WO2012055316A1 - 超声诊断仪波束发射方法及超声诊断仪 - Google Patents

超声诊断仪波束发射方法及超声诊断仪 Download PDF

Info

Publication number
WO2012055316A1
WO2012055316A1 PCT/CN2011/080362 CN2011080362W WO2012055316A1 WO 2012055316 A1 WO2012055316 A1 WO 2012055316A1 CN 2011080362 W CN2011080362 W CN 2011080362W WO 2012055316 A1 WO2012055316 A1 WO 2012055316A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
probe
high power
stop
duration
Prior art date
Application number
PCT/CN2011/080362
Other languages
English (en)
French (fr)
Inventor
史志伟
杨鹏飞
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2012055316A1 publication Critical patent/WO2012055316A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to a medical device, and more particularly to an ultrasonic diagnostic apparatus and a beam emitting method thereof. Background technique
  • the transmission power of the ultrasonic diagnostic apparatus is improved, which makes the surface temperature rise of the ultrasonic diagnostic apparatus become a bottleneck problem.
  • Many ultrasonic manufacturers have found that the acoustic index has not been reached. Prior to the FDA standard, the surface of the probe was already unacceptably hot and could cause damage to the patient's body.
  • the probe structure process of the ultrasonic diagnostic apparatus makes the heat of the probe itself not negligible.
  • the IEC has also released the surface temperature limit standard of the probe in recent years (in 2001, 2005, and 2008, the standard of the surface temperature rise of the probe was made 3 times respectively). Revised). For example, for external probes and intracavity probes, when the probe is in contact with a human body phantom, the probe surface temperature does not exceed 43 degrees within 30 minutes; IEC also specifies the temperature rise in still air at room temperature (relative to room temperature) The temperature rise value does not exceed 27 degrees.
  • the standard implemented in China is the 2005 revision of IEC 60601- 2-37 (corresponding to the Chinese national standard GB 9706. 9-2008). At the same time, the implementation of the standard has made new progress in China.
  • the transmitter's transmit power was limited only by the FDA's sound power output indicators (such as mechanical index, tissue temperature and sound field strength).
  • the transmit power of the probe is mostly limited to the probe surface temperature.
  • many ultrasound manufacturers have tried to improve the image transmission quality by reducing the surface temperature rise of the probe to improve the image quality.
  • the main technical problem to be solved by the present invention is to provide an ultrasonic diagnostic apparatus beam emitting method and an ultrasonic diagnostic apparatus, which can improve the quality of an ultrasonic image and control the surface temperature rise of the probe through a specific transmission mode.
  • an ultrasonic diagnostic apparatus beam emitting method for a probe surface of an ultrasonic diagnostic apparatus to contact a skin of a patient to generate an ultrasound image, the method comprising: performing a high power transmission mode and stopping transmission according to a set The mode combination mode controls the array elements of the probe to emit ultrasonic waves.
  • controlling the array element to transmit the ultrasonic wave according to the combination of the set high power transmission mode and the stop transmission mode comprises:
  • the array element controlling the probe When the transmission reaches a high power transmission duration, the array element controlling the probe performs a stop-and-go mode and stops transmitting the ultrasonic wave.
  • At least one of the high transmit power and high power transmit durations of the high power transmit mode and the stop transmit duration of the stop transmit mode is calculated from the normal transmit power continuously operating under the current transmit conditions.
  • an ultrasound diagnostic apparatus comprising:
  • a probe whose surface is used to contact the skin of the examinee, and the array element of the probe emits an ultrasonic beam to the inside of the examinee;
  • a transmitting module configured to control the array element of the probe to emit ultrasonic waves according to a combination of the set high power transmission mode and the stop transmission mode.
  • FIG. 1 is a schematic structural view of an ultrasonic diagnostic apparatus according to an embodiment
  • FIG. 2 is a flow chart of beam emission of an ultrasonic diagnostic apparatus according to an embodiment
  • Figure 3 is a schematic diagram of temperature fluctuations at steady state temperatures
  • FIG. 4 is a schematic diagram of a combination of a high power transmission mode and a stop transmission mode in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of temperature rise of a probe surface caused by continuous execution of the mode shown in FIG. 4;
  • FIG. 6 is a schematic structural view of an ultrasonic diagnostic apparatus according to still another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a combination of a high power transmission mode and a stop transmission mode in another embodiment of the present invention.
  • Figure 8 is a schematic diagram showing the temperature rise of the probe surface caused by the continuous execution of the mode shown in Figure 7;
  • Figure 9 is a schematic illustration of a combination of a high power transmission mode and a stop transmission mode in yet another embodiment of the present invention. detailed description
  • FIG. 1 A schematic view of the structure of the ultrasonic diagnostic apparatus relating to the present invention is shown in Fig. 1, and includes a probe 1 and an emission module 2.
  • the transmitting module 2 is used to control the probe to emit an ultrasonic beam according to a selected transmission mode.
  • the probe 1 has a plurality of array elements, and each array element can emit an ultrasonic beam.
  • the examinee e.g., the patient
  • the surface of the probe contacts the skin of the examinee, and the array element of the probe emits an ultrasonic beam to the inside of the examinee. Since the array element of the probe emits a certain amount of ultrasonic beam, the surface of the probe has a certain temperature rise according to the selected transmission power.
  • the embodiment of the present invention transmits ultrasonic waves in a combination of a high power transmission mode and a stop transmission mode, and the transmitting module 2 follows the set high power transmission mode and The combination of the stop transmission modes controls the array elements of the probe to emit ultrasonic waves. That is, according to the known normal transmission power under continuous current conditions, some parameters of the high power transmission mode and the stop transmission mode are determined by the principle of energy accumulation, and the ultrasonic wave is transmitted by combining the high power transmission mode and the stop transmission mode. .
