WO2012055092A1 - 多膜壳组合单元及多膜壳组合方法 - Google Patents

多膜壳组合单元及多膜壳组合方法 Download PDF

Info

Publication number
WO2012055092A1
WO2012055092A1 PCT/CN2010/078122 CN2010078122W WO2012055092A1 WO 2012055092 A1 WO2012055092 A1 WO 2012055092A1 CN 2010078122 W CN2010078122 W CN 2010078122W WO 2012055092 A1 WO2012055092 A1 WO 2012055092A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
membrane shell
raw water
concentrated water
shells
Prior art date
Application number
PCT/CN2010/078122
Other languages
English (en)
French (fr)
Inventor
李友清
安静波
王其远
李玉成
Original Assignee
哈尔滨乐普实业发展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨乐普实业发展中心 filed Critical 哈尔滨乐普实业发展中心
Priority to ES201390042A priority Critical patent/ES2455367B1/es
Priority to US13/881,205 priority patent/US9636636B2/en
Priority to PCT/CN2010/078122 priority patent/WO2012055092A1/zh
Publication of WO2012055092A1 publication Critical patent/WO2012055092A1/zh
Priority to IL225947A priority patent/IL225947A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/069Tubular membrane modules comprising a bundle of tubular membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/13Specific connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/004Seals, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/007Modular design

