WO2013098732A1 - Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences - Google Patents

Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences Download PDF

Info

Publication number
WO2013098732A1
WO2013098732A1 PCT/IB2012/057582 IB2012057582W WO2013098732A1 WO 2013098732 A1 WO2013098732 A1 WO 2013098732A1 IB 2012057582 W IB2012057582 W IB 2012057582W WO 2013098732 A1 WO2013098732 A1 WO 2013098732A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
ultrasound
air bubbles
ultrasound transducer
predetermined period
Prior art date
Application number
PCT/IB2012/057582
Other languages
French (fr)
Inventor
Jing Ping XU
Junbo LI
Yinan Chen
Yunrong ZHANG
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Publication of WO2013098732A1 publication Critical patent/WO2013098732A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Definitions

  • the invention relates to the field of ultrasound monitoring of ablation, and particularly to the apparatus and method for ultrasound monitoring of ablation by means of a combination of the breaking down of air bubbles and imaging sequences.
  • Chemotherapy and radiation therapy are ineffective against primary and secondary hepatic tumors. Therefore, tumor removal through resection surgery is now the dominant first treatment option. However, in some cases, patients are not considered to be suitable candidates for this type of surgery for various reasons.
  • breaking down air-bubbles means that to vanish the air-bubbles or to break down the air-bubbles into smaller ones.
  • an apparatus for the monitoring of ablation comprising:
  • an ultrasound transducer for performing the B-scan imaging for a region that is being treated for ablation, and the ultrasound transducer also being configured for the breaking down of air bubbles by ultrasound in the region of ablation;
  • a controller that is configured to control the ultrasound transducer to break down the air bubbles within a predetermined period during the ablation and to enable the ultrasound transducer to perform the B-scan imaging for the region of ablation after the predetermined period.
  • the quality of the ultrasound images is greatly improved, because the generated air bubbles are broken down during the ablation, which prevents the creation of hyperechogenicity on ultrasound images. Moreover, since no extra hardware is needed, the apparatus for the monitoring of ablation is cost-effective.
  • the controller is configured to control the ultrasound transducer to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images during the whole ablation process
  • the controller is configured to control the ultrasound transducer to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images during the whole ablation process
  • an ultrasound transducer for performing B-scan imaging for a region that is being treated for ablation
  • an additional ultrasound transducer configured for breaking down air bubbles by transmitting ultrasound in the region of ablation.
  • the apparatus for the monitoring of ablation further comprises a controller that is configured to control the additional ultrasound transducer (320) to break down the air bubbles within a predetermined period during the ablation.
  • the controller is configured to control the additional ultrasound transducer to repeatedly perform the breaking down of the air bubbles so as to continually obtain clearer ultrasound images during the whole ablation process.
  • it provides a method for the monitoring of ablation, comprising:
  • the method for ablation monitoring further comprises: repeating the steps a) and b) so as to continually obtain clearer ultrasound images.
  • Fig. 1 is a simplified schematic diagram of the apparatus for the monitoring of ablation in accordance with an embodiment of the present invention
  • Fig. 2a is a graph that shows a relationship between the temperature and the time in which the ablation is being performed by one kind of ablation device like Valleylab;
  • Fig. 2b is a timing chart that shows the operation of one kind of ablation device, like Valleylab;
  • Fig. 3 is a simplified schematic diagram of the apparatus for the monitoring of ablation in accordance with another embodiment of the present invention.
  • Fig. 4 is a flowchart of the method for ablation monitoring in accordance with an embodiment of the present invention.
  • Fig. 1 is a simplified schematic diagram of the apparatus 10 for ablation monitoring in accordance with an embodiment of the present invention, which in the illustrated embodiment includes an ultrasound transducer 110 and a controller 120.
