WO2012053431A1 - Fuel cell separator and method for producing same - Google Patents

Fuel cell separator and method for producing same Download PDF

Info

Publication number
WO2012053431A1
WO2012053431A1 PCT/JP2011/073620 JP2011073620W WO2012053431A1 WO 2012053431 A1 WO2012053431 A1 WO 2012053431A1 JP 2011073620 W JP2011073620 W JP 2011073620W WO 2012053431 A1 WO2012053431 A1 WO 2012053431A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
gold plating
layer
fuel cell
plating layer
Prior art date
Application number
PCT/JP2011/073620
Other languages
French (fr)
Japanese (ja)
Inventor
将幸 横田
Original Assignee
株式会社Neomaxマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Neomaxマテリアル filed Critical 株式会社Neomaxマテリアル
Priority to JP2012513374A priority Critical patent/JP5133466B2/en
Priority to CN201180040114.3A priority patent/CN103069629B/en
Priority to KR1020137004717A priority patent/KR101266096B1/en
Publication of WO2012053431A1 publication Critical patent/WO2012053431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a fuel cell, and more particularly to a separator suitable for a polymer electrolyte fuel cell used for a power source for automobiles, a power source for portable devices, a distributed power source and the like.
  • a fuel cell is a power generation device that extracts electric energy by electrochemically reacting hydrogen, which is a fuel, and oxygen.
  • the fuel cell can be a solid oxide fuel cell (SOFC), a molten carbonate fuel cell (MCFC), a phosphoric acid fuel cell (PAFC), or a solid polymer fuel cell (PEFC).
  • SOFC solid oxide fuel cell
  • MCFC molten carbonate fuel cell
  • PAFC phosphoric acid fuel cell
  • PEFC solid polymer fuel cell
  • DMFC direct methanol fuel cell
  • PEFC and DMFC have an operating temperature as low as about 70 to 90 ° C compared to other types of fuel cells, and PEFC and DMFC can generate high-efficiency power even with PEFC of about 1 kW and DMFC of about several hundred watts.
  • application to automobiles and portable devices is expected.
  • the DMFC is small, and its application to portable devices has been energetically studied.
  • the separator is required to have low gas permeability, excellent conductivity, low contact resistance, and excellent corrosion resistance.
  • the demand for corrosion resistance and electrical conductivity has recently become stronger, and as an evaluation standard for corrosion resistance, “the rust (or corrosion) does not occur even if the separator is immersed in a sulfuric acid solution having a pH of about 1 for 1000 hours. Is listed.
  • DMFC is small, it is required to have excellent surface conductivity.
  • Carbon materials are widely used as separator materials having such characteristics. However, since carbon materials have poor toughness and are brittle, there is a problem that processing is difficult and processing costs are high. Therefore, in recent years, it has been studied to use stainless steel, which is easy to process and low in processing cost, as the separator material instead of the carbon material.
  • Patent Documents 1 and 2 disclose separators in which a noble metal layer is directly formed on a passive layer formed on a stainless steel surface without removing the passive layer.
  • Patent Document 1 when the coverage of the gold layer formed directly on the passive layer is 2.3% to 94%, the corrosion resistance of the separator can be improved and the contact resistance can be sufficiently reduced.
  • the fuel cell separator described in Patent Document 1 does not have sufficient corrosion resistance.
  • the separator described in Patent Document 2 requires heat treatment for improving the adhesion of the noble metal layer to the stainless steel, there is a problem that the throughput is low and the cost is high.
  • An object of the present invention is to provide a fuel cell separator that is excellent in corrosion resistance and can be manufactured at low cost, and a method for manufacturing the same.
  • the separator for a fuel cell of the present invention includes a stainless steel substrate, a gold plating layer having a pinhole formed on the stainless steel substrate, and a passive layer of stainless steel formed in the pinhole. And the gold plating layer and the stainless steel base material are in contact with each other without a stainless steel passivation layer. Preferably, there is no stainless steel passivation layer between the gold plating layer and the stainless steel substrate.
  • the thickness of the gold plating layer is preferably at least more than 0.01 ⁇ m, and more preferably 0.05 ⁇ m or more.
  • the gold plating layer and the stainless steel base material have a region in contact with each other via an iron oxide layer substantially not containing chromium.
  • An iron oxide layer substantially free from chromium exists between the gold plating layer and the stainless steel substrate.