  • the transmitting module 2 includes a parameter setting unit 21 and a transmission mode control unit 22, and the parameter setting unit 21 is configured to set a high transmission power and a high power transmission duration of the high power transmission mode and The stop transmission duration of the stop transmission mode; the parameter setting unit 21 calculates at least one of the following parameters according to the normal transmission power for continuous operation under the current transmission condition: the transmission power of the high power transmission mode, the transmission duration of the high power transmission mode, and Stop transmission duration of the stop transmission mode.
  • the transmission mode control unit 22 is configured to transmit according to the parameters set by the parameter setting unit according to high power.
  • the mode of the book controls the array element of the probe to emit ultrasonic waves, and when the emission reaches a high power transmission duration, the array elements of the probe are controlled to stop transmitting ultrasonic waves according to the stop emission mode.
  • controlling the array element to emit ultrasonic waves according to the combination of the set high power transmission mode and the stop transmission mode includes the following steps:
  • Step S1 setting a high transmission power and a high power transmission duration of the high power transmission mode and a stop transmission duration of the suspension transmission mode;
  • Step S2 controlling the array element of the probe to emit ultrasonic waves according to a high power transmission mode
  • step S3 it is judged whether the transmission time reaches the high power transmission duration. If the transmission time reaches the high power transmission duration, step S4 is performed.
  • Step S4 controlling the array element of the probe to execute the stop-and-transmit mode, and stopping transmitting the ultrasonic wave.
  • the short-time high transmission power does not cause a significant temperature rise, and the energy accumulation saved during the stop-and-launch is added to the imaging energy of the probe, effectively using known information.
  • the high transmit power is used in conjunction with the stop-and-emission to improve the imaging quality of the ultrasonic diagnostic apparatus and to effectively control the temperature rise of the probe surface.
  • the normal transmission power is based on the current transmission condition of an ultrasonic diagnostic apparatus, and the continuous operation is long enough, the surface temperature of the probe can meet the requirements of the IEC standard, and the power can be normally imaged, and each ultrasonic diagnostic apparatus There will be a normal range of transmit power, and in use, a normal transmit power operation will be selected for the ultrasound diagnostics, so normal transmit power is known to those skilled in the art and to those skilled in the art.
  • the high-power transmission mode is relative to the normal transmission mode.
  • the power used in the high-power transmission mode is higher than the normal transmission power in the normal transmission mode, so it is called high power, and the high-power transmission pulse is called high-emission. Pulse, and if ⁇ continues to operate at this high power for a period of time, the probe surface temperature will rise to the extent that I EC standards do not allow it. Stop transmitting mode means that the probe does not emit any ultrasonic beam.
  • the transmit power is usually related to the transmit voltage, the pulse repetition frequency, the transmit aperture, the transmit waveform, and the scan width.
  • the following is the case where the transmit voltage is changed while the other transmit parameters are unchanged (pulse repetition frequency, transmit aperture, transmit waveform, scan width, etc.).
  • the inventive concept of the present invention is explained by way of example.
  • When U h is close to U, close to t 2 , ⁇ approaches zero. ⁇ depends on some properties of the probe itself, such as the time constant of the probe. When the time constant of the probe is large, the temperature fluctuation value ⁇ will be 4 , small, and vice versa. In actual use, some probes need to be made for the probe. The measurement thus estimates the magnitude of ⁇ . When the durations ti, t 2 are determined, the amplitude U h of the high emission pulse depends on ⁇ . If the time is long, such as mOmin, then the probe temperature rise will inevitably exceed the standard, so the duration of the high emission pulse must be limited, ie the duration of the high power transmission mode is limited.
  • the probe object is approximately linear, and estimate the magnitude of the temperature fluctuation value ⁇ .
  • the temperature rise is increased from 8 °C to 15.6 °C, which is 8 ((exp (- ln(20)/1800))
  • the start-up time of the high transmit power mode is undetermined, and the worst case temperature rise needs to be considered: Assume that the high transmit power mode is repeated.
  • High power can also be obtained by increasing the PRF (pulse repetition frequency), for example, the pulse repetition frequency of normal transmission power is Prfi, the duration is t 2 , and the pulse repetition frequency at high transmission power is Prf 2 , and the duration should satisfy:
  • Prf ⁇ -t 2 PrfVti (6)
  • the standard specifies the limit value of the temperature rise of the probe surface at a fixed time.
  • the current IEC standard states that when the probe is in contact with a human body phantom, the phantom and probe are heated to 33 degrees or 37 degrees using a water bath method, and the ultrasonic diagnostic apparatus is activated.
  • the surface temperature of the probe does not exceed 43 degrees is up to standard; it has been proved by experiments that the ultrasonic beam is emitted by the combined mode of the invention, and the operation is continued for 30 minutes, the probe is continuously heated, and the temperature can basically reach steady state or close to steady state, and the above relationship can be better controlled. Probe surface temperature within 30 minutes and at the end of 30 minutes.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the combination of the high power transmission mode and the stop transmission mode is repeatedly performed in accordance with the high power transmission duration and the stop transmission duration.
  • the parameter setting unit calculates at least one of a high transmission power and a high power transmission duration of the high power transmission mode and a stop transmission duration of the suspension transmission mode according to the normal transmission power that continues to operate under the current transmission condition.
  • the transmit mode control unit determines a high power transmit mode based on the determined high transmit power, high power transmit duration, and generates a stop transmit mode based on the determined stop transmit duration.
  • the dotted line is the voltage of the normal transmission power
  • the transmission mode control unit first controls the voltage of the array element of the probe to be U h according to the high power transmission mode, and the control probe stops after the high voltage emission duration is t l5
  • the ultrasonic beam is emitted, the emission duration is stopped at t 2 , and then the voltage of the probe emitting voltage is U h is controlled as before, and the array element of the control probe is repeatedly executed to perform a combination of the high power transmission mode and the stop transmission mode, each combination. After the end, it switches from the stop transmission mode to the high power transmission mode.
  • FIG. 5 shows the effect of the temperature rise of the probe surface caused by the present embodiment.