  • the ultrasound transducer 110 is not only used for performing B-scan imaging for a region being treated for ablation, but is also configured to break down generated air bubbles by transmitting ultrasound in the region of ablation.
  • controller 120 is configured to control the ultrasound transducer 110 to break down the air bubbles within a predetermined period during the ablation and to enable the ultrasound transducer 110 to perform the B-scan imaging for the region of ablation after the predetermined period.
  • the controller 120 controls the ultrasound transducer 110 to operate in a first operating mode in which the B-scan imaging is performed for the region of ablation. Then, for example, after the temperature is above 80 °C, or after about 60 seconds has elapsed, the controller 120 controls the ultrasound transducer 110 to operate in a second operating mode in which the air bubbles are broken down by ultrasound from the ultrasound transducer 110 within a predetermined period such as 200 to 400 microseconds. At the end of the second operating mode, the ultrasound transducer 110 switches back to the first operating mode under the control of the controller 120.
  • the conventional processor and display are utilized to collect and process ultrasonic RF data for the region of ablation and to display the ultrasound images, when the ultrasound transducer 110 operates in the first operating mode.
  • Fig. 2a is a graph showing a relationship between the temperature and the time in the ablation performed by one kind of ablation device like Valleylab.
  • the temperature increases over time during the ablation performed by this kind of ablation device.
  • this kind of ablation device if impedance increases to 10 ohms above the baseline value, power is automatically switched off for e.g. 15 seconds and then switched on again to pause the heating to avoid the temperature being too high during the ablation process (see Fig. 2b).
  • the predetermined period within which the air bubbles are broken down is arranged in the pause period of the ablation.
  • the controller is configured to control the ultrasound transducer 110 to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images.
  • Fig. 3 is a simplified schematic diagram of the apparatus 30 for ablation monitoring in accordance with another embodiment of the present invention, which in the illustrated embodiment includes an ultrasound transducer 310 and an additional ultrasound transducer 320.
  • the ultrasound transducer 310 is used to perform B-scan imaging for a region being treated for ablation
  • the additional ultrasound transducer 320 is configured to break down generated air bubbles by transmitting ultrasound in the region of ablation
  • the apparatus 30 may further comprise a controller that is configured to control the additional ultrasound transducer 320 to break down the generated air bubbles within a predetermined period during the ablation. For example, after the temperature is above 80 °C, or after about 60 seconds have elapsed since the start of the ablation, the controller controls the additional ultrasound transducer 320 to break down the air bubbles within a predetermined period, such as 200 to 400 microseconds.
  • the controller is configured to control the ultrasound transducer 320 to repeatedly perform the breaking down of the air bubbles so as to continually obtain clearer ultrasound images.
  • the above-mentioned ultrasound transducers 110, 320 may be configured to transmit dynamically focused ultrasound within the predetermined period, so as to break down the air bubbles in the whole region of ablation in a scan manner.
  • the above-mentioned ultrasound transducers 110, 320 may be configured to transmit ultrasound at a high Mechanical Index (MI) within the predetermined period so as to break down the air bubbles in the whole region of ablation without using dynamically focused ultrasound.
  • MI Mechanical Index
  • the MI is selected to be bigger than 0.5 but less than the safety value of 1.9.
  • Fig. 4 is a flowchart of the method 40 for the monitoring of RFA in accordance with an embodiment of the present invention.
  • air bubbles generated in a region that is being treated are broken down by ultrasound in a predetermined period during the ablation in step 410.
  • the predetermined period may be selected to be 200 to 400 microseconds.
  • B-scan imaging for the region of ablation after the predetermined period is performed in step 420.
  • the steps 410 and 420 may be repeatedly performed so as to continually obtain clearer ultrasound images. This will help to better control the ablation process.