Definitions

  • the invention relates to a membrane shell assembly technology, in particular to a multi-membrane shell assembly unit and a multi-membrane shell assembly method applied to a membrane separation device. Background technique
  • the membrane shells used in the membrane separation device are each independent, and each membrane shell is provided with at least one raw water port and one concentrated water port.
  • each membrane shell is provided with at least one raw water port and one concentrated water port.
  • the raw water port and one concentrated water port of each membrane shell are assembled with the raw water nozzles, a concentrated water nozzle or the pipeline of other membrane shells, a joint is required for each joint to be connected.
  • a large number of clamps are required, resulting in higher construction costs.
  • the prior art has many sealing points, large leakage hazards, large workload for engineering installation, and large equipment footprint. Therefore, solving many of the above problems has become an urgent need. Summary of the invention
  • a multi-membrane shell combination unit and a multi-membrane shell assembly method are proposed to improve or overcome one or more of the deficiencies of the prior art.
  • the technical solution of the present invention is: a multi-membrane shell combination unit, which is formed by juxtaposing a plurality of membrane shells, wherein the original nozzle and the concentrated water outlet of each membrane shell are respectively connected with the original nozzle of the adjacent membrane shell,
  • the rich water tanks are connected to each other, and the multi-membrane shell assembly unit is formed with at least one shared raw water inlet and at least one shared concentrated water outlet, and the shared raw water inlet and the shared concentrated water outlet can be respectively connected with the raw water pipeline and the concentrated water pipeline.
  • the invention also provides a multi-membrane shell combination method, which is to form a multi-membrane shell combination unit by juxtaposing a plurality of membrane shells, wherein the raw water inlet and the concentrated water outlet of each membrane shell are respectively connected with the original water outlet of the adjacent membrane shell,
  • the concentrated water ports are connected to each other to form at least one shared raw water port and at least one shared concentrated water port, and the shared raw water port and the shared concentrated water port can be respectively connected to the pipeline.
  • the features and advantages of the present invention are as follows:
  • the multi-membrane shell assembly unit and the multi-membrane shell assembly method of the present invention adopt a technical method of juxtaposing a plurality of membrane shells in parallel, respectively, and the original nozzle and the concentrated water outlet of each membrane shell are respectively adjacent to each other.
  • the raw water inlet and the concentrated water outlet of one or more membrane shells are connected and sealed by a nozzle to form a shared raw water outlet and a concentrated water outlet.
  • Each multi-membrane shell combination unit can be provided with only one shared raw water port and one shared water inlet port, making it easy to assemble with the pipe.
  • each multi-membrane shell combination unit can also be provided with a plurality of shared raw water ports and a plurality of shared concentrated water ports. Since each multi-membrane shell combination unit is provided with a shared original nozzle and a concentrated water outlet, only the completion of the project is required for the installation of the project. The assembly of the original nozzle and the pipe, as well as the assembly of the shared nozzle and pipe. Depending on the engineering needs, the multi-membrane shell combination unit can be placed either horizontally or vertically.
  • the multi-membrane shell combination unit technology eliminates the need for a large number of clamps, reduces engineering costs, reduces sealing points, reduces leakage hazards, reduces engineering installation, and saves equipment footprint.
  • FIG. 1 is a schematic perspective view of a first embodiment of the present invention.
  • Figure 2 is a front elevational view of the first embodiment of the present invention.
  • Figure 3 is a plan view of a first embodiment of the present invention.
  • Figure 4 is a front elevational view of a second embodiment of the present invention.
  • Figure 5 is a front elevational view of a third embodiment of the present invention.
  • Figure 6 is a front elevational view of a fourth embodiment of the present invention.
  • FIG. 7 is a top plan view showing the use of the end-in-the-share original and concentrated water inlets according to an embodiment of the present invention.
  • FIG. 8 is a schematic perspective view of the former embodiment of the present invention for sharing the original and concentrated water ports.
  • FIG. 9 is a schematic structural view of an automatic pressure adjusting mechanism used in an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a manual pressure adjusting mechanism used in an embodiment of the present invention.
  • the invention provides a multi-membrane shell combination unit and a multi-membrane shell assembly unit, wherein the multi-membrane shell assembly unit is formed by juxtaposing a plurality of membrane shells, wherein the original nozzle and the concentrated water outlet of each membrane shell are respectively adjacent to each other.
  • the raw water port and the concentrated water port of the membrane shell are connected and sealed, so that the raw water inlets of the membrane shells penetrate each other, and the concentrated water ports also penetrate each other.
  • the multi-membrane shell combination unit has a shared raw water port and a concentrated water port respectively connected to the pipeline, A raw water passage is formed between the raw water outlets of the plurality of membrane shells, and a concentrated water passage passage is formed between the concentrated water outlets of the plurality of membrane shells.
  • each multi-membrane shell unit feeds water through a shared raw water port. Since the raw water ports of the multi-membrane shells are connected, the raw water enters each multi-membrane shell assembly unit and is distributed into each membrane shell; Next, the raw water permeating through the membrane element is separated into purified water and concentrated water; since the concentrated water outlets of the plurality of membrane shells are also connected, the concentrated waters are brought together and discharged through the shared concentrated water outlet. Since each multi-membrane shell combination unit is provided with a small number of original nozzles and concentrated water outlets (for example, only one raw water outlet and one concentrated water outlet can be provided), only a small number of raw water outlets and thicker are required for engineering installation. The nozzle and the pipe can be assembled, which saves a lot of clamps, reduces the engineering cost, reduces the sealing point, reduces the leakage hazard, reduces the installation amount of the project, and saves the floor space of the device.
  • the raw water port and the concentrated water port of each membrane shell unit are connected and sealed by a connecting tube, and the connecting tube is only disposed at an adjacent opening portion outside the adjacent two membrane shell units, and does not extend into the inner cavity of the membrane shell, thereby
  • the inner structure of the membrane shell and the assembly of the subsequent membrane unit are not affected;
  • the connection tube may adopt an external connection structure, the two ends of which are aligned with the outer wall at the opening of the membrane shell, and the connection between the connection tube and the membrane shell may be adopted.
  • planar connection; or, the connecting tube can also adopt an internal structure, the two ends of the connecting tube are inserted into the opening of the membrane shell, and an axial seal can be adopted between the connecting tube and the membrane shell.
  • the bundle may be bundled and integrated, and a rigid or flexible strap may be selected as needed, and the bundle preferably corresponds to the raw water passage and the concentrated water.
  • the through passages are respectively disposed; further, a pressure regulator may be disposed corresponding to the strap to adjust the pressure change during operation.
  • the through-water inlet and the concentrated water outlet of the multi-membrane casing of the present invention are respectively located in two planes perpendicular to the axial direction, and the bundle is preferably disposed at least at a position corresponding to the two planes, so as to facilitate Achieve better connection fixing effect.
  • the multi-membrane shell can be combined in a plurality of parallel bundles, that is, the end faces of the unit can have various shapes, for example, a distribution pattern such as a straight line, a triangle, and a polygon.
  • FIG. 1, FIG. 2, and FIG. 3, respectively, a perspective view, a front view, and a plan view of a first embodiment of the present invention are shown.
  • the end faces of the multi-membrane shell assembly unit are linearly distributed.
  • the multi-membrane shell assembly unit is formed by juxtaposing a plurality of membrane shells 1 , wherein the raw water port 12 and the concentrated water port 13 of each membrane shell 1 are respectively connected to the raw water port 12 and the concentrated water port 13 of the adjacent membrane shells.
  • the nozzles 6 are connected and sealed so that the raw water ports 12 of the membrane shells penetrate each other, and the concentrated water ports 13 also penetrate each other, so that the multi-membrane shell assembly unit has a shared raw water port 2, a shared concentrated water port 3 and a pipe respectively. Connected, that is, the shared raw water port 2 is connected to the raw water pipe, and the shared rich water port 3 is connected to the concentrated water pipe.
  • the raw water port and the concentrated water port of each membrane shell are respectively connected to the raw water port and the concentrated water port of the adjacent membrane shell through the connecting tube 6, and the connecting tube 6 is an external structure, and the two ends of the membrane shell 1 and the membrane shell 1
  • the outer wall of the opening is flush, and does not affect the internal structure of the membrane shell; the sealing tube 7 is sealed flatly between the nozzle 6 and the membrane shell 1.
  • at least one opening 15 is disposed on the side wall of the membrane casing 1, and the openings 15 of the two adjacent membrane shells are disposed opposite each other, and the nozzle 6 and the nozzle sealing ring 7 are pressed.
  • a seal between the respective nozzles 6 and the corresponding membrane casing is ensured.
  • the multi-membrane shell assembly unit is bundled into a single body.
  • only one original nozzle and the leftmost membrane casing may be provided with only one concentrated water inlet, and the other one of each membrane casing has a positive end.