  • the dotted line in the above figure shows the temperature rise curve using the normal transmission power, and the solid line is the temperature in the combination of the repeated high power transmission mode and the stop transmission mode.
  • the rising curve, T tribe m is the temperature limit specified by the IEC standard.
  • the experiment proves that the surface temperature of the probes of the two methods is not much different, and can meet the requirements of the I EC standard.
  • high power can be transmitted in a short time.
  • the ultrasonic beam can obtain high quality ultrasound images.
  • the ultrasonic diagnostic apparatus includes a probe 1, a transmitting module 2, and a trigger signal generating module 3 for generating a trigger signal.
  • the trigger signal generated by the trigger signal generating module 3 includes repeatedly generating a trigger signal according to a set time, according to the trigger signal.
  • At least one of a trigger signal generated by a manual operation of the user and a randomly generated trigger signal the transmitting module 2 controls the probe according to a combination of a set high power transmission mode and a stop transmission mode after receiving the trigger signal
  • the array element emits an ultrasonic wave, and when the stop transmission reaches the stop transmission duration, the transmission mode is switched back to the normal transmission mode.
  • the trigger signal is a trigger signal that is automatically generated according to the set time.
  • the transmitting module 2 controls the probe to transmit an ultrasonic beam according to the normal transmit power, and the trigger signal generating module is separated every time. 3 generating a trigger signal, after receiving the trigger signal, the transmitting module 2 performs a combination of a high power transmission mode and a stop transmission mode, and a high power voltage mode, a high power transmission duration, and a stop transmission mode of the high power transmission mode.
  • the method for determining the stop transmission duration parameter is the same as that of the first embodiment.
  • the dotted line is the voltage of normal transmit power
  • the high power voltage is U h
  • the high power emission duration is -ti
  • the stop emission duration is t 3 -t 2 .
  • FIG. 8 shows the effect of the surface temperature rise of the probe caused by the embodiment. It is proved that the emission mode of the embodiment and the normal power emission mode cause the surface temperature rise of the probe to be different, and the requirements of the IEC standard can be met, but With the present embodiment, a high-power ultrasonic beam can be emitted in a short time, and a high-quality ultrasonic image can be obtained.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the ultrasonic beam is still transmitted according to the trigger signal to control the probe according to the combination of the set high power transmission mode and the stop transmission mode, and the trigger signal is a random or triggered signal generated according to the user's manual operation.
  • the trigger signal generating module may include a trigger button, and the trigger button may be disposed on the probe, or may be set at any position of the ultrasonic diagnostic apparatus that is conveniently touched by the doctor, and the trigger signal is generated by the doctor. Of course, in other embodiments, it may also be a trigger signal randomly generated by the trigger signal generating module.
  • a high enough image quality is required for the diagnostician before using the high transmit power imaging mode, and the diagnostician can initially estimate the likelihood of the lesion and use high transmit power by analyzing in this mode.
  • the necessity of the mode once the doctor thinks that the scanning area of the probe covers the position of interest and wants to try to improve the image quality, the doctor can press, toggle or turn the trigger button to produce Explain that the scholar has a trigger signal.
  • the transmitting module 2 controls the probe to transmit an ultrasonic beam according to the normal transmission power.
  • the transmitting module 2 receives the trigger signal, the transmitting module transmits the ultrasonic beam according to a combination of the high power transmission mode and the stop transmission mode.
  • the pulse repetition frequency, the high power transmission duration, and the stop emission duration of the stop transmission mode of the high power transmission mode can be determined.
  • the image parameters are switched as follows: In the O ti time period, the pulse repetition frequency Prf ⁇ line density (referring to the emission line density, the number of transmission lines contained in one frame of the ultrasound image) is used, in the trtj Prf 2 and linear density Ld 2 are used in the segment; In order to maintain the same frame rate, the Prf Ldf Prf 2 /Ld 2 o stops transmitting for a period of time from t 2 to t 3 . among them Ld 2 is a high transmit power mode. In order to make the probe surface heat and tissue heat meet the IEC standard, the limits ti, t 2 and t 3 are satisfied, that is, the duration of Prf 2 ⁇ Ld 2 is? ! ⁇ ! ⁇ Duration, t 2 ⁇ t 3 function of downtime, the specific calculation method ⁇ mouth.
  • the ultrasonic imaging of the normal transmission power is performed, and the imaging mode of the high transmission power is triggered by a fixed or manual manner.
  • the previous calculations are still guaranteed to meet the metrics. For example, if a probe has a steady-state temperature of 41 degrees under a normal pulse of 65 volts, then a combination of a 3.3 volt 80 volt high energy pulse sequence and a 2 second shutdown can also guarantee the probe.
  • the steady state temperature is around 41 degrees. Considering the fluctuations caused by this combination, such as the steady-state temperature being within the range of 41 ⁇ 0.5 degrees, the current calculation is reasonable.
  • the duration and remaining time of each stage can also be displayed on the screen to the doctor. For example, at some point, the doctor observes the remaining time of the current mode on the display. This information alerts the operator to place the probe in the appropriate position for scanning.
  • the patient is reminded to adjust the breathing, posture, and the like to facilitate the examination.
  • the operator promptly reminds the patient to "deep breath-hold breath” by observing the prompt information on the screen, and then scans and checks the high emission voltage at an appropriate time; during the high emission voltage, there is a countdown reminder on the screen.
  • the operator has the remaining time, after the patient has held his breath for a period of time, stops the high emission voltage pulse, and the patient enters the normal breathing state; the duration of the special posture such as the patient's breath holding may be only a few seconds, of course, the duration of the high firing pulse It is not too long to say that the book is usually too long.
  • the pulse emission voltage and the pulse repetition frequency can be simultaneously changed to obtain a high power pulse, which can be determined according to the above formula (8).
  • High power transmission mode transmit voltage, pulse repetition frequency, high power transmission duration, and stop emission duration.
  • the surface temperature of the probe is well controlled in combination with the stop emission mode in the high power transmission mode, so that the surface temperature and the tissue temperature of the probe are both Ability to meet I EC standards.