Abstract

The present invention provides an apparatus and method for the monitoring of ablation. An aspect of the present invention proposes an apparatus for the monitoring of ablation,comprising an ultrasound transducer for performing a B-scan imaging for a region being treated for ablation; and the ultrasound transducer is also configured for breaking down air bubbles by ultrasound in the region of ablation; and a controller (120) that is configured to control the ultrasound transducer (110) to break down the air bubbles within a predetermined period during the ablation and to enable the ultrasound transducer (110) to perform the B-scan imaging for the region of ablation after the predetermined period. Thus, the quality of the ultrasound images is greatly improved. Moreover, the apparatus for the monitoring of ablation is cost-effective, because no extra hardware is needed.

Description

APPARATUS AND METHOD FOR ULTRASOUND MONITORING OF ABLATION BY A COMBINATION OF THE BREAKING DOWN OF AIR BUBBLES AND IMAGING SEQUENCES FIELD OF THE INVENTION
The invention relates to the field of ultrasound monitoring of ablation, and particularly to the apparatus and method for ultrasound monitoring of ablation by means of a combination of the breaking down of air bubbles and imaging sequences.
BACKGROUND OF THE INVENTION
Chemotherapy and radiation therapy are ineffective against primary and secondary hepatic tumors. Therefore, tumor removal through resection surgery is now the dominant first treatment option. However, in some cases, patients are not considered to be suitable candidates for this type of surgery for various reasons.
Recently, minimally invasive ablation methods, such as: laser ablation, radio frequency ablation (RFA), or non-invasive micro-wave ablation and high-intensity focused ultrasound ablation have been introduced into clinics. The goal for the ablations is to cause immediate cell death by heating while minimizing the damage to the surrounding healthy tissue. Experimental results show that the lesion size depends on the ablation power and time and varies greatly between different individuals and different tissue type.
During the ablation process, a lot of air bubbles are generated due to fast heating when temperatures reach boiling at around 80 °C to 120 °C. These generated air bubbles are strong reflectors that will produce strong echoes in regular ultrasound images, which can be used by the operator to assess the heated region. However, since the features of the ultrasound images do not change too much during the ablation process, the sensitivity of ablation monitoring by ultrasound imaging is affected. SUMMARY OF THE INVENTION
In order to increase the sensitivity of ablation monitoring by ultrasound imaging, various kinds of approaches to estimate the acoustic parameters from the ultrasonic RF data or elasticity imaging during the ablation were proposed with limited success in clinical applications due to several reasons. Air bubbles (with a diameter around ten to a few hundred micrometers) generated by thermally injured tissue will affect the accuracy of the estimators of this parameter.
Therefore, the inventors considered that in order to obtain clearer ultrasound images, the generated air bubbles must be broken down to improve the sensitivity of ablation monitoring by ultrasound imaging. Hereby, breaking down air-bubbles means that to vanish the air-bubbles or to break down the air-bubbles into smaller ones.
Specifically, according to one aspect of the present invention, it provides an apparatus for the monitoring of ablation comprising:
an ultrasound transducer for performing the B-scan imaging for a region that is being treated for ablation, and the ultrasound transducer also being configured for the breaking down of air bubbles by ultrasound in the region of ablation; and
a controller that is configured to control the ultrasound transducer to break down the air bubbles within a predetermined period during the ablation and to enable the ultrasound transducer to perform the B-scan imaging for the region of ablation after the predetermined period.
The quality of the ultrasound images is greatly improved, because the generated air bubbles are broken down during the ablation, which prevents the creation of hyperechogenicity on ultrasound images. Moreover, since no extra hardware is needed, the apparatus for the monitoring of ablation is cost-effective.
In accordance with an embodiment of the present invention, to better control the ablation process, it is preferable that the controller is configured to control the ultrasound transducer to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images during the whole ablation process According to another aspect of the present invention, it provides an apparatus for ablation monitoring comprising:
an ultrasound transducer for performing B-scan imaging for a region that is being treated for ablation; and
an additional ultrasound transducer configured for breaking down air bubbles by transmitting ultrasound in the region of ablation.
In accordance with an embodiment of the present invention, the apparatus for the monitoring of ablation further comprises a controller that is configured to control the additional ultrasound transducer (320) to break down the air bubbles within a predetermined period during the ablation.
In accordance with a further embodiment of the present invention, the controller is configured to control the additional ultrasound transducer to repeatedly perform the breaking down of the air bubbles so as to continually obtain clearer ultrasound images during the whole ablation process.
According to another aspect of the present invention, it provides a method for the monitoring of ablation, comprising:
a) breaking down air bubbles generated in a region that is being treated by ultrasound in a predetermined period during the ablation; and
b) performing B-scan imaging for the region of ablation after the predetermined period.
In accordance with an embodiment of the present invention, the method for ablation monitoring further comprises: repeating the steps a) and b) so as to continually obtain clearer ultrasound images.
Other objects and advantages of the present invention will become more apparent and will be easily understood with reference to the description made in combination with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS
The present invention will be described and explained hereinafter in more detail in combination with embodiments and with reference to the drawings, wherein:
Fig. 1 is a simplified schematic diagram of the apparatus for the monitoring of ablation in accordance with an embodiment of the present invention;
Fig. 2a is a graph that shows a relationship between the temperature and the time in which the ablation is being performed by one kind of ablation device like Valleylab;