  • the two original nozzles have the opposite two concentrated nozzles at the corresponding positions on the other end.
  • the straps 4 are provided corresponding to the positions of the raw water inlets and the concentrated water outlets of the respective membrane shells in order to enhance the effect of the connection and fixation; in this embodiment, flexible straps are used, and the straps 4 are respectively Corresponding to the joint between the membrane shells, they are disposed at both ends of the combined unit, wherein one bundle 4 is disposed corresponding to the shared raw water port 2, and the other bundle 4 is disposed corresponding to the shared concentrated water port 3.
  • Each strap 4 can further be provided with a pressure regulator 5, the structure of which is shown in Fig. 9, which includes a pretensioning bolt 51, a pretensioning block 52, a piston 53 and a piston seal 54.
  • a pressure regulator 5 the structure of which is shown in Fig. 9, which includes a pretensioning bolt 51, a pretensioning block 52, a piston 53 and a piston seal 54.
  • the pre-tightening bolt 51 is screwed, and the position of the pre-tightening block 52 is adjusted to compensate the gap between the strap 4 and the assembly to pre-tension the strap 4.
  • the pressure regulator 5 is located on the other side opposite the shared raw water port 2 or the shared concentrating water port 3, so that the band tension is automatically adjusted by the pressure inside the film casing.
  • the strap 4 can be made of a rigid or flexible material, the pressure regulator 5 and the shared raw water port 2
  • a raw water retaining nut and a thick water retaining nut may be disposed between the membrane casing 1 and the strap 4 to facilitate screwing into the shared raw water port 2 and the external pipe of the shared concentrated water port 3.
  • the bundle of the present invention may be optionally provided. If the membrane shells of the multi-membrane shell assembly unit can be firmly fixed by other means, the bundle may not be provided; moreover, the form of the strap is not limited. Therefore, a corrugated (wavy) rigid strap can also be used, and the arc and the spacing of the corrugated strap are preferably adapted to the membrane shells of the multi-membrane shell assembly unit. Further, other forms can also be used.
  • the bundle of fasteners for example, is wound around the outer periphery of the multi-membrane casing unit by glass cloth or glass fiber, and then chemically reacted to bundle the membrane shells. In addition, in FIG.
  • the piston of the pressure regulator 5 includes a stainless steel piston body and a piston sleeve, and the piston sleeve is preferably made of a corrosion-resistant material such as engineering plastic, so that the pressure regulator can be resistant.
  • the piston 53 may also be integrally formed of other corrosion-resistant materials.
  • the diameter of the piston 53 can be flexibly set, for example, the same as the shared original condensate 2, 3, or the diameter of the piston hole of the piston 53 can be the same as or similar to the opening 15, preferably, the diameter of the piston 53. Slightly larger than the diameter of the opening 15 or the diameter of the shared original concentrators 2, 3 to ensure that the seals are pressed with minimal pressure (strand tension).
  • the multi-membrane shell assembly unit of the present embodiment is composed of two or more membrane shells, a strap, a connecting tube, a (shared) original condensate, and a pressure adjusting mechanism.
  • the two membrane shells and the middle membrane shell are arranged in a row in order, and the nozzle 6 is placed at the end of the membrane shell and the counterbore plane is processed, the original, the thick water tank fixing nut, the piston 53 and the pre-tightening pad
  • the strap 4 is then pushed in from the end, screwed into the pretensioning bolt 51, the position of the pretensioning pad 52 is adjusted, the gap between the strap 4 and the assembly is compensated, and the strap 4 is pretensioned.
  • screw in the shared original sump 2, 3, install the sealing ring at each part, and finally install the end assembly.
  • the multi-membrane shell assembly unit is assembled.
  • the raw water is successively passed through the nozzle 6 from the shared raw water inlet 2 into the raw water end of each membrane shell, and is collected from the other end (concentrated water end) through the nozzle 6 through the membrane element mounted inside the membrane shell, and is shared by The concentrated water outlet 3 is discharged.
  • the nozzle 6 and the nozzle seal 7 are pressed against the annular plane around the opening 15 of the membrane casing 1, ensuring a seal between the respective nozzles 6 and the membrane casing 1.
  • the piston diameter 53 of the pressure regulator 5 it is possible to ensure that the respective sealing portions are pressed with a minimum pressure (bundling force).
  • the pressure between the adjacent membrane shells can be automatically adjusted, that is, the tension of the strap can be automatically adjusted as the water pressure inside the membrane shell changes, and the deformation of the strap due to the pressure is compensated. Long, to ensure the sealing effect of the joint.
  • the multi-membrane shell assembly unit of the embodiment is formed by juxtaposing four membrane shells 1 in parallel, which is only for convenience of explanation.
  • the number of membrane shells arranged side by side is not limited thereto, and is used in specific applications.
  • Two or more membrane shells are arranged side by side to form a multi-membrane shell assembly unit having linearly distributed end faces to meet the required throughput requirements.
  • each multi-membrane shell unit is connected to the pipeline through the shared raw water port 2 and the shared concentrated water port 3, the piping is small in installation and maintenance, and the number of clamps used is small, saving resources and reducing costs.
  • the multi-membrane shell combination unit can be placed horizontally or vertically; each multi-membrane shell combination unit occupies a small area and space utilization is more effective.
  • FIG. 4 it is a front view of a second embodiment of the present invention.
  • the end faces of the multi-membrane casing assembly unit are also linearly distributed, which is the same as in the first embodiment.
  • 1 is the membrane shell
  • 2 is the shared original Spout
  • 3 is the shared concentrated water port
  • 4 is the strap
  • 5 ' is the take-up clasp
  • 6 is the take-up
  • 7 is the sealing rubber ring.
  • the plurality of membrane shells 1 are bundled in parallel, and the bundles 4 are bundled into one body.
  • the raw water outlet 12 and the concentrated water outlet 13 of each membrane shell are respectively connected to the raw water outlet 12 and the concentrated water outlet 13 of the adjacent membrane casing through the nozzle 6.
  • the exposed portion of the nozzle 6 is inlaid with a take-up clasp 5' to prevent the spout 6 from being strung.
  • the connecting pipe 6 adopts an internal structure, which is extended to the inner wall of the membrane casing and has its two ends aligned with the inner wall of the membrane casing 1 so as not to affect the installation of the subsequent membrane unit; the nozzle 6 and the membrane casing 1 Preferably, an axial seal is used.
  • the combined membrane shells form a shared raw water outlet 2, a concentrated water outlet 3, and are connected to the pipeline by the shared raw water outlet 2 and the concentrated water outlet 3, respectively.
  • the multi-membrane shell combination unit is composed of two or more membrane shells, a strap, and a connecting tube 6, (shared) original condensate.
  • the two membrane shells and the middle membrane shell are arranged in a row in order, and the connecting tube 6 and the original/concentrating water fixing nut are inserted into the opening 15 near the end of the membrane shell, and the strap 4 is installed at the end.
  • the other end of the same process is assembled after the multi-membrane shell assembly unit is assembled.
  • the raw water is successively passed through the nozzle 6 from the shared raw water inlet 2 into the raw water end of each membrane shell and distributed into each membrane shell, and permeates through the membrane element (not shown) installed inside the membrane shell, It is separated into purified water and concentrated water.
  • the concentrated water is collected from the other end (concentrated water end) through the take-up pipe 6 and discharged from the shared concentrated water port 3. Due to the restraint of the strap 4 and the restriction of the snap ring 5', the take-up pipe 6 and the seal ring 7 Only a limited displacement in the sealing zone within the opening 15 of the membrane shell is provided, so that the nozzle 6 does not escape under pressure and ensures a seal with the membrane shell.
  • each multi-membrane shell combination unit is connected to the pipeline through the shared raw water inlet 2 and the shared concentrated water inlet 3, the piping is small in installation and maintenance, and the number of clamps used is small, saving resources and reducing costs. In addition, each multi-membrane shell combination unit has a small footprint and space utilization is more efficient.
  • Fig. 5 it is a front view of a third embodiment of the present invention.
  • the end faces of the multi-membrane composite unit are substantially rectangular (or square).
  • 1 is the membrane shell
  • 2 is the shared raw water nozzle
  • 3 is the shared concentrated water outlet
  • 4 is the strap
  • 5 ' is the take-up snap ring
  • 6 is the take-up
  • 7 is the sealing rubber ring.
  • the plurality of membrane shells 1 are bundled in parallel, and the bundles 4 are bundled into one body.
  • the raw water outlet 12 and the concentrated water outlet 13 of each membrane shell are respectively connected to the raw water outlet 12 and the concentrated water outlet 13 of the adjacent membrane casing through the nozzle 6.
  • the exposed portion of the nozzle 6 is inlaid with a take-up clasp 5' to prevent the spout 6 from being strung.
  • the connecting pipe 6 adopts an internal structure, and is extended to the inner wall of the membrane casing when it is installed, that is, both ends thereof are aligned with the inner wall of the membrane casing 1; and the axial sealing is preferably adopted between the connecting pipe 6 and the membrane casing 1.
  • the combined membrane shells form a shared raw water outlet 2, a concentrated water outlet 3, which is connected to the pipeline by a shared raw water outlet 2 and a concentrated water outlet 3, respectively.
  • the membrane shells 1 When installing, firstly, the membrane shells 1 are arranged in a rectangular shape in order, and the nozzles 6 are inserted into the corresponding openings 15 at the end portions of the membrane shells. Install the retaining ring 5' and the original and concentrated nozzle fixing nuts, and install the strap 4 to the corresponding position, then screw into the shared raw water port 2 and the shared concentrated water port 3, and install the sealing ring of each part, and finally install the end part. to make. After the other end is processed, the multi-membrane shell assembly unit is assembled.