  • the passive layer has a thickness of 4 nm or more.
  • the gold plating layer has a thickness of 0.3 ⁇ m or less.
  • the contact resistance of the gold plating layer is 10 m ⁇ ⁇ cm 2 or less.
  • the method for producing a separator for a fuel cell according to the present invention includes a step a in which a stainless steel substrate is prepared, and a strike gold plating using an acidic gold strike plating solution on the surface of the stainless steel substrate after the step a.
  • Step b for forming a layer
  • Step c for forming the gold plating layer on the strike gold plating layer after the step b
  • the gold plating layer having a pinhole after the step c
  • the passivation treatment preferably uses nitric acid having a concentration of 30% or more.
  • the method further includes a step of etching the surface of the stainless steel substrate after the step a and before the step b.
  • the gold plating layer formed in step c has a pinhole, and in step d, a stainless steel passivation layer is formed in the pinhole.
  • the fuel cell separator of the present invention may have substantially the same structure as the fuel cell separator manufactured by any one of the above-described fuel cell separator manufacturing methods. That is, at least a part of the passive layer between the gold plating layer and the stainless steel substrate is removed, so that the adhesion between the gold plating layer and the stainless steel substrate is improved, and the pin of the gold plating layer is further improved. It is only necessary to have a structure in which corrosion resistance is improved by forming a passive layer of stainless steel in the hole.
  • a fuel cell separator having excellent corrosion resistance and high adhesion of a gold plating layer and a method for producing the same are provided.
  • (A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the separator 20 for fuel cells of embodiment by this invention. It is a graph which shows the density
  • FIGS. 1A to 1E are schematic cross-sectional views for explaining a method for manufacturing a fuel cell separator 20 according to an embodiment of the present invention.
  • a stainless steel substrate 12 is prepared as shown in FIG.
  • the stainless steel base 12 has a main body 12a made of stainless steel and a passive layer (passive film) 14 formed on the surface of the main body 12a.
  • the passive layer 14 is naturally formed when the stainless steel is left in the atmosphere, and contains a chromium oxide and chromium and iron hydroxides, and has excellent corrosion resistance. It is considered that a chromium oxide layer is formed on the main body 12a side, and a chromium and iron hydroxide layer is formed on the surface side.
  • the thickness of the passive layer 14 is about several nm although it varies depending on conditions.
  • austenitic stainless steel for example, SUS304, SUS316
  • austenitic-ferritic stainless steel for example, SUS329J1
  • the surface of the passive layer 14 may be cleaned and / or degreased, if necessary.
  • the surface of the stainless steel substrate 12 is etched. If, for example, hydrochloric acid or a mixed acid of hydrochloric acid and nitric acid is used as the etching solution, the passive layer 14 can be removed. Further, the passive layer 14 can be removed by cathodic electrolysis using an aqueous sulfuric acid solution as the electrolytic solution instead of etching. Thus, prior to the step of forming the strike gold plating layer 22s using the next acidic gold strike plating solution, the passivation layer 14 is removed once, thereby achieving the final gold plating uniformity. Can be increased. The uniformity of the gold plating finish can be easily confirmed visually.
  • the passive layer 14 after removing the passive layer 14, before forming a strike gold plating layer, it is preferable to remove the etching liquid adhering to the surface of the stainless steel base material 12 (main body part 12a), for example by washing with water. . At this time, the passive layer may be formed again. Moreover, depending on the storage environment after removing the passive layer 14, the passive layer may be formed again.
  • the passive layer 14 on the surface of the stainless steel substrate 12 is at least partially removed, so that prior to the strike gold plating step. Even if the passive layer 14 is not removed in advance, a gold plating layer having excellent corrosion resistance and adhesion can be obtained.
  • the final uniformity of the gold plating can be improved.
  • a naturally formed oxide layer has a non-uniform degree of oxidation, oxide layer thickness and oxide layer composition due to history (rolling conditions, storage environment, processing conditions before processing, etc.), and non-uniformity in the etching process. It is considered that the uniformity of the surface can be improved by removing the oxide layer.
  • an acidic gold strike plating solution (for example, K-manufactured by Kojima Chemical Co., Ltd.) is formed on the surface of the main body 12a exposed as a result of removing the passive layer. 770) is used to form the strike gold plating layer 22s.
