WO2012055557A1 - Vorrichtung zur selektiven kühlung physiologischen gewebes - Google Patents

Vorrichtung zur selektiven kühlung physiologischen gewebes Download PDF

Info

Publication number
WO2012055557A1
WO2012055557A1 PCT/EP2011/005413 EP2011005413W WO2012055557A1 WO 2012055557 A1 WO2012055557 A1 WO 2012055557A1 EP 2011005413 W EP2011005413 W EP 2011005413W WO 2012055557 A1 WO2012055557 A1 WO 2012055557A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
body fluid
cooling medium
temperature
control unit
Prior art date
Application number
PCT/EP2011/005413
Other languages
English (en)
French (fr)
Inventor
Ingrid Barbknecht
Original Assignee
Ingrid Barbknecht
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingrid Barbknecht filed Critical Ingrid Barbknecht
Priority to EP11793652.6A priority Critical patent/EP2632508B1/de
Publication of WO2012055557A1 publication Critical patent/WO2012055557A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/369Temperature treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/366General characteristics of the apparatus related to heating or cooling by liquid heat exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • A61M2205/707Testing of filters for clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/005Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for medical applications

Definitions

  • the present invention relates to a device for selectively cooling the human or animal body, in particular for the extracorporeal cooling of a body fluid, for example for blood cooling or for general regulation of the blood and body temperature.
  • the regulation of body temperature is gaining more and more importance in medicine. For example, surgical procedures on the heart are performed at a lowered body temperature.
  • the temperature of the blood can be lowered below 30 ° C and slowly returned to normal temperature after the operation.
  • a controlled, suitable for medical purposes cooling of the body, especially the brain, is currently only stationary, but not perform in ambulatory and mobile use.
  • Common methods of body cooling are based, for example, on the use of a cooling catheter, which is introduced under sterile conditions into a blood-carrying vessel of a patient and supplied with a cooling fluid. A heat exchange between cooling catheter and blood takes place here in vivo.
  • the introduction of the catheter proves to be problematic and requires specially trained personnel.
  • the geometric extent of the catheter typically narrows up to 30 or more centimeters of vessel lumen so that the blood flow in the respective vessel can be considerably restricted.
  • a device for extracorporeal cooling for selective cooling of the brain during a hyper- or hypothermic treatment of a patient known.
  • the device has an inlet and an outlet, both of which are to be coupled to an artery of the patient.
  • the blood provided via the inlet is passed through a heat exchanger which is arranged in a temperature-controlled bath of sterilized water.
  • the water can be kept at a predetermined temperature level, including u.a. provided with a motor stirring device for mixing the water is provided.
  • a device for extracorporeal cooling is known from WO 2005/1 17546 A2.
  • This device also has a blood flow promoting Pump and a disposable heat exchanger cartridge on.
  • the cassette is arranged in a primary, designed as an evaporator heat exchanger.
  • the primary heat exchanger is actively cooled by means of a compressor and a condenser.
  • the device according to the invention is designed for extracorporeal regulation, in particular for cooling, but also for heating a body fluid, in particular blood. It has an extracorporeal, that is to be provided outside the body to be treated heat exchanger, the on the one hand by the body fluid to be cooled, that is, by blood and on the other hand by a cooling medium can be flowed through.
  • the cooling medium and the body fluid are hermetically separated from each other within the heat exchanger and are in thermal contact with each other via at least one heat exchanger tube.
  • At least one temperature sensor is provided on or in the heat exchanger, which serves for detecting the temperature of the body fluid flowing through the heat exchanger.
  • a control unit coupled to the temperature sensor and / or to the heat exchanger is provided. This is designed to regulate a flow rate of the cooling medium through the heat exchanger as a function of a temperature of the body fluid determined by the temperature sensor. In this way, by means of flow regulation of the cooling medium, the temperature of the body fluid flowing through the heat exchanger can be set to a predetermined desired value.
  • the control unit forms with a flow rate control and the temperature sensor, a control circuit for adjusting the temperature of the body fluid to a predetermined desired value.
  • the heat exchanger at a feed and / or at a drain for the body fluid on a temperature sensor for determining the respective inlet or outlet temperature. Based on the difference between inlet and outlet temperature, the flow rate of the cooling medium can be precisely controlled by means of the control unit. Furthermore, if the flow rate of the body fluid is determined by the heat exchanger by means of a further sensor device and the control unit is supplied, knowing the physical or thermodynamic parameters of the heat exchanger, the body fluid to be thermally treated and the cooling medium, the amount of heat to be supplied or withdrawn from the body fluid comparatively precisely calculated and accordingly speaking the flow rate of the cooling medium located at a predetermined temperature level determined and fed to the heat exchanger.
  • the at least one heat exchanger tube can be flowed through by the cooling medium and can be flowed around by body fluid within the heat exchanger.
  • the body fluid to be thermally treated flows through the at least one heat exchanger tube and the cooling medium flows around or around the heat exchanger tube.
  • a plurality of, preferably parallel branched, heat exchanger tubes or lines are provided in the heat exchanger, the flow rate of which can be regulated separately and independently of one another by means of the control unit.
  • the individual heat exchanger tubes can in this case parallel to each other, spirally rotated, nested and meandering, or run almost arbitrarily in the body fluid through which can flow through the interior of the heat exchanger.
  • individual heat exchanger tubes can be throttled in their flow or even completely interrupted fluidically.
  • the individual heat exchanger tubes can each be coupled separately or bundled to the control unit or to a control module controlled by the control unit.
  • the control unit by means of individual controllable valves and actuators change the flow rates in the individual heat exchanger tubes according to the required cooling or heating power.
  • a thermally insulated reservoir for receiving and / or tempered storage of a predetermined amount is further provided the cooling medium.
  • the reservoir can be stored in particular in an application of the cooling device in the ambulatory or mobile application area, for example in a refrigerator or the like cooling devices.
  • An active cooling of the cooling medium is not required so far, but it can be used on a provided thermal reservoir.
  • the reservoir, the control unit and / or the heat exchanger each have mutually corresponding fluid-binding couplings for forming a controllable flow of the cooling medium through the heat exchanger.
  • it may be provided to couple the heat exchanger with the reservoir on the coolant inlet side, to switch the control unit or its control module between the reservoir and the heat exchanger, or even to provide it on the outlet side of the heat exchanger.
  • the preferably thermally insulated reservoir can have, for example, two or more containers, of which at least one is filled with the cooling medium in the delivery state, but another is empty and can therefore serve to receive the coolant which has flowed through the heat exchanger.
  • standardized fluid-coupling couplings are provided on the heat exchanger, the control unit or on its control module and the reservoir for the cooling medium, an emptied container or reservoir can be replaced by a filled reservoir during the cooling process.
  • the reservoir is provided with a return tank, it may be supplied after use to an external cooling device, such as a refrigerator, and may be used for further cooling.
  • the outlet of the heat exchanger open and not to return supplied cooling medium at the heat exchanger outlet, but to deliver it to the environment.
  • the control unit is also designed to take into account different temperature levels of the cooling medium.
  • the device of the invention opens up completely novel apparatus approaches to provide extracorporeal cooling, especially in the field of emergency medicine.
  • an open, i. not closed cooling circuit can be provided, wherein a reservoir pre-cooled cooling medium can be used.