Fig. 2b is a timing chart that shows the operation of one kind of ablation device, like Valleylab;
Fig. 3 is a simplified schematic diagram of the apparatus for the monitoring of ablation in accordance with another embodiment of the present invention; and
Fig. 4 is a flowchart of the method for ablation monitoring in accordance with an embodiment of the present invention.
The same reference signs in the figures indicate a similar or corresponding feature and/or functionality.
DETAILED DESCRIPTION
The embodiment of the present invention will be described hereinafter in more detail with reference to the drawings.
Fig. 1 is a simplified schematic diagram of the apparatus 10 for ablation monitoring in accordance with an embodiment of the present invention, which in the illustrated embodiment includes an ultrasound transducer 110 and a controller 120. The ultrasound transducer 110 is not only used for performing B-scan imaging for a region being treated for ablation, but is also configured to break down generated air bubbles by transmitting ultrasound in the region of ablation.
Furthermore, the controller 120 is configured to control the ultrasound transducer 110 to break down the air bubbles within a predetermined period during the ablation and to enable the ultrasound transducer 110 to perform the B-scan imaging for the region of ablation after the predetermined period.
In one embodiment, when an ablation device is powered on and starts to perform the ablation, the controller 120 controls the ultrasound transducer 110 to operate in a first operating mode in which the B-scan imaging is performed for the region of ablation. Then, for example, after the temperature is above 80 °C, or after about 60 seconds has elapsed, the controller 120 controls the ultrasound transducer 110 to operate in a second operating mode in which the air bubbles are broken down by ultrasound from the ultrasound transducer 110 within a predetermined period such as 200 to 400 microseconds. At the end of the second operating mode, the ultrasound transducer 110 switches back to the first operating mode under the control of the controller 120. Ordinarily, the conventional processor and display are utilized to collect and process ultrasonic RF data for the region of ablation and to display the ultrasound images, when the ultrasound transducer 110 operates in the first operating mode.
However, it should be understood that the present invention is not limited to this embodiment. For example, after an ablation device is powered on and starts to perform the ablation, the ultrasound transducer 110 may maintain in turn-off state until it operates in the second operating mode under the control of the controller 120. Fig. 2a is a graph showing a relationship between the temperature and the time in the ablation performed by one kind of ablation device like Valleylab.
As can be seen from Fig. 2a, the temperature increases over time during the ablation performed by this kind of ablation device. For this kind of ablation device, if impedance increases to 10 ohms above the baseline value, power is automatically switched off for e.g. 15 seconds and then switched on again to pause the heating to avoid the temperature being too high during the ablation process (see Fig. 2b). In this case, it is preferable that the predetermined period within which the air bubbles are broken down is arranged in the pause period of the ablation.
According to an embodiment of the present invention, to better control the ablation process, it is preferable that the controller is configured to control the ultrasound transducer 110 to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images.
Fig. 3 is a simplified schematic diagram of the apparatus 30 for ablation monitoring in accordance with another embodiment of the present invention, which in the illustrated embodiment includes an ultrasound transducer 310 and an additional ultrasound transducer 320. In particular, the ultrasound transducer 310 is used to perform B-scan imaging for a region being treated for ablation, and the additional ultrasound transducer 320 is configured to break down generated air bubbles by transmitting ultrasound in the region of ablation
According to the present invention, the apparatus 30 may further comprise a controller that is configured to control the additional ultrasound transducer 320 to break down the generated air bubbles within a predetermined period during the ablation. For example, after the temperature is above 80 °C, or after about 60 seconds have elapsed since the start of the ablation, the controller controls the additional ultrasound transducer 320 to break down the air bubbles within a predetermined period, such as 200 to 400 microseconds.
In order to better control the ablation process, it is preferable that the controller is configured to control the ultrasound transducer 320 to repeatedly perform the breaking down of the air bubbles so as to continually obtain clearer ultrasound images. embodiment in accordance with the present invention, the above-mentioned ultrasound transducers 110, 320 may be configured to transmit dynamically focused ultrasound within the predetermined period, so as to break down the air bubbles in the whole region of ablation in a scan manner. Alternatively, the above-mentioned ultrasound transducers 110, 320 may be configured to transmit ultrasound at a high Mechanical Index (MI) within the predetermined period so as to break down the air bubbles in the whole region of ablation without using dynamically focused ultrasound. Moreover, normally, the MI is selected to be bigger than 0.5 but less than the safety value of 1.9.
Fig. 4 is a flowchart of the method 40 for the monitoring of RFA in accordance with an embodiment of the present invention.
As can be seen from Fig. 4, air bubbles generated in a region that is being treated are broken down by ultrasound in a predetermined period during the ablation in step 410. For example, the predetermined period may be selected to be 200 to 400 microseconds. Then, B-scan imaging for the region of ablation after the predetermined period is performed in step 420.
As mentioned above, for one kind of ablation device, like Valleylab, there is a pause period in the ablation. In this case, it is preferable that the predetermined period within which the air bubbles are broken down is arranged in this pause period. In accordance with an embodiment of the present invention, the steps 410 and 420 may be repeatedly performed so as to continually obtain clearer ultrasound images. This will help to better control the ablation process.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention and that those skilled in the art would be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim or in the description. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The usage of the words first and second, et cetera, does not indicate any ordering. These words are to be interpreted as names.

