 Lp is small, and there is a margin in the output of the engine 10.
  • step S103 if it is determined in step S103 that the charge amount C is less than the overcharge threshold Dc1, that is, if the charge amount C of the battery 60 is small (to be charged), the motor generator 50 generates power in step S109. Switch to the state.
  • the input / output shaft 51 of the motor generator 50 can be rotationally driven using the allowance of the output of the engine 10, and the battery 60 can be charged with the power generated by the motor generator 50.
  • the engine 10 drives the motor generator 50 in addition to the first hydraulic pump 21 and the second hydraulic pump 22, the output of the engine 10 is larger than the absorption horsepower Lp (switching output threshold Dp1 (rated It becomes smaller than the output Py).
  • step S110 If it is determined in step S103 in FIG. 3 that the charge amount C is equal to or greater than the overcharge threshold Dc1, that is, if the charge amount C of the battery 60 is sufficiently large (does not need to be charged), the motor generator 50 is step S110. Is switched to the neutral state. Thus, even when there is a margin in the output of engine 10, power generation by motor generator 50 is not performed, and excessive charging of battery 60 can be prevented.
  • step S102 in FIG. 3 When it is determined in step S102 in FIG. 3 that the absorption horsepower Lp is equal to or greater than the switching output threshold Dp1, that is, in the region Tm in FIG. 4, the absorption horsepower with respect to the rated output Py on the torque characteristic line Y of the engine 10 Lp is large, and the output of the engine 10 is insufficient.
  • step S104 if it is determined in step S104 that the charge amount C is equal to or greater than the overdischarge threshold Dc2, that is, the charge amount C of the battery 60 is large (the charge amount C sufficient to drive the motor generator 50 is stored).
  • step S112 the motor generator 50 is switched to the drive state.
  • the input / output shaft 51 of the motor generator 50 is rotationally driven by the power of the battery 60, and the first hydraulic pump 21 and the second hydraulic pump 22 are driven by the motor generator 50 in addition to the engine 10. That is, the drive of the first hydraulic pump 21 and the second hydraulic pump 22 is assisted by the motor generator 50.
  • the output of the engine 10 is the switching output threshold Dp1 (rated output Py) in order to compensate the output of the motor generator 50 for the shortage. It becomes almost the same value as.
  • step S104 of FIG. 3 If it is determined in step S104 of FIG. 3 that the charge amount C is less than the overdischarge threshold Dc2, that is, the charge amount C of the battery 60 is small (the charge amount C sufficient to drive the motor generator 50 is stored).
  • the torque characteristic line of the engine 10 is changed from Y to X in step S107, the motor generator 50 is switched to the neutral state in step S111.
  • the rated output Px of the engine 10 is set to a value higher than the maximum value of the absorption horsepower Lp (see FIG. 4), so that occurrence of an engine stall of the engine 10 can be prevented. It is possible to prevent the deterioration of sex.
  • the output of the engine 10 in the area Tu is brought to a value close to the rated output Py, and the output of the engine 10 in the area Tm is brought to substantially the same value as the rated output Py.
  • Each can be controlled.
  • the output of the engine 10 is equalized (the fluctuation range of the output of the engine 10 is made smaller) can do.
  • the output of the engine 10 is insufficient with respect to the absorption horsepower Lp while the torque characteristic line of the engine 10 is set to Y, the torque characteristic line of the engine 10 is changed to X, and the engine 10 is concerned. Can prevent the occurrence of an engine stall.
  • the power transmission device 1 rotates the input / output shaft 51 by the battery 60 and the drive state in which the input / output shaft 51 is rotated by the supply of power from the battery 60.
  • Motor generator 50 capable of generating power by charging the battery 60 and charging the battery 60, and at least one load driven by the engine 10 and / or the motor generator 50 (the first hydraulic pump 21 and the second hydraulic pump 22 ,
  • a switching means for switching the motor generator 50 to either the power generation state or the drive state, a charge state detection means 117 for detecting the charge amount C of the battery 60, and absorption horsepower of the load
  • Absorbing horsepower detection means 110 for detecting Lp and absorption horsepower detected by the absorption horsepower detecting means 110 a controller (main controller 100) for switching the motor generator 50 to either the power generation state or the drive state by the inverter 70 based on p and the charge amount C of the battery 60 detected by the charge state detection means 117;
  • main controller 100 main controller 100 for switching the motor generator 50 to either the power generation state or the drive state by the
  • the drive of the load can be assisted by the motor generator 50, or when the absorption horsepower Lp of the load is small, the battery 60 can be charged by the power of the engine 10.
  • the fuel efficiency, the noise reduction, and the heat balance performance can be improved, and the energy efficiency can be improved.
  • the main controller 100 is less than the switching output threshold Dp1 at which the absorption horsepower Lp detected by the absorption horsepower detection means 110 is set to a value lower than the maximum output (rated output) Px of the engine 10
  • the inverter 70 switches the motor generator 50 to the power generation state
  • the absorption horsepower Lp detected by the absorption horsepower detection unit 110 is If the switching output threshold Dp1 or more, the inverter 70 switches the motor generator 50 to the drive state.
  • the motor generator 50 is generated.
  • the battery 60 can be charged by the motive power of the engine 10 having an allowance for the output.
  • the overcharge threshold Dc1 it is possible to prevent the battery 60 from being excessively charged.
  • the fluctuation range of the output of the engine 10 in the driving state and the power generation state of the motor generator 50 becomes smaller, and it is possible to suppress the deterioration of the fuel efficiency caused by the fluctuation of the output of the engine 10.
  • motor generator 50 can switch to a neutral state where neither rotation of input / output shaft 51 nor charging of battery 60 is performed by the supplied electric power, and main controller 100 increases the rated output Py of engine 10 If the charge amount C of the battery 60 is less than the overdischarge threshold Dc2 even if the absorption horsepower Lp detected by the absorption horsepower detection means 110 is greater than or equal to the switching output threshold Dp1, the rating of the engine 10 The output Py is increased to Px, and the motor generator 50 is switched to the neutral state.
  • the charge amount C of the battery 60 is less than the overdischarge threshold Dc2
  • by stopping the driving of the motor generator 50 it is possible to prevent the excessive discharge of the battery 60.
  • the occurrence of an engine stall of the engine 10 can be prevented, and in turn, the deterioration of the workability can be prevented.
  • the load is at least one hydraulic pump (the first hydraulic pump 21 and the second hydraulic pump 22) for driving the working hydraulic actuator 40 by discharging the hydraulic oil
  • the absorption horsepower detection means 110 is configured to Pressure detection means (first pressure detection means 111 and second pressure detection means 112) for detecting the discharge pressure (discharge pressure P1 and discharge pressure P2) of the hydraulic pump, and displacement volume (displacement volume q1 and displacement volume of the hydraulic pump) q2), and a pump rotation number detection unit 115 for detecting the rotation number Np of the hydraulic pump;
  • the hydraulic pressure is detected based on values detected by the pressure detecting means, the volume detecting means, and the pump rotational speed detecting means 115. And calculates the absorption horsepower Lp of the pump.
  • the absorption horsepower Lp of the hydraulic pump and the charge amount C of the battery 60 are used. Accordingly, the operating state of motor generator 50 can be switched. As a result, the fuel efficiency, the noise reduction, and the heat balance performance can be improved, and the energy efficiency can be improved.
  • the switching output threshold Dp1 is set to a value included in a low fuel consumption area set in advance. With this configuration, even when the absorption horsepower Lp of the load increases to the switching output threshold Dp1 or more, the output of the engine 10 can be limited to the vicinity of the low fuel consumption region. As a result, the fuel efficiency of the engine 10 can be further improved.
  • the first hydraulic pump 21 and the second hydraulic pump 22 are used as the load, but the present invention is not limited to this. That is, as the load, it is possible to use various actuators driven by the power of the other engine 10.
  • the absorption horsepower detection unit 110 includes a first pressure detection unit 111, a second pressure detection unit 112, a first volume detection unit 113, a second volume detection unit 114, and a pump rotational speed detection unit 115. Although used, the present invention is not limited to this. That is, as the absorption horsepower detection means 110, it is possible to use one that can detect the absorption horsepower of the load included in the power transmission device 1 (various sensors etc.).
  • the idle stop control is control to automatically start and stop the engine 10, switch the operating state of the motor generator 50, and disconnect and connect the clutch 15 in a predetermined case.
  • the main controller 100 When the idle stop selection means 122 is switched to the “ON” position, the main controller 100 performs idle stop control. Hereinafter, the idle stop control will be described in detail with reference to FIGS. 5 and 6.
  • step S121 of FIG. 5 the main controller 100 determines whether the operation unit 35 is operated. When the main controller 100 determines that the operation unit 35 is not operated, the process proceeds to step S122. When the main controller 100 determines that the operation unit 35 is operated, the main controller 100 performs the process of step S121 again.
  • step S122 the main controller 100 starts counting the non-operation elapsed time ti.
  • the non-work elapsed time ti is a time when the operation means 35 is not operated continuously, that is, a time when the work hydraulic actuator 40 is not continuously driven (no work is performed). After performing the above processing, the main controller 100 proceeds to step S123.
  • step S123 the main controller 100 determines whether the operation means 35 is operated. When the main controller 100 determines that the operation unit 35 is not operated, the process proceeds to step S124. When the main controller 100 determines that the operation unit 35 is operated, the main controller 100 performs the process of step S121 again.
  • step S124 the main controller 100 determines whether the non-work elapsed time ti is equal to or more than a non-work determination threshold t1 set in advance.
  • the non-operation determination threshold value t1 is a value which is arbitrarily set, and is set to the same value as the non-operation elapsed time ti at which it is determined that the engine 10 should be stopped in step S125 described later. That is, the non-operation determination threshold value t1 is set to be as long as, and as short as possible, between the operation and the operation in the case where the operation is performed intermittently, thereby suppressing unnecessary consumption of the fuel of the engine 10 It is desirable to do.
  • step S124 When the main controller 100 determines that the non-work elapsed time ti is equal to or more than the non-work determination threshold t1 in step S124, the main controller 100 proceeds to step S125. When the main controller 100 determines that the non-work elapsed time ti is not equal to or more than the non-work determination threshold t1, that is, less than the non-work determination threshold t1, the main controller 100 performs the process of step S123 again.
  • step S125 the main controller 100 transmits, to the ECU 101, a control signal indicating that the engine 10 is to be stopped.
  • the ECU 101 having received the control signal stops the engine 10.
  • the main controller 100 transmits, to the clutch 15, a control signal indicating that the clutch 15 is disconnected.
  • the clutch 15 that has received the control signal is disconnected, and power transmission between the output shaft 11 and the input shaft 23 is interrupted.
  • main controller 100 transmits a control signal indicating that neither the converter circuit nor the inverter circuit is selected to inverter 70, and switches motor generator 50 to the neutral state.
  • step S126 see FIG. 6).
  • step S126 of FIG. 6 the main controller 100 determines whether the operation means 35 is operated. If the main controller 100 determines that the operation unit 35 is operated, the process proceeds to step S127. When the main controller 100 determines that the operation means 35 is not operated, the process of step S126 is performed again.
  • step S127 the main controller 100 transmits a control signal to the effect that the inverter circuit is selected to the inverter 70, and switches the motor generator 50 to the driving state.
  • the main controller 100 sets the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 driven by the motor generator 50 to the target rotational speed of the engine 10 when stopping the engine 10 in step S125.
  • the rotational speed of motor generator 50 is controlled to match.
  • the rotational speed Ne of the engine 10 is the same as the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22. That is, the number of revolutions Np of the first hydraulic pump 21 and the second hydraulic pump 22 driven by the motor generator 50 in step S127 is the same as the number of revolutions Np when stopping the engine 10 in step S125. It will be controlled.
  • the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 is detected by the pump rotational speed detecting means 115, but the present invention is not limited to this. That is, by detecting the rotational speed of the motor generator 50 based on the frequency of the inverter 70, it is also possible to detect the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 connected to the motor generator 50. It is.
  • step S127 After performing the above-described process (step S127), the main controller 100 proceeds to step S128.
  • step S1208 the main controller 100 calculates the absorption horsepower Lp by the first hydraulic pump 21 and the second hydraulic pump 22 based on the discharge pressure P1, the discharge pressure P2, the displacement volume q1, the displacement volume q2, and the rotational speed Np. Do. After performing the above processing, the main controller 100 proceeds to step S129.
  • step S129 the main controller 100 determines whether or not the absorption horsepower Lp is equal to or greater than a starting output threshold Dp2.
  • the starting output threshold value Dp2 is a value that is set arbitrarily, and is set to the same value as the absorption horsepower Lp that is recognized to start the engine 10 in step S130 described later. That is, the engine 10 can set the starting output threshold Dp2 to the same value as the maximum value of the absorption horsepower Lp where high output (absorption horsepower Lp) is unnecessary and low speed torque and smooth rotation are emphasized. It is desirable to reduce wasteful consumption of fuel.
  • step S129 determines in step S129 that the absorption horsepower Lp is greater than or equal to the start output threshold Dp2, the main controller 100 proceeds to step S130.
  • the main controller 100 determines that the absorption horsepower Lp is not greater than or equal to the starting output threshold Dp2, that is, less than the starting output threshold Dp2, the main controller 100 performs the process of step S129 again.
  • step S130 the main controller 100 transmits a control signal to start the engine 10 to the ECU 101.
  • the ECU 101 having received the control signal starts the engine 10.
  • the main controller 100 proceeds to step S131.
  • step S131 the main controller 100 determines whether the rotational speed Ne of the engine 10 is equal to or greater than the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22. If the main controller 100 determines that the rotational speed Ne is equal to or higher than the rotational speed Np, the process proceeds to step S132. When the main controller 100 determines that the rotation speed Ne is not equal to or more than the rotation speed Np, that is, less than the rotation speed Np, the main controller 100 performs the process of step S131 again.
  • step S132 the main controller 100 transmits, to the clutch 15, a control signal indicating that the clutch 15 is to be connected.
  • the clutch 15 that has received the control signal is connected, and power can be transmitted between the output shaft 11 and the input shaft 23.
  • main controller 100 transmits to inverter 70 a control signal indicating that neither the converter circuit nor the inverter circuit is selected, and switches motor generator 50 to the neutral state.
  • step S124 of FIG. 5 When it is determined in step S124 of FIG. 5 that the non-operation elapsed time ti is equal to or more than the non-operation determination threshold t1, it is estimated that the operator's operation has been interrupted. In this case, by stopping the engine 10 in step S125, wasteful consumption of fuel can be suppressed. Further, by switching motor generator 50 to the neutral state, it is possible to suppress wasteful consumption of the power stored in battery 60.
  • step S126 in FIG. 6 If it is determined in step S126 in FIG. 6 that the operation means 35 has been operated, it is estimated that the work by the operator has been resumed. In this case, by switching the motor generator 50 to the drive state in step S127, the first hydraulic pump 21 and the second hydraulic pump 22 can be rapidly driven by the motor generator 50 (electric motor) having a high low speed torque.
  • step S129 If it is determined in step S129 that the absorption horsepower Lp is greater than or equal to the start output threshold Dp2, the absorption horsepower Lp is large, and it is estimated that the engine 10 should drive the first hydraulic pump 21 and the second hydraulic pump 22. . In this case, the engine 10 can be automatically started in step S130.
  • step S131 When it is determined in step S131 that the rotation speed Ne of the engine 10 is equal to or higher than the rotation speed Np of the first hydraulic pump 21 and the second hydraulic pump 22, the rotation speed Ne of the engine 10 is the first hydraulic pump 21 and the second hydraulic pump 21. It is presumed that the rotational speed sufficient to drive the hydraulic pump 22 has been reached. In this case, by connecting the clutch 15 and switching the motor generator 50 to the neutral state in step S132, the engine 10 can be smoothly connected to the first hydraulic pump 21 and the second hydraulic pump 22.
  • first hydraulic pump 21 and the second hydraulic pump 22 are driven by the motor generator 50 until the number of revolutions Ne of the engine 10 is increased to a sufficient number of revolutions, when the clutch 15 is connected, It is possible to prevent the decrease in the rotational speed Np of the one hydraulic pump 21 and the second hydraulic pump 22.
  • the clutch 15 when the rotational speed Ne of the engine 10 becomes equal to the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22, the engine 10 and the first hydraulic pump 21 and the second hydraulic pressure are connected.
  • the pump 22 can be connected more smoothly.
  • step S131 when the rotation speed Ne of the engine 10 becomes equal to or more than the rotation speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 (step S131), the process proceeds to step S132.
  • the present invention is not limited to this.
  • the rotational speed Ne of the engine 10 and the rotational speed Np of the first hydraulic pump 21 and the second hydraulic pump 22 are the same.
  • a reduction gear is provided between the pump 21 and the second hydraulic pump 22, both rotational speeds (rotational speed Ne and rotational speed Np) have different values.
  • the process may proceed to step S132. That is, when the rotation speed Ne of the engine 10 becomes equal to or more than a predetermined value that allows the engine 10 and the first hydraulic pump 21 and the second hydraulic pump 22 to be connected smoothly, the process proceeds to step S132. Anything is fine.
  • the main controller 100 When the idle stop selection means 122 is switched to the "ON" position, the main controller 100 performs the above-mentioned idle stop control, but when the idle stop selection means 122 is switched to the "OFF" position, the main controller 100 does not perform idle stop control. That is, in this case, even if the operation means 35 is not operated, the engine 10 is not stopped or the operating state of the motor generator 50 is not switched. In this manner, the operator can arbitrarily select whether or not to perform the above-described idle stop control by switching the idle stop selection means 122 to the “ON” position or the “OFF” position.
  • the main controller 100 stops the engine 10, disconnects the clutch 15, and switches the motor generator 50 to the driven state, thereby the first hydraulic pump 21 and the second hydraulic pump 22 are driven only by the motor generator 50.
  • the first oil pressure is generated only by the motor generator 50 without starting the engine 10 by switching the idle stop selection means 122 to the "motor drive” position.
  • the pump 21 and the second hydraulic pump 22 can be driven.
  • fuel consumption by the engine 10 can be suppressed at the operator's discretion.
  • the power transmission device 1 includes the battery 60, the motor (motor generator 50) rotationally driven by the supply of power from the battery 60, the engine 10, and the engine 10.
  • a cell motor 80 at least one hydraulic pump (the first hydraulic pump 21 and the second hydraulic pump 22) driven by the motor generator 50 or the engine 10, and a clutch for connecting and disconnecting the power transmitted from the engine 10 to the hydraulic pump Whether the switching means (inverter 70) for permitting or blocking the supply of power from the battery 60 to the motor generator 50, the operating means 35 for operating the working hydraulic actuator 40, and the operating means 35 are operated Operation state detection means 116 for detecting whether or not the engine speed of the engine 10 is Ne When detecting that the engine rotational speed detecting means to detect, the pump rotational speed detecting means 115 to detect the rotational speed Np of the hydraulic pump, and the operating means 35 have not been operated for a predetermined time (non-work determination threshold t1) When it is detected that the engine 10 is stopped, the clutch 15 is disconnected, and the supply of power from
  • the clutch 15 is disconnected when the engine 10 is restarted, the hydraulic pump start torque is not applied to the engine 10. Therefore, the deterioration of the startability of the engine 10 can be prevented even when the viscosity of the hydraulic oil is high particularly in a low temperature environment and the start torque of the hydraulic pump becomes larger than that at normal temperature.
  • the power transmission device 1 includes pressure detection means (first pressure detection means 111 and second pressure detection means 112) for detecting the discharge pressure (discharge pressure P1 and discharge pressure P2) of the hydraulic pump, and the hydraulic pump A displacement detection unit (first displacement detection unit 113 and a second displacement detection unit 114) for detecting displacement (displacement volume q1 and displacement volume q2), the controller comprising the pressure detection unit, the volume Even if the absorption horsepower Lp of the hydraulic pump is calculated based on the detection means and the detection value by the pump rotational speed detection means 115 and it is detected that the operation means 35 is operated in the idle stop control.
  • the motor generation is not started from the battery 60 without starting the engine 10. Allow power supply to 50, when the absorbing horsepower Lp is equal to or greater than the predetermined value is for starting the engine 10.
  • the absorption horsepower Lp of the hydraulic pump is small (at the time of light load operation)
  • the hydraulic pump can be driven only by the motor generator 50 without restarting the engine 10 .
  • the hydraulic pump can be driven by the motor generator 50 that has a large low speed torque and smooth rotation while suppressing the consumption of fuel, and the workability can be improved.
  • the power transmission apparatus 1 includes an idle stop selection means 122 for selecting whether or not to perform the idle stop control, and the control device selects the idle stop control means 122 not to perform the idle stop control. If it is determined, the idle stop control is not performed. By this configuration, the operator can arbitrarily select whether or not to perform the idle stop control.
  • the main controller 100 merely connects the clutch 15 in step S132 of FIG. 6, the present invention is not limited to this. That is, the main controller 100 is configured to connect the clutch 15 while gradually increasing the output of the engine 10 by holding the clutch 15 in a so-called half clutch state in which the clutch 15 is not completely connected for a predetermined time. Is also possible. As a result, a load is rapidly applied to the engine 10, and it is possible to prevent the rotational speed Ne of the engine 10 from being rapidly reduced.
  • the present invention is applicable to the technology of a power transmission device using an engine and a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることが可能な動力伝達装置を提供する。バッテリ60と、駆動状態、又は発電状態に切換可能なモータジェネレータ50と、少なくとも1つの負荷と、モータジェネレータ50を、前記発電状態、又は前記駆動状態のいずれかに切り換えるインバータ70と、バッテリ60の充電量Cを検出する充電状態検出手段117と、前記負荷の吸収馬力Lpを検出する吸収馬力検出手段110と、吸収馬力検出手段110により検出される吸収馬力Lp及び充電状態検出手段117により検出されるバッテリ60の充電量Cに基づいて、インバータ70によりモータジェネレータ50を前記発電状態、又は前記駆動状態のいずれかに切り換える制御装置(メインコントローラ100)と、を具備した。