  • the cooling medium can be stored, for example in the form of bags or similar containers, in a refrigerator or a comparable cooling device and if necessary removed from the cooled environment and finally thermally connected to the body fluid heat exchanger for extracorporeal cooling and induction of hypothermia. As soon as a container filled with coolant has been emptied during the cooling procedure, it can be replaced by another, also pre-cooled container.
  • the total cooling capacity which is to be delivered via the heat exchanger to the body fluid and thus to the body to be cooled, can be kept approximately constant in this way.
  • the regulation of the flow rate of the provided cooling medium can significantly reduce the expenditure on equipment. Any compressors, evaporators or condensers, as they are to be provided in common coolant circuits, are not needed in the present case. Furthermore, the inflow or the flow of the cooling medium through the heat exchanger can be largely pumpless and purely by gravity.
  • the use of the device according to the invention is described purely for cooling purposes, it can also be used equally for heating body fluids, in particular blood. Instead of a cold or pre-cooled cooling medium, only a correspondingly tempered cooling medium would be used.
  • a comparatively high flow rate is to be set at a low temperature difference between the cooling medium and the body fluid supplied to the heat exchanger, while at a high temperature difference between supplied body fluid and the cooling medium, a much smaller flow rate of the cooling medium for thermal treatment of the body fluid and thus to provide for cooling or heating of the respective patient.
  • sterile saline solution preferably 0.9 percent or isotonic saline solution
  • the cooling medium is extremely inexpensive, so that a return of the heat exchanger through which flowed coolant for cost reasons is generally not required.
  • at least one pressure sensor and / or a gas sensor is provided in the heat exchanger, which are coupled to the control unit and are evaluated by the latter. By means of the pressure sensor, a blockage of the heat exchanger, which can occur, for example, in the formation of thrombi, can be detected.
  • a filter is also provided, which is intended to prevent contamination of the body fluid to be returned to the body.
  • a 40 pm filter can be used here.
  • the device for extracorporeal cooling is designed to be pumpless at least in the line or circulation system carrying the body fluid.
  • a flow or a flow through the heat exchanger with the body fluid to be cooled or heated can be achieved by coupling the heat exchanger inlet to an arterial system and coupling the heat exchanger. be achieved with the venous system of a patient's cardiovascular system.
  • the arterial-venous pressure gradient is basically sufficient to achieve a blood flow through the heat exchanger required for cooling purposes.
  • the arterial-venous bridge can in this case be achieved using known cannulas, in particular by means of a shunt used, for example, in hemodialysis.
  • the extracorporeal cooling device is to be provided with a pump, such as a roller or finger pump.
  • the flow of the cooling medium through the heat exchanger can also be done by means of a pump.
  • the degree of heat exchange of the device in the control unit can be calculated, and accordingly the flow rate of the cooling medium through the heat exchanger can be precisely regulated.
  • the entire heat exchanger in particular also its volume to be flowed through by body fluid, is provided with sterile isotonic, optionally cooled, saline solution. is filled.
  • the heat exchanger itself can already bring about a certain cooling effect directly by connecting to the cardiovascular system of a patient.
  • the pre-filling of the heat exchanger provides a trouble-free and air-free connection to a blood circulation system. Furthermore, by means of the pre-filling in an arterial-venous connection to a patient directly at the beginning of the onset of blood flow through the heat exchanger whose volume flow can be determined.
  • the flow of body fluid through the heat exchanger can be determined from the time between the beginning of a blood flow through the heat exchanger to a maximum temperature at the heat exchanger outlet.
  • the control unit can determine this time automatically and from this, for example, calculate the flow rate of the body fluid through the heat exchanger before individual heat exchanger tubes are additionally charged with the precooled cooling medium.
  • 1 is a schematic isolated view of a heat exchanger
  • 2 is a schematic representation of a fluid-carrying branching line piece
  • Fig. 3 is a schematic representation of a thermally insulated reservoir for the cooling medium
  • Fig. 4 is a schematic representation of the control unit.
  • the heat exchanger 10 shown in Fig. 1 has a housing 12 with an inlet 16 and a drain 14 for the body fluid. Via the inlet 16, which can be connected, for example, arterially to the cardiovascular system of a patient, for example, blood is passed into the freely flow-through internal volume of the housing 12, which again via the outlet 14 and the downstream filter 40 to be cooled or venous body to be heated is supplied. In the area of the inlets and outlets 16, 14 temperature sensors 44, 42 are provided, which are coupled to the control device 60 shown isolated in FIG.
  • the heat exchanger 10 further comprises a series of heat exchanger tubes 18, 20, 22, 24, 26, which pass through the housing 12 of the heat exchanger 10 parallel to each other in the illustration shown in Fig. 1.
  • the individual heat exchanger tubes 18, 20, 22, 24, 26 are each provided at their ends with mutually corresponding, preferably standardized, approximately Luer-Lock coupling pieces 28, 30, which isolate a universal coupling, for example, to one in FIG allow illustrated hose connection.
  • the connection shown in Fig. 2 comprises a piece of tubing 32 which divides an end into five individual branches 34, which are each provided with a coupling piece 30. These branches 34 are, for example, to those in FIG. 1 Right illustrated coupling pieces 28 of the individual heat exchanger tubes 18, 20, 22, 24, 26 can be coupled.
  • the hose piece 32 can be connected to the thermally insulated reservoir 50 shown in FIG. 3, for example, to one of the containers 52, 54 located therein, for example at its counter-coupling 56, for example by means of a coupling 28.
  • a closed system it is provided, for example, to connect a precooled container 52 filled with cooling medium, in particular isotonic sterile saline solution, via the hose and connection piece 32 to the individual heat exchanger tubes 18, 20, 22, 24, 26 in a fluid-conducting manner.
  • the heat exchanger tubes 18, 20, 22, 24, 26 can be coupled to a control module 66 of the control unit, as shown in isolation in FIG. 4.
  • the individual coupling connections 28, 30 of the control module 66 of the control unit serve for a separate and independent regulation of the flow rates through the individual heat exchanger tubes 18, 20, 22, 24, 26 in order to be able to regulate the cooling or heating power of the heat exchanger 10 in a targeted manner.
  • the five individual lines can be combined with a further connecting piece according to FIG. 2 in a fluid-conducting manner and coupled with an empty container 54 of the reservoir 50.
  • a pump that conveys the cooling medium, not shown in the figures, which may possibly be integrated in the control unit 60 or in its control module 66.
  • closed cooling circuit and an open cooling circuit can be implemented, wherein the outlet side of the heat exchanger tubes 18, 20, 22, 24, 26 of the heat exchanger 10, the heat exchanger 10 supplied cooling medium can be discharged to the environment.
  • FIG. 1 also shows a pressure sensor 36 which is arranged in the housing 12 and can be flowed through by the body fluid and which is coupled to the control unit 60 via a signal cable 38. An increasing pressure above a predetermined threshold is an indication of a blockage of the heat exchanger 10.
  • the control unit 60 shown schematically in FIG. 4 has various input means 62 and various display means 64. All temperature, pressure and flow parameters relating to the inlet and outlet of the cooling medium and the inlet and outlet of the body fluid into or out of the heat exchanger 10 can be supplied to the control unit 60 for calculating a cooling power to be provided. For example, a target value for the body fluid may be set at the control unit 60.
  • FIGS. 1 to 4 components can be commercially produced and sold as individual modules of the cooling device according to the invention and be universally coupled to the particular application in a variety of ways. Under certain circumstances, even the series connection of a plurality of heat exchangers 10 and a taking place during the cooling process exchanging about spent reservoirs 50 of cooling medium is possible. Overall, the for the Extracorporeal cooling device to achieve mild hypertension are particularly inexpensive and implemented in a handy and portable design, so that it is ideal for use in emergency medicine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