  • the operator performs a normal image scan, and when the probe moves to the heart slice of interest, such as a four-chamber heart or aortic valve slice, a high-power emission scan is initiated, in a short Under the excellent imaging conditions of time, if thousands of cardiac cycles are collected, the movie files are recorded for doctors to analyze; after the high power emission duration is reached, the scanning is stopped for a period of time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

说 明 书
超声诊断仪波束发射方法 SJ£声诊断仪
技术领域
本发明涉及一种医疗设备, 尤其涉及一种超声诊断仪及其波束发射方法。 背景技术
1992年, 在美国超声医学学会(AIUM)、 美国国家电气制造商协会(NEMA ) 的支持下, 美国食品药品监督局(FDA )对医用超声的声输出指标做了重大调整。 FDA将声输出指标的 I spta指标放宽到 720丽 /cm2, 并要求将声压、 声强参数折 算成机械指数 (Ml)、 热指数(TI) , 并显示在屏幕上。 这样一来, 对于超声厂家 来说, 声输出的限制变得非常宽泛, 允许较高发射功率的超声扫描仪应用于医 学诊断。 随着声功率指标的放开和对图像质量要求的提高, 超声诊断仪的发射 功率提高, 这使得超声诊断仪的探头表面温升成为了一个瓶颈问题, 很多超声 厂家发现, 在声指标没有达到 FDA标准之前, 探头表面已经热的不能接受, 可 能对病人身体造成损伤。
目前超声诊断仪的探头结构工艺使得探头自身的发热已不能忽略, IEC近些 年也发布了探头表面温度限制标准(2001年、 2005年、 2008年分别对探头表面 温升的标准做了 3次修订)。 例如对于外用探头和腔内探头, 探头与仿人体组织 体模接触时,在 30分钟之内探头表面温度不超过 43度; IEC也规定了在室温下, 静止的空气中温升(相对于室温的温度升高值)不超过 27度。 目前国内执行的标 准是 IEC 60601- 2- 37的 2005年修订版(对应中国国家标准 GB 9706. 9-2008) , 与此同时, 标准的实施在中国国内也有了新的进展。
在 IEC标准出台之前, 各个厂家由于没有指导原则, 探头的发射功率仅受 限于 FDA的声功率输出指标(例如机械指数、 组织温度和声场强度), 在 IEC标 准出台后, 从目前实际情况看, 除了少部分模式发射功率受限于声输出功率, 探头的发射功率大部分受限制于探头表面温度。 为了满足用户对图像质量的要 求, 很多超声厂家想办法通过降低探头表面温升, 来达到提高探头发射功率的 目的, 从而提高图像质量。
通过改变探头结构和工艺的方法来改善探头的散热性能, 例如采用水冷、 气冷循环系统。 这是一种从根本上改善探头发热的措施, 但该方法改变了探头 的结构, 增加探头的成本。 说 明 书 另一种考虑问题的角度, 为了遵守标准, 一些厂家开始寻找某些特定的成 像模式, 这些模式允许超声系统在短时间内(从几秒到几分钟)发射出高能量的 超声波, 但无论声功率输出还是探头发热都需要满足标准规定, IEC标准明确指 出: "为满足要求, 在实验期间换能器组件辐射表面温度不应超过 43 °C "。
发明内容
本发明要解决的主要技术问题是, 提供一种超声诊断仪波束发射方法及超 声诊断仪, 通过特定的发射模式, 既能够提高超声图像质量, 又能够控制探头 的表面温升。
根据本发明的一方面, 提供一种超声诊断仪波束发射方法,用于超声诊断仪 的探头表面接触病人的皮肤以产生超声图像, 所述方法包括: 按照设定的高功 率发射模式和停发射模式组合的方式控制所述探头的阵元发射超声波。
在一个实施例中, 所述按照设定的高功率发射模式和停发射模式组合的方 式控制所述探头的阵元发射超声波包括:
设置高功率发射模式的高发射功率和高功率发射持续时间以及停发射模式 的停止发射持续时间;
按照高功率发射模式控制所述探头的阵元发射超声波;
当发射达到高功率发射持续时间时, 控制所述探头的阵元执行停发射模式, 停止发射超声波。
其中, 所述高功率发射模式的高发射功率和高功率发射持续时间以及停发 射模式的停止发射持续时间中的至少一个参数由当前发射条件下持续工作的正 常发射功率计算得到。
根据本发明的另一方面, 提供一种超声诊断仪, 包括:
探头, 其表面用于接触被检查者的皮肤, 所述探头的阵元向被检查者体内 发射超声波束;
发射模块, 所述发射模块用于按照设定的高功率发射模式和停发射模式组 合的方式控制所述探头的阵元发射超声波。 附图说明
图 1为一种实施例的超声诊断仪的结构示意图;
图 2为一种实施例的超声诊断仪波束发射流程图; 说 明 书 图 3为在稳态温度时的温度波动示意图;
图 4为本发明一种实施例中的高功率发射模式与停发射模式组合的示意图; 图 5为图 4所示模式持续执行引起的探头表面温升示意图;
图 6为本发明又一种实施例中的超声诊断仪的结构示意图;
图 7 为本发明另一种实施例中的高功率发射模式与停发射模式组合的示意 图;
图 8为图 7所示模式持续执行引起的探头表面温升示意图;
图 9 为本发明又一种实施例中的高功率发射模式与停发射模式组合的示意 图。 具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
超声诊断仪中涉及本发明的结构示意图如图 1所示, 包括探头 1和发射模 块 2。发射模块 2用于控制探头按照选定的发射模式发射超声波束, 探头 1中具 有若干阵元, 每个阵元都可发射超声波束。 当对被检查者 (例如病人) 进行检 查时, 探头的表面接触被检查者的皮肤, 探头的阵元向被检查者体内发射超声 波束。 由于探头的阵元发射一定功率的超声波束, 所以探头的表面会根据选择 的发射功率具有一定的温升, 发射功率越大温升越高, 同时发射功率越大, 图 像质量越好。 为同时满足 I EC 标准的要求和用户对图像展量的要求, 本发明具 体实施例中采用高功率发射模式和停发射模式组合的方式发射超声波, 发射模 块 2 按照设定的高功率发射模式和停发射模式组合的方式控制所述探头的阵元 发射超声波。 即根据已知的当前发射条件下持续工作的正常发射功率, 通过能 量积累的原则, 确定出高功率发射模式和停发射模式的一些参数, 采用高功率 发射模式和停发射模式组合的方式发射超声波。