Description

動力伝達装置
 本発明は、エンジン及び電動機を用いた動力伝達装置の技術に関する。
 従来、油圧ショベル等の建設車両等に具備され、動力源からの動力によって負荷を駆動させる動力伝達装置に関する技術は公知となっている。例えば、特許文献1に記載の如くである。
 特許文献1に記載の動力伝達装置は、動力源たるエンジンと、エンジンからの動力によって駆動し、作動油を吐出する油圧ポンプと、を具備する。
 エンジンからの動力によって油圧ポンプが駆動されると、当該油圧ポンプは作動油を吐出する。油圧ポンプから作業用油圧アクチュエータ及び油圧モータに作動油が供給されることによって、当該作業用油圧アクチュエータ及び油圧モータが駆動する。作業用油圧アクチュエータが駆動することによって、作業機を動作させることができる。また、油圧モータが駆動することによって、作業車両を走行させることができる。
 特許文献1に記載の如き動力伝達装置では、重負荷作業時にエンジンストールが発生するのを防止するために、エンジンの定格出力は重負荷作業時の油圧ポンプの吸収馬力に応じて設定される。すなわち、エンジンの定格出力は、油圧ポンプの吸収馬力の最大値よりも大きい値に設定される。ここで、重負荷作業とは、油圧ポンプの吸収馬力が比較的大きい作業をいう。重負荷作業の一例としては、動力伝達装置を具備する油圧ショベルによって地面を掘削してダンプに積み込む「掘削積み込み作業」、当該油圧ショベルを走行させながらドーザーで土を押しのける「走行排土作業」等がある。
 しかし、動力伝達装置を具備する油圧ショベル等の作業車両による作業としては、上記重負荷作業だけでなく、軽負荷作業がある。ここで、軽負荷作業とは、油圧ポンプの吸収馬力が比較的小さい作業をいう。軽負荷作業の一例としては、動力伝達装置を具備する油圧ショベルによって地面に盛られた土をすき取る「すき取り作業」、荷を吊って移動させる「クレーン作業」等がある。
 上述の如く重負荷作業時の油圧ポンプの吸収馬力に応じてエンジンの最大出力を設定した場合、軽負荷作業時においては当該エンジンの最大出力の設定が過剰に大きくなり、エンジンの燃費の悪化、騒音の増加、及びヒートバランス性能の低下を招くとともに、エネルギー効率の低下を招く点で不利であった。
特開平8-338506号公報
 本発明の目的は、燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることが可能な動力伝達装置を提供することである。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明においては、バッテリと、前記バッテリからの電力の供給により入出力軸を回転する駆動状態、又はエンジンからの動力により前記入出力軸を回転させることで発電し、前記バッテリを充電する発電状態に切換可能なモータジェネレータと、前記エンジン及び/又は前記モータジェネレータによって駆動される少なくとも1つの負荷と、前記モータジェネレータを、前記発電状態、又は前記駆動状態のいずれかに切り換える切換手段と、前記バッテリの充電量を検出する充電状態検出手段と、前記負荷の吸収馬力を検出する吸収馬力検出手段と、前記吸収馬力検出手段により検出される吸収馬力及び前記充電状態検出手段により検出される前記バッテリの充電量に基づいて、前記切換手段により前記モータジェネレータを前記発電状態、又は前記駆動状態のいずれかに切り換える制御装置と、を具備するものである。
 本発明においては、前記制御装置は、前記吸収馬力検出手段により検出される吸収馬力が前記エンジンの最大出力よりも低い値に設定される切換用出力閾値未満であり、かつ、前記充電状態検出手段により検出される前記バッテリの充電量が過充電閾値未満である場合、前記切換手段により前記モータジェネレータを前記発電状態に切り換え、前記吸収馬力検出手段により検出される吸収馬力が前記切換用出力閾値以上である場合、前記切換手段により前記モータジェネレータを前記駆動状態に切り換えるものである。
 本発明においては、前記モータジェネレータは、供給される電力による前記入出力軸の回転も前記バッテリの充電も行わない中立状態に切り換えることが可能であり、前記制御装置は、前記エンジンの定格出力を上昇させることが可能であり、前記吸収馬力検出手段により検出される吸収馬力が前記切換用出力閾値以上であっても、前記バッテリの充電量が過放電閾値未満である場合、前記エンジンの定格出力を上昇させるとともに、前記モータジェネレータを中立状態に切り換えるものである。
 本発明においては、前記負荷は、作動油を吐出することにより作業用油圧アクチュエータを駆動させる少なくとも1つの油圧ポンプであり、前記吸収馬力検出手段は、前記油圧ポンプの吐出圧を検出する圧力検出手段と、前記油圧ポンプの押しのけ容積を検出する容積検出手段と、前記油圧ポンプの回転数を検出するポンプ回転数検出手段と、を具備し、前記制御装置は、前記圧力検出手段、前記容積検出手段、及び前記ポンプ回転数検出手段による検出値に基づいて前記油圧ポンプの吸収馬力を算出するものである。
 本発明においては、前記切換用出力閾値は、予め設定される低燃費領域に含まれる値に設定されるものである。
 本発明の効果として、以下に示すような効果を奏する。
 本発明は、負荷の吸収馬力及びバッテリの充電量に応じてモータジェネレータの作動状態を切り換えることができる。
 例えば、負荷の吸収馬力が大きい場合にはモータジェネレータで当該負荷の駆動を補助したり、負荷の吸収馬力が小さい場合にはエンジンの動力でバッテリを充電したりできる。
 これによって、燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることができる。
 本発明は、負荷の吸収馬力が切換用出力閾値以上(いわゆる重負荷作業時)である場合、モータジェネレータを駆動状態に切り換え、エンジン及びモータジェネレータで負荷を駆動することができる。
 これによって、エンジンのトルク特性線を、定格出力を減少させる方向へ変更することができ、ひいては燃費の向上、騒音の低下、及びヒートバランス性能の向上を図ることができる。
 また、負荷の吸収馬力が切換用出力閾値未満(いわゆる軽負荷作業時、又は非作業時)で、かつバッテリの充電量が過充電閾値未満である場合、モータジェネレータを発電状態に切り換え、出力に余裕があるエンジンの動力でバッテリを充電することができる。
 これによって、エンジンの出力に余裕がある場合にバッテリを充電することができ、エネルギー効率の向上を図ることができる。また、バッテリの充電量が過充電閾値未満である場合にのみ充電を行うことで、当該バッテリが過剰に充電されることを防止することができる。
 さらに、モータジェネレータの駆動状態及び発電状態におけるエンジンの出力の変動幅が小さくなり、当該エンジンの出力の変動に伴う燃費の悪化を抑制することができる。
 本発明は、バッテリの充電量が過放電閾値未満である場合、モータジェネレータの駆動を停止することで、当該バッテリの過度の放電を防止することができるとともに、エンジンストールの発生を防止し、ひいては作業性の低下を防止することができる。
 本発明は、油圧ポンプを用いて作業用油圧アクチュエータを駆動させる作業車両等に適用される動力伝達装置において、油圧ポンプの吸収負荷及びバッテリの充電量に応じてモータジェネレータの作動状態を切り換えることができる。
 これによって、燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることができる。
 本発明は、負荷の吸収馬力が切換用出力閾値以上に増加した場合であっても、エンジンの出力を低燃費領域の近傍に制限することができる。
 これによって、さらにエンジンの燃費の向上を図ることができる。
本発明の一実施例に係る動力伝達装置の全体的な構成を示したブロック図。 エンジンのトルク特性線及び等燃費曲線を示した図。 モータジェネレータの制御態様を示したフローチャート。 吸収馬力の変化の様子を示した図。 アイドルストップ制御の制御態様を示したフローチャート。 アイドルストップ制御の制御態様を示したフローチャート。
 1   動力伝達装置
 21  第一油圧ポンプ(負荷、油圧ポンプ)
 22  第二油圧ポンプ(負荷、油圧ポンプ)
 50  モータジェネレータ
 60  バッテリ
 70  インバータ(切換手段)
 100 メインコントローラ(制御装置)
 110 吸収馬力検出手段
 111 第一圧力検出手段(圧力検出手段)
 112 第二圧力検出手段(圧力検出手段)
 113 第一容積検出手段(容積検出手段)
 114 第二容積検出手段(容積検出手段)
 115 ポンプ回転数検出手段
 117 充電状態検出手段
 以下では、図1を用いて、本発明の実施の一形態にかかる動力伝達装置1について説明する。
 動力伝達装置1は、駆動源からの動力を伝達し、種々のアクチュエータを駆動させるためのものである。
 動力伝達装置1は、エンジン10、第一油圧ポンプ21、第二油圧ポンプ22、クラッチ15、コントロールバルブ30、作業用油圧アクチュエータ40、操作手段35、モータジェネレータ50、バッテリ60、インバータ70、セルモータ80、吸収馬力検出手段110、操作状態検出手段116、充電状態検出手段117、エンジン回転数設定手段121、アイドルストップ選択手段122、エンジンコントローラユニット101、及びメインコントローラ100を具備する。
 なお、本実施形態に係る動力伝達装置1は油圧ショベルに具備されるものとするが、本発明はこれに限るものではない。すなわち、油圧ショベル以外の建設車両、農業車両、産業車両等に具備されるものであっても良い。また、本発明は車両に限らず、駆動源からの動力を伝達し、種々のアクチュエータを駆動させる機械及び装置に具備されるものであっても良い。
 エンジン10は、駆動源となるものである。エンジン10からの動力は、当該エンジン10に設けられる出力軸11から取り出すことが可能である。
 本実施形態に係るエンジン10はディーゼルエンジンであるものとするが、本発明はこれに限るものではなく、ガソリンエンジンであっても良い。
 第一油圧ポンプ21は、本発明に係る負荷及び油圧ポンプの実施の一形態であり、伝達される動力によって回転駆動され、作動油を吐出するものである。第一油圧ポンプ21は、可動斜板21aの傾斜角度を変更することによって作動油の吐出量を変更可能な可変容量型のポンプである。可動斜板21aの傾斜角度は、図示しないアクチュエータ、又は手動による操作によって変更することができる。第一油圧ポンプ21は、当該第一油圧ポンプ21に設けられる入力軸23から入力される動力により回転駆動する。入力軸23にはギヤ23aが固設される。第一油圧ポンプ21の吐出ポートには、油路25の一端が接続される。
 第二油圧ポンプ22は、本発明に係る負荷及び油圧ポンプの実施の一形態であり、伝達される動力によって回転駆動され、作動油を吐出するものである。第二油圧ポンプ22は、可動斜板22aの傾斜角度を変更することによって作動油の吐出量を変更可能な可変容量型のポンプである。可動斜板22aの傾斜角度は、図示しないアクチュエータ、又は手動による操作によって変更することができる。第二油圧ポンプ22は、当該第二油圧ポンプ22に設けられる入力軸24から入力される動力により回転駆動する。入力軸24にはギヤ24aが固設される。ギヤ24aは、第一油圧ポンプ21の入力軸23に固設されるギヤ23aと歯合される。第二油圧ポンプ22の吐出ポートには、油路26の一端が接続される。
 また、ギヤ24aの歯数は、ギヤ23aの歯数と同一に設定される。これによって、ギヤ24aとギヤ23aとが歯合しながら回転する場合、当該ギヤ24a及びギヤ23aの回転数は同一となる。すなわち、第一油圧ポンプ21と第二油圧ポンプ22とは同一回転数で回転する。
 なお、本実施形態に係る第一油圧ポンプ21及び第二油圧ポンプ22は、可動斜板21a及び可動斜板22aの傾斜角度を変更することによって作動油の吐出量を変更可能な斜板式の油圧ポンプであるものとしたが、本発明はこれに限るものではない。すなわち、シリンダブロックの中心軸の傾斜角度を変更することによって作動油の吐出量を変更可能な斜軸式の油圧ポンプを用いることも可能である。
 クラッチ15は、エンジン10の出力軸11と第一油圧ポンプ21の入力軸23との間に介設され、出力軸11と入力軸23との間で伝達される動力を断接するものである。クラッチ15が接続されると、出力軸11と入力軸23とが連結される。この場合、出力軸11及び入力軸23は同一回転数で回転可能となり、ひいてはエンジン10、並びに第一油圧ポンプ21及び第二油圧ポンプ22は同一回転数で回転可能となる。クラッチ15が切断されると、出力軸11と入力軸23との連結が解除され、エンジン10の出力軸11が回転しても、当該回転動力は入力軸23に伝達されない。
 クラッチ15としては、油圧クラッチや電磁クラッチ等、種々のクラッチを適用することが可能である。
 コントロールバルブ30は、第一油圧ポンプ21及び第二油圧ポンプ22から供給される作動油の方向及び流量を適宜切り換えるためのものである。コントロールバルブ30は、方向切換弁、圧力補償弁等を適宜具備する。
 コントロールバルブ30には、油路25の他端が接続され、当該油路25を介して第一油圧ポンプ21から吐出される作動油がコントロールバルブ30に供給される。
 コントロールバルブ30には、油路26の他端が接続され、当該油路26を介して第二油圧ポンプ22から吐出される作動油がコントロールバルブ30に供給される。
 作業用油圧アクチュエータ40は、コントロールバルブ30を介して第一油圧ポンプ21及び第二油圧ポンプ22から供給される作動油により駆動されるものである。本実施形態に係る作業用油圧アクチュエータ40は、油圧ショベルの作業機を動作させるためのブームシリンダ41、アームシリンダ42、及びバケットシリンダ43、走行するための左右一対の走行モータ44・45、並びに旋回するための旋回モータ46を含むものとする。
 操作手段35は、コントロールバルブ30を介して作業用油圧アクチュエータ40に供給される作動油の方向及び流量を切り換えるためのものである。操作手段35がオペレータによって操作されると、当該操作信号(電気信号)がコントロールバルブ30に送信される。当該信号に基づいて、コントロールバルブ30に具備される種々の弁(方向切換弁等)が切り換えられる。これによって、オペレータの所望の作業用油圧アクチュエータ40に、所望の量の作動油を供給することができる。