Die vorliegender Erfindung betrifft eine Vorrichtung zur extrakorporalen Regulierung der Temperatur einer Körperflüssigkeit mit: - einem Wärmetauscher (10), welcher von der zu kühlenden Körperflüssigkeit und von einem Kühlmedium durchströmbar ist, wobei das Kühlmedium und die Körperflüssigkeit hermetisch voneinander getrennt und über zumindest ein Wärmetauscherrohr (18, 20, 22, 24, 26) in thermischem Kontakt miteinander stehen, - zumindest einem Temperatursensor (42, 44) zur Erfassung der Temperatur der den Wärmetauscher (10) durchströmenden Körperflüssigkeit und mit - einer Steuereinheit (60), welche dazu ausgebildet ist, in Abhängigkeit einer ermittelten Temperatur der Körperflüssigkeit eine Durchflussmenge des Kühlmediums durch den Wärmetauscher (10) zu regeln.

Description

Vorrichtung zur selektiven Kühlung physiologischen Gewebes
B e s c h r e i b u n g
Die vorliegende Erfindung betrifft eine Vorrichtung zur selektiven Kühlung des menschlichen oder tierischen Körpers, insbesondere zur extrakorporalen Küh- lung einer Körperflüssigkeit, etwa zur Blutkühlung bzw. zur generellen Regulierung der Blut- und Körpertemperatur.
Die Regelung der Körpertemperatur gewinnt in der Medizin eine immer größere Bedeutung. So werden beispielsweise chirurgische Eingriffe am Herzen bei ab- gesenkter Körpertemperatur durchgeführt. Die Temperatur des Blutes kann hierbei unterhalb 30 °C abgesenkt und nach erfolgter Operation wieder langsam auf Normaltemperatur zurückgeführt werden.
Ferner erweist es sich gerade in Notfallsituationen, so etwa bei Herzstillstand, Schlaganfall sowie Schädel-Hirn-Traumata als besonders vorteilhaft, zumindest das Gehirn und die Gehirnzellen durch sogenannte milde Hypothermie, das heißt durch eine Absenkung der Körper- oder Gehirntemperatur auf Temperaturen zwischen 32 °C und 35 °C abzusenken. So kann einer irreversiblen und massiven Schädigung des Gehirns insbesondere durch eine kontrollierte, in
BESTÄTIGUNGSKOPIE einer Notfallsituation jedoch zügig anzuwendenden Hypothermie effektiv entgegengewirkt werden.
Gerade bei einer drohenden Unterversorgung des Gehirns mit Sauerstoff ist ein zügiges Herbeiführen einer Hypothermie erforderlich. Eine kontrollierte, für medizinische Zwecke geeignete Kühlung des Körpers, insbesondere des Gehirns, ist derzeit nur stationär, nicht aber im ambulanten und mobilen Einsatz durchzuführen. Gängige Methoden zur Körperkühlung basieren zum Beispiel auf der Verwendung eines KühlKatheters, der unter sterilen Bedingungen in ein blutfüh- rendes Gefäß eines Patienten einzuführen und mit einer Kühlflüssigkeit beaufschlagt wird. Ein Wärmeaustausch zwischen KühlKatheter und Blut findet hierbei in vivo statt.
Das Einführen des Katheters erweist sich durchaus als problematisch und er- fordert speziell geschultes Personal. Zudem werden durch die geometrische Ausdehnung des Katheters typischerweise bis zu 30 und mehr Zentimeter Gefäßlumen eingeengt, sodass der Blutfluss im betreffenden Gefäß erheblich eingeschränkt sein kann. So ist z.B. aus der WO 2010/1 1 1778 A1 eine Vorrichtung zur extrakorporalen Kühlung zum selektiven Kühlen des Gehirns während einer hyper- oder hypothermischen Behandlung eines Patienten bekannt. Die Vorrichtung weist einen Einlass sowie einen Auslass auf, welche beide mit einer Arterie des Patienten zu koppeln sind. Unter Verwendung einer Pumpe wird das über den Ein- lass bereitgestellte Blut durch einen Wärmetauscher geleitet, welcher in einem temperierten Bad sterilisierten Wassers angeordnet ist. Mittels einer gesonderten Kühleinheit kann das Wasser auf einem vorgegebenen Temperaturniveau gehalten werden, wozu u.a. eine mit einem Motor versehene Rührvorrichtung zum Durchmischen des Wassers vorgesehen ist.
Weiterhin ist aus der WO 2005/1 17546 A2 eine Vorrichtung zur extrakorporalen Kühlung bekannt. Auch diese Vorrichtung weist eine den Blutfluss fördernde Pumpe sowie eine Einweg-Wärmetauscherkassette auf. Die Kassette ist dabei in einem primären, als Verdampfer ausgebildeten Wärmetauscher angeordnet. Der primäre Wärmetauscher wird dabei mittels eines Kompressors und eines Kondensators aktiv gekühlt.
Andere Verfahren zur Körperkühlung erfolgen unter großem apparativem Aufwand, so zum Beispiel unter Verwendung einer Herz-Lungen-Maschine oder eines Hämodialyseapparats. Mittels derartiger Geräte kann zwar eine Kühlung des Bluts und somit des Körpers erfolgen. Jedoch sind diese Vorrichtungen ei- gentlich für andere medizinische Einsatzzwecke konzipiert und stehen allein schon aufgrund ihrer vergleichsweise hohen Anschaffungskosten im ambulanten Bereich oder in Notaufnahmen von Krankenhäusern nur bedingt zur Verfügung. Es ist daher Ziel der vorliegenden Erfindung, eine apparativ vereinfachte, leicht zu bedienende und kostengünstig zu realisierende Vorrichtung zur Regulierung der Körpertemperatur bereitzustellen, die einen breiten Einsatz der Körperkühlung, insbesondere im ambulanten und mobilen Bereich, vor allem in der Notfallmedizin ermöglicht. Die Vorrichtung soll darüber hinaus möglichst einfach an einen thermisch zu behandelnden Patienten anschließbar sein und höchste Sicherheitsanforderungen im Hinblick auf die Gesundheit des Patienten erfüllen.
Die der Erfindung zugrundeliegende Aufgabe wird mittels einer Vorrichtung zur extrakorporalen Regulierung einer Körperflüssigkeit gemäß Patentanspruch 1 gelöst wobei vorteilhafte Ausgestaltungen der Erfindung Gegenstand abhängiger Patentansprüche sind.
Die erfindungsgemäße Vorrichtung ist für die extrakorporale Regulierung, ins- besondere zur Kühlung, aber auch zur Erwärmung einer Körperflüssigkeit, insbesondere von Blut ausgebildet. Sie weist einen extrakorporalen, das heißt außerhalb des zu behandelnden Körpers vorzusehenden Wärmetauscher auf, der einerseits von der zu kühlenden Körperflüssigkeit, das heißt von Blut und andererseits von einem Kühlmedium durchströmbar ist. Das Kühlmedium und die Körperflüssigkeit sind innerhalb des Wärmetauschers hermetisch voneinander getrennt und stehen über zumindest ein Wärmetauscherrohr in thermischem Kontakt miteinander.
Des Weiteren ist am oder im Wärmetauscher zumindest ein Temperatursensor vorgesehen, der zur Erfassung der Temperatur der den Wärmetauscher durchströmenden Körperflüssigkeit dient. Weiterhin ist eine mit dem Temperatursen- sor und/oder mit dem Wärmetauscher gekoppelte Steuereinheit vorgesehen. Diese ist dazu ausgebildet, in Abhängigkeit einer vom Temperatursensor ermittelten Temperatur der Körperflüssigkeit eine Durchflussmenge des Kühlmediums durch den Wärmetauscher zu regeln. Auf diese Art und Weise kann mittels Durchflussregulierung des Kühlmediums die Temperatur der den Wärmetau- scher durchströmenden Körperflüssigkeit auf einen vorgegebenen Soll-Wert eingestellt werden.
Die Steuereinheit bildet mit einer Durchflussmengenregelung und dem Temperatursensor einen Regelkreis zum Einstellen der Temperatur der Körperflüssig- keit auf einen vorgegebenen Soll-Wert.