  • the raw water is successively passed through the nozzle 6 from the shared raw water inlet 2 into the raw water end of each membrane shell, and permeates through the membrane element contained inside the membrane shell 1, and is separated into purified water and concentrated water, wherein the concentrated water is separated from The other end (concentrated water end) is collected by the nozzle 6 and discharged from the shared concentrated water port 3. Due to the restraint of the strap 4 and the restriction of the snap ring, the nozzle 6 and the sealing ring 7 can only be displaced in the sealing region in the opening 15 of the membrane casing 1 near the end, so that the nozzle 6 does not come out under pressure. And to ensure a seal with the membrane shell.
  • each multi-membrane shell unit is connected to the pipeline through the shared raw water port 2 and the shared concentrated water port 3, the piping is small in installation and maintenance, and the number of clamps used is small, saving resources and reducing costs.
  • each multi-membrane shell combination unit has a small footprint and space utilization is more efficient.
  • FIG. 6 it is a front view of a fourth embodiment of the present invention.
  • the end faces of the multi-membrane composite unit are distributed in a hexagonal shape (other polygonal shapes).
  • 1 is the membrane shell
  • 2 is the shared original nozzle
  • 3 is the shared concentrated water port
  • 4 is the strap
  • 5 ' is the take-up snap ring
  • 6 is the take-up
  • 7 is the sealing rubber ring.
  • the plurality of membrane shells 1 are bundled in parallel, and the bundles 4 are bundled into one body.
  • the raw water outlet and the concentrated water outlet of each membrane shell are respectively connected to the raw water outlet and the concentrated water outlet of the adjacent membrane shell through the nozzle 6, and are exposed at the nozzle 6
  • the part is inlaid with a take-up clasp 5' to prevent the spout 6 from moving.
  • the connecting tube 6 adopts an internal structure, and is extended to the inner wall of the corresponding two membrane shells, that is, the two ends thereof are respectively aligned with the inner walls of the adjacent two membrane shells 1, and the axial direction between the connecting tube 6 and the membrane shell 1 can be adopted. seal.
  • the combined membrane shells form a shared raw water outlet 2, a concentrated water outlet 3, and are connected to the pipeline by the shared raw water outlet 2 and the concentrated water outlet 3, respectively.
  • the membrane shells 1 When installing, firstly, the membrane shells 1 are arranged in a rectangular shape in order, the connecting tube 6 is inserted into the corresponding opening 15 near the end of the membrane shell, and the retaining ring 5' and the original and concentrated water retaining nuts are installed, and the straps 4 are attached to the corresponding Position, then screw into the shared raw water inlet 2 and the shared concentrated water inlet 3, and install the sealing ring of each part, and finally install the end assembly; the other end is also processed to complete the assembly of the multi-membrane shell assembly unit.
  • the raw water is successively passed through the nozzle 6 from the shared raw water inlet 2 into the raw water end of each membrane shell, and permeates through the membrane element contained inside the membrane shell 1, and is separated into purified water and concentrated water, wherein the concentrated water is separated from The other end (concentrated water end) is collected by the nozzle 6 and discharged from the shared concentrated water port 3. Due to the restraint of the strap 4 and the restriction of the snap ring, the nozzle 6 and the sealing ring 7 can only be displaced in the sealing region in the opening 15 of the membrane casing 1 near the end, so that the nozzle 6 does not come out under pressure. And to ensure a seal with the membrane shell.
  • each multi-membrane shell combination unit is connected to the pipeline through the shared raw water inlet 2 and the shared concentrated water inlet 3, the piping is small in installation and maintenance, and the number of clamps used is small, saving resources and reducing costs. In addition, each multi-membrane shell combination unit has a small footprint and space utilization is more efficient.
  • the raw water and concentrated water passages are single flow passages, but the present invention is not limited thereto.
  • the raw water and concentrated water passages may be multi-stream flow passages, for example, in the embodiment, wherein
  • the central membrane shell may be provided with a through passage between each membrane shell or a partial membrane shell surrounding it to reduce the pressure drop in the upper and lower membrane shells.
  • the central membrane casing may be selected from a membrane module unit of an end interface structure.
  • FIG. 7 and FIG. 8 it is a schematic top view and a perspective view of an original and concentrated water inlet port according to an embodiment of the present invention.
  • the communication and sealing of the raw water port 12 and the concentrated water port 13 between the membrane shells 1 can be realized in various ways with reference to the foregoing embodiments, and the main feature is the shared raw water inlet 2 of the multi-membrane shell assembly unit and the shared
  • the shared raw water inlet 2 or the shared concentrated water inlet 3 is realized by using a side open type membrane shell.
  • the shared raw water inlet 2 and the shared thick water are shared.
  • the nozzle 3 is realized by using the end interface type membrane casing, that is, not disposed on the side wall as in the foregoing embodiment, but the shared raw water nozzle 2 is disposed on the end blocking plate at one end of one of the membrane shells, and the shared water inlet is shared.
  • the present embodiment also forms a raw water passage passage between the raw water ports 12 of the plurality of membrane shells 1, and forms a concentrated water passage passage between the concentrated water ports 13 of the plurality of membrane shells 1, the raw water passage passage and the concentrated water.
  • the through passages are respectively located in two planes perpendicular to the axial direction of the membrane casing, and the bundles 4 are correspondingly disposed at least in the aforementioned two planes.
  • the shared raw water port 2 and the shared concentrated water inlet 3 are preferably respectively located in the opposite planes.
  • the shared raw water outlet 2 and the shared concentrated water outlet 3 are disposed in the embodiment. The end of the membrane shell is blocked, so that the shared raw water outlet 2 and the shared concentrated water inlet 3 are not located in the aforementioned two planes.
  • the multi-membrane shell assembly unit of the embodiment is preferably provided with a strap 4, and a pressure regulator 5 is disposed between the strap 4 and the sidewall of the membrane shell, and the pressure regulator 5 can adopt the automatic method in the first embodiment.
  • the pressure adjustment mechanism can also adopt a manual pressure adjustment mechanism. Please refer to FIG. 10. The same parts as the automatic pressure adjustment mechanism in FIG. 9 are not described in detail, and the differences are mainly as follows: If a manual adjustment structure is adopted, the pressure adjustment is performed. There is no need to set the piston 53, and the spacer can be used. Instead of 55, the opening of the side wall of the membrane shell can be eliminated. With the manual pressure adjustment mechanism, the pressure adjustment is achieved by manual tensioning during use.
  • this embodiment is shared by the original nozzle 2, the shared faucet
  • the invention adopts the technical method of juxtaposition bundling of a plurality of membrane shells to form a multi-membrane shell combination unit, and passes the raw water inlet and the concentrated water outlet of each membrane shell respectively with the raw water inlet and the concentrated water outlet of the adjacent one or more membrane shells.
  • the nozzles are connected and sealed to form a shared raw water outlet and a concentrated water outlet.
  • Each multi-membrane shell combination unit can be set up with a small number (such as only one set) shared with the pipe assembly, the thick water nozzle. During operation, each multi-membrane shell unit feeds water through a shared raw water port.
  • the raw water inlets of the multi-membrane shells are connected by a nozzle, the raw water enters each multi-membrane shell assembly unit and is distributed into each membrane shell.
  • the plurality of membrane shells are juxtaposed and bundled, and the bundles and bundles are bundled into one body.
  • the raw water outlet and the concentrated water outlet of each membrane shell are respectively connected with the raw water outlet and the concentrated water outlet of the adjacent membrane shell through the connecting tube, and the connection between the nozzle and the membrane shell is adopted. Sealing ring seal. Under working pressure, raw water permeates through the membrane element and is separated into purified water and concentrated water.
  • the concentrated waters are brought together and discharged through the shared concentrated water outlet.
  • the prior art of using the stainless steel clamp to connect the membrane shell, the snap ring and the connecting tube of the present invention can adopt other metal or non-metal materials, and therefore, the multi-membrane shell combining unit technology of the invention saves a large amount.
  • the clamp reduces the engineering cost, reduces the sealing point, reduces the leakage hazard, reduces the installation amount of the project, and, because the clamp is not required between adjacent membrane shells, but only the snap ring is used, so it can be greatly
  • the spacing between adjacent membrane shells is reduced (for example, from the original 50 mm to 5 mm), thereby saving the footprint of the device.
  • the raw water port and the concentrated water port of the shell unit can be sealed and connected in the form of direct opening and sealing, and sealing between the openings through the opening, and the specific setting mode of the internal connecting tube can be a counterbore is disposed on the inner wall corresponding to the opening of the membrane shell, and a flange is disposed at one end of the joint to be combined with the counterbore and sealed by a sealing ring, and the other end of the joint may be connected by a thread connection or a circlip connection to another membrane
  • the inner wall of the shell is connected and sealed by a sealing ring; the original nozzle of the membrane shell, the number of the faucet, the positional relationship, the position of the strap, the position of the pressure regulator, and the number can be set according to actual requirements, and are not limited to the foregoing. EXAMPLES; These variations are still within