 なお、本実施形態に係る操作手段35は、電気信号によりコントロールバルブ30を動作させるものとしたが、本発明はこれに限るものではない。すなわち、オペレータの操作に基づいてコントロールバルブ30にパイロット圧を付与し、当該パイロット圧によりコントロールバルブ30を動作させる油圧式の操作手段であっても良い。
 上記の如く操作手段35として油圧式の操作手段を用いる場合においては、後述するアイドルストップ制御によりエンジン10が停止された際においても当該油圧式の操作手段に作動油を供給できるように、当該油圧式の操作手段に作動油を供給するための油圧ポンプ、および当該油圧ポンプを駆動するための電動機を別途設けるものとする。
 モータジェネレータ50は、電力が供給された場合は電動機として回転駆動して動力を発生し、動力が供給された場合は発電機として電力を発生するものである。モータジェネレータ50は入出力軸51を備え、当該入出力軸51にはギヤ51aが固設される。ギヤ51aは、第一油圧ポンプ21の入力軸23に固設されるギヤ23aと歯合される。
 モータジェネレータ50は、電力が供給された場合、入出力軸51を回転駆動させることができる。
 モータジェネレータ50は、動力が伝達されて入出力軸51が回転駆動された場合、電力を発生させることができる。
 バッテリ60は、モータジェネレータ50、及びその他の電気機器に供給する電力を蓄え、放電することが可能な二次電池である。
 インバータ70は、本発明に係る切換手段の実施の一形態であり、バッテリ60からの電力をモータジェネレータ50に供給し、又はモータジェネレータ50からの電力をバッテリ60に供給することを可能にするものである。
 インバータ70は、直流を交流に変換する回路(インバータ回路)と交流を直流に変換する回路(コンバータ回路)とを備え、当該インバータ回路とコンバータ回路のうちいずれか一方を選択する、又はいずれも選択しないことが可能である。
 インバータ回路が選択された場合、インバータ70は、バッテリ60から供給される直流の電力を交流に変換し、モータジェネレータ50に供給する。このように、インバータ70によってバッテリ60からの電力をモータジェネレータ50に供給可能とすることで、当該モータジェネレータ50は入出力軸51を回転駆動させる。すなわち、この場合、モータジェネレータ50を電動機として使用することができる。この場合、モータジェネレータ50からバッテリ60への電力の供給は遮断される。以下、このモータジェネレータ50が入出力軸51を回転駆動させる状態を「駆動状態」と記す。
 コンバータ回路が選択された場合、インバータ70は、モータジェネレータ50から供給される交流の電力を直流に変換し、当該電力をバッテリ60に蓄える。このように、インバータ70によってモータジェネレータ50からの電力をバッテリ60に供給可能とすることで、当該モータジェネレータ50はエンジン10からの動力により電力を発生させ、当該電力をバッテリ60に蓄える(充電する)ことができる。すなわち、この場合、モータジェネレータ50を発電機として使用することができる。この場合、バッテリ60からモータジェネレータ50への電力の供給は遮断される。以下、このモータジェネレータ50がバッテリ60を充電させる状態を「発電状態」と記す。
 インバータ回路及びコンバータ回路のいずれも選択されない場合、インバータ70は、モータジェネレータ50への電力の供給も、バッテリ60への電力の供給も行わない。このように、モータジェネレータ50への電力の供給を行わないため、モータジェネレータ50は入出力軸51を回転駆動させない。また、モータジェネレータ50の入出力軸51が回転駆動されても、バッテリ60への電力の供給を行わないため、バッテリ60の充電も行われず、この際のモータジェネレータ50の入出力軸51の回転抵抗は、発電状態の入出力軸51の回転抵抗よりも小さくなる。以下、このモータジェネレータ50が入出力軸51の回転駆動もバッテリ60の充電も行わない状態を「中立状態」と記す。
 セルモータ80は、エンジン10を始動させるための電動機である。セルモータ80は、バッテリ60から供給される電力により駆動される。
 吸収馬力検出手段110は、第一油圧ポンプ21及び第二油圧ポンプ22による吸収馬力Lpを検出するためのものである。ここで、吸収馬力Lpとは、第一油圧ポンプ21及び第二油圧ポンプ22が駆動するために必要な馬力をいう。吸収馬力検出手段110は、第一圧力検出手段111、第二圧力検出手段112、第一容積検出手段113、第二容積検出手段114、及びポンプ回転数検出手段115を具備する。
 第一圧力検出手段111は、本発明に係る圧力検出手段の実施の一形態であり、第一油圧ポンプ21の吐出圧P1を検出するセンサである。第一圧力検出手段111は油路25の中途部に接続され、当該油路25内の圧力を検出することにより、ひいては第一油圧ポンプ21の吐出圧P1を検出することができる。
 第二圧力検出手段112は、本発明に係る圧力検出手段の実施の一形態であり、第二油圧ポンプ22の吐出圧P2を検出するセンサである。第二圧力検出手段112は油路26の中途部に接続され、当該油路26内の圧力を検出することで、ひいては第二油圧ポンプ22の吐出圧P2を検出することができる。
 第一容積検出手段113は、本発明に係る容積検出手段の実施の一形態であり、第一油圧ポンプ21の押しのけ容積q1を検出するためのものである。第一容積検出手段113は、第一油圧ポンプ21の可動斜板21aの傾斜角度を検出するセンサである。当該可動斜板21aの傾斜角度に基づいて、後述するメインコントローラ100により第一油圧ポンプ21の押しのけ容積q1が算出される。
 第二容積検出手段114は、本発明に係る容積検出手段の実施の一形態であり、第二油圧ポンプ22の押しのけ容積q2を検出するためのものである。第二容積検出手段114は、第二油圧ポンプ22の可動斜板22aの傾斜角度を検出するセンサである。当該可動斜板22aの傾斜角度に基づいて、後述するメインコントローラ100により第二油圧ポンプ22の押しのけ容積q2が算出される。
 ポンプ回転数検出手段115は、第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npを検出するセンサである。ポンプ回転数検出手段115は第二油圧ポンプ22の入力軸24に固設されるギヤ24aの回転数を検出することで、ひいては第二油圧ポンプ22の回転数Npを検出することができる。また、第二油圧ポンプ22及び第一油圧ポンプ21の回転数Npは同一であるため、ポンプ回転数検出手段115は、第二油圧ポンプ22の回転数Npを検出することで、同時に第一油圧ポンプ21の回転数Npも検出することになる。
 操作状態検出手段116は、操作手段35が操作されているか否かを検出するセンサである。操作状態検出手段116はポテンショメータ等で構成され、オペレータにより操作手段35が操作されたことを検出することができる。
 なお、本実施形態に係る操作状態検出手段116は、ポテンショメータ等により操作手段35が操作されたことを直接検出するものとしたが、本発明はこれに限るものではない。すなわち、操作手段35が油圧式である場合、コントロールバルブ30を動作させるパイロット圧を圧力スイッチ等で検出することにより、操作手段35が操作されていることを検出する構成であっても良い。
 上記の如く操作手段35が油圧式である場合においては、後述するアイドルストップ制御によりエンジン10が停止された際においても当該油圧式の操作手段に作動油を供給できるように、当該油圧式の操作手段に作動油を供給するための油圧ポンプ、および当該油圧ポンプを駆動するための電動機を別途設けるものとする。
 充電状態検出手段117は、バッテリ60の充電量(残量)Cを検出するものである。充電状態検出手段117は、バッテリ60の充電量(残量)Cを示す情報(例えば電圧、バッテリ液の比重等)を検出することができる。
 エンジン回転数設定手段121は、エンジン10の回転数を設定するものである。エンジン回転数設定手段121は、ダイヤルスイッチにより構成され、オペレータによって操作可能とされる。エンジン回転数設定手段121の操作量は、当該エンジン回転数設定手段121に設けられるセンサ(不図示)により検出することができる。
 なお、エンジン回転数設定手段121はダイヤルスイッチに限るものではなく、レバー、ペダル等であっても良い。
 アイドルストップ選択手段122は、後述するアイドルストップ制御を行うか否かを選択するためのものである。アイドルストップ選択手段122は、ダイヤルスイッチにより構成され、オペレータによって操作可能とされる。アイドルストップ選択手段122は、アイドルストップ制御を行わない「OFF」ポジション、アイドルストップ制御を行う「ON」ポジション、又はエンジン10を停止させ、モータジェネレータ50のみを駆動させる「モータ駆動」ポジションに切り換えることができる。アイドルストップ選択手段122のポジションは、当該アイドルストップ選択手段122に設けられるセンサ(不図示)により検出することができる。
 エンジンコントローラユニット(以下、単に「ECU」と記す)101は、本発明に係る制御装置の実施の一形態であり、種々の信号及びプログラムに基づいて、エンジン10の動作を制御するためのものである。ECU101は、具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 ECU101は、エンジン10の回転数Neを検出するエンジン回転数検出手段(不図示)と接続され、当該エンジン回転数検出手段によるエンジン10の回転数Neの検出信号を取得することが可能である。
 ECU101は、セルモータ80と接続され、当該セルモータ80に制御信号を送信し、当該セルモータ80によりエンジン10のクランク軸を回転させることで当該エンジン10を始動させることが可能である。
 ECU101は、エンジン10の燃料噴射量を調節するための調速装置(不図示)と接続され、当該調速装置に制御信号を送信し、エンジン10の燃料噴射量を調節することで回転数Neやトルク特性を変更したり、エンジン10の燃料供給を停止することで当該エンジン10を停止したりすることが可能である。
 メインコントローラ100は、本発明に係る制御装置の実施の一形態であり、種々の信号及びプログラムに基づいて、クラッチ15、インバータ70、及びECU101に制御信号を送信するものである。メインコントローラ100は、具体的にはCPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 メインコントローラ100は、第一圧力検出手段111に接続され、第一圧力検出手段111による第一油圧ポンプ21の吐出圧P1の検出信号を取得することが可能である。
 メインコントローラ100は、第二圧力検出手段112に接続され、第二圧力検出手段112による第二油圧ポンプ22の吐出圧P2の検出信号を取得することが可能である。
 メインコントローラ100は、第一容積検出手段113に接続され、第一容積検出手段113による第一油圧ポンプ21の可動斜板21aの傾斜角度の検出信号を取得することが可能である。メインコントローラ100には、可動斜板21aの傾斜角度と第一油圧ポンプ21の押しのけ容積q1との関係を示すマップが記憶されている。当該メインコントローラ100は、当該可動斜板21aの傾斜角度の検出信号に基づいて、第一油圧ポンプ21の押しのけ容積q1を算出する。
 メインコントローラ100は、第二容積検出手段114に接続され、第二容積検出手段114による第二油圧ポンプ22の可動斜板22aの傾斜角度の検出信号を取得することが可能である。メインコントローラ100には、可動斜板22aの傾斜角度と第二油圧ポンプ22の押しのけ容積q2との関係を示すマップが記憶されている。当該メインコントローラ100は、当該可動斜板22aの傾斜角度の検出信号に基づいて、第二油圧ポンプ22の押しのけ容積q2を算出する。
 メインコントローラ100は、ポンプ回転数検出手段115に接続され、ポンプ回転数検出手段115による第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npの検出信号を取得することが可能である。
 メインコントローラ100は、操作状態検出手段116に接続され、操作状態検出手段116による操作手段35が操作された旨の検出信号を取得することが可能である。
 メインコントローラ100は、充電状態検出手段117に接続され、充電状態検出手段117によるバッテリ60の充電量(残量)Cの検出信号を取得することが可能である。
 メインコントローラ100は、ECU101と接続され、当該ECU101(より詳細には、ECU101に接続されるエンジン回転数検出手段)によるエンジン10の回転数Neの検出信号を取得することが可能である。また、メインコントローラ100は、ECU101に、エンジン10を始動又は停止させる旨、及びエンジン10の目標回転数を指示する旨の制御信号を送信することが可能である。
 メインコントローラ100は、エンジン回転数設定手段121に設けられるセンサに接続され、当該センサによるエンジン回転数設定手段121の操作量の検出信号を取得することが可能である。
 メインコントローラ100は、アイドルストップ選択手段122に設けられるセンサに接続され、当該センサによるアイドルストップ選択手段122のポジションの検出信号を取得することが可能である。
 メインコントローラ100は、クラッチ15に接続され、当該クラッチ15に、当該クラッチ15を断接する旨の制御信号を送信することが可能である。
 メインコントローラ100は、インバータ70に接続され、当該インバータ70に、インバータ回路又はコンバータ回路のうちいずれか一方を選択する旨、又はいずれも選択しない旨の制御信号を送信することが可能である。
 以下では、上述の如く構成された動力伝達装置1の基本的な動作態様について説明する。
 図示せぬキースイッチ等が操作され、メインコントローラ100にエンジン10を始動する旨の信号が送信されると、メインコントローラ100は、ECU101にエンジン10を始動させる旨の制御信号を送信する。当該制御信号を受信したECU101は、セルモータ80に制御信号を送信し、エンジン10を始動させる。