Nach einer bevorzugten Ausgestaltung weist der Wärmetauscher an einem Zulauf und/oder an einem Ablauf für die Körperflüssigkeit einen Temperatursensor zur Ermittlung der jeweiligen Zulauf- bzw. Ablauftemperatur auf. Anhand der Differenz zwischen Zulauf- und Ablauftemperatur kann die Durchflussmenge des Kühlmediums mittels der Steuereinheit präzise geregelt werden. Wenn ferner noch die Durchflussmenge der Körperflüssigkeit durch den Wärmetauscher mittels einer weiteren Sensoreinrichtung bestimmt und der Steuereinheit zugeführt wird, kann unter Kenntnis der physikalischen bzw. thermodynamischen Parameter des Wärmetauschers, der thermisch zu behandelnden Körperflüssigkeit und des Kühlmediums die der Körperflüssigkeit zuzuführende oder zu entziehende Wärmemenge vergleichsweise präzise berechnet und dement- sprechend die Durchflussmenge des auf einem vorgegebenen Temperaturniveau befindlichen Kühlmediums bestimmt und dem Wärmetauscher zugeführt werden. In Weiterbildung hiervon ist ferner vorgesehen, dass das zumindest eine Wärmetauscherrohr vom Kühlmedium durchströmbar und innerhalb des Wärmetauschers von Körperflüssigkeit umströmbar ist. In einer alternativen Ausgestaltung kann aber auch eine umgekehrte Anordnung vorgesehen werden, bei welcher die thermisch zu behandelnde Körperflüssigkeit durch das zumindest eine Wärmetauscherrohr strömt und dieses Wärmetauscherrohr vom Kühlmedium umströmt oder umspült wird.
Nach einer weiteren bevorzugten Ausgestaltung sind im Wärmetauscher mehrere, bevorzugt parallel verzweigte Wärmetauscherrohre oder -Leitungen vor- gesehen, deren Durchfluss mittels der Steuereinheit jeweils separat und unabhängig voneinander regelbar ist. Die einzelnen Wärmetauscherrohre können hierbei parallel zueinander, spiralartig gedreht, ineinander geschachtelt sowie mäanderartig, bzw. nahezu beliebig im von der Körperflüssigkeit durchströmbaren Innenraum des Wärmetauschers verlaufen. Je nach geforder- tem Grad des Wärmeaustauschs können einzelne Wärmetauscherrohre in ihrem Durchfluss gedrosselt oder gar gänzlich strömungstechnisch unterbrochen werden.
Es erweist sich ferner von Vorteil, wenn die einzelnen Wärmetauscherrohre je- weils separat oder gebündelt an die Steuereinheit oder an ein von der Steuereinheit gesteuertes Regelmodul ankoppelbar sind. Auf diese Art und Weise kann die Steuereinheit mittels einzelner ansteuerbarer Ventile und Stellmotoren die Durchflussmengen in den einzelnen Wärmetauscherrohren entsprechend der geforderten Kühl- oder Heizleistung verändern.
Nach einer bevorzugten Ausgestaltung ist ferner ein thermisch isoliertes Reservoir zur Aufnahme und/oder temperierten Lagerung einer vorbestimmten Menge des Kühlmediums vorgesehen. Das Reservoir kann insbesondere bei einer Anwendung der Kühlvorrichtung im ambulanten oder mobilen Einsatzbereich zum Beispiel in einem Kühlschrank oder dergleichen Kühleinrichtungen gelagert werden. Ein aktives Abkühlen des Kühlmediums ist insoweit nicht erforderlich, sondern es kann auf ein bereitgestelltes thermisches Reservoir zurückgegriffen werden.
Es ist dabei insbesondere von Vorteil, wenn das Reservoir, die Steuereinheit und/oder der Wärmetauscher jeweils miteinander korrespondierende fluidver- bindende Kupplungen zur Bildung eines regelbaren Stroms des Kühlmediums durch den Wärmetauscher aufweisen. So kann insbesondere vorgesehen werden, den Wärmetauscher kühlmitteleinlassseitig mit dem Reservoir zu koppeln, die Steuereinheit bzw. ihr Regelmodul zwischen Reservoir und Wärmetauscher zu schalten oder aber sogar auslassseitig des Wärmetauschers vorzusehen. Es ist ferner denkbar, das aus dem Wärmetauscher austretende, etwa durch die Körperflüssigkeit erwärmte Kühlmittel in das Reservoir zurückzuführen, wobei Ablauf und Zulauf des Reservoirs bevorzugt hermetisch voneinander zu trennen sind. Das bevorzugt thermisch isolierte Reservoir kann beispielsweise zwei oder mehrere Behältnisse aufweisen, von denen zumindest eines im Auslieferungszustand mit dem Kühlmedium gefüllt, ein anderes jedoch leer ist und daher zur Aufnahme des durch den Wärmetauscher geströmten Kühlmittels dienen kann. Indem genormte fluidverbindende Kupplungen am Wärmetauscher, an der Steuereinheit bzw. an ihrem Regelmodul und am Reservoir für das Kühlmedium vorgesehen sind, kann im Verlauf des Kühlprozesses ein geleertes Behältnis oder Reservoir durch ein gefülltes Reservoir ausgetauscht werden. Sofern das Reservoir mit einem Rücklaufbehältnis versehen ist, kann es nach Gebrauch einer externen Kühleinrichtung, wie etwa einem Kühlschrank, zugeführt werden und unter Umständen für eine weitere Kühlung Verwendung finden. Alternativ zu dem beschriebenen geschlossenen Kühlkreislauf ist ferner denkbar, den Ablauf des Wärmetauschers offen auszugestalten und zugeführtes Kühlmedium am Wärmetauscherauslass nicht zurückzuführen, sondern dieses an die Umgebung abzugeben. Auf diese Art und Weise kann ein vergleichswei- se einfacher, offener Kühlkreislauf realisiert werden. Die Steuereinheit ist ferner dazu ausgebildet, auch unterschiedliche Temperaturniveaus des Kühlmediums zu berücksichtigen.
In dem eine Regelung der Kühlleistung der erfindungsgemäßen Vorrichtung ausschließlich über die Regulierung der Durchflussmenge des Kühlmediums durch den Wärmetauscher bereitgestellt werden kann, eröffnet die erfindungsgemäße Vorrichtung völlig neuartige apparative Ansätze zur Bereitstellung einer extrakorporalen Kühlung, insbesondere im Bereich der Notfallmedizin. So kann durch die Regulierung des Durchsatzes oder des Durchflusses des bereitge- stellten Kühlmediums ein offener, d.h. nicht geschlossener Kühlkreislauf bereitgestellt werden, wobei auf ein Reservoir vorgekühlten Kühlmediums zurückgegriffen werden kann.
Das Kühlmedium kann beispielsweise in Form von Beuteln oder dgl. Behältnis- sen in einen Kühlschrank oder einer vergleichbaren Kühleinrichtung gelagert und bei Bedarf aus der gekühlten Umgebung entnommen sowie schließlich für die extrakorporale Kühlung und Herbeiführung der Hypothermie mit dem Wärmetauscher für die Körperflüssigkeit thermisch verbunden werden. Sobald ein mit Kühlflüssigkeit gefüllter Behälter während der Kühlprozedur geleert wurde, kann er durch einen weiteren, ebenfalls vorgekühlten Behälter ersetzt werden.
Durch die Regulierung des Durchsatzes bzw. der Durchflussmenge des Kühlmediums durch den Wärmetauscher kann ferner in besonders einfacher Art und Weise auch auf Temperaturänderungen des Kühlmediums reagiert werden. Da während eines Herunterkühlens eines Patienten auf eine vorgegebene Temperatur eine vergleichsweise große Menge an Kühlmedium benötigt wird, kann für die Aufrechterhaltung einer bereits abgekühlten Körpertemperatur die Durchflussmenge entsprechend reduziert werden.