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Editing Of Facsimile Originals (AREA)

Description

多膜売组合单元及多膜売组合方法
技术领域
本发明涉及一种膜壳组合技术, 尤其是指一种应用于膜法分离装置的多膜壳组合 单元及多膜壳组合方法。 背景技术
目前, 膜法分离装置所应用的膜壳是每支独立的, 每个膜壳至少设置一个原水口、 一个浓水口。 在工程安装过程中, 每支膜壳的原水口、 一个浓水口分别与其它膜壳的原 水口、 一个浓水口或者管道之间装配时, 每一连接处均需要一个卡箍来做连接, 从而需 要使用大量的卡箍, 导致建设成本较高。 此外, 现有技术密封点多, 泄漏隐患大, 工程 安装的工作量大, 装置占地面积大。 因此, 解决上述诸多问题已成为急需。 发明内容
本发明要解决的技术问题是: 提出一种多膜壳组合单元及多膜壳组合方法, 以改 善或克服现有技术的一项或多项不足之处。
本发明的技术解决方案是: 一种多膜壳组合单元, 是由多支膜壳并列集束而成, 其中, 每支膜壳的原水口、 浓水口分别与相邻的膜壳的原水口、 浓水口相连通, 所述多 膜壳组合单元形成有至少一共享的原水口及至少一共享的浓水口, 且所述共享的原水 口、 共享的浓水口能够分别与原水管道、 浓水管道相连。
本发明还提出一种多膜壳组合方法, 是将多支膜壳并列集束形成多膜壳组合单元, 其中, 每支膜壳的原水口、 浓水口分别与相邻的膜壳的原水口、 浓水口相连通, 组合后 形成至少一共享的原水口及至少一共享的浓水口, 所述共享的原水口、 共享的浓水口能 够分别与管道相连。
本发明的特点和优点是: 本发明的多膜壳组合单元及多膜壳组合方法采用将多支 膜壳并列集束的技术方法, 将每支膜壳的原水口、 浓水口分别与相邻的一支或多支膜壳 的原水口、 浓水口通过接管相连并密封, 形成共享的原水口、 浓水口。 每个多膜壳组合 单元可以只设置一个共享的原水口、 一个共享的浓水口, 使其便于与管道装配。 当然, 如果工程需要,每个多膜壳组合单元也可以设置多个共享的原水口、多个共享的浓水口。 由于每个多膜壳组合单元设置共享的原水口、 浓水口, 工程安装时, 只需要完成所述共 享的原水口与管道的装配, 以及共享的浓水口与管道的装配即可。 视工程需要, 多膜壳 组合单元既可以水平放置,也可以垂直放置。采用多膜壳组合单元技术,无需大量卡箍, 降低了工程成本, 减少了密封点, 降低了泄漏隐患, 减少了工程的安装量, 节省了装置 的占地面积。 附图说明
图 1为本发明第一实施例的立体结构示意图。
图 2为本发明第一实施例的正视图。
图 3为本发明第一实施例的俯视图。
图 4为本发明第二实施例的正视图。
图 5为本发明第三实施例的正视图。
图 6为本发明第四实施例的正视图。
图 7为本发明的一实施例采用端进共享原、 浓水口的俯视示意图。
图 8为本发明的前一实施例采用端进共享原、 浓水口的立体示意图。
图 9为本发明一实施例中所采用的自动压力调节机构的结构示意图。
图 10为本发明一实施例中所采用的手动压力调节机构的结构示意图,
附图标号说明:
2、 共享的原水口 3、 共享的浓水口
4、 捆带 5、 压力调节器 51、 予紧螺栓
52、 予紧垫块 53、 活塞 54、 活塞密封圈 55、 垫块 5 ' 、 接管卡环 6、 接管
7、 密封胶圈 12、 原水口 13、 浓水口
15、 开孔 具体实施方式
本发明提出一种多膜壳组合单元及多膜壳组合方法, 该多膜壳组合单元是由多支 膜壳并列集束而成, 其中, 每支膜壳的原水口、 浓水口分别与相邻的膜壳的原水口、 浓 水口相连并密封, 使得各膜壳的原水口相互贯通, 浓水口也相互贯通, 该多膜壳组合单 元具有共享的原水口、 浓水口分别与管道相连, 所述多支膜壳的原水口间形成原水贯通 通道, 所述多支膜壳的浓水口间形成浓水贯通通道。 工作时, 每个多膜壳组合单元通过共享的原水口进水, 由于多支膜壳的原水口相 连通, 原水进入每个多膜壳组合单元后分布到每个膜壳中; 在工作压力下, 原水渗透过 膜元件被分离为净水与浓水; 由于多支膜壳的浓水口也相连通, 浓水汇合在一起, 通过 共享的浓水口排出。 由于每个多膜壳组合单元设有较少数量的原水口、 浓水口 (例如可 只设置一个原水口、 一个浓水口) , 因此, 工程安装时, 只需要完成较少数量的原水口 及浓水口与管道的装配即可, 从而节省了大量卡箍, 降低了工程成本, 减少了密封点, 降低了泄漏隐患, 减少了工程的安装量, 节省了装置的占地面积。
较佳地, 各膜壳单元的原水口、 浓水口是通过接管相连并密封, 该接管仅设置于 相邻二膜壳单元外部的邻接开孔部位, 而未延伸至膜壳内腔中, 从而不会影响膜壳内部 结构以及后续膜单元的装配; 进一步地, 所述接管可以采用外接式结构, 其两端与膜壳 开孔处的外壁相齐, 且该接管与膜壳之间可采用平面密封; 或者, 所述接管还可采用内 接式结构, 该接管的两端插入膜壳开孔内, 接管与膜壳之间可采用轴向密封。
较佳地, 多支膜壳并列集束后, 还可以选择利用捆固件捆扎成一体, 而且, 可根 据需要选择用刚性或柔性捆带, 该捆固件较佳是对应于该原水贯通通道及浓水贯通通道 分别设置; 进一步地, 对应该捆带还可设置压力调节器, 用以调节工作时的压力变化。
较佳地, 本发明的多支膜壳的相贯通的原水口、 浓水口分别位于垂直于轴向的二 平面内, 捆固件较佳至少在对应于所述二平面的位置而设置, 以利达到更好的连接固定 效果。
本发明中, 多支膜壳可采用多种并列集束方式进行组合, 即组合单元的端面可呈 多种形状, 例如可呈直线、 三角形及多边形等分布形式。
为了便于对本发明的准确理解, 下面配合附图及具体实施例对本发明多膜壳组合 单元及组合方法的具体实施方式作进一步的详细说明。
第一实施例
如图 1、 图 2、 图 3所示, 分别为本发明的第一实施例的立体图、 正视图及俯视图, 本实施例中, 该多膜壳组合单元的端面呈直线分布。 其中, 该多膜壳组合单元是由多支 膜壳 1并列集束而成, 其中, 每支膜壳 1的原水口 12、 浓水口 13分别与相邻的膜壳的 原水口 12、浓水口 13通过接管 6相连并密封, 使得各膜壳的原水口 12相互贯通, 浓水 口 13 也相互贯通, 从而使得该多膜壳组合单元具有共享的原水口 2、 共享的浓水口 3 分别与管道 (图中未示出) 相连, 即共享的原水口 2与原水管道相连, 共享的浓水口 3 与浓水管道相连。 本实施例中, 每支膜壳的原水口、 浓水口分别与相邻的一支膜壳的原水口、 浓水 口通过接管 6相连, 接管 6为外接式结构, 其两端与膜壳 1的开孔处的外壁相齐, 不影 响膜壳内部结构; 接管 6与膜壳 1之间采用密封胶圈 7平面密封。 具体地, 膜壳 1的侧 壁上设有至少一开孔 15 (原水口 12或浓水口 13 ) , 且两相邻膜壳的开孔 15正对设置, 接管 6和接管密封圈 7被压紧在膜壳开孔 15周围的环形平面上, 保证各接管 6与对应 的膜壳之间的密封。
本实施例中, 该多膜壳组合单元采用捆带 4捆扎成一体。 如图 2所示, 本实施例 中, 除了最右端的膜壳可以仅设有一个原水口及最左端的膜壳可以仅设有一个浓水口 夕卜, 其它的每一膜壳的一端具有正对的二原水口, 另一端的对应位置具有正对的二浓水 口, 将各膜壳并列集束并以接管 6贯通后, 各膜壳的原水口 12呈直线贯通, 且各膜壳 的浓水口 13也呈直线贯通, 因此, 本实施例中对应于各膜壳原水口、 浓水口的位置设 置捆带 4, 以利加强连接固定的效果; 本实施例是采用柔性捆带, 捆带 4分别对应于膜 壳间的接合部而设置于组合单元的两端, 其中一捆带 4对应共享的原水口 2设置, 另一 捆带 4对应共享的浓水口 3设置。
各捆带 4进一步可设置有压力调节器 5, 压力调节器 5的结构见图 9, 其包括予紧 螺栓 51、 予紧垫块 52、 活塞 53及活塞密封圈 54。 安装时旋入予紧螺栓 51, 调整予紧 垫块 52的位置, 补偿捆带 4与组件的间隙, 使捆带 4予紧。本实施例中, 压力调节器 5 位于与共享的原水口 2或共享的浓水口 3相对的另一侧, 以便于利用膜壳内压力自动调 整捆带拉力。
具体设置时, 捆带 4可由刚性或柔性材料制成, 压力调节器 5及共用的原水口 2
(或共享的浓水口 3 )分别对应于捆带 4的两端,捆带 4两端的刚性片体与原 /浓水口螺 母及予紧垫块的对应处设有通孔, 因此, 压力调节器 5及共享的原水口 2 (或共享的浓 水口 3 ) 的外接管可由该刚性片体穿设而出。 还可在该膜壳 1与捆带 4之间设置原水口 固定螺母及浓水口固定螺母(图中未示出) , 从而便于旋入共享的原水口 2及共享的浓 水口 3的外接管。
需要说明的是, 本发明中的捆固件可选择设置, 如果通过其他方式可以稳固地固 定该多膜壳组合单元的各膜壳, 也可不设置捆固件; 而且, 捆带的形式并不局限于此, 还可采用瓦楞形 (波浪形) 刚性捆带, 且该瓦楞形捆带的弧度及间隔较佳是与多膜壳组 合单元的各膜壳相适应, 进一步地, 还可以采用其他形式的捆固件, 例如, 以玻璃布或 玻璃纤维缠绕于该多膜壳组合单元的外周适当位置,然后进行化学反应,以捆固各膜壳。 另外, 图 9中, 该压力调节器 5的活塞包括一不锈钢的活塞本体及一活塞套, 该 活塞套较佳是以工程塑料等耐腐蚀的材料制成, 从而使得该压力调节器能够具有耐腐蚀 的特性, 但不限于此, 该活塞 53也可由其它耐腐蚀的材料一体制成。 此外, 活塞 53直 径可以灵活设置, 例如可以与共享的原浓水口 2、 3相同, 或设置该活塞 53的活塞孔的 直径可与开孔 15相同或相近, 较佳地, 该活塞 53的直径稍大于开孔 15的直径或共享 的原浓水口 2、 3的直径, 以保证使用最小的压力 (捆带拉力) 压紧各密封部位。
本实施例的多膜壳组合单元由两只以上的膜壳、 捆带、 连接管、 (共享) 原浓水 口、 压力调整机构组成。 安装时, 首先将两侧膜壳、 中部膜壳按顺序排列成一排, 在膜 壳端部开口并加工出沉孔平面的位置安放接管 6、原、浓水口固定螺母、活塞 53以及予 紧垫块 52, 然后将捆带 4由端部推入, 旋入予紧螺栓 51, 调整予紧垫块 52的位置, 补 偿捆带 4与组件的间隙, 使捆带 4予紧。然后旋入共享原浓水口 2、 3, 安装各部位密封 圈, 最后安装端部总成。 另外一端同样处理后多膜壳组合单元组装完成。
当膜壳工作时, 原水由共享的原水口 2逐次通过接管 6进入各膜壳原水端, 通过 装在膜壳内部的膜元件从另外一端 (浓水端)经过接管 6汇集, 并由共享的浓水口 3排 出。 通过捆带 4和压力调节器 5的工作, 接管 6和接管密封圈 7被压紧在膜壳 1的开 孔 15周围的环形平面上, 保证各接管 6与膜壳 1之间的密封。 同时通过设计压力调节 器 5的活塞直径 53, 可以保证使用最小的压力 (捆带拉力)压紧各密封部位。利用膜壳 内部压力以及捆带的约束, 可以实现相邻膜壳间压力自动调整, 即可以保证捆带拉力随 着膜壳内部水压变化而自动调整, 同时补偿捆带因压力产生的变形伸长, 保证接管处的 密封效果。
本实施例的该多膜壳组合单元是由四支膜壳 1 并列集束而成, 此仅为便于说明而 提出的, 并列设置的膜壳数量并不局限于此, 在具体应用时, 多采用两支以上的膜壳并 排设置来组成一具有直线分布端面的多膜壳组合单元, 以适应所需处理量要求。