在一种实施例中, 如图 1所示, 发射模块 2包括参数设置单元 21和发射模 式控制单元 22 ,参数设置单元 21用于设置高功率发射模式的高发射功率和高功 率发射持续时间以及停发射模式的停止发射持续时间; 根据当前发射条件下持 续工作的正常发射功率, 参数设置单元 21计算以下参数中的至少一个: 高功率 发射模式的发射功率、 高功率发射模式的发射持续时间以及停发射模式的停止 发射持续时间。
发射模式控制单元 22用于根据参数设置单元设置的参数, 按照高功率发射 说 明 书 模式控制所述探头的阵元发射超声波, 并当发射达到高功率发射持续时间时, 按照停发射模式控制所述探头的阵元停止发射超声波。
如图 1 所示, 按照设定的高功率发射模式和停发射模式组合的方式控制所 述探头的阵元发射超声波包括以下步骤:
步骤 S1 , 设置高功率发射模式的高发射功率和高功率发射持续时间以及停 发射模式的停止发射持续时间;
步骤 S2, 按照高功率发射模式控制所述探头的阵元发射超声波;
步骤 S3 , 判断发射时间是否达到高功率发射持续时间, 如果发射时间达到 高功率发射持续时间时, 则执行步骤 S4。
步骤 S4 , 控制所述探头的阵元执行停发射模式, 停止发射超声波。
由于探头发热时间常数较长, 短时间的高发射功率不会引起显著的温度升 高, 并将停发射期间省去的能量积累补充到探头的成像能量中去, 有效地借助 已知信息, 将高发射功率与停发射配合使用, 既可提高超声诊断仪的成像质量, 又可有效地控制探头表面温升。
本申请中, 所述正常发射功率为基于某台超声诊断仪的当前发射条件下, 持续工作足够长时间, 探头表面温度能够满足 IEC 标准的要求, 并可正常成像 的功率, 每台超声诊断仪都会有一个正常发射功率范围, 在使用时, 为超声诊 断仪选定一个正常发射功率工作, 因此对于超声诊断仪和本领域技术人员来说, 正常发射功率是已知的。 而高功率发射模式是相对正常发射模式来讲的, 高功 率发射模式中采用的功率高于正常发射模式中的正常发射功率, 所以称为高功 率, 采用该高功率的发射脉冲称为高发射脉冲, 而如杲以该高功率持续工作一 段时间, 探头表面温度将升高到 I EC 标准不允许的程度。 停发射模式是指探头 不发射任何超声波束。
发射功率通常和发射电压、 脉冲重复频率、 发射孔径、 发射波形和扫描宽 度有关, 下面以改变发射电压而其他发射参数不变(脉冲重复频率、 发射孔径、 发射波形、 扫描宽度等)的情况为例说明本发明的发明构思。
如图 3所示, 假设在平稳的正常发射电压 U的作用下, 持续足够时间 t2 , 探头表面温度达到稳态温度, 假设其稳态温升是 Ts, 应满足:
U2=K! · Ts (1)
其中 是当前发射参数下的比例系数。
假设高发射电压为 uh, 持续时间为 t 停发射的持续时间为 t2-t 如果使 说 明 书 稳态温升达到 Ts左右, 应满足:
U2-t2= Uh 2-t! (2)
由于发射功率的波动, 引起稳态温度的波动, 因此实际的瞬时温度的波动 为: Ts±5, 其中:
5=f(th t2~ ίι, Uh) (3)
当 Uh接近于 U, 接近于 t2时, δ趋近于零。 其中 δ还取决于探头本身的一些 属性, 例如探头的时间常数, 当探头的时间常数较大时, 温度波动值 δ会 4艮小, 反之会较大, 实际使用时需要对探头做一些筒单的测量从而估计 δ的大小。 当持 续时间 ti、 t2确定时, 高发射脉冲的幅度 Uh取决于 δ。 如果 时间很长, 例如 mOmin, 那么必然导致探头温升超标, 因此必须限制高发射脉沖的持续时间, 即限制高功率发射模式的持续时间。
如果持续使用 ti~t2之间的高发射功率, 假设稳态温升为 TS2。 考虑到机械指 数对探头发射功率的限制, 假设 TS2=2TS=16°C。 同时假设这个探头对象是近似 线性的情况下, 估计温度波动值 δ的幅度。 假设在 30分钟之内, 温升从 8 °C提高 到 15.6 °C, 也就是 8· (卜 exp (- ln(20)/1800))|i=1800=7.6°C, 那么从稳态温度 T出发, 启动高发射功率模式 5秒钟时, 探头温升估计值为: δ=8 · ( 1 -exp(-dn(20)/ 1800)) 5<0.1 °C (4) 在实际临床使用中, 高发射功率模式的启动时间未定, 需要考虑最坏情况 下的温升: 假设高发射功率模式重复进行。 那么参照前面的能量守恒的计算方 法, 在高发射功率脉冲之后, 增加一段停发射, 即可达到与正常发射模式一样 的效果。 对于温度波动值 δ, 也不难按照上面的方法进行估算。
高功率也可通过提高 PRF (脉冲重复频率)得到,例如正常发射功率的脉冲重 复频率为 Prfi, 持续时间为 t2, 在高发射功率的脉沖重复频率为 Prf2, 持续时 间为 应满足:
Prf!= 2- Ts (5)
同理应有关系:
Prf\-t2= PrfVti (6)
高功率也可通过提高发射电压和 Prf 的组合得到, 应有如下关系:
U2-Prf K3- Ts (7) 说 明 书
U2-Prf!- t2= Uh 2- Prf2- t! (8)
标准规定在固定的时间内, 探头表面温升的限制值。 例如, 现行 IEC 标准 指出, 探头在与仿人体组织体模接触时, 使用水浴法把体模和探头加热稳定到 33度或 37度, 启动超声诊断仪, 在 30分钟内, 探头表面温度不超过 43度为达 标; 经实验证明采用本发明的组合模式发射超声波束, 持续工作 30分钟, 探头 持续加热, 温度基本上可达到稳态或接近稳态, 通过上面的关系, 可较好地控 制在 30分钟之内和 30分钟末的探头表面温度。
实施例一:
请参考图 4, 高功率发射模式和停发射模式的组合方式按照高功率发射持续 时间和停止发射持续时间重复执行。 参数设置单元根据当前发射条件下持续工 作的正常发射功率计算高功率发射模式的高发射功率和高功率发射持续时间以 及停发射模式的停止发射持续时间中的至少一个参数。 例如, 假设脉冲重复频 率、 发射孔径、 发射波形和扫描宽度不变, 只改变发射电压, 已知正常发射功 率的电压、 正常发射功率的稳态温升 Ts和允许的温度波动值 δ, 根据经验可确定 上述公式(2 ) 中的 和 ^, 进而确定高功率发射模式的发射电压, 也就确定了 高功率发射模式的高发射功率。 发射模式控制单元根据确定的高发射功率、 高 功率发射持续时间生成高功率发射模式, 根据确定的停止发射持续时间生成停 发射模式。
图 4 中, 虚线为正常发射功率的电压, 发射模式控制单元先按照高功率发 射模式控制所述探头的阵元发射电压幅度为 Uh的电压, 高电压发射持续时间为 tl5之后控制探头停止发射超声波束,停止发射持续时间为 t2,之后再同前面一样 控制探头发射电压幅度为 Uh的电压, 重复控制探头的阵元执行高功率发射模式 和停发射模式的组合方式, 每一组合结束后即从停发射模式切换到高功率发射 模式。
图 5 所示为采用本实施例引起的探头表面温升效果, 上图中的虚线为采用 正常发射功率的温升曲线, 实线为采用重复高功率发射模式和停发射模式的组 合方式的温升曲线, T„m为 IEC标准规定的温度极限, 实验证明两种方式的探头 表面温度相差不大, 都能满足 I EC 标准的规定, 但采用本实施例, 可在短时间 内发射高功率的超声波束, 可获得高质量的超声图像。
根据本发明所公开的内容, 本领域技术人员应当理解, 还可以根据上述公 开 (2 ), 给定高发射功率后计算持续时间。 说 明 书 实施例二:
请参考图 6, 超声诊断仪包括探头 1、 发射模块 2和用于产生触发信号的触 发信号产生模块 3 ,触发信号产生模块 3产生的触发信号包括按照设定时间重复 自动产生的触发信号、 根据用户的手动操作产生的触发信号和随机产生的触发 信号中的至少一种, 所述发射模块 2 当接收到触发信号后按照设定的高功率发 射模式和停发射模式组合的方式控制所述探头的阵元发射超声波, 当停发射达 到停止发射持续时间时, 将发射模式切换回正常发射模式。
本实施例中, 触发信号为按照设定时间重复自动产生的触发信号, 如图 7 所示, 正常情况下发射模块 2 按照正常发射功率控制探头发射超声波束, 每间 隔一定时间, 触发信号产生模块 3产生一个触发信号, 发射模块 2接收到该触 发信号后, 控制探头执行一次高功率发射模式和停发射模式的组合, 高功率发 射模式的高功率电压、 高功率发射持续时间和停发射模式的停发射持续时间参 数的确定方法同实施例一。 图 7 中, 虚线为正常发射功率的电压, 高功率电压 为 Uh, 高功率发射持续时间为 -ti, 停发射持续时间为 t3-t2。 当停止发射达到 或超过停发射持续时间后, 发射模块 2 将发射模式切换回正常发射模式, 控制 探头按照正常发射模式发射超声波束。
图 8 所示为采用本实施例引起的探头表面温升效果, 实验证明采用本实施 例的发射模式和采用正常功率发射模式导致探头表面温升相差不大, 都能满足 IEC标准的规定, 但采用本实施例, 可在短时间内发射高功率的超声波束, 可获 得高质量的超声图像。
实施例三:
本实施例中, 仍然采用根据触发信号来控制探头按照设定的高功率发射模 式和停发射模式组合的方式来发射超声波束, 触发信号为随机或根据用户的手 动操作产生的触发信号。 本实施例中, 触发信号产生模块可包括一个触发键, 所述触发键可设置在探头上, 当然也可以设置在医生方便触摸的超声诊断仪的 任何一个位置, 由医生操作后产生触发信号。 当然在其他实施例中, 也可以是 触发信号产生模块随机产生的一个触发信号。
从临床的角度来看, 在使用高发射功率成像模式之前, 需要一个足够好的 图像质量给诊断医生, 诊断医生通过在这种模式下的分析, 初步估计病灶的可 能性, 以及使用高发射功率模式的必要性, 一旦医生认为探头的扫描区域覆盖 感兴趣位置, 并想尝试提高图像质量时, 医生可按压、 拨动或转动触发键, 产 说 明 书 生一个触发信号。
如图 9所示, 正常情况下发射模块 2按照正常发射功率控制探头发射超声 波束, 当发射模块 2接收到触发信号后, 即按照高功率发射模式和停发射模式 的组合方式控制探头发射超声波束。 本实施例中, 假设发射电压、 发射孔径、 发射波形和扫描宽度不变, 只提高脉沖重复频率, 从而得到高功率发射模式的 高功率。 根据上述公式 (6 ), 可确定高功率发射模式的脉冲重复频率、 高功率 发射持续时间和停发射模式的停止发射持续时间。
如图 9所示, 图像参数按照如下方式切换: 在 O ti时间段内, 使用脉冲重 复频率 Prf^线密度 (指发射线密度, 一帧超声图像中包含的发射线数) , 在 trtj†间段内使用 Prf2和线密度 Ld2; 其中
Figure imgf000010_0001
为了维持相 同的帧率, Prf Ldf Prf2/Ld2 o 在 t2~t3时间内, 探头停止发射一段时间。 其中
Figure imgf000010_0002
Ld2是高发射功率模式。 为了使得探头表面发热和组织发热满足 IEC标准, 限制 ti、 t2和 t3满足特定关 系, 也就是说 Prf2\Ld2的持续时间是?!^ !^持续时间、 t2~t3停机时间的函数, 具体计算方法 ^口前述。
上述实施例二、 三中, 在高功率模式启动之前, 进行正常发射功率的超声 成像, 通过固定或手动方式触发高发射功率的成像模式。 在这种情况下, 使用 前面的计算方式仍然可保证满足指标。 例如, 假设某探头在 65伏特的正常脉冲 作用下, 探头稳态温度是 41度, 那么使用一个 3. 3秒钟的 80伏特高能量脉冲 序列与一个 2秒钟的停机组合, 也可保证探头稳态温度在 41度左右。 考虑到这 种组合引起的波动, 例如稳态温度在 41 ± 0. 5 度范围之内, 那么当前的计算是 合理的。
上述实施例中, 对于各阶段的持续时间和剩余时间, 还可显示在屏幕上通 知给医生。 例如在某时刻, 医生观察到显示器上当前模式的所剩的时间, 这个 信息提醒操作者将探头放在适当的位置进行扫描。
或者, 操作者获得屏幕提示信息后, 在适当的时间, 提醒病人调整呼吸、 姿势等有利于检查的措施。 例如在腹部检查过程中, 操作者通过观察屏幕上的 提示信息, 及时提醒病人 "深呼吸-屏气", 然后在适当的时间进行高发射电压 的扫描和检查; 高发射电压期间, 屏幕上有倒计时提醒操作者目前剩余时间, 待病人屏气一段时间后, 停止高发射电压脉冲, 同时病人进入正常呼吸状态; 病人屏气等特殊姿态的持续时间可能只有几秒钟, 当然, 高发射脉冲的持续时 说 明 书 间也不会过长, 一般也是若干秒钟时间。