Sollte sich während der Hypothermie-Anwendung die Temperatur des Kühlme- diums selbst ändern, kann dieser Änderung, insbesondere einer zumindest geringfügigen Erwärmung des Kühlmediums durch eine Steigerung der Durchflussmenge Rechnung getragen werden. Die Gesamtkühlleistung, die über den Wärmetauscher an die Körperflüssigkeit und somit an den zu kühlenden Körper abzugeben ist, kann auf diese Art und Weise annähernd konstant gehalten werden.
Die Regulierung der Durchflussmenge des bereitgestellten Kühlmediums kann den apparativen Aufwand deutlich verringern. Etwaige Kompressoren, Verdampfer oder Kondensatoren, wie sie in gängigen Kühlmittelkreisläufen vorzu- halten sind, werden vorliegend nicht benötigt. Ferner kann auch der Zustrom bzw. der Durchfluss des Kühlmediums durch den Wärmetauscher weitgehend pumpenlos und rein schwerkraftbedingt erfolgen.
Wenngleich der Einsatz der erfindungsgemäßen Vorrichtung rein für Kühlzwe- cke beschrieben ist, kann sie auch gleichermaßen zur Erwärmung von Körperflüssigkeiten, insbesondere von Blut dienen. Anstelle eines kalten oder vorgekühlten Kühlmediums wäre lediglich ein entsprechend temperiertes Kühlmedium zu verwenden. Zur Erzielung eines Soll-Werts der Körperflüssigkeitstemperatur ist bei einem geringen Temperaturunterschied zwischen Kühlmedium und der dem Wärmetauscher zugeführten Körperflüssigkeit eine vergleichsweise hohe Durchflussmenge einzustellen, während bei einer hohen Temperaturdifferenz zwischen zugeführter Körperflüssigkeit und dem Kühlmedium eine weitaus geringere Durchflussmenge des Kühlmediums zur thermischen Behandlung der Körperflüssigkeit und somit zur Abkühlung bzw. zur Erwärmung des jeweiligen Patienten vorzusehen ist. Nach einem weiteren vorteilhaften Aspekt ist als Kühlmedium sterile Kochsalzlösung, vorzugsweise 0,9 prozentige oder isotonische Kochsalzlösung vorgesehen, sodass bei einer Leckage des die Körperflüssigkeit führenden Kreislaufs keine Kontamination oder gar gesundheitliche Schädigung des Patienten auftreten kann. Zudem ist die Verwendung steriler Kochsalzlösung als Kühlmedium äußerst preiswert, sodass eine Rückführung des den Wärmetauscher durchströmten Kühlmittels aus Kostengründen generell nicht erforderlich ist. In einer weiteren Ausgestaltung der Erfindung ist zumindest ein Drucksensor und/oder ein Gassensor im Wärmetauscher vorgesehen, der oder die mit der Steuereinheit gekoppelt sind und von dieser ausgewertet werden. Mittels des Drucksensors kann eine Verstopfung des Wärmetauschers, welche zum Beispiel bei einer Bildung von Thromben auftreten kann, detektiert werden.
Auslassseitig am Wärmetauscher ist zudem ein Filter vorgesehen, der eine Verunreinigung der dem Körper zurückzuführenden Körperflüssigkeit verhindern soll. Hierbei kann zum Beispiel ein 40 pm-Filter Anwendung finden. Mittels des Gassensors können Gasblasen im Wärmetauscher bzw. Wärmetauscherkreislauf detektiert werden. Infolge einer Gasblasendetektion ist hierbei das Auslösen einer Alarmfunktion vorgesehen, mittels derer vor Gasblasen in der zirkulierenden Körperflüssigkeit bzw. im Blutkreislauf entsprechend gewarnt werden kann.
Nach einer weiteren bevorzugten Ausgestaltung ist vorgesehen, dass die Vorrichtung zur extrakorporalen Kühlung zumindest im die Körperflüssigkeit führenden Leitungs- oder Kreislaufsystem pumpenlos ausgebildet ist. Eine Strömung bzw. ein Durchströmen des Wärmetauschers mit der zu kühlenden bzw. zu erwärmenden Körperflüssigkeit kann durch Kopplung des Wärmetauschereinlasses mit einem arteriellen System und Kopplung des Wärmetauscheraus- lasses mit dem venösen System eines Herz-Kreislauf-Systems eines Patienten erreicht werden.
Das arteriell-venöse Druckgefälle ist grundsätzlich ausreichend, um einen für Kühlzwecke erforderlichen Blutfluss durch den Wärmetauscher zu erreichen. Die arteriell-venöse Brücke kann hierbei unter Verwendung bekannter Kanülen, insbesondere mittels eines zum Beispiel bei der Hämodialyse verwendeten Shunts erreicht werden. Bei einer venös-venösen Anbindung des Wärmetauschers an den zu kühlenden Körper ist die extrakorporale Kühlvorrichtung mit einer Pumpe, etwa einer Rollen- oder Fingerpumpe zu versehen.
Unabhängig von der strömungstechnischen Anbindung des Wärmetauschers an den Patienten kann der Durchfluss des Kühlmediums durch den Wärmetauscher ebenfalls mittels einer Pumpe erfolgen. Alternativ ist insbesondere bei einem offen ausgebildeten Kühlkreislauf aber auch denkbar, ein Durchströmen des Wärmetauschers mit dem Kühlmedium rein schwerkraftbedingt zu implementieren, indem zum Beispiel der das Kühlmedium enthaltende Behälter auf einem Höhenniveau oberhalb des Wärmetauschers angeordnet wird. Kühlmittelstrom und die Strömung der Körperflüssigkeit im Wärmetauscher sind in Gegenrichtung ausgebildet, um einen möglichst effektiven Wärmeaustausch zwischen den Flüssigkeiten zu erzielen. Ferner ist vorgesehen, auch die Zu- bzw. Ablauftemperatur des Kühlmediums zum bzw. vom Wärmetauscher mittels geeigneter Sensoren zu bestimmen und auch diese Temperaturinformationen der Steuereinheit zuzuführen. Auf diese Art und Weise kann der Wärmeaustauschgrad der Vorrichtung in der Steuereinheit berechnet und dementsprechend der Durchfluss des Kühlmediums durch den Wärmetauscher präzise reguliert werden. In einer weiteren bevorzugten Ausgestaltung ist vorgesehen, dass der gesamte Wärmetauscher, insbesondere auch sein von Körperflüssigkeit zu durchströmendes Volumen mit steriler isotonischer ggf. gekühlter Kochsalzlösung vorge- füllt ist. So kann der Wärmetauscher selbst unmittelbar durch Anschließen an das Herz-Kreislauf-System eines Patienten bereits einen gewissen Kühleffekt herbeiführen. Zudem dient die Vorab-Befüllung des Wärmetauschers einem problemlosen und luftfreien Anschluss an ein Blutkreislaufsystem. Weiterhin kann mittels der Vorfüllung bei einem arteriell-venösen Anschluss an einen Patienten unmittelbar zu Beginn des einsetzenden Blutflusses durch den Wärmetauscher dessen Volumenstrom bestimmt werden.
So kann bei einem vorgekühlten und vorgefüllten Wärmetauscher aus der Zeit- dauer zwischen dem Beginn einer Blutströmung durch den Wärmetauscher bis zum Erreichen einer Maximaltemperatur am Wärmetauscherauslass der Durch- fluss der Körperflüssigkeit durch den Wärmetauscher bestimmt werden. Die Steuereinheit kann diese Zeitdauer selbsttätig ermitteln und hieraus zum Beispiel die Durchflussmenge der Körperflüssigkeit durch den Wärmetauscher be- rechnen, bevor einzelne Wärmetauscherrohre zusätzlich mit dem vorgekühlten Kühlmedium beaufschlagt werden.
Zur Vermeidung der Bildung von Thromben ist ferner vorgesehen, sämtliche körperflüssigkeitsführenden Leitungen der Kühlvorrichtung mit einer Beschich- tung zu versehen, die insbesondere einer Trombozytenaggregation entgegenwirkt.
Weitere Ziele, Merkmale sowie vorteilhafte Anwendungsmöglichkeiten der Erfindung werden in der nachfolgenden Beschreibung unter Bezugnahme auf Ausführungsbeispiele erläutert, wobei sämtliche im Text beschriebenen als auch in den Figuren bildlich dargestellten Merkmale sowohl in Alleinstellung als auch in jeglicher sinnvollen Kombination untereinander den Gegenstand der Erfindung bilden. Es zeigen:
Fig. 1 eine schematische isolierte Darstellung eines Wärmetauschers, Fig. 2 eine schematische Darstellung eines fluidführenden verzweigenden Leitungsstücks,
Fig. 3 eine schematische Darstellung eines thermisch isolierten Reservoirs für das Kühlmedium und
Fig. 4 eine schematische Darstellung der Steuereinheit. Der in Fig. 1 gezeigte Wärmetauscher 10 weist ein Gehäuse 12 mit einem Zulauf 16 und einem Ablauf 14 für die Körperflüssigkeit auf. Über den Zulauf 16, der zum Beispiel arteriell mit dem Herz-Kreislauf-System eines Patienten verbunden werden kann, wird zum Beispiel Blut in das frei durchströmbare Innenvolumen des Gehäuses 12 geleitet, welches über den Auslass 14 und den nachgeschalteten Filter 40 wieder dem zu kühlenden oder auch zu erwärmenden Körper venös zugeführt wird. Im Bereich der Zu- und Abläufe 16, 14 sind Temperatursensoren 44, 42 vorgesehen, die mit der in Fig. 4 isoliert dargestellten Steuereinrichtung 60 gekoppelt sind. Der Wärmetauscher 10 weist ferner eine Reihe von Wärmetauscherrohren 18, 20, 22, 24, 26 auf, die in der in Fig. 1 gezeigten Darstellung das Gehäuse 12 des Wärmetauschers 10 parallel zueinander verlaufend durchsetzen. Abweichende Geometrien der einzelnen Rohre 18, 20, 22, 24, 26, etwa spiral- oder mäanderartig sind jedoch gleichermaßen denkbar. Die einzelnen Wärmetau- scherrohre 18, 20, 22, 24, 26 sind an ihren Enden jeweils mit miteinander korrespondierenden, bevorzugt genormten, etwa mit Luer-Lock Kupplungsstücken 28, 30 versehen, die ein universelles Ankoppeln zum Beispiel an eine in Fig. 2 isoliert dargestellte Schlauchverbindung ermöglichen. Die in Fig. 2 gezeigte Verbindung weist ein Schlauchstück 32 auf, welches sich einen Ends in fünf einzelne Zweige 34 aufteilt, die jeweils mit einem Kupplungsstück 30 versehen sind. Diese Zweige 34 sind zum Beispiel an die in Fig. 1 rechts dargestellten Kupplungsstücke 28 der einzelnen Wärmetauscherrohre 18, 20, 22, 24, 26 ankoppelbar. Andern Ends kann das Schlauchstück 32 etwa mittels einer Kupplung 28 an das in Fig. 3 gezeigte thermisch isolierte Reservoir 50, insbesondere an einen der darin befindlichen Behälter 52, 54, so z.B. an deren Gegenkupplung 56 angeschlossen werden.
Bei einem geschlossenen System ist zum Beispiel vorgesehen, einen vorgekühlten und mit Kühlmedium, insbesondere mit isotonischer steriler Kochsalzlösung gefüllten Behälter 52 über das Schlauch- und Verbindungsstück 32 mit den einzelnen Wärmetauscherrohren 18, 20, 22, 24, 26 fluidführend zu koppeln. Andern Ends können die Wärmetauscherrohre 18, 20, 22, 24, 26 mit einem Regelmodul 66 des Steuergeräts gekoppelt werden, wie dies in Fig. 4 isoliert dargestellt ist. Die einzelnen Kupplungsanschlüsse 28, 30 des Regelmoduls 66 des Steuergeräts dienen einer separaten und unabhängigen Regelung der Durch- flussmengen durch die einzelnen Wärmetauscherrohre 18, 20, 22, 24, 26, um die Kühl- bzw. Heizleistung des Wärmetauschers 10 gezielt regeln zu können.
Stromabwärts des Regelmoduls 60 können die fünf Einzelleitungen etwa mit einem weiteren Verbindungsstück gemäß Fig. 2 fluidführend vereinigt und mit einem leeren Behälter 54 des Reservoirs 50 gekoppelt werden. Ein derartiges System erfordert typischerweise den Einsatz einer das Kühlmedium befördernden, in den Figuren nicht näher dargestellten Pumpe, die ggf. in das Steuergerät 60 oder in dessen Regelmodul 66 integriert sein kann. Anstelle eines in Fig. 3 angedeuteten geschlossenen Kühlkreislaufs kann auch ein geöffneter Kühlkreislauf implementiert werden, wobei auslassseitig der Wärmetauscherrohre 18, 20, 22, 24, 26 des Wärmetauschers 10 das dem Wärmetauscher 10 zugeführte Kühlmedium an die Umgebung abgegeben werden kann.
Die Anordnung des Steuergeräts oder der Steuereinheit 60 bzw. ihres Regelmoduls 66 kann stromaufwärts als auch stromabwärts der einzelnen Wärme- tauscherrohre 18, 20, 22, 24, 26 des Wärmetauschers 10 erfolgen. In Fig. 1 ist ferner ein im von der Körperflüssigkeit durchströmbaren Gehäuse 12 angeordneter Drucksensor 36 gezeigt, der über ein Signalkabel 38 mit der Steuereinheit 60 gekoppelt ist. Ein über einen vorgegebenen Schwellwert ansteigender Druck ist hierbei ein Indiz für eine Verstopfung des Wärmetauschers 10.
Die in Fig. 4 schematisch dargestellte Steuereinheit 60 weist verschiedene Eingabemittel 62 sowie verschiedene Anzeigemittel 64 auf. Sämtliche Temperatur-, Druck- und Durchflussparameter betreffend Zu- und Ablauf des Kühlmediums als auch Zu- und Ablauf der Körperflüssigkeit in bzw. aus dem Wärmetauscher 10 können zur Berechnung einer zur Verfügung zu stellenden Kühlleistung der Steuereinheit 60 zugeführt werden. So kann zum Beispiel ein Soll-Wert für die Körperflüssigkeit an der Steuereinheit 60 eingestellt werden. Unter Angabe weiterer patientenrelevanter Parameter, wie zum Beispiel des Geschlechts und des Körpergewichts sowie unter Berücksichtigung der Zu- und Ablauftemperaturen sowohl von Körperflüssigkeit und Kühlmedium am Wärmetauscher und des Fluiddrucks der Körperflüssigkeit sowie ggf. des die Wärmetauscherrohre 18, 20, 22, 24, 26 durchströmenden Kühlmediums, insbesondere durch Differenzenbildung und unter Berücksichtigung bekannter oder empirisch zu bestim- mender fluidspezifischer Wärmekoeffizienten kann die Steuereinheit 60 den Gesamtdurchfluss durch die einzelnen Wärmetauscherrohre 18, 20, 22, 24, 26 zur schnellstmöglichen Erzielung einer Soll-Körperflüssigkeitstemperatur berechnen und dementsprechend die Wärmetauscherrohre 18, 20, 22, 24, 26 mit Hilfe des Regelmoduls 66 mit dem Kühlmedium beaufschlagen.
Die einzelnen, in den Fig. 1 bis 4 jeweils separat dargestellten Komponenten können als einzelne Module der erfindungsgemäßen Kühlvorrichtung kommerziell hergestellt und vertrieben werden und auf den jeweiligen Anwendungsfall universell in vielfältigster Art und Weise miteinander gekoppelt werden. Unter Umständen ist sogar das Hintereinanderschalten mehrerer Wärmetauscher 10 sowie ein während des Kühlprozesses stattfindendes Austauschen etwa verbrauchter Reservoire 50 an Kühlmedium möglich. Insgesamt kann die für die extrakorporale Kühlvorrichtung zur Erzielung einer milden Hypertonie besonders preiswert und in einer handlichen sowie transportablen Bauform implementiert werden, sodass sie sich bestens für den Einsatz in der Notfallmedizin eignet.
Bezugszeichen liste
10 Wärmetauscher
12 Wärmetauschergehäuse
14 Zulauf
16 Ablauf
18 Wärmetauscherrohr
20 Wärmetauscherrohr
22 Wärmetauscherrohr
24 Wärmetauscherrohr
26 Wärmetauscherrohr
28 Kupplung
30 Kupplung
32 Verbindungsstück
34 Verzweigung
36 Drucksensor
38 Signalleitung
40 Filter
42 Temperatursensor
44 Temperatursensor
50 Reservoir
52 Behälter
54 Behälter
56 Kupplung
60 Steuereinrichtung
62 Eingabemittel
64 Display/Ausgabemittel
66 Regelmodul