Claims

CLAIMS:
1. An apparatus (10) for ablation monitoring comprising:
an ultrasound transducer (110) for performing B-scan imaging for a region being treated for ablation, and the ultrasound transducer also configured for breaking down air bubbles by transmitting ultrasound in the region of ablation; and
a controller (120) that is configured to control the ultrasound transducer (110) to break down the air bubbles within a predetermined period during the ablation, and to enable the ultrasound transducer (110) to perform the B-scan imaging for the region of ablation after the predetermined period.
2. The apparatus (10) of claim 1 , wherein the ultrasound transducer (110) is configured to transmit dynamically focused ultrasound within the predetermined period, so as to break down the air bubbles in the whole region of ablation in a scan manner.
3. The apparatus (10) of claim 1 , wherein the ultrasound transducer (110) is configured to transmit ultrasound at high Mechanical Index (MI) within the predetermined period, so as to break down the air bubbles in the whole region of ablation.
4. The apparatus (10) of claim 3, wherein the MI is bigger than 0.5 but less than the safety value.
5. The apparatus (10) of claim 1, wherein the predetermined period is arranged in a pause period of the ablation.
6. The apparatus (10) of claim 1-5, wherein the controller (120) is configured to control the ultrasound transducer (110) to repeatedly perform the B-scan imaging and the breaking down of the air bubbles so as to continually obtain clearer ultrasound images.
7. An apparatus (30) for ablation monitoring comprising:
an ultrasound transducer (310) for performing B-scan imaging for a region being treated for ablation; and
an additional ultrasound transducer (320) that is configured to break down generated air bubbles by transmitting ultrasound in the region of ablation.
8. The apparatus (30) of claim 7, further comprising a controller that is configured to control the additional ultrasound transducer (320) to break down the generated air bubbles within a predetermined period during the ablation.
9. The apparatus (30) of claim 8, wherein the additional transducer (320) is configured to transmit dynamically focused ultrasound within the predetermined period, so as to break down the air bubbles in the whole region of ablation in a scan manner.
10. The apparatus (30) of claim 8, wherein the additional ultrasound transducer (320) is configured to transmit ultrasound at high Mechanical Index (MI) within the predetermined period, so as to break down the air-bubbles in the whole region of ablation.
11. The apparatus (30) of claim 10, wherein the MI is bigger than 0.5 but less than the safety value.
12. The apparatus (30) of claim 8-11, wherein the controller is configured to control the additional ultrasound transducer (320) to repeatedly perform the breaking down of the air bubbles so as to continually obtain clearer ultrasound images.
13. A method (40) for ablation monitoring comprising:
a) breaking down air bubbles generated in a region being treated by ultrasound in a predetermined period during the ablation; and
b) performing B-scan imaging for the region of ablation after the predetermined period.
14. The method (40) of claim 13, wherein the predetermined period is arranged in a pause period of the ablation.
15. The method (40) of claim 13 or 14, further comprising: repeating the steps a) and b) so as to continually obtain clearer ultrasound images.
PCT/IB2012/057582 2011-12-29 2012-12-21 Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences WO2013098732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011084895 2011-12-29
CNPCT/CN2011/084895 2011-12-29

Publications (1)

Publication Number Publication Date
WO2013098732A1 true WO2013098732A1 (en) 2013-07-04

Family

ID=47683801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/057582 WO2013098732A1 (en) 2011-12-29 2012-12-21 Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences

Country Status (1)