根据本发明公开的内容, 本领域技术人员应该理解, 除了改变脉冲发射电 压或脉冲重复频率外, 还可同时改变脉冲发射电压和脉冲重复频率来得到高功 率脉冲, 可根据上述公式(8 )确定高功率发射模式的发射电压、 脉冲重复频率、 高功率发射持续时间和停发射持续时间。
上述实施例中, 可在高功率脉冲发射的短时间内获得优异的图像质量, 高 功率发射模式后再结合停发射模式很好地控制了探头的表面温度, 使探头的表 面温度和组织温度都能够符合 I EC 标准的要求。 例如在相控阵扫描心脏图像过 程中: 首先, 操作者进行正常的图像扫描, 等探头移动到感兴趣的心脏切面, 比如四腔心或者主动脉瓣切面时, 启动高功率发射扫描, 在短时间优异的成像 条件下, 采集若千个心动周期, 记录到电影文件供医生分析; 高功率发射持续 时间到后, 停机扫描一段时间。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种超声诊断仪波束发射方法,用于超声诊断仪的探头表面接触病 人的皮肤以产生超声图像, 其特征在于所述方法包括:
按照设定的高功率发射模式和停发射模式组合的方式控制所述探头的阵元 发射超声波。
2. 如权利要求 1 所述的方法, 其特征在于, 所述按照设定的高功率发 设置高功率发射模式的高发射功率和高功率发射持续时间以及停发射模式 的停止发射持续时间;
按照高功率发射模式控制所述探头的阵元发射超声波;
当发射达到高功率发射持续时间时, 控制所述探头的阵元执行停发射模式, 停止发射超声波。
3. 如权利要求 1或 2所述的方法, 其特征在于, 所述高功率发射模式 的高发射功率和高功率发射持续时间以及停发射模式的停止发射持续时间中的 至少一个参数由当前发射条件下持续工作的正常发射功率计算得到。
4. 如权利要求 3 所述的方法, 其特征在于, 所述高发射功率包括高发 射电压和 /或高脉冲重复频率。
5. 如权利要求 1 至 4 中任一项所述的方法, 其特征在于, 所述高功率 发射模式和停发射模式的组合方式按照高功率发射持续时间和停止发射持续时 间重复执行。
6. 如权利要求 1 至 4 中任一项所述的方法, 其特征在于, 当接收到触 发信号后执行所述高功率发射模式和停发射模式的组合方式。
7. 如权利要求 6 所述的方法, 其特征在于, 所述触发信号包括按照设 定时间重复自动产生的触发信号、 根据用户的手动操作产生的触发信号和随机 产生的触发信号中的至少一种, 当停发射达到或超过停止发射持续时间时, 将 发射模式切换回正常发射模式。
8. 一种超声诊断仪, 包括:
探头, 其表面用于接触被检查者的皮肤, 所述探头的阵元向被检查者体内 发射超声波束;
其特征在于还包括:
发射模块, 所述发射模块用于按照设定的高功率发射模式和停发射模式组 权 利 要 求 书 合的方式控制所述探头的阵元发射超声波。
9. 如权利要求 8所述的超声诊断仪, 其特征在于, 所述发射模块包括: 参数设置单元, 用于设置高功率发射模式的高发射功率和高功率发射持续 时间以及停发射模式的停止发射持续时间;
发射模式控制单元, 用于根据参数设置单元设置的参数, 按照高功率发射 模式控制所述探头的阵元发射超声波, 并当发射达到高功率发射持续时间时, 按照停发射模式控制所述探头的阵元停止发射超声波。
10. 如权利要求 9 所述的超声诊断仪, 其特征在于, 所述参数设置单元 根据当前发射条件下持续工作的正常发射功率计算高功率发射模式的高发射功 率和高功率发射持续时间以及停发射模式的停止发射持续时间中的至少一个参 数。
11. 如权利要求 8至 10中任一项所述的超声诊断仪, 其特征在于, 所述 发射模式控制单元按照高功率发射持续时间和停止发射持续时间重复控制所述 探头的阵元执行高功率发射模式和停发射模式的組合方式。
12. 如权利要求 8至 10中任一项所述的超声诊断仪, 其特征在于, 还包 括用于产生触发信号的触发信号产生模块, 所述触发信号包括按照设定时间重 复自动产生的触发信号、 根据用户的手动操作产生的触发信号和随机产生的触 发信号中的至少一种, 所述发射模块当接收到触发信号后按照设定的高功率发 射模式和停发射模式组合的方式控制所述探头的阵元发射超声波, 当停发射达 到或超过停止发射持续时间时, 将发射模式切换回正常发射模式。
1 3. 如权利要求 12所述的超声诊断仪, 其特征在于, 所述触发信号产生 模块包括触发键, 所述触发键设置在所述探头上。
PCT/CN2011/080362 2010-10-25 2011-09-29 超声诊断仪波束发射方法及超声诊断仪 WO2012055316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010518293.4A CN102451018B (zh) 2010-10-25 2010-10-25 超声诊断仪波束发射方法及超声诊断仪
CN201010518293.4 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012055316A1 true WO2012055316A1 (zh) 2012-05-03

Family

ID=45993157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080362 WO2012055316A1 (zh) 2010-10-25 2011-09-29 超声诊断仪波束发射方法及超声诊断仪

Country Status (2)

Country Link
CN (1) CN102451018B (zh)
WO (1) WO2012055316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105496460A (zh) * 2016-01-22 2016-04-20 飞依诺科技(苏州)有限公司 超声换能器控制方法及控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104414689B (zh) * 2013-09-06 2017-01-04 深圳迈瑞生物医疗电子股份有限公司 实现高灵敏度成像的超声成像方法、超声成像装置