  • the acidic gold strike plating solution known ones can be widely used. For example, one having a pH of 0.4 or more and 1.0 or less (liquid temperature of 20 ° C. or more and 40 ° C. or less) is preferable.
  • the current density is, for example, 0.5 A / dm 2 or more and 8.0 A / dm 2 or less, and the plating time is, for example, 30 seconds or more and 90 seconds or less.
  • the thickness of the strike gold plating layer 22s is preferably, for example, 0.005 ⁇ m or more and 0.05 ⁇ m or less. Since the strike gold plating layer 22s is very thin, it has a pinhole 22sa. As described above, even if the step of removing the passivation layer 14 described with reference to FIG. 1B is omitted, the removal of the passivation layer 14 also occurs in the gold strike plating step. The structure shown in (c) can be obtained.
  • the gold plating layer 22m is formed on the strike gold plating layer 22s.
  • the gold plating layer 22m is formed using, for example, a gold cyanide plating solution.
  • a well-known thing can be widely used as a gold plating solution containing a cyanide compound (for example, Nippon High Purity Chemical Co., Ltd. Tempe resist BL).
  • a gold plating solution containing a cyanide compound for example, Nippon High Purity Chemical Co., Ltd. Tempe resist BL.
  • those having a pH of 6.0 or more and 6.5 or less liquid temperature of 60 ° C. or more and 70 ° C. or less
  • the current density is, for example, 0.02 A / dm 2 or more and 0.3 A / dm 2 or less
  • the plating time is, for example, 100 seconds or more and 300 seconds or less.
  • the gold plating layer 22m does not need to be thick, and the gold plating layer 22 including the strike gold plating layer 22s and the gold plating layer 22m may have a pinhole 22a.
  • the total thickness of the gold plating layer 22 is required to be approximately 1.2 ⁇ m or more.
  • the total thickness of the gold plating layer 22 is sufficient if the contact resistance can be sufficiently lowered, is preferably at least over 0.01 ⁇ m, and more preferably at least 0.05 ⁇ m.
  • the thickness of the gold plating layer 22 does not need to be more than 0.3 ⁇ m, and the contact resistance can be sufficiently reduced with a thickness of 0.3 ⁇ m or less.
  • the contact resistance of the gold plating layer 22 is preferably 10 m ⁇ ⁇ cm 2 or less.
  • the fuel cell separator 20 is obtained by performing a passivation treatment on the main body 12a of the stainless steel base material on which the gold plating layer 22 is formed.
  • the passivation treatment is performed under conditions that allow a stainless steel passivation layer to be formed in the pinhole when the gold plating layer has a pinhole.
  • it can be performed by immersing in a 30% by mass nitric acid aqueous solution at 30 ° C. for 5 minutes.
  • it is not restricted to this condition, For example, you may immerse for about 10 second in 30 mass% nitric acid aqueous solution of 50 degreeC.
  • the concentration of the nitric acid aqueous solution is preferably 30% by mass or more.
  • the strike gold plating layer 22s is formed using the acidic strike gold plating solution, so that the gold plating layer 22 and the stainless steel substrate 12a are formed. Between them, the stainless steel passive layer 14 is hardly present, and the adhesion between the gold plating layer 22 and the stainless steel substrate 12a can be improved. Further, since the passivation treatment is performed after the gold plating layer 22 is formed, the stainless steel substrate 12a exposed in the pin hole 22a is passivated even if the pin hole 22a exists in the gold plating layer 22. As a result of the formation of the passive layer 16 made of stainless steel in the pinhole 22a, the corrosion resistance is improved.
  • the gold plating layer 22 may have pinholes, the gold plating layer 22 does not need to be formed thick, and the gold plating process has high throughput and low material costs. Moreover, if the passivation layer is removed by etching or cathodic electrolysis of the surface of the stainless steel substrate prior to the strike gold plating step, the final gold plating finish can be improved. .
  • FIG. 2A shows an example of a concentration profile obtained as a result of analyzing the surface of this substrate by glow discharge emission spectrometry.
  • the horizontal axis represents the depth from the substrate surface, and the vertical axis represents the concentration of each atom in atomic% (at%).
  • results for carbon, nickel, copper, silicon, and manganese are omitted. The same applies to the following glow discharge emission spectroscopic analysis results.