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung zur extrakorporalen Regulierung der Temperatur einer Körperflüssigkeit mit: einem Wärmetauscher (10), welcher von der zu kühlenden Körperflüssigkeit und von einem Kühlmedium durchströmbar ist, wobei das Kühlmedium und die Körperflüssigkeit hermetisch voneinander getrennt und über zumindest ein Wärmetauscherrohr (18, 20, 22, 24, 26) in thermischem Kontakt miteinander stehen, zumindest einem Temperatursensor (42, 44) zur Erfassung der Temperatur der den Wärmetauscher (10) durchströmenden Körperflüssigkeit und mit einer Steuereinheit (60), welche dazu ausgebildet ist, in Abhängigkeit einer ermittelten Temperatur der Körperflüssigkeit eine Durchflussmenge des Kühlmediums durch den Wärmetauscher (10) zu regeln.
2. Vorrichtung nach Anspruch 1 , wobei der Wärmetauscher (10) an einem Zulauf und/oder an einem Ablauf für die Körperflüssigkeit einen Temperatursensor (42, 44) zur Ermittlung der jeweiligen Zulauf- bzw. Ablauftemperatur aufweist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das zumindest eine Wärmetauscherrohr (18, 20, 22, 24, 26) vom Kühlmedium durchströmbar und innerhalb des Wärmetauschers (10) von Körperflüssigkeit umströmbar ist, oder umgekehrt. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei im Wärmetauscher (10) mehrere parallel verzweigte Wärmetauscherohre (18, 20, 22, 24, 26) vorgesehen sind, deren Durchfluss mittels der Steuereinheit (60) jeweils separat und unabhängig voneinander regelbar ist.
Vorrichtung nach Anspruch 4, wobei die einzelnen Wärmetauscherrohre (18, 20, 22, 24, 26) an die Steuereinheit (60) oder an ein von der Steuereinheit gesteuertes Regelmodul (66) ankoppelbar sind.
Vorrichtung nach einem der vorhergehenden Ansprüche, mit zumindest einem thermisch isolierten Reservoir (50) zur Aufnahme und/oder temperierten Lagerung einer vorbestimmten Menge des Kühlmediums.
Vorrichtung nach Anspruch 6, wobei das Reservoir (50), die Steuereinheit (60) und/oder der Wärmetauscher (10) jeweils miteinander korrespondierende fluidverbindende Kupplungen (28, 30, 56) zur Bildung eines regelbaren Stroms des Kühlmediums durch den Wärmetauscher (10) aufweisen.
Vorrichtung nach einem der vorhergehenden Ansprüche, wobei als Kühlmedium sterile Kochsalzlösung vorgesehen ist.
Vorrichtung nach einem der vorhergehenden Ansprüche, wobei ein Drucksensor und/oder ein Gassensor zur Bestimmung des Körperflüssigkeitsdrucks bzw. zur Detektion von Gasblasen im Wärmetauscher (10) vorgesehen ist.
Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Ablauf des Wärmetauschers (10) mit dem venösen System und der Zulauf für den Wärmetauscher (10) mit dem arteriellen oder venösen System eines Herz-Kreislaufsystems koppelbar ist.
PCT/EP2011/005413 2010-10-27 2011-10-27 Vorrichtung zur selektiven kühlung physiologischen gewebes WO2012055557A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11793652.6A EP2632508B1 (de) 2010-10-27 2011-10-27 Vorrichtung zur selektiven kühlung physiologischen gewebes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010049477A DE102010049477B4 (de) 2010-10-27 2010-10-27 Vorrichtung zur selektiven Kühlung physiologischen Gewebes
DE102010049477.1 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012055557A1 true WO2012055557A1 (de) 2012-05-03