 また、図示せぬキースイッチ等が操作され、メインコントローラ100にエンジン10を停止する旨の信号が送信されると、メインコントローラ100は、ECU101にエンジン10を停止させる旨の制御信号を送信する。当該制御信号を受信したECU101は、前記調速装置に制御信号を送信し、エンジン10を停止させる。
 エンジン10が始動した場合、メインコントローラ100は、エンジン回転数設定手段121の操作量に基づいて、エンジン10の目標回転数を決定する。メインコントローラ100は、当該エンジン10の目標回転数を制御信号としてECU101に送信する。当該制御信号を受信したECU101は、前記調速装置に制御信号を送信し、エンジン10の回転数Neが目標回転数になるように、当該エンジン10の回転数Neを調節する。
 エンジン10が始動(駆動)し、クラッチ15が接続された場合、当該エンジン10の動力は、出力軸11、クラッチ15、及び入力軸23を介して第一油圧ポンプ21に伝達される。また、エンジン10からの動力は、ギヤ23a、ギヤ24a及び入力軸24を介して第二油圧ポンプ22にも伝達される。これによって、第一油圧ポンプ21及び第二油圧ポンプ22が同一の回転数Npで回転する。
 第一油圧ポンプ21及び第二油圧ポンプ22が駆動(回転)されると、当該第一油圧ポンプ21及び第二油圧ポンプ22から作動油が吐出される。当該作動油は、油路25及び油路26を介してコントロールバルブ30に供給される。コントロールバルブ30は操作手段35からの操作信号に基づいて、オペレータの所望の作業用油圧アクチュエータ40に作動油を供給する。
 一方、メインコントローラ100によってインバータ回路を選択する旨の制御信号がインバータ70に送信された場合、モータジェネレータ50は駆動状態に切り換えられる。この場合、モータジェネレータ50はバッテリ60の電力により入出力軸51を回転駆動させ、動力を発生させる。当該動力は、入出力軸51、ギヤ51a、ギヤ23a、及び入力軸23を介して第一油圧ポンプ21に伝達されるとともに、ギヤ24a、及び入力軸24を介して第二油圧ポンプ22に伝達される。すなわちこの場合、エンジン10からの動力に加えてモータジェネレータ50からの動力により、第一油圧ポンプ21及び第二油圧ポンプ22を駆動させることができる。
 また、メインコントローラ100によってコンバータ回路を選択する旨の制御信号がインバータ70に送信された場合、モータジェネレータ50は発電状態に切り換えられる。この場合、モータジェネレータ50は、ギヤ51a、及び入出力軸51を介して伝達されるエンジン10からの動力により回転駆動され、電力を発生させる。当該電力は、インバータ70を介してバッテリ60に蓄えられる。すなわちこの場合、エンジン10からの動力により、第一油圧ポンプ21及び第二油圧ポンプ22が駆動されるとともに、モータジェネレータ50が回転駆動されてバッテリ60に電力が蓄えられる。
 また、メインコントローラ100によってインバータ回路及びコンバータ回路のいずれも選択しない旨の制御信号がインバータ70に送信された場合、モータジェネレータ50は中立状態に切り換えられる。この場合、モータジェネレータ50は、ギヤ51a、及び入出力軸51を介して伝達されるエンジン10からの動力により回転駆動されるものの、バッテリ60の充電は行わない。このため、モータジェネレータ50の入出力軸51の回転抵抗は、発電状態に比べて小さい。
 以下では、図2から図4までを用いて、動力伝達装置1の制御態様について詳細に説明する。
 まず、図2を用いて、エンジン10の制御態様について説明する。
 図2は、エンジン10のトルク特性線、及びエンジン10の等燃費曲線を示したものである。図2の横軸はエンジン10の回転数Neを、縦軸はエンジン10のトルクTrを、それぞれ示している。また、図2中の太い実線Xはエンジン10の本来のトルク特性線を、太い破線Yはエンジン10の本来のトルク特性線Xを変更した後のトルク特性線を、細い実線Zはエンジン10の等燃費曲線を、それぞれ示している。
 エンジン10の本来のトルク特性線は、太い実線Xに示すものである。トルク特性線とは、エンジン回転数ごとに設定された最高トルク点を結んだものである。トルク特性線X上には、エンジン10の定格出力(定格点)Pxが含まれ、当該定格出力Pxにおいて、エンジン10の出力は最大となる。
 エンジン10の等燃費曲線は細い実線Zに示すものである。等燃費曲線とは、エンジン10の出力あたりの燃料消費量(以下、単に「燃料消費量」と記す)(g/kWh)を各回転数、及び各負荷ごとに計測し、同じ燃料消費量の点を結んだものである。本実施形態においては、具体例として、図2中の等燃費曲線Z1(図中の等燃費曲線Zのうち、一番内側に位置する等燃費曲線)における燃料消費量を基準(100%)として、燃料消費量が2%増加するごとに等燃費曲線Zを示している。
 ここで、本実施形態においては、燃料消費量がZ1を基準として102%以下である領域(等燃費曲線Z2の内側の領域)を「低燃費領域」と定義する。低燃費領域とは、図2において、エンジン10の燃料消費量が所定の値未満である(エンジン10の燃料消費量が比較的少ない)領域を言う。ここでいう「所定の値」とは、動力伝達装置1を使用するオペレータが任意に設定することができる値であり、当該動力伝達装置1を適用する車両や装置等に応じて適宜設定することができる。例えば、エンジン10の理想的な燃料消費量(燃料消費量が最小となる値)を基準(100%)として、前記所定の値を任意に(例えば、理想的な燃料消費量に対して105%の値等に)設定することができる。
 エンジン10の本来のトルク特性線Xを変更した後のトルク特性線は破線Yで示すものである。ECU101は、エンジン10の定格出力(定格点)Pyが前述の低燃費領域に含まれるように、エンジン10の燃料噴射量を調節することができる。これによって、エンジン10の本来のトルク特性線Xを、トルク特性線Yへと変更することができる。なお、トルク特性線Yにおける定格出力Pyは、トルク特性線Xにおける定格出力Pxよりも小さい値に設定される。
 以上の如く、本実施形態に係るエンジン10は、ECU101によってトルク特性線Xまたはトルク特性線Yのいずれか一方に設定された状態で運転されるものとする。
 次に、図2から図4までを用いて、モータジェネレータ50の制御態様について説明する。
 なお、以下に説明する制御の開始前(初期状態)においては、エンジン10はトルク特性線Yに設定された状態で運転されているものとする。
 図3のステップS101において、メインコントローラ100は、吐出圧P1、吐出圧P2、押しのけ容積q1、押しのけ容積q2、及び回転数Npに基づいて、第一油圧ポンプ21及び第二油圧ポンプ22による吸収馬力Lpを算出する。吸収馬力Lpは、Lp=K×((P1×q1×Np)+(P2×q2×Np))の式(Kは定数)を用いて算出される。
 メインコントローラ100は、上記処理を行った後、ステップS102に移行する。
 ステップS102において、メインコントローラ100は、吸収馬力Lpが予め設定される切換用出力閾値Dp1未満であるか否かを判定する。
 ここで、本実施形態における切換用出力閾値Dp1は、図2に示すトルク特性線Yの定格出力Pyと同一の値に設定されるものとする。すなわち、切換用出力閾値Dp1は、低燃費領域に含まれる値に設定されることになる。
 ステップS102において、メインコントローラ100は、吸収馬力Lpが切換用出力閾値Dp1未満であると判定した場合、ステップS103に移行する。
 メインコントローラ100は、吸収馬力Lpが切換用出力閾値Dp1未満でない、すなわち切換用出力閾値Dp1以上であると判定した場合、ステップS104に移行する。
 ステップS103において、メインコントローラ100は、充電量Cが予め設定される過充電閾値Dc1未満であるか否かを判定する。
 ここで、過充電閾値Dc1は、任意に設定される値であり、バッテリ60が過剰に充電されることを防止することが可能な値に設定される。
 ステップS103において、メインコントローラ100は、充電量Cが過充電閾値Dc1未満であると判定した場合、ステップS105に移行する。
 メインコントローラ100は、充電量Cが過充電閾値Dc1未満でない、すなわち過充電閾値Dc1以上であると判定した場合、ステップS106に移行する。
 ステップS105において、メインコントローラ100は、ECU101に制御信号を送信し、当該ECU101によってエンジン10のトルク特性線をY(図2参照)に設定(エンジン10のトルク特性線が元々Yである場合は、トルク特性線Yのまま維持)する。
 メインコントローラ100は、上記処理を行った後、ステップS109に移行する。
 ステップS109において、メインコントローラ100は、インバータ70にコンバータ回路を選択する旨の制御信号を送信し、モータジェネレータ50を発電状態に切り換える。
 ステップS106において、メインコントローラ100は、ECU101に制御信号を送信し、当該ECU101によってエンジン10のトルク特性線をY(図2参照)に設定(エンジン10のトルク特性線が元々Yである場合は、トルク特性線Yのまま維持)する。
 メインコントローラ100は、上記処理を行った後、ステップS110に移行する。
 ステップS110において、メインコントローラ100は、インバータ70にコンバータ回路及びインバータ回路のいずれも選択しない旨の制御信号を送信し、モータジェネレータ50を中立状態に切り換える。
 ステップS104において、メインコントローラ100は、充電量Cが予め設定される過放電閾値Dc2未満であるか否かを判定する。
 ここで、過放電閾値Dc2は、任意に設定される値であり、過充電閾値Dc1よりも小さい値であり、かつバッテリ60の過度の放電を防止することが可能な値に設定される。
 ステップS104において、メインコントローラ100は、充電量Cが過放電閾値Dc2未満であると判定した場合、ステップS107に移行する。
 メインコントローラ100は、充電量Cが過放電閾値Dc2未満でない、すなわち過放電閾値Dc2以上であると判定した場合、ステップS108に移行する。
 ステップS107において、メインコントローラ100は、ECU101に制御信号を送信し、当該ECU101によってエンジン10のトルク特性線をX(図2参照)に設定(エンジン10のトルク特性線が元々Xである場合は、トルク特性線Xのまま維持)する。
 メインコントローラ100は、上記処理を行った後、ステップS111に移行する。
 ステップS111において、メインコントローラ100は、インバータ70にコンバータ回路及びインバータ回路のいずれも選択しない旨の制御信号を送信し、モータジェネレータ50を中立状態に切り換える。
 ステップS108において、メインコントローラ100は、ECU101に制御信号を送信し、当該ECU101によってエンジン10のトルク特性線をY(図2参照)に設定(エンジン10のトルク特性線が元々Yである場合は、トルク特性線Yのまま維持)する。
 メインコントローラ100は、上記処理を行った後、ステップS112に移行する。
 ステップS112において、メインコントローラ100は、インバータ70にインバータ回路を選択する旨の制御信号を送信し、モータジェネレータ50を駆動状態に切り換える。
 以下では、上記ステップS109からステップS112までの詳細について、図2から図4までを用いて説明する。
 図4は、本実施形態に係る動力伝達装置1を油圧ショベルに適用した場合における、第一油圧ポンプ21及び第二油圧ポンプ22の吸収馬力Lpの変化(変動)の様子を示したものである。図4の横軸は当該油圧ショベルによる作業時間tを、縦軸は吸収馬力Lpの変化を、それぞれ示している。
 図4に示すように、動力伝達装置1を適用した油圧ショベルにより作業を行う場合、第一油圧ポンプ21及び第二油圧ポンプ22の吸収馬力Lpは、作業時間tの経過(作業内容の変化)とともに大きく変動する。
 例えば、油圧ショベルによって地面を掘削してダンプに積み込む「掘削積み込み作業」、油圧ショベルを走行させながらドーザーで土を押しのける「走行排土作業」等のいわゆる重負荷作業を行う場合、図4の領域Tmの如く吸収馬力Lpは大きくなる。また、油圧ショベルによって地面に盛られた土をすき取る「すき取り作業」、荷を吊って移動させる「クレーン作業」等のいわゆる軽負荷作業を行う場合、図4の領域Tuの如く吸収馬力Lpは小さくなる。
 図4には、第一油圧ポンプ21及び第二油圧ポンプ22の吸収馬力Lpと併せて、切換用出力閾値Dp1(定格出力Py)、及び定格出力Pxの値も示している。
 本来、上述のエンジン10及びモータジェネレータ50の制御を行わない場合、すなわちエンジン10のみで第一油圧ポンプ21及び第二油圧ポンプ22を常時駆動する場合(第一油圧ポンプ21及び第二油圧ポンプ22以外の負荷を考慮しない場合)、エンジン10の出力は吸収馬力Lpと略同一となる。この場合、油圧ショベルの作業時におけるエンジン10のエンジンストールの発生を防止するため、定格出力Pxは、吸収馬力Lpの最大値よりも高い値になるように設定(エンジン10のトルク特性線をXに設定)される。
 しかし、本実施形態においては、前述の通り、上述の制御の開始前(初期状態)においては、エンジン10のトルク特性線Xをトルク特性線Yに変更することで、当該エンジン10の定格出力Pyは定格出力Pxよりも小さい値に設定される(図2参照)。この場合の定格出力Pyは、図4に示すように、吸収馬力Lpの最大値よりも低い値になるように設定される。
 図3のステップS102において、吸収馬力Lpが切換用出力閾値Dp1未満であると判定された場合、すなわち図4における領域Tuにおいては、エンジン10のトルク特性線Yにおける定格出力Pyに対して吸収馬力Lpが小さく、エンジン10の出力に余裕がある状態である。
 この状態で、ステップS103において、充電量Cが過充電閾値Dc1未満であると判定された場合、すなわちバッテリ60の充電量Cが少ない(充電すべき)場合、ステップS109において、モータジェネレータ50が発電状態に切り換えられる。