CN107890355B (zh) * 2017-12-19 2021-08-10 飞依诺科技(苏州)有限公司 一种调节超声波发射功率的方法和装置
CN112638270A (zh) * 2018-09-19 2021-04-09 深圳迈瑞生物医疗电子股份有限公司 一种多工模式下的超声成像方法和超声成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694937A (en) * 1995-01-31 1997-12-09 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus and method
US5957845A (en) * 1997-04-11 1999-09-28 Acuson Corporation Gated ultrasound imaging apparatus and method
US6210335B1 (en) * 1999-12-08 2001-04-03 General Electric Company Acoustic flash to increase penetration
US20040102703A1 (en) * 2002-11-26 2004-05-27 Siemens Medical Solutions Usa, Inc. High transmit power diagnostic ultrasound imaging
CN1788687A (zh) * 2004-09-24 2006-06-21 株式会社东芝 超声波诊断装置和图像数据生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694937A (en) * 1995-01-31 1997-12-09 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus and method
US5957845A (en) * 1997-04-11 1999-09-28 Acuson Corporation Gated ultrasound imaging apparatus and method
US6210335B1 (en) * 1999-12-08 2001-04-03 General Electric Company Acoustic flash to increase penetration
US20040102703A1 (en) * 2002-11-26 2004-05-27 Siemens Medical Solutions Usa, Inc. High transmit power diagnostic ultrasound imaging
CN1788687A (zh) * 2004-09-24 2006-06-21 株式会社东芝 超声波诊断装置和图像数据生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105496460A (zh) * 2016-01-22 2016-04-20 飞依诺科技(苏州)有限公司 超声换能器控制方法及控制系统

Also Published As

Publication number Publication date
CN102451018B (zh) 2015-09-30
CN102451018A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
US6824518B2 (en) High transmit power diagnostic ultrasound imaging
JP5348920B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理方法
JP5399192B2 (ja) 超音波診断装置、および超音波診断装置の作動方法
JP6096459B2 (ja) 超音波診断装置
WO2012055316A1 (zh) 超声诊断仪波束发射方法及超声诊断仪
JP2002191599A (ja) 超音波診断装置
JP2018011950A (ja) 超音波及び光音響波に由来する情報を取得する装置、方法、及びプログラム
WO2013098732A1 (en) Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences
JP4607528B2 (ja) 超音波診断装置及び画像データ生成方法
JP2007301181A (ja) 超音波診断装置および画像表示方法
JP6325850B2 (ja) 脂肪診断装置
US20100331691A1 (en) Ultrasonic diagnosis apparatus and ultrasonic diagnosis support information providing method
JP5405251B2 (ja) 超音波診断装置及び超音波プローブの送信駆動電圧制御プログラム
JP6349025B2 (ja) 携帯用超音波診断装置、及びそれにおける電力効率改善方法
KR20120046521A (ko) 초음파 진단장치
JP2010005322A (ja) 超音波診断装置
JP5322767B2 (ja) 超音波診断装置
KR20110097148A (ko) 유체온도조절장치 및 프로브 장치
JP2004275545A (ja) 超音波診断装置
JP2012016508A (ja) 超音波診断装置及び信号解析プログラム
JP2010154980A (ja) 超音波診断装置及び超音波ビーム形成方法
JP2009118961A (ja) 超音波診断装置及び超音波診断装置制御プログラム
KR20180106902A (ko) 광음향장치 및 그 제어 방법, 및 광음향 프로브
US20180267001A1 (en) Photoacoustic apparatus and control method thereof, and photoacoustic probe
WO2020085429A1 (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835589

Country of ref document: EP

Kind code of ref document: A1