Family

ID=45218627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005413 WO2012055557A1 (de) 2010-10-27 2011-10-27 Vorrichtung zur selektiven kühlung physiologischen gewebes

Country Status (3)

Country Link
EP (1) EP2632508B1 (de)
DE (1) DE102010049477B4 (de)
WO (1) WO2012055557A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2948210A4 (de) * 2013-01-28 2016-10-19 Regenerative Sciences Llc Vorrichtung und verfahren zur blutplättchenlyse oder -aktivierung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117546A2 (en) 2004-05-26 2005-12-15 Ardiem Medical, Inc. Apparatus and method for inducing rapid, extracorporeal, therapeutic hypothermia
EP1715279A1 (de) * 2004-02-10 2006-10-25 JMS Co., Ltd. Wärmetauscher, verfahren zu dessen herstellung und künstliche herz-lungen-maschine
WO2006116603A2 (en) * 2005-04-27 2006-11-02 Radiant Medical, Inc. Apparatus and method for providing enhanced heat transfer from a body
WO2010111778A1 (en) 2009-03-30 2010-10-07 Steve Andre Beaudin Apparatus. system and methods for extracorporeal blood processing for selectively cooling the brain relative to the body during hyperthermic treatment or to induce hypothermia of the brain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715279A1 (de) * 2004-02-10 2006-10-25 JMS Co., Ltd. Wärmetauscher, verfahren zu dessen herstellung und künstliche herz-lungen-maschine
WO2005117546A2 (en) 2004-05-26 2005-12-15 Ardiem Medical, Inc. Apparatus and method for inducing rapid, extracorporeal, therapeutic hypothermia
WO2006116603A2 (en) * 2005-04-27 2006-11-02 Radiant Medical, Inc. Apparatus and method for providing enhanced heat transfer from a body
WO2010111778A1 (en) 2009-03-30 2010-10-07 Steve Andre Beaudin Apparatus. system and methods for extracorporeal blood processing for selectively cooling the brain relative to the body during hyperthermic treatment or to induce hypothermia of the brain

Also Published As

Publication number Publication date
EP2632508B1 (de) 2015-09-30
EP2632508A1 (de) 2013-09-04
DE102010049477B4 (de) 2012-10-04
DE102010049477A1 (de) 2012-05-03

Similar Documents

Publication Publication Date Title
US20210213244A1 (en) Heat Exchange Catheters and Their Methods of Manufacture and Use
DE102005001779B4 (de) Disposable zum Betreiben einer Blutbehandlungsvorrichtung im Einnadel- oder Zweinadel-Betrieb
DE60102226T2 (de) Fluidbehandlungsvorrichtung für einen therapeutischen apparat
DE69933587T2 (de) Zentralvenöser Katheter mit Temperaturregelungssystem
DE19905937C1 (de) Mobile Herz-Lungen-Maschine
US7241307B2 (en) Method and apparatus for managing temperature in a patient
JP2020171791A (ja) 脳および脊髄に局所冷却を提供するシステム
DE102009037917B4 (de) Schlauchset für eine Vorrichtung zur Blutbehandlung und Vorrichtung zur Blutbehandlung mit einem Schlauchset
DE102014116601B4 (de) Einrichtung zur Anreicherung des Bluts eines Patienten mit Sauerstoff und Verwendung einer Pumpe Patienten mit Sauerstoff
DE69533282T2 (de) Flüssigkeitsabgabesystem bei Hysteroskopiechirurgie
EP2632508B1 (de) Vorrichtung zur selektiven kühlung physiologischen gewebes
EP3590560B1 (de) Tragbare gasaustauschvorrichtung
CN109069197B (zh) 与能量输送装置一起使用的再循环冷却系统
EP3191152B1 (de) Vorrichtung umfassend einen mehrlumigen schlauch
WO2018041406A1 (de) Verfahren und vorrichtung zur bestimmung der körpertemperatur eines patienten
US11672695B2 (en) Central nervous system localized hypothermia apparatus and methods
AT514812B1 (de) Aortenkatheter und Wiederbelebungsset mit einem solchen Aortenkatheter
DE102013108373A1 (de) Ventrikelkatheter sowie System und Set mit einem Ventrikelkatheter
DE102021101710A1 (de) Temperaturmanagementsystem für Patienten während einer stationären und mobilen ECLS/ECMO-Therapie
DE102017127394A1 (de) Verfahren und Vorrichtungen zum Leeren eines Effluentbeutels nach der Blutbehandlung
WO2017182476A1 (de) System zur intravaskulären und/oder extrakorporalen kühlung und/oder erwärmung eines menschlichen oder tierischen körpers
WO2021255293A1 (de) Heizsystem für einen extrakorporalen gastauscher
WO2017182478A1 (de) System zur intravaskulären und/oder extrakorporalen kühlung und/oder erwärmung eines menschlichen oder tierischen körpers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011793652

Country of ref document: EP