 これによって、エンジン10の出力の余裕分を用いて、モータジェネレータ50の入出力軸51が回転駆動され、当該モータジェネレータ50により発生された電力をバッテリ60に充電することができる。この際、エンジン10は、第一油圧ポンプ21及び第二油圧ポンプ22に加えてモータジェネレータ50も駆動するため、当該エンジン10の出力は吸収馬力Lpよりも大きい値(切換用出力閾値Dp1(定格出力Py)より小さい値)になる。
 図3のステップS103において、充電量Cが過充電閾値Dc1以上であると判定された場合、すなわちバッテリ60の充電量Cが十分多い(充電する必要がない)場合、ステップS110において、モータジェネレータ50が中立状態に切り換えられる。
 これによって、エンジン10の出力に余裕がある場合であっても、モータジェネレータ50による発電を行うことはなく、バッテリ60が過剰に充電されることを防止することができる。
 図3のステップS102において、吸収馬力Lpが切換用出力閾値Dp1以上であると判定された場合、すなわち図4における領域Tmにおいては、エンジン10のトルク特性線Yにおける定格出力Pyに対して吸収馬力Lpが大きく、エンジン10の出力が不足する状態である。
 この状態で、ステップS104において、充電量Cが過放電閾値Dc2以上であると判定された場合、すなわちバッテリ60の充電量Cが多い(モータジェネレータ50を駆動するのに十分な充電量Cが蓄えられている)場合、ステップS112において、モータジェネレータ50が駆動状態に切り換えられる。
 これによって、モータジェネレータ50の入出力軸51がバッテリ60の電力により回転駆動され、第一油圧ポンプ21及び第二油圧ポンプ22は、エンジン10に加えて当該モータジェネレータ50により駆動される。すなわち、モータジェネレータ50によって、第一油圧ポンプ21及び第二油圧ポンプ22の駆動が補助される。このようにして、吸収馬力Lpに対してエンジン10の出力が不足する場合は、モータジェネレータ50が当該不足分の出力を補うため、当該エンジン10の出力は切換用出力閾値Dp1(定格出力Py)と略同一の値になる。
 図3のステップS104において、充電量Cが過放電閾値Dc2未満であると判定された場合、すなわちバッテリ60の充電量Cが少ない(モータジェネレータ50を駆動するのに十分な充電量Cが蓄えられていない)場合、ステップS107において、エンジン10のトルク特性線がYからXに変更された後、ステップS111において、モータジェネレータ50が中立状態に切り換えられる。
 これによって、エンジン10の定格出力Pxは吸収馬力Lpの最大値よりも高い値(図4参照)になるように設定されるため、エンジン10のエンジンストールの発生を防止することができ、ひいては作業性の低下を防止することができる。
 上述の如く、エンジン10及びモータジェネレータ50を制御することによって、領域Tuにおけるエンジン10の出力を定格出力Pyに近い値に、領域Tmにおけるエンジン10の出力を定格出力Pyと略同一の値に、それぞれ制御することができる。これによって、第一油圧ポンプ21及び第二油圧ポンプ22の吸収馬力Lpが図4に示す如く変動する場合であっても、エンジン10の出力を平準化(エンジン10の出力の変動幅を小さく)することができる。
 また、エンジン10のトルク特性線がYに設定されたままでは、吸収馬力Lpに対して当該エンジン10の出力が不足する場合には、エンジン10のトルク特性線をXに変更し、当該エンジン10のエンジンストールの発生を防止することができる。
 以上の如く、本実施形態に係る動力伝達装置1は、バッテリ60と、バッテリ60からの電力の供給により入出力軸51を回転する駆動状態、又はエンジン10からの動力により入出力軸51を回転させることで発電し、バッテリ60を充電する発電状態に切換可能なモータジェネレータ50と、エンジン10及び/又はモータジェネレータ50によって駆動される少なくとも1つの負荷(第一油圧ポンプ21及び第二油圧ポンプ22)と、モータジェネレータ50を、前記発電状態、又は前記駆動状態のいずれかに切り換える切換手段(インバータ70)と、バッテリ60の充電量Cを検出する充電状態検出手段117と、前記負荷の吸収馬力Lpを検出する吸収馬力検出手段110と、吸収馬力検出手段110により検出される吸収馬力Lp及び充電状態検出手段117により検出されるバッテリ60の充電量Cに基づいて、インバータ70によりモータジェネレータ50を前記発電状態、又は前記駆動状態のいずれかに切り換える制御装置(メインコントローラ100)と、を具備するものである。
 このように構成することにより、負荷の吸収馬力Lp及びバッテリ60の充電量Cに応じてモータジェネレータ50の作動状態を切り換えることができる。
 例えば、負荷の吸収馬力Lpが大きい場合にはモータジェネレータ50で当該負荷の駆動を補助したり、負荷の吸収馬力Lpが小さい場合にはエンジン10の動力でバッテリ60を充電したりできる。
 これによって、燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることができる。
 また、メインコントローラ100は、吸収馬力検出手段110により検出される吸収馬力Lpがエンジン10の最大出力(定格出力)Pxよりも低い値に設定される切換用出力閾値Dp1未満であり、かつ、充電状態検出手段117により検出されるバッテリ60の充電量Cが過充電閾値Dc1未満である場合、インバータ70によりモータジェネレータ50を前記発電状態に切り換え、吸収馬力検出手段110により検出される吸収馬力Lpが切換用出力閾値Dp1以上である場合、インバータ70によりモータジェネレータ50を前記駆動状態に切り換えるものである。
 このように構成することにより、負荷の吸収馬力Lpが切換用出力閾値Dp1以上(いわゆる重負荷作業時)である場合、モータジェネレータ50を駆動状態に切り換え、エンジン10及びモータジェネレータ50で負荷を駆動することができる。
 これによって、エンジン10のトルク特性線Xを、定格出力Pxを減少させる方向(トルク特性線Y)へ変更することができ、ひいては燃費の向上、騒音の低下、及びヒートバランス性能の向上を図ることができる。
 また、負荷の吸収馬力Lpが切換用出力閾値Dp1未満(いわゆる軽負荷作業時、又は非作業時)で、かつバッテリ60の充電量Cが過充電閾値Dc1未満である場合、モータジェネレータ50を発電状態に切り換え、出力に余裕があるエンジン10の動力でバッテリ60を充電することができる。
 これによって、エンジン10の出力に余裕がある場合にバッテリ60を充電することができ、エネルギー効率の向上を図ることができる。また、バッテリ60の充電量が過充電閾値Dc1未満である場合にのみ充電を行うことで、当該バッテリ60が過剰に充電されることを防止することができる。
 さらに、モータジェネレータ50の駆動状態及び発電状態におけるエンジン10の出力の変動幅が小さくなり、当該エンジン10の出力の変動に伴う燃費の悪化を抑制することができる。
 また、モータジェネレータ50は、供給される電力による入出力軸51の回転もバッテリ60の充電も行わない中立状態に切り換えることが可能であり、メインコントローラ100は、エンジン10の定格出力Pyを上昇させることが可能であり、吸収馬力検出手段110により検出される吸収馬力Lpが切換用出力閾値Dp1以上であっても、バッテリ60の充電量Cが過放電閾値Dc2未満である場合、エンジン10の定格出力PyをPxまで上昇させるとともに、モータジェネレータ50を中立状態に切り換えるものである。
 このように構成することにより、バッテリ60の充電量Cが過放電閾値Dc2未満である場合、モータジェネレータ50の駆動を停止することで、当該バッテリ60の過度の放電を防止することができるとともに、エンジン10のエンジンストールの発生を防止し、ひいては作業性の低下を防止することができる。
 また、前記負荷は、作動油を吐出することにより作業用油圧アクチュエータ40を駆動させる少なくとも1つの油圧ポンプ(第一油圧ポンプ21及び第二油圧ポンプ22)であり、吸収馬力検出手段110は、前記油圧ポンプの吐出圧(吐出圧P1及び吐出圧P2)を検出する圧力検出手段(第一圧力検出手段111及び第二圧力検出手段112)と、前記油圧ポンプの押しのけ容積(押しのけ容積q1及び押しのけ容積q2)を検出する容積検出手段(第一容積検出手段113及び第二容積検出手段114)と、前記油圧ポンプの回転数Npを検出するポンプ回転数検出手段115と、を具備し、メインコントローラ100は、前記圧力検出手段、前記容積検出手段、及び前記ポンプ回転数検出手段115による検出値に基づいて前記油圧ポンプの吸収馬力Lpを算出するものである。
 このように構成することにより、前記油圧ポンプを用いて作業用油圧アクチュエータ40を駆動させる作業車両等に適用される動力伝達装置1において、前記油圧ポンプの吸収馬力Lp及びバッテリ60の充電量Cに応じてモータジェネレータ50の作動状態を切り換えることができる。
 これによって、燃費の向上、騒音の低下、及びヒートバランス性能の向上を図るとともに、エネルギー効率の向上を図ることができる。
 また、切換用出力閾値Dp1は、予め設定される低燃費領域に含まれる値に設定されるものである。
 このように構成することにより、負荷の吸収馬力Lpが切換用出力閾値Dp1以上に増加した場合であっても、エンジン10の出力を低燃費領域の近傍に制限することができる。
 これによって、さらにエンジン10の燃費の向上を図ることができる。
 なお、本実施形態においては、負荷として第一油圧ポンプ21及び第二油圧ポンプ22を用いるものとしたが、本発明はこれに限るものではない。すなわち、負荷としては、その他のエンジン10の動力により駆動される種々のアクチュエータを用いることが可能である。
 また、本実施形態においては、吸収馬力検出手段110として第一圧力検出手段111、第二圧力検出手段112、第一容積検出手段113、第二容積検出手段114、及びポンプ回転数検出手段115を用いるものとしたが、本発明はこれに限るものではない。すなわち、吸収馬力検出手段110としては、動力伝達装置1が具備する負荷の吸収馬力を検出することができるもの(種々のセンサ等)を用いることが可能である。
 以下では、図5及び図6を用いて、動力伝達装置1のアイドルストップ制御に関する動作態様について説明する。アイドルストップ制御とは、所定の場合に、自動的にエンジン10の始動及び停止、モータジェネレータ50の作動状態の切り換え、並びにクラッチ15の断接を行う制御である。
 アイドルストップ選択手段122が「ON」ポジションに切り換えられている場合、メインコントローラ100はアイドルストップ制御を行う。
 以下では、図5及び図6を用いてアイドルストップ制御について詳細に説明する。
 図5のステップS121において、メインコントローラ100は、操作手段35が操作されているか否かを判定する。
 メインコントローラ100は、操作手段35が操作されていないと判定した場合、ステップS122に移行する。
 メインコントローラ100は、操作手段35が操作されていると判定した場合、ステップS121の処理を再度行う。
 ステップS122において、メインコントローラ100は、非作業経過時間tiのカウントを開始する。非作業経過時間tiは、操作手段35を継続して操作していない時間、すなわち、作業用油圧アクチュエータ40を継続して駆動していない(作業を行っていない)時間である。
 メインコントローラ100は、上記処理を行った後、ステップS123に移行する。
 ステップS123において、メインコントローラ100は、操作手段35が操作されているか否かを判定する。
 メインコントローラ100は、操作手段35が操作されていないと判定した場合、ステップS124に移行する。
 メインコントローラ100は、操作手段35が操作されていると判定した場合、ステップS121の処理を再度行う。
 ステップS124において、メインコントローラ100は、非作業経過時間tiが、予め設定される非作業判定閾値t1以上であるか否かを判定する。
 ここで、非作業判定閾値t1は、任意に設定される値であり、後述するステップS125においてエンジン10を停止させるべきと認められる非作業経過時間tiと同一の値に設定される。すなわち、非作業判定閾値t1は、断続的に作業を行う場合の作業と作業の合間の時間よりは長く、かつ、できるだけ短い時間に設定されることが、エンジン10の燃料の無駄な消費を抑制する上で望ましい。
 ステップS124において、メインコントローラ100は、非作業経過時間tiが非作業判定閾値t1以上であると判定した場合、ステップS125に移行する。
 メインコントローラ100は、非作業経過時間tiが非作業判定閾値t1以上でない、すなわち非作業判定閾値t1未満であると判定した場合、ステップS123の処理を再度行う。
 ステップS125において、メインコントローラ100は、ECU101にエンジン10を停止させる旨の制御信号を送信する。当該制御信号を受信したECU101は、エンジン10を停止させる。
 また、メインコントローラ100は、クラッチ15に当該クラッチ15を切断する旨の制御信号を送信する。当該制御信号を受信したクラッチ15は切断され、出力軸11と入力軸23との間の動力伝達が遮断される。
 さらに、メインコントローラ100は、インバータ70にコンバータ回路及びインバータ回路のいずれも選択しない旨の制御信号を送信し、モータジェネレータ50を中立状態に切り換える。
 メインコントローラ100は、上記処理を行った後、ステップS126(図6参照)に移行する。
 図6のステップS126において、メインコントローラ100は、操作手段35が操作されているか否かを判定する。
 メインコントローラ100は、操作手段35が操作されていると判定した場合、ステップS127に移行する。
 メインコントローラ100は、操作手段35が操作されていないと判定した場合、ステップS126の処理を再度行う。
 ステップS127において、メインコントローラ100は、インバータ70にインバータ回路を選択する旨の制御信号を送信し、モータジェネレータ50を駆動状態に切り換える。