Country Link
WO (1) WO2013098732A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333031B2 (en) 2013-04-08 2016-05-10 Apama Medical, Inc. Visualization inside an expandable medical device
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US10736693B2 (en) 2015-11-16 2020-08-11 Apama Medical, Inc. Energy delivery devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1374777A1 (en) * 1995-10-10 2004-01-02 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with contrast agents
US20050245828A1 (en) * 2004-04-20 2005-11-03 Kabushiki Kaisha Toshiba Ultrasound imaging apparatus and method of ultrasound imaging
US20100069797A1 (en) * 2005-09-22 2010-03-18 Cain Charles A Pulsed cavitational ultrasound therapy
US20100168571A1 (en) * 2006-08-11 2010-07-01 Koninklijke Philips Electronics N.V. Image-based power feedback for optimal ultrasound imaging or radio frequency tissue ablation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1374777A1 (en) * 1995-10-10 2004-01-02 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with contrast agents
US20050245828A1 (en) * 2004-04-20 2005-11-03 Kabushiki Kaisha Toshiba Ultrasound imaging apparatus and method of ultrasound imaging
US20100069797A1 (en) * 2005-09-22 2010-03-18 Cain Charles A Pulsed cavitational ultrasound therapy
US20100168571A1 (en) * 2006-08-11 2010-07-01 Koninklijke Philips Electronics N.V. Image-based power feedback for optimal ultrasound imaging or radio frequency tissue ablation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID COSGROVE ET AL: "Clinical uses of microbubbles in diagnosis and treatment", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, SPRINGER, BERLIN, DE, vol. 47, no. 8, 10 February 2009 (2009-02-10), pages 813 - 826, XP019835337, ISSN: 1741-0444 *
FUJIMOTO K ET AL: "A new cavitation suppression technique for local ablation using high-intensity focused ultrasound", ULTRASONICS SYMPOSIUM, 1995. PROCEEDINGS., 1995 IEEE SEATTLE, WA, USA 7-10 NOV. 1995, NEW YORK, NY, USA,IEEE, US, vol. 2, 7 November 1995 (1995-11-07), pages 1629 - 1632, XP010157421, ISBN: 978-0-7803-2940-9, DOI: 10.1109/ULTSYM.1995.495867 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717557B2 (en) 2008-11-11 2017-08-01 Apama Medical, Inc. Cardiac ablation catheters and methods of use thereof
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US10251700B2 (en) 2008-11-11 2019-04-09 Shifamed Holdings, Llc Ablation catheters
US11744639B2 (en) 2008-11-11 2023-09-05 Shifamed Holdings Llc Ablation catheters
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
US9333031B2 (en) 2013-04-08 2016-05-10 Apama Medical, Inc. Visualization inside an expandable medical device
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US11439298B2 (en) 2013-04-08 2022-09-13 Boston Scientific Scimed, Inc. Surface mapping and visualizing ablation system
US11684415B2 (en) 2013-04-08 2023-06-27 Boston Scientific Scimed, Inc. Tissue ablation and monitoring thereof
US10736693B2 (en) 2015-11-16 2020-08-11 Apama Medical, Inc. Energy delivery devices

Similar Documents

Publication Publication Date Title
WO2013098732A1 (en) Apparatus and method for ultrasound monitoring of ablation by a combination of the breaking down of air bubbles and imaging sequences
US9802063B2 (en) Reflective ultrasound technology for dermatological treatments
JP6914842B2 (en) Adaptive ablation and treatment systems and methods based on elastography monitoring
EP2731675B1 (en) Systems and methods for coupling an ultrasound source to tissue
EP2268361B1 (en) Percutaneous probe
US6540700B1 (en) Ultrasound treatment apparatus
EP2480136B1 (en) Ultrasound systems
KR101562998B1 (en) Fat Melting Medical Device for Obesity Improvement by using Electronic RF and highly concentrated Ultrasound
JP5399192B2 (en) Ultrasonic diagnostic apparatus and method for operating ultrasonic diagnostic apparatus
US20080071173A1 (en) Visualizing Formation of Ablation Lesions
KR101811351B1 (en) High intensity focused ultrasound operating apparatus
JP2001170068A (en) Ultrasonic treatment instrument
JPH08131454A (en) Ultrasonic medical treatment device and ultrasonic wave irradiation device
US20110184322A1 (en) Method and device for treatment of keloids and hypertrophic scars using focused ultrasound
US9144416B2 (en) Ultrasonic treatment apparatus
JP5679988B2 (en) Ablation control device for real-time monitoring of tissue displacement against applied force
CN106163414B (en) Method for thermal damage size control based on normalized displacement difference
KR101259381B1 (en) Applicator for HIFU
JP6517247B2 (en) Ultrasonic shear wave elastography characterized by treatment monitoring
WO2012055316A1 (en) Ultrasonic diagnostic instrument beam emission method and ultrasonic diagnostic instrument
Wang et al. Design and test of a monolithic ultrasound-image-guided HIFU device using annular CMUT rings
JP2000254137A (en) Ultrasonic treatment device
CN113116382A (en) Skin tissue temperature detection device and detection method
JP6866125B2 (en) Porous (HYPER-APERTURED) ablation electrode
JP3202985U (en) Heating device for fat diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823164

Country of ref document: EP

Kind code of ref document: A1