由于每个多膜壳组合单元通过共享的原水口 2、 以及共享的浓水口 3与管道相连, 工程安装与维护时配管量小, 使用的卡箍数量少, 节约了资源、 降低了成本。 此外, 视 工程需要, 多膜壳组合单元既可以水平放置, 也可以垂直放置; 每个多膜壳组合单元占 地面积较小, 空间利用更加有效。
第二实施例
如图 4 所示, 其为本发明第二实施例的正视图。 如图所示, 本实施例中, 该多膜 壳组合单元的端面也呈直线分布, 与第一实施例相同。 其中, 1 为膜壳; 2为共享的原 水口; 3为共享的浓水口; 4为捆带; 5 ' 为接管卡环; 6为接管; 7为密封胶圈。 多支 膜壳 1并列集束, 采用捆带 4捆扎成一体, 每支膜壳的原水口 12、 浓水口 13分别与相 邻的一支膜壳的原水口 12、 浓水口 13通过接管 6相连, 在接管 6外露部分镶嵌有接管 卡环 5 ' , 防止接管 6串动。 接管 6采用内接式结构, 其装设时是延伸至膜壳内壁, 并 使其两端与膜壳 1内壁相齐, 从而不会影响后续膜单元的装设; 接管 6与膜壳 1之间较 佳是采用轴向密封。 借由该方式, 组合后的各膜壳形成共享的原水口 2、 浓水口 3, 由 共享的原水口 2、 浓水口 3分别与管道相连。
多膜壳组合单元由两只以上的膜壳, 捆带, 连接管 6, (共享)原浓水口组成。 安 装时, 首先将两侧膜壳, 中部膜壳按顺序排列成一排, 在靠近膜壳端部的开孔 15处插 入接管 6和原 /浓水口固定螺母, 在将捆带 4由端部安装推入, 然后旋入共享原水口 2、 共享浓水口 3, 安装各部位密封圈, 最后安装端部总成。 另外一端同样处理后多膜壳组 合单元组装完成。
当膜壳工作时, 原水由共享原水口 2逐次通过接管 6进入各膜壳原水端并分布到 每个膜壳中, 渗透通过装在膜壳内部的膜元件(图中未示出), 被分离为净水与浓水, 浓 水从另外一端 (浓水端) 经过接管 6汇集, 并由共享浓水口 3排出, 由于捆带 4的约 束和卡环 5 ' 的限制,接管 6和密封圈 7仅可以在膜壳端部开口 15内的密封区内作有限 的位移, 使接管 6不会在压力下脱出并保证与膜壳之间的密封。
由于每个多膜壳组合单元通过共享的原水口 2 以及共享的浓水口 3与管道相连, 工程安装与维护时配管量小, 使用的卡箍数量少, 节约了资源、 降低了成本。 此外, 每 个多膜壳组合单元占地面积较小, 空间利用更加有效。
第三实施例
如图 5 所示, 其为本发明第三实施例的正视图。 如图所示, 本实施例中, 该多膜 壳组合单元的端面大致呈矩形 (或方形) 分布。 其中, 1为膜壳; 2为共享的原水口; 3 为共享的浓水口; 4为捆带; 5 ' 为接管卡环; 6为接管; 7为密封胶圈。 多支膜壳 1并 列集束, 采用捆带 4捆扎成一体, 每支膜壳的原水口 12、 浓水口 13分别与相邻的一支 膜壳的原水口 12、 浓水口 13通过接管 6相连, 在接管 6外露部分镶嵌有接管卡环 5 ' , 防止接管 6串动。 接管 6采用内接式结构, 其装设时延伸至膜壳内壁, 即其两端与膜壳 1内壁相齐; 接管 6与膜壳 1之间较佳是采用轴向密封。 借由该方式, 组合后的各膜壳 形成共享的原水口 2、 浓水口 3, 由共享的原水口 2、 浓水口 3分别与管道相连。
安装时, 首先将膜壳 1按顺序排列成矩形, 在膜壳端部相应开孔 15处插入接管 6 并安装卡环 5 ' 以及原、 浓水口固定螺母, 并安装捆带 4到相应位置, 然后旋入共享的 原水口 2及共享的浓水口 3, 并安装各部位密封圈, 最后安装端部总成。 另外一端同样 处理后多膜壳组合单元组装完成。
当膜壳工作时, 原水由共享的原水口 2逐次通过接管 6进入各膜壳的原水端, 渗 透过装在膜壳 1内部的膜元件, 被分离为净水与浓水, 其中浓水从另外一端 (浓水端) 经过接管 6汇集, 并由共享的浓水口 3排出。 由于捆带 4的约束和卡环的限制, 接管 6 和密封圈 7仅可以在膜壳 1靠近端部的开孔 15内的密封区内作有限的位移, 使接管 6 不会在压力下脱出并保证与膜壳之间的密封。
由于每个多膜壳组合单元通过共享的原水口 2、 以及共享的浓水口 3与管道相连, 工程安装与维护时配管量小, 使用的卡箍数量少, 节约了资源、 降低了成本。 此外, 每 个多膜壳组合单元占地面积较小, 空间利用更加有效。
第四实施例
如图 6 所示, 其为本发明第四实施例的正视图。 如图所示, 本实施例中, 该多膜 壳组合单元的端面呈六边形 (也可为其它多边形) 分布。 其中, 1 为膜壳; 2为共享的 原水口; 3为共享的浓水口; 4为捆带; 5 ' 为接管卡环; 6为接管; 7为密封胶圈。 多 支膜壳 1并列集束, 采用捆带 4捆扎成一体, 每支膜壳的原水口、 浓水口分别与相邻的 一支膜壳的原水口、 浓水口通过接管 6相连, 在接管 6外露部分镶嵌有接管卡环 5 ' , 防止接管 6串动。 接管 6采用内接式结构, 其装设时延伸至对应的二膜壳内壁, 即其两 端分别与邻接的二膜壳 1的内壁相齐, 接管 6与膜壳 1之间可采用轴向密封。 借由该方 式, 组合后的各膜壳形成共享的原水口 2、浓水口 3, 由共享的原水口 2、浓水口 3分别 与管道相连。
安装时, 首先将膜壳 1按顺序排列成矩形, 在膜壳靠近端部的相应开孔 15内插入 接管 6并安装卡环 5 ' 以及原、 浓水口固定螺母, 并安装捆带 4到相应位置, 然后旋入 共享的原水口 2及共享的浓水口 3, 并安装各部位密封圈, 最后安装端部总成; 另外一 端同样处理后即完成了多膜壳组合单元的组装。
当膜壳工作时, 原水由共享的原水口 2逐次通过接管 6进入各膜壳的原水端, 渗 透过装在膜壳 1内部的膜元件, 被分离为净水与浓水, 其中浓水从另外一端 (浓水端) 经过接管 6汇集, 并由共享的浓水口 3排出。 由于捆带 4的约束和卡环的限制, 接管 6 和密封圈 7仅可以在膜壳 1靠近端部的开孔 15内的密封区内作有限的位移, 使接管 6 不会在压力下脱出并保证与膜壳之间的密封。 由于每个多膜壳组合单元通过共享的原水口 2 以及共享的浓水口 3与管道相连, 工程安装与维护时配管量小, 使用的卡箍数量少, 节约了资源、 降低了成本。 此外, 每 个多膜壳组合单元占地面积较小, 空间利用更加有效。
本实施例中, 该原水、 浓水贯通通道为单一流道, 但本发明不限于此, 例如该原 水、 浓水贯通通道可分别为多支流式流道, 以本实施例为例, 其中位于中央的膜壳可以 选择与其周边的每个膜壳或部分膜壳间设置贯通通道, 以减小上、 下游膜壳内的压力落 差。 另外, 如果需要在该中央膜壳上设置共享的原水口 2、 共享的浓水口 3, 则该中央 膜壳可选用端接口式结构的膜壳单元。
第五实施例
如图 7、 图 8所示, 其为本发明的一实施例采用端进共享原、 浓水口的俯视示意图 及立体示意图。
本实施例中, 各膜壳 1间原水口 12、浓水口 13的连通及密封可以参照前述实施例 以多种方式实现, 其主要特点在于多膜壳组合单元的共享的原水口 2和共享的浓水口 3 的设置方式, 前述实施例中, 该共享的原水口 2或该共享的浓水口 3是采用侧开口式膜 壳来实现的,本实施例中该共享的原水口 2和共享的浓水口 3是采用端接口式膜壳来实 现, 即并非如前述实施例设置于侧壁上, 而是将共享原水口 2设置于其中一膜壳一端的 端部堵板上, 将共享的浓水口 3设置于其中另一膜壳的另一端的端部堵板上。 通过此种 设置方式, 由于共享的原水口 2、 共享的浓水口 3设置于端部堵板上, 则无需在捆带 4 对应处的侧壁上开设供共享的原水口 2、 共享的浓水口 3穿设的穿孔, 可以简化生产、 安装工序。
与前述实施例相似, 本实施例也在多支膜壳 1的原水口 12间形成原水贯通通道, 在多支膜壳 1的浓水口 13间形成浓水贯通通道, 该原水贯通通道及浓水贯通通道分别 位于垂直于膜壳轴向的二平面内, 且至少在前述二平面内对应设置捆带 4。 不同的是, 前述实施例中, 共享的原水口 2、 共享的浓水口 3也较佳分别位于对于的平面内, 而本 实施例中, 由于共享的原水口 2、 共享的浓水口 3设于膜壳端部堵板上, 因此, 共享的 原水口 2、 共享的浓水口 3并非位于前述二平面内。
另外, 本实施例的多膜壳组合单元较佳设有捆带 4, 且捆带 4与膜壳侧壁间设有压 力调节器 5, 该压力调节器 5可采用第一实施例中的自动压力调整机构, 也可以采用手 动压力调整机构, 请参见图 10, 其与图 9中自动压力调整机构相同的部分不再详述,其 不同处主要在于: 若采用手动调整结构, 则该压力调节器无需设置活塞 53,而可用垫块 55来替代, 这样, 膜壳侧壁的对应处可不用开孔。采用该手动压力调整机构, 则在使用 时是采取手动张紧的方式实现压力调节。
本领域的技术人员根据前述说明可以了解, 本实施例的其他部分的具体设置方式 可以参照前述实施例选择其中的一项或多项特征进行组合, 因此不再赘述。
本实施例除了具有前述第一实施例的优点外, 由于共享的原水口 2、共享的浓水口
3是分别设置于两端的端部堵板上, 且采用图 10所示的手动压力调整机构, 因此, 膜壳 侧壁也无需开设对应穿孔,从而使得各膜壳的侧壁仅需设置连通所需的原水口 12、浓水 口 13, 从而进一步简化了生产、 安装工序, 降低了成本。
本发明采用多支膜壳并列集束的技术方法形成多膜壳组合单元,并将每支膜壳的原 水口、 浓水口分别与相邻的一支或多支膜壳的原水口、 浓水口通过接管相连并密封, 形 成共享的原水口、 浓水口。 每个多膜壳组合单元可以设置较少数量(如只设置一个) 与 管道装配的共享原水口、浓水口。工作时,每个多膜壳组合单元通过共享的原水口进水, 由于多支膜壳的原水口通过接管相连, 原水进入每个多膜壳组合单元后分布到每个膜壳 中。 多支膜壳并列集束, 采用捆带捆扎成一体, 每支膜壳的原水口、 浓水口分别与相邻 的一支膜壳的原水口、 浓水口通过接管相连, 接管与膜壳之间采用密封胶圈密封。 在工 作压力下, 原水渗透过膜元件, 被分离为净水与浓水。 由于多支膜壳的原水口通过接管 相连, 浓水汇合在一起, 通过共享的浓水口排出。 另外, 相对于使用不锈钢卡箍来连接 膜壳的现有技术, 本发明中的卡环及接管可以采用其他金属或非金属材料, 因此, 采用 本发明的多膜壳组合单元技术, 节省了大量卡箍, 降低了工程成本, 减少了密封点, 降 低了泄漏隐患, 减少了工程的安装量, 而且, 由于相邻膜壳间不需采用卡箍, 而仅采用 卡环隔开, 因此可以大大缩减相邻膜壳之间的间距(例如从原 50mm缩减为 5mm), 从而 节省了装置的占地面积。
虽然本发明已以具体实施例揭示,但其并非用以限定本发明,任何本领域的技术人 员, 在不脱离本发明的构思和范围的前提下还可进行适当的变化与修改, 例如各膜壳单 元的原水口、 浓水口除了通过接管相连外, 还可通过开孔对开孔直接压紧并密封、 开孔 间胶接等形式密封连接; 对于内接式接管的具体设置方式, 可在膜壳开孔对应的内壁设 置沉孔, 该接管一端可设置法兰, 以与该沉孔结合并利用密封圈密封, 该接管的另一端 可采用螺纹连接或卡簧连接等方式与另一膜壳的内壁连接并利用密封圈密封; 各膜壳的 原水口、 浓水口数量、 设置位置关系以及捆带、 压力调节器的设置位置、 数量等均可以 根据实际要求而设置, 并不局限于前述实施例; 这些变化皆应仍属本专利涵盖的范畴。