 この場合、メインコントローラ100は、モータジェネレータ50により駆動される第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npが、ステップS125においてエンジン10を停止する際の当該エンジン10の目標回転数と一致するように、モータジェネレータ50の回転数を制御する。ここで、本実施形態においては、クラッチ15が接続されている場合、エンジン10の回転数Neは第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npと同一である。つまり、ステップS127においてモータジェネレータ50により駆動される第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npは、ステップS125においてエンジン10を停止する際の回転数Npと同一回転数になるように制御されることになる。
 なお、本実施形態において、第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npは、ポンプ回転数検出手段115により検出するものとしたが、本発明はこれに限るものではない。すなわち、インバータ70の周波数に基づいてモータジェネレータ50の回転数を検出することにより、当該モータジェネレータ50に連結された第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npを検出することも可能である。
 メインコントローラ100は、上記処理(ステップS127)を行った後、ステップS128に移行する。
 ステップS128において、メインコントローラ100は、吐出圧P1、吐出圧P2、押しのけ容積q1、押しのけ容積q2、及び回転数Npに基づいて、第一油圧ポンプ21及び第二油圧ポンプ22による吸収馬力Lpを算出する。
 メインコントローラ100は、上記処理を行った後、ステップS129に移行する。
 ステップS129において、メインコントローラ100は、吸収馬力Lpが予め設定される始動用出力閾値Dp2以上であるか否かを判定する。
 ここで、始動用出力閾値Dp2は、任意に設定される値であり、後述するステップS130においてエンジン10を始動させるべきと認められる吸収馬力Lpと同一の値に設定される。すなわち、始動用出力閾値Dp2は、大きな出力(吸収馬力Lp)が不要であり、低速トルク及び円滑な回転が重視される吸収馬力Lpの最大値と同一の値に設定されることが、エンジン10の燃料の無駄な消費を抑制する上で望ましい。
 ステップS129において、メインコントローラ100は、吸収馬力Lpが始動用出力閾値Dp2以上であると判定した場合、ステップS130に移行する。
 メインコントローラ100は、吸収馬力Lpが始動用出力閾値Dp2以上でない、すなわち始動用出力閾値Dp2未満であると判定した場合、ステップS129の処理を再度行う。
 ステップS130において、メインコントローラ100は、ECU101にエンジン10を始動させる旨の制御信号を送信する。当該制御信号を受信したECU101は、エンジン10を始動させる。
 メインコントローラ100は、上記処理を行った後、ステップS131に移行する。
 ステップS131において、メインコントローラ100は、エンジン10の回転数Neが第一油圧ポンプ21及び第二油圧ポンプ22の回転数Np以上であるか否かを判定する。
 メインコントローラ100は、回転数Neが回転数Np以上であると判定した場合、ステップS132に移行する。
 メインコントローラ100は、回転数Neが回転数Np以上でない、すなわち回転数Np未満であると判定した場合、ステップS131の処理を再度行う。
 ステップS132において、メインコントローラ100は、クラッチ15に当該クラッチ15を接続する旨の制御信号を送信する。当該制御信号を受信したクラッチ15は接続され、出力軸11と入力軸23との間の動力伝達が可能となる。
 また、メインコントローラ100は、インバータ70にコンバータ回路及びインバータ回路のいずれも選択しない旨の制御信号を送信し、モータジェネレータ50を中立状態に切り換える。
 以下では、上記ステップS125、ステップS127、ステップS130、及びステップS132の詳細について説明する。
 図5のステップS124において、非作業経過時間tiが非作業判定閾値t1以上であると判定された場合、オペレータによる作業が中断されたと推定される。
 この場合、ステップS125においてエンジン10を停止することによって、無駄な燃料の消費を抑制することができる。また、モータジェネレータ50を中立状態に切り換えることによって、バッテリ60に蓄えられた電力の無駄な消費を抑制することができる。
 図6のステップS126において、操作手段35が操作されたと判定された場合、オペレータによる作業が再開されたと推定される。
 この場合、ステップS127においてモータジェネレータ50を駆動状態に切り換えることによって、一般に低速トルクの高いモータジェネレータ50(電動機)によって速やかに第一油圧ポンプ21及び第二油圧ポンプ22を駆動することができる。
 ステップS129において、吸収馬力Lpが始動用出力閾値Dp2以上であると判定された場合、吸収馬力Lpが大きく、エンジン10により第一油圧ポンプ21及び第二油圧ポンプ22を駆動すべきと推定される。
 この場合、ステップS130においてエンジン10を自動的に始動させることができる。
 ステップS131において、エンジン10の回転数Neが第一油圧ポンプ21及び第二油圧ポンプ22の回転数Np以上であると判定された場合、エンジン10の回転数Neが第一油圧ポンプ21及び第二油圧ポンプ22を駆動するのに十分な回転数に到達したと推定される。
 この場合、ステップS132においてクラッチ15を接続するとともにモータジェネレータ50を中立状態に切り換えることによって、エンジン10と第一油圧ポンプ21及び第二油圧ポンプ22とを滑らかに連結することができる。また、エンジン10の回転数Neが十分な回転数に増加するまでは、モータジェネレータ50により第一油圧ポンプ21及び第二油圧ポンプ22が駆動されているため、クラッチ15を接続する際の当該第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npの低下を防止することができる。
 特に、エンジン10の回転数Neが第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npと同一になった時にクラッチ15を接続することで、エンジン10と第一油圧ポンプ21及び第二油圧ポンプ22とをさらに滑らかに連結することができる。
 なお、本実施形態においては、エンジン10の回転数Neが第一油圧ポンプ21及び第二油圧ポンプ22の回転数Np以上になった場合(ステップS131)、ステップS132に移行するものとしたが、本発明はこれに限るものではない。
 本実施形態においては、クラッチ15が接続された場合、エンジン10の回転数Neと第一油圧ポンプ21及び第二油圧ポンプ22の回転数Npは同一であるが、例えば、エンジン10と第一油圧ポンプ21及び第二油圧ポンプ22との間に減速装置が設けられた場合、両回転数(回転数Ne及び回転数Np)は異なる値になる。この場合は、クラッチ15の直前の回転数(本実施形態においては、出力軸11の回転数)が、クラッチ15の直後の回転数(本実施形態においては、入力軸23の回転数)以上になった場合、ステップS132に移行するものとすることもできる。
 すなわち、エンジン10の回転数Neが、エンジン10と第一油圧ポンプ21及び第二油圧ポンプ22とを滑らかに連結することができるような所定の値以上になった場合に、ステップS132に移行するものであれば良い。
 アイドルストップ選択手段122が「ON」ポジションに切り換えられている場合は、メインコントローラ100は上述のアイドルストップ制御を行うが、アイドルストップ選択手段122が「OFF」ポジションに切り換えられている場合、メインコントローラ100はアイドルストップ制御を行わない。すなわち、この場合、操作手段35が操作されていない状態が続いても、エンジン10が停止されたり、モータジェネレータ50の作動状態が切り換えられたりすることがない。このように、オペレータはアイドルストップ選択手段122を「ON」ポジション又は「OFF」ポジションに切り換えることによって、上述のアイドルストップ制御を行うか行わないかを任意に選択することができる。
 アイドルストップ選択手段122が「モータ駆動」ポジションに切り換えられている場合、メインコントローラ100は、エンジン10を停止し、クラッチ15を切断し、モータジェネレータ50を駆動状態に切り換えることによって、第一油圧ポンプ21及び第二油圧ポンプ22をモータジェネレータ50のみで駆動させる。このように、オペレータはエンジン10を始動させる必要がないと判断した場合、アイドルストップ選択手段122を「モータ駆動」ポジションに切り換えることによって、エンジン10を始動させることなくモータジェネレータ50のみで第一油圧ポンプ21及び第二油圧ポンプ22を駆動させることができる。これによって、オペレータの任意でエンジン10による燃料の消費を抑制することができる。また、エンジン10を停止させたまま作業を行うことが可能であり、当該エンジン10の騒音を発生させることなく静かに作業を行うことができる。
 以上の如く、本実施形態に係る動力伝達装置1は、バッテリ60と、バッテリ60からの電力の供給により回転駆動される電動機(モータジェネレータ50)と、エンジン10と、エンジン10を始動するためのセルモータ80と、モータジェネレータ50又はエンジン10によって駆動される少なくとも1つの油圧ポンプ(第一油圧ポンプ21及び第二油圧ポンプ22)と、エンジン10から前記油圧ポンプへと伝達される動力を断接するクラッチ15と、バッテリ60からモータジェネレータ50への電力の供給を許可又は遮断する切換手段(インバータ70)と、作業用油圧アクチュエータ40を操作するための操作手段35と、操作手段35が操作されているか否かを検出する操作状態検出手段116と、エンジン10の回転数Neを検出するエンジン回転数検出手段と、前記油圧ポンプの回転数Npを検出するポンプ回転数検出手段115と、操作手段35が所定時間(非作業判定閾値t1)以上操作されていないことを検出した場合、エンジン10を停止し、クラッチ15を切断し、かつバッテリ60からモータジェネレータ50への電力の供給を遮断し、その後操作手段35が操作されたことを検出した場合、セルモータ80によりエンジン10を始動し、かつバッテリ60からモータジェネレータ50への電力の供給を許可し、エンジン10の回転数Neが所定の値(回転数Np)以上になった後にクラッチ15を接続し、かつバッテリ60からモータジェネレータ50への電力の供給を遮断するアイドルストップ制御を行う制御装置(メインコントローラ100及びECU101)と、を具備するものである。
 このように構成することにより、作業用油圧アクチュエータ40を操作しない場合にはエンジン10を停止することで、燃料の無駄な消費を抑制することができる。
 エンジン10の再始動時には、エンジン10の回転数Neが所定の値(回転数Np)以上になるまではモータジェネレータ50により油圧ポンプを駆動し、所定の値以上になった後にはエンジン10で油圧ポンプを駆動する。これによって、エンジン10の再始動直後で当該エンジン10の回転数Neが低い場合であっても、油圧ポンプの回転数Npの低下を防止することができ、ひいては油圧ポンプが吐出する作動油の流量の低下を防止することができる。したがって、エンジン10の再始動時における作業用油圧アクチュエータ40の操作フィーリングの悪化を防止することができる。
 さらに、エンジン10の再始動時にはクラッチ15を切断しているため、油圧ポンプの起動トルクがエンジン10に加わることがない。したがって、特に低温環境下で作動油の粘度が高く、油圧ポンプの起動トルクが常温時よりも大きくなった場合であっても、エンジン10の始動性の悪化を防止することができる。
 また、動力伝達装置1は、前記油圧ポンプの吐出圧(吐出圧P1及び吐出圧P2)を検出する圧力検出手段(第一圧力検出手段111及び第二圧力検出手段112)と、前記油圧ポンプの押しのけ容積(押しのけ容積q1及び押しのけ容積q2)を検出する容積検出手段(第一容積検出手段113及び第二容積検出手段114)と、を具備し、前記制御装置は、前記圧力検出手段、前記容積検出手段、及び前記ポンプ回転数検出手段115による検出値に基づいて前記油圧ポンプの吸収馬力Lpを算出し、前記アイドルストップ制御において、操作手段35が操作されたことを検出した場合であっても、吸収馬力Lpが所定値(始動用出力閾値Dp2)未満であるときは、エンジン10を始動することなくバッテリ60からモータジェネレータ50への電力の供給を許可し、吸収馬力Lpが所定値以上になったときは、エンジン10を始動するものである。
 このように構成することにより、前記油圧ポンプの吸収馬力Lpが小さい場合(軽負荷作業時)には、エンジン10を再始動させることなく、モータジェネレータ50のみで前記油圧ポンプを駆動することができる。これによって、燃料の消費を抑制するとともに、低速トルクが大きく回転が円滑なモータジェネレータ50で前記油圧ポンプを駆動することができ、作業性を向上させることができる。また、エンジン10を停止させたまま作業を行うことが可能であり、当該エンジン10の騒音を発生させることなく静かに作業を行うことができる。
 また、動力伝達装置1は、前記アイドルストップ制御を行うか否かを選択するためのアイドルストップ選択手段122を具備し、前記制御装置は、アイドルストップ選択手段122により前記アイドルストップ制御を行わない選択がされた場合、前記アイドルストップ制御を行わないものである。
 このように構成することにより、前記アイドルストップ制御を行うか否かを、オペレータの任意で選択することができる。
 なお、図6のステップS132において、メインコントローラ100は単にクラッチ15を接続するものとしたが、本発明はこれに限るものではない。すなわち、メインコントローラ100は、所定時間の間はクラッチ15を完全に接続しない、いわゆる半クラッチ状態に保持することによって、エンジン10の出力を徐徐に上昇させながらクラッチ15を接続するように構成することも可能である。これによって、エンジン10に急激に負荷が加わり、エンジン10の回転数Neが急激に減少することを防止することができる。
 本発明は、エンジン及び電動機を用いた動力伝達装置の技術に利用可能である。