  • Fe iron
  • Cr chromium
  • O oxygen
  • This oxide layer is a passivation layer 14 as is well known.
  • the thickness of the passive layer 14 was about 4.4 nm when evaluated at a depth at which the oxygen atom concentration was half the peak value.
  • FIG. 2B shows an example of the result of analyzing the surface of this substrate by glow discharge emission spectrometry.
  • the oxygen atom concentration in the vicinity of the outermost surface was a little lower than that in FIG. 2A and was the same as the concentration profile in FIG. 2A except that the change in the depth direction was gentle.
  • the thickness of the passive layer 14 obtained in the same manner as described above from the concentration profile in FIG. 2B was about 6.1 nm.
  • FIGS. 3 (a) and 3 (b) show the results of analyzing the surface of the obtained substrate by glow discharge emission spectrometry.
  • FIG. 3A shows the results when a 10% nitric acid aqueous solution is used
  • FIG. 3B shows the results when a 30% nitric acid aqueous solution is used.
  • the concentration profiles in FIGS. 3 (a) and 3 (b) are almost the same as the concentration profile in FIG. 2 (a), and the composition and thickness of the surface passivation layer are changed by the passivation treatment with nitric acid. It is thought that it is not.
  • concentration profile of Fig.3 (a) and (b) was about 4.5 nm and about 4.3 nm, respectively. From the results of FIGS. 2 to 3, the thickness of the passive layer 14 formed on the surface of the substrate used in this experiment is considered to be in the range of about 4 nm to about 6 nm.
  • Gold plating was performed by strike gold plating using an acidic strike gold plating solution and main gold plating using a gold cyanide plating solution. Strike gold plating uses a gold-based strike plating solution (K-770 500 ml / L (2 times dilution) manufactured by Kojima Chemical Co., Ltd.), which is cyan, has a pH of 0.8, and a temperature of 35 ° C. Electroplating was performed at dm 2 for 40 seconds. The thickness of the strike gold plating layer obtained under these conditions was about 0.01 ⁇ m. The thickness of the plating layer is a thickness measured using a fluorescent X-ray film thickness meter unless otherwise specified.
  • the gold plating was performed following the strike gold plating.
  • a gold cyanide plating solution having a pH of 6.3 and a temperature of 65 ° C. (Tempresist BL 200 g / L, potassium gold cyanide 8.0 g / L, manufactured by Japan High Purity Chemical Co., Ltd.)
  • the thickness of the gold plating layer was adjusted by adjusting the energization time at a current density of 0.1 A / dm 2 .
  • the energized time was 4 minutes, and a gold plating layer having a thickness of about 0.1 ⁇ m could be obtained.
  • Corrosion resistance was evaluated by visually observing the surface after being immersed in a sulfuric acid aqueous solution (80 ° C.) having a pH of 1 for 1000 hours.
  • the case where the corrosion of the gold plating layer was confirmed was rated as “X”, the case where corrosion was not reached but a discoloration was observed was indicated as “ ⁇ ”, and the case where no discoloration was observed was indicated as “ ⁇ ”.
  • (circle) has the corrosion resistance which can be used practically.
  • the contact resistance is 1A using a milliohm meter in a state where each sample (separator) is sandwiched between a carbon plate and a copper plate (current collector plate) plated with gold at a surface pressure of 10 kgf / cm 2. It was evaluated by the resistance value when a current of.
  • the contact resistance of the gold plating layer is 10 m [Omega ⁇ cm 2 or less, and more preferably 5 m [Omega ⁇ cm 2 or less.
  • the contact resistance of all the samples was 5 m ⁇ ⁇ cm 2 or less, which was good. That is, it can be seen that the contact resistance can be sufficiently reduced if the thickness of the gold plating layer is at least 0.01 ⁇ m.
  • the corrosion resistance of Sample 2 plated with gold after etching is inferior to that of Sample 1 plated with gold without etching.
  • the reason why the corrosion resistance of Sample 1 is not sufficient is that the adhesion between the passive layer and the gold plating layer is low.
  • the corrosion resistance of the sample 2 is lower than that of the sample 1 because the passive layer (FIG. 2 (b)) regenerated after removing the passive layer by etching is a passive layer that has been previously formed on the surface of the substrate. This is probably because the corrosion resistance is lower than that of the layer (FIG. 2A). That is, as described with reference to FIGS. 2A and 2B, even if the passive layer is removed by etching, the passive layer is formed again during washing and storage.