Claims

权利要求书
1、 一种多膜壳组合单元, 是由多支膜壳并列集束而成, 其特征在于, 每支膜壳 的原水口、 浓水口分别与相邻的膜壳的原水口、 浓水口相连通, 所述多膜壳组合单元形 成有至少一共享的原水口及至少一共享的浓水口, 且所述共享的原水口、 共享的浓水口 能够分别与原水管道、 浓水管道相连。
2、 如权利要求 1所述的多膜壳组合单元, 其特征在于, 每支膜壳的原水口、 浓 水口是通过接管分别与相邻膜壳的原水口、 浓水口相连通并密封。
3、 如权利要求 2所述的多膜壳组合单元,其特征在于,所述接管为外接式接管, 所述接管两端与邻接二膜壳的开孔周围的膜壳外壁相齐, 且接管与膜壳之间采用平面密 封。
4、 如权利要求 2所述的多膜壳组合单元,其特征在于,所述接管为内接式接管, 所述接管两端与邻接二膜壳的开孔的内壁配合, 所述接管与对应的膜壳开孔之间采用轴 向密封。
5、 如权利要求 4所述的多膜壳组合单元, 其特征在于, 所述接管位于相邻膜壳 外壁间的部分嵌设有接管卡环。
6、 如权利要求 1所述的多膜壳组合单元, 其特征在于, 所述多膜壳组合单元的 端面呈直线分布、 矩形分布或多边形分布。
7、 如权利要求 1所述的多膜壳组合单元, 其特征在于, 所述共享的原水口、 共 享的浓水口设置在膜壳侧壁或膜壳的端部堵板上。
8、 如权利要求 1所述的多膜壳组合单元, 其特征在于, 所述多膜壳组合单元还 包括有刚性或柔性捆带, 所述捆带绕设于并列集束后的所述多支膜壳外周, 将所述多支 膜壳捆扎成一体。
9、 如权利要求 8所述的多膜壳组合单元, 其特征在于, 所述捆带与膜壳间设置 有压力调节器, 该压力调节器为自动压力调节机构或手动压力调节机构。
10、 如权利要求 9所述的多膜壳组合单元, 其特征在于, 所述多支膜壳的原水口 间形成原水贯通通道, 所述多支膜壳的浓水口间形成浓水贯通通道, 该原水贯通通道及 浓水贯通通道分别位于垂直于轴向的二平面内, 至少在前述二平面内对应设置所述捆带。
11、 一种多膜壳组合方法, 是将多支膜壳并列集束形成多膜壳组合单元, 其中, 每支膜壳的原水口、 浓水口分别与相邻的膜壳的原水口、 浓水口相连通, 组合后形成至 少一共享的原水口及至少一共享的浓水口, 所述共享的原水口、 共享的浓水口能够分别 与管道相连。
12、 如权利要求 11所述的多膜壳组合方法, 其特征在于, 每支膜壳的原水口、浓 水口是通过接管分别与相邻膜壳的原水口、 浓水口相连通并密封。
13、 如权利要求 12所述的多膜壳组合方法, 其特征在于, 接管为外接式接管, 接 管两端与邻接二膜壳的外壁相齐, 且接管与膜壳之间采用平面密封。
14、 如权利要求 12所述的多膜壳组合方法,其特征在于,所述接管为内接式接管, 接管两端与邻接二膜壳的内壁相齐, 接管与膜壳之间采用轴向密封。
15、 如权利要求 14所述的多膜壳组合方法,其特征在于,在相邻膜壳外壁间的接 管上通过嵌设的接管卡环实现定位。
16、 如权利要求 11所述的多膜壳组合方法,其特征在于,将多个膜壳组合形成直 线或矩形或多边形分布的端面。
17、 如权利要求 11所述的多膜壳组合方法, 其特征在于, 所述共享的原水口、共 享的浓水口设置在膜壳的侧壁或膜壳的端部堵板上。
18、 如权利要求 11所述的多膜壳组合方法, 其特征在于, 多支膜壳并列集束后, 用刚性或柔性捆带捆扎成一体。
19、 如权利要求 18所述的多膜壳组合方法,其特征在于,所述捆带与膜壳间设置 有压力调节器, 以调节工作时的压力, 该压力调节器为自动压力调节机构或手动压力调 节机构。
20、 如权利要求 11所述的多膜壳组合方法,其特征在于,所述多支膜壳的原水口 间形成原水贯通通道, 所述多支膜壳的浓水口间形成浓水贯通通道, 该原水贯通通道及 浓水贯通通道分别位于垂直于膜壳轴向的二平面内, 且至少在前述二平面内对应设置捆 带, 以将多支膜壳进一步捆扎为一体。
PCT/CN2010/078122 2010-10-26 2010-10-26 多膜壳组合单元及多膜壳组合方法 WO2012055092A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES201390042A ES2455367B1 (es) 2010-10-26 2010-10-26 Unidad de combinación y procedimiento de combinación de múltiples carcasas de membrana
US13/881,205 US9636636B2 (en) 2010-10-26 2010-10-26 Combination unit and combination method of multiple membrane shells
PCT/CN2010/078122 WO2012055092A1 (zh) 2010-10-26 2010-10-26 多膜壳组合单元及多膜壳组合方法
IL225947A IL225947A (en) 2010-10-26 2013-04-25 Connection unit and method for connecting multiple membrane shells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078122 WO2012055092A1 (zh) 2010-10-26 2010-10-26 多膜壳组合单元及多膜壳组合方法