Claims (5)

  1.  バッテリと、
     前記バッテリからの電力の供給により入出力軸を回転する駆動状態、又はエンジンからの動力により前記入出力軸を回転させることで発電し、前記バッテリを充電する発電状態に切換可能なモータジェネレータと、
     前記エンジン及び/又は前記モータジェネレータによって駆動される少なくとも1つの負荷と、
     前記モータジェネレータを、前記発電状態、又は前記駆動状態のいずれかに切り換える切換手段と、
     前記バッテリの充電量を検出する充電状態検出手段と、
     前記負荷の吸収馬力を検出する吸収馬力検出手段と、
     前記吸収馬力検出手段により検出される吸収馬力及び前記充電状態検出手段により検出される前記バッテリの充電量に基づいて、前記切換手段により前記モータジェネレータを前記発電状態、又は前記駆動状態のいずれかに切り換える制御装置と、
     を具備する動力伝達装置。
  2.  前記制御装置は、
     前記吸収馬力検出手段により検出される吸収馬力が前記エンジンの最大出力よりも低い値に設定される切換用出力閾値未満であり、かつ、前記充電状態検出手段により検出される前記バッテリの充電量が過充電閾値未満である場合、前記切換手段により前記モータジェネレータを前記発電状態に切り換え、
     前記吸収馬力検出手段により検出される吸収馬力が前記切換用出力閾値以上である場合、前記切換手段により前記モータジェネレータを前記駆動状態に切り換える、
     請求項1に記載の動力伝達装置。
  3.  前記モータジェネレータは、
     供給される電力による前記入出力軸の回転も前記バッテリの充電も行わない中立状態に切り換えることが可能であり、
     前記制御装置は、
     前記エンジンの定格出力を上昇させることが可能であり、
     前記吸収馬力検出手段により検出される吸収馬力が前記切換用出力閾値以上であっても、前記バッテリの充電量が過放電閾値未満である場合、前記エンジンの定格出力を上昇させるとともに、前記モータジェネレータを中立状態に切り換える、
     請求項2に記載の動力伝達装置。
  4.  前記負荷は、
     作動油を吐出することにより作業用油圧アクチュエータを駆動させる少なくとも1つの油圧ポンプであり、
     前記吸収馬力検出手段は、
     前記油圧ポンプの吐出圧を検出する圧力検出手段と、
     前記油圧ポンプの押しのけ容積を検出する容積検出手段と、
     前記油圧ポンプの回転数を検出するポンプ回転数検出手段と、
     を具備し、
     前記制御装置は、
     前記圧力検出手段、前記容積検出手段、及び前記ポンプ回転数検出手段による検出値に基づいて前記油圧ポンプの吸収馬力を算出する、
     請求項1から請求項3までのいずれか一項に記載の動力伝達装置。
  5.  前記切換用出力閾値は、
     予め設定される低燃費領域に含まれる値に設定される請求項2から請求項4までのいずれか一項に記載の動力伝達装置。
PCT/JP2011/074435 2010-10-27 2011-10-24 動力伝達装置 WO2012057080A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/881,996 US9547286B2 (en) 2010-10-27 2011-10-24 Power transmission apparatus
EP11836214.4A EP2634315B1 (en) 2010-10-27 2011-10-24 Power transmission device
CN201180051417.5A CN103180520B (zh) 2010-10-27 2011-10-24 动力传动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-241106 2010-10-27
JP2010241106A JP5764311B2 (ja) 2010-10-27 2010-10-27 動力伝達装置