  • the manufacturing process of sample 4 includes a passivation treatment with 10% nitric acid after the etching process in the manufacturing process of sample 2 and before the strike gold plating. That is, the passivation process is performed on the surface to which gold plating is applied. As a result, although the corrosion resistance of the sample 4 is superior to that of the sample 2, it is equivalent to the sample 1 and is not at a sufficient level.
  • the manufacturing process of the sample 4 is a simulation of the manufacturing process described in Patent Document 2.
  • Samples 7 to 9 have sufficient corrosion resistance, and as can be seen from the results of Sample 7, it is sufficient that the thickness of the gold plating layer is 0.05 ⁇ m. It can be seen that the contact resistance of these samples hardly increased even after the corrosion resistance test, and has very excellent corrosion resistance.
  • the thickness of the gold plating layer is 0.01 ⁇ m or less, the corrosion resistance is low, and the thickness of the gold plating layer is preferably more than 0.01 ⁇ m.
  • a 10% by mass nitric acid aqueous solution cannot form a passive layer of stainless steel in the pinhole, and the nitric acid aqueous solution is used to form a passive layer in the pinhole. It is understood that it is preferable to use a 30% by mass or more nitric acid aqueous solution.
  • FIGS. 4 (a) and 4 (b) show the results of analyzing the surfaces of Sample 4 and Sample 8 by glow discharge optical emission spectrometry, respectively.
  • the Fe and Cr concentration profiles show that after the Fe concentration starts to increase, Cr begins to increase. That is, it can be seen that an iron oxide layer substantially free of chromium is formed near the surface. This is in contrast to the presence of an oxide layer containing iron and chromium on the outermost surface in the passive layer formed on the surface of the substrate shown in FIGS. . That is, in Sample 4 and Sample 8, there is a region where the gold plating layer and the stainless steel base material are in contact with each other without passing through the stainless steel passive layer.
  • adhesion it is considered preferable that there is no stainless steel passive layer between the gold plating layer and the stainless steel base material, but at least partially without passing through the passive layer, If the gold plating layer and the stainless steel substrate are in contact, the adhesion is considered to be improved.
  • the sample 8 plated with gold without performing the passivation treatment performed the etching shown in FIG. 4A.
  • the thickness of the iron oxide layer which does not contain chromium substantially is thicker than the sample 4 which performed the passivation process and performed gold plating after that.
  • the passive layer formed by washing with water and storing in the air after removing the passive layer is removed in the acidic strike gold plating process rather than the passive layer formed by the passivation treatment. It is thought that it is easy to be done.
  • the acidic strike gold plating step it is considered that not all of the passive layer is removed but a portion rich in chromium oxide in the passive layer is removed.
  • the chromium oxide rich portion of the passive layer on the surface of the stainless steel substrate is at least partially removed. Since chromium oxide reduces the adhesion with the gold plating layer, the adhesion between the gold plating layer and the stainless steel substrate is improved by removing the portion rich in chromium oxide. In particular, the chromium oxide can be more effectively removed by performing strike gold plating after removing the previously formed passive layer by etching. As a result of various experiments, it has also been found that by performing etching, the uniformity of the surface of the substrate can be increased, and the uniformity of the final gold plating finish can be improved.
  • the gold plating layer is as thin as 0.3 ⁇ m or less and has a pinhole, it is exposed in the pinhole by performing passivation treatment under predetermined conditions after gold plating. Since a passive layer can be formed on the surface of the stainless steel substrate, corrosion resistance can be improved. In order to obtain high corrosion resistance, it is preferable to use a 30% by mass or more nitric acid aqueous solution.
  • the strike gold plating and the gold plating may be electroless plating, but as exemplified here, electrolytic plating is more preferable.
  • acidic strike gold plating not only forms a strike gold plating layer, but also has an action and effect of removing a chromium-rich portion of the underlying passive layer, and for this purpose, electrolytic plating is preferred.