Publications (1)

Publication Number Publication Date
WO2012055092A1 true WO2012055092A1 (zh) 2012-05-03

Family

ID=45993053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078122 WO2012055092A1 (zh) 2010-10-26 2010-10-26 多膜壳组合单元及多膜壳组合方法

Country Status (4)

Country Link
US (1) US9636636B2 (zh)
ES (1) ES2455367B1 (zh)
IL (1) IL225947A (zh)
WO (1) WO2012055092A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226120A (zh) * 2014-09-03 2014-12-24 中国科学院过程工程研究所 一种无机膜膜组件的并联结构
CN108314143A (zh) * 2018-04-13 2018-07-24 哈尔滨斯特莱茵环境科技有限公司 一种水处理膜壳组合装置
CN109940347A (zh) * 2019-03-27 2019-06-28 江苏利柏特股份有限公司 一种模块中的膜壳管管束的成型方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106512538B (zh) * 2015-09-12 2020-10-09 杜也兵 净水机拼装管路机座与滤胆壳体密封连接方法及滤胆壳体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168871A (ja) * 1991-12-17 1993-07-02 Kurita Water Ind Ltd 膜分離装置
JPH1085727A (ja) * 1996-09-12 1998-04-07 Toray Ind Inc 非常用造水機
CN1615174A (zh) * 2001-12-14 2005-05-11 诺瑞特隔膜技术有限公司 膜滤器壳体及利用膜滤器壳体的方法
CN1964775A (zh) * 2004-04-22 2007-05-16 贝卡尔特先进复合股份有限公司 保持圆柱形滤筒的压力容器
CN101161593A (zh) * 2006-10-09 2008-04-16 哈尔滨乐普实业发展中心 并流型玻璃钢压力容器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059390A (en) * 1932-11-14 1936-11-03 Signode Steel Strapping Co Transportation of pipe
US3059941A (en) * 1959-02-11 1962-10-23 Kaynor Resilient pipe joint
US3261735A (en) * 1962-01-24 1966-07-19 Brown Co D S Method for forming tubular pipe coupling
ES2126571T3 (es) * 1990-04-20 1999-04-01 Usf Filtration Limited Conjuntos de filtros modulares microporosos.
CN1137764C (zh) * 1995-06-15 2004-02-11 东丽株式会社 处理流体的设备和生产分离的流体的方法
ES2171146B1 (es) * 2001-01-19 2003-12-16 Membrane Concepts S L Sistema para el filtrado de fluidos, y filtro utilizado en este procedimiento.
WO2005070524A1 (en) * 2004-01-09 2005-08-04 Trisep Corporation Filtration with low-fouling, high-flow, low-energy spiral wound membrane cartridges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168871A (ja) * 1991-12-17 1993-07-02 Kurita Water Ind Ltd 膜分離装置
JPH1085727A (ja) * 1996-09-12 1998-04-07 Toray Ind Inc 非常用造水機
CN1615174A (zh) * 2001-12-14 2005-05-11 诺瑞特隔膜技术有限公司 膜滤器壳体及利用膜滤器壳体的方法
CN1964775A (zh) * 2004-04-22 2007-05-16 贝卡尔特先进复合股份有限公司 保持圆柱形滤筒的压力容器
CN101161593A (zh) * 2006-10-09 2008-04-16 哈尔滨乐普实业发展中心 并流型玻璃钢压力容器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226120A (zh) * 2014-09-03 2014-12-24 中国科学院过程工程研究所 一种无机膜膜组件的并联结构
CN108314143A (zh) * 2018-04-13 2018-07-24 哈尔滨斯特莱茵环境科技有限公司 一种水处理膜壳组合装置
CN108314143B (zh) * 2018-04-13 2023-11-14 哈尔滨斯特莱茵环境科技有限公司 一种水处理膜壳组合装置
CN109940347A (zh) * 2019-03-27 2019-06-28 江苏利柏特股份有限公司 一种模块中的膜壳管管束的成型方法

Also Published As

Publication number Publication date
ES2455367R1 (es) 2015-04-08
US20130206695A1 (en) 2013-08-15
ES2455367B1 (es) 2016-02-10
IL225947A (en) 2017-02-28
IL225947A0 (en) 2013-07-31
ES2455367A2 (es) 2014-04-15
US9636636B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2012055092A1 (zh) 多膜壳组合单元及多膜壳组合方法
TW524945B (en) A fluid control device
EP0946430B1 (en) A diffuser for aerating a fluid
CN104884150B (zh) 膜蒸馏布置
EP1834122B1 (en) Tubing connecting system
US20150253087A1 (en) Gasket and assembly
US6811148B2 (en) Quick-connect diffuser assembly
KR20060019241A (ko) 평막 모듈
KR20070003717A (ko) 파이프 커플링
CN113060798B (zh) 可更换过滤膜组件的罐型过滤设备
CN108060702B (zh) 一种水龙头安装组件
MX2012011455A (es) Sellos de extremo para ensamble difusor de aireacion.
JPH10169881A (ja) 集積化ガスパネル及びその組立方法
JPH10180050A (ja) 膜分離装置
CN112624266B (zh) 净水装置及其过滤模块
CN213687982U (zh) 一种快装式u形管盐水换热器
CN217855516U (zh) 一种平板膜组件结构
CN206246837U (zh) 一种模块式电缆、管道贯穿密封装置
CN201850159U (zh) 多膜壳组合单元
CN212894131U (zh) 一种用于mbr膜组件的防堵塞曝气装置
CN216236169U (zh) 一种用于净水装置的碳纤维膜壳
KR102228793B1 (ko) 새들형 멤브레인 산기관장치
CN221656033U (zh) 可拆装滤芯结构及净水设备
JP2007113766A (ja) 膜処理装置の配管接続構造及びフランジ用パッキン
CN217029148U (zh) 一种油水分离器组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201390042

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 13881205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858821

Country of ref document: EP

Kind code of ref document: A1