Publications (1)

Publication Number Publication Date
WO2012057080A1 true WO2012057080A1 (ja) 2012-05-03

Family

ID=45993788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074435 WO2012057080A1 (ja) 2010-10-27 2011-10-24 動力伝達装置

Country Status (5)

Country Link
US (1) US9547286B2 (ja)
EP (1) EP2634315B1 (ja)
JP (1) JP5764311B2 (ja)
CN (1) CN103180520B (ja)
WO (1) WO2012057080A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764310B2 (ja) * 2010-10-27 2015-08-19 ヤンマー株式会社 動力伝達装置
JP5989476B2 (ja) * 2012-09-19 2016-09-07 ヤンマー株式会社 油圧ポンプ装置
JP2014062469A (ja) * 2012-09-19 2014-04-10 Yanmar Co Ltd 油圧ポンプ制御装置
JP6160090B2 (ja) * 2013-01-25 2017-07-12 コベルコ建機株式会社 建設機械
JP6425617B2 (ja) * 2015-05-28 2018-11-21 日立建機株式会社 作業機械
US9597979B1 (en) * 2016-04-13 2017-03-21 GM Global Technology Operations LLC Method of controlling regeneration and boost functions of a hybrid powertrain
JP2017226284A (ja) 2016-06-21 2017-12-28 株式会社クボタ 作業機
KR101961597B1 (ko) * 2018-10-01 2019-03-22 안종하 지향식 수평 굴착공사용 확공기
JP7393872B2 (ja) * 2019-03-20 2023-12-07 株式会社Subaru 駆動システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338506A (ja) * 1995-06-09 1996-12-24 Komatsu Ltd 油圧機械式変速装置
JP2001099103A (ja) * 1999-09-27 2001-04-10 Shin Caterpillar Mitsubishi Ltd ハイブリッド油圧システム及び油圧式建設機械

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586613A (en) * 1993-04-22 1996-12-24 The Texas A&M University System Electrically peaking hybrid system and method
JP2005076507A (ja) * 2003-08-29 2005-03-24 Nissan Motor Co Ltd 燃料消費量測定装置
JP4140532B2 (ja) * 2004-02-17 2008-08-27 日産自動車株式会社 内燃機関の発電制御装置
JP2005237178A (ja) * 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd 作業機械の動力源装置
CN100398369C (zh) * 2004-10-20 2008-07-02 丰田自动车株式会社 混合动力车及其控制方法
JP4199276B2 (ja) * 2005-11-01 2008-12-17 ヤンマー株式会社 油圧ショベルのエンジン制御装置
JP5064160B2 (ja) * 2007-09-19 2012-10-31 株式会社小松製作所 エンジンの制御装置
US7980073B2 (en) * 2008-05-08 2011-07-19 Caterpillar Inc. Hybrid system for a powertrain and hydraulic system
NO332138B2 (no) * 2009-11-09 2016-04-11 Rolls Royce Marine As Power Electric Systems Bergen Hybrid fremdriftssystem for et fartøy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338506A (ja) * 1995-06-09 1996-12-24 Komatsu Ltd 油圧機械式変速装置
JP2001099103A (ja) * 1999-09-27 2001-04-10 Shin Caterpillar Mitsubishi Ltd ハイブリッド油圧システム及び油圧式建設機械

Also Published As

Publication number Publication date
EP2634315A4 (en) 2017-07-19
EP2634315B1 (en) 2021-02-24
CN103180520B (zh) 2015-10-14
EP2634315A1 (en) 2013-09-04
US9547286B2 (en) 2017-01-17
CN103180520A (zh) 2013-06-26
JP5764311B2 (ja) 2015-08-19
US20130221751A1 (en) 2013-08-29
JP2012092577A (ja) 2012-05-17
US20150331397A2 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP5764310B2 (ja) 動力伝達装置
JP5764311B2 (ja) 動力伝達装置
US7669413B2 (en) Hybrid construction machine
KR101112137B1 (ko) 하이브리드식 건설기계의 엔진회전수 변화저감 제어시스템 및 방법
JP5591354B2 (ja) ハイブリッド作業機械及びハイブリッド作業機械の制御方法
JP6300943B2 (ja) ハイブリッド式建設機械
JP2008101440A (ja) ハイブリッド作業機械
JP6091444B2 (ja) ハイブリッド建設機械
US9567916B2 (en) Engine control apparatus and construction machine
US9067586B2 (en) Hybrid working machine
KR101714948B1 (ko) 건설 기계
EP3141442B1 (en) Hybrid work machine
JP4563302B2 (ja) 電力配分制御装置およびハイブリッド建設機械
JP6046281B2 (ja) ハイブリッド作業機械の機関制御装置、ハイブリッド作業機械及びハイブリッド作業機械の機関制御方法
JP2019001461A (ja) ショベル
KR101565053B1 (ko) 쇼벨 및 쇼벨의 제어방법
KR101998379B1 (ko) 하이브리드 쇼벨 및 하이브리드 쇼벨의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881996

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011836214

Country of ref document: EP