  • the present invention is widely used in fuel cell separators and manufacturing methods thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

This fuel cell separator (20) has a region comprising a stainless steel substrate (12a), a gold-plated layer (22) that is formed on the stainless steel substrate (12a) and has pinholes (22a), and a stainless steel passivation layer (16) formed inside the pinholes (22a), wherein the gold-plated layer (22) and the stainless steel substrate (12a) come into contact without involving the stainless steel passivation layer. This fuel cell separator (20) can be produced by forming a strike gold-plated layer on the surface of the stainless steel substrate (12) by using an acidic gold strike plating solution, then forming the gold-plated layer (22), and subsequently performing passivation treatment. The present invention provides: a fuel cell separator that has excellent corrosion resistance and that can be manufactured inexpensively, and a method for producing the fuel cell separator.

Description

燃料電池用セパレータおよびその製造方法Fuel cell separator and method for producing the same
 本発明は燃料電池用セパレータに関し、特に、自動車用電源、携帯機器用電源、分散電源などに用いられる固体高分子型燃料電池に好適なセパレータに関する。 The present invention relates to a separator for a fuel cell, and more particularly to a separator suitable for a polymer electrolyte fuel cell used for a power source for automobiles, a power source for portable devices, a distributed power source and the like.
 発電効率が高く、環境への負荷も低いなどの観点から、次世代のエネルギー源として、燃料電池に関する研究が活発に行われている。 From the viewpoint of high power generation efficiency and low environmental impact, research on fuel cells is actively conducted as a next-generation energy source.
 燃料電池は、燃料である水素と、酸素とを電気化学的に反応させて電気エネルギーを取り出す発電装置である。燃料電池は、使用する電解質の種類に応じて、固体酸化物型燃料電池(SOFC)、溶融炭酸塩型燃料電池(MCFC)、リン酸型燃料電池(PAFC)、固体高分子型燃料電池(PEFC)、直接メタノール型燃料電池(DMFC)に分類される。なかでもPEFCおよびDMFCは、他のタイプの燃料電池に比べて作動温度が約70~90℃と低く、PEFCで1kW程度、DMFCで数百W程度でも高効率の発電が可能であることから、特に、自動車や携帯機器などへの適用が期待されている。特に、DMFCは小型であり、携帯機器への適用が精力的に研究されている。 A fuel cell is a power generation device that extracts electric energy by electrochemically reacting hydrogen, which is a fuel, and oxygen. Depending on the type of electrolyte used, the fuel cell can be a solid oxide fuel cell (SOFC), a molten carbonate fuel cell (MCFC), a phosphoric acid fuel cell (PAFC), or a solid polymer fuel cell (PEFC). ) And direct methanol fuel cell (DMFC). In particular, PEFC and DMFC have an operating temperature as low as about 70 to 90 ° C compared to other types of fuel cells, and PEFC and DMFC can generate high-efficiency power even with PEFC of about 1 kW and DMFC of about several hundred watts. In particular, application to automobiles and portable devices is expected. In particular, the DMFC is small, and its application to portable devices has been energetically studied.
 セパレータには、ガス透過性が小さいこと、導電性に優れること、接触抵抗が低いこと、耐食性に優れることなどが要求されている。特に、耐食性および導電性に対する要請は、最近、益々強くなっており、耐食性の評価基準として、「セパレータをpHが約1の硫酸溶液に1000時間浸漬しても錆び(または腐食)が発生しないこと」が挙げられている。特に、DMFCは小型なので、表面の導電性が優れていることが求められる。 The separator is required to have low gas permeability, excellent conductivity, low contact resistance, and excellent corrosion resistance. In particular, the demand for corrosion resistance and electrical conductivity has recently become stronger, and as an evaluation standard for corrosion resistance, “the rust (or corrosion) does not occur even if the separator is immersed in a sulfuric acid solution having a pH of about 1 for 1000 hours. Is listed. In particular, since DMFC is small, it is required to have excellent surface conductivity.
 このような特性を有するセパレータ用材料として、カーボン材料が汎用されている。しかしながら、カーボン材料は、靭性に乏しく脆いため、加工が困難であり、加工コストが高いという問題がある。そこで、近年では、カーボン材料の代わりに、加工が容易で加工コストも安価なステンレス鋼をセパレータ用材料として使用することが検討されている。 Carbon materials are widely used as separator materials having such characteristics. However, since carbon materials have poor toughness and are brittle, there is a problem that processing is difficult and processing costs are high. Therefore, in recent years, it has been studied to use stainless steel, which is easy to process and low in processing cost, as the separator material instead of the carbon material.
 ステンレス鋼の表面には、鋼中に含まれるCrが大気中の酸素と結合した酸化皮膜(不動態皮膜)が生成されるため、耐食性に優れるが、接触抵抗が大きく、そのままでは、セパレータ用材料として使用できない。そのため、耐食性および導電性に優れた貴金属によってステンレス鋼の表面を被覆することが考えられるが、不動態皮膜と金属膜との密着性は非常に悪いため、ステンレス鋼の表面に金属膜を直接形成することは非常に困難である。そこで、これまでは、エッチングなどによって不動態皮膜を完全に除去した後、Niなどの金属を含む下地めっき層を形成してから、貴金属をめっきする方法が行われていた。しかしながら、上記の方法によって得られたセパレータを長時間使用すると、耐食性が低下し、燃料電池としての性能が低下するという問題がある。これは、貴金属膜に生成したピンホールを通じて腐食液が内部に侵入し、異種金属接触腐食(ガルバニック腐食)が進むためと考えられる。従って、この方法では、上述した耐食性の評価基準(セパレータを強酸性溶液に1000時間以上浸漬しても錆の発生が認められない)を満足することはできない。 On the surface of stainless steel, an oxide film (passive film) in which Cr contained in the steel is combined with oxygen in the atmosphere is generated, so it has excellent corrosion resistance, but has high contact resistance. Cannot be used as Therefore, it is conceivable to cover the surface of stainless steel with a noble metal with excellent corrosion resistance and conductivity, but the adhesion between the passive film and the metal film is very poor, so the metal film is formed directly on the surface of the stainless steel. It is very difficult to do. Thus, until now, after completely removing the passive film by etching or the like, a method of plating a noble metal after forming a base plating layer containing a metal such as Ni has been performed. However, when the separator obtained by the above method is used for a long time, there is a problem that the corrosion resistance is lowered and the performance as a fuel cell is lowered. This is presumably because the corrosive liquid enters the inside through the pinholes generated in the noble metal film, and the dissimilar metal contact corrosion (galvanic corrosion) proceeds. Therefore, this method cannot satisfy the above-mentioned evaluation standard of corrosion resistance (the occurrence of rust is not recognized even when the separator is immersed in a strongly acidic solution for 1000 hours or more).
 一方、ステンレス鋼の表面に形成された不動態層を除去することなく、その上に直接貴金属層を形成したセパレータが、特許文献1および2に開示されている。 On the other hand, Patent Documents 1 and 2 disclose separators in which a noble metal layer is directly formed on a passive layer formed on a stainless steel surface without removing the passive layer.
 特許文献1によると、不動態層の上に直接形成する金層の被覆率を2.3%~94%とすると、セパレータの耐食性を向上させることができるとともに、接触抵抗を十分に低減できる。 According to Patent Document 1, when the coverage of the gold layer formed directly on the passive layer is 2.3% to 94%, the corrosion resistance of the separator can be improved and the contact resistance can be sufficiently reduced.
 また、特許文献2によると、不動態層の上に直接貴金属層を形成した後、100℃以上600℃以下の温度で5分以下の時間、真空中又は不活性ガス中で熱処理することによって、母材(例えばステンレス鋼)と貴金属層との間に、母材の金属成分が貴金属層に適度に拡散する結果、密着性が改善される。 Further, according to Patent Document 2, after forming the noble metal layer directly on the passive layer, by heat treatment in a vacuum or an inert gas at a temperature of 100 ° C. or more and 600 ° C. or less for 5 minutes or less, Adhesion is improved as a result of appropriate diffusion of the metal component of the base material into the noble metal layer between the base material (for example, stainless steel) and the noble metal layer.
特開2004-296381号公報JP 2004-296281 A 特開2007-323988号公報JP 2007-323988 A
 しかしながら、本発明者の検討によると、特許文献1に記載の燃料電池用セパレータは、耐食性が十分でない。また、特許文献2に記載のセパレータは、貴金属層のステンレス鋼に対する密着性を向上させるための熱処理を必要とするので、スループットが悪く、コストが高いという問題がある。 However, according to the study of the present inventor, the fuel cell separator described in Patent Document 1 does not have sufficient corrosion resistance. Moreover, since the separator described in Patent Document 2 requires heat treatment for improving the adhesion of the noble metal layer to the stainless steel, there is a problem that the throughput is low and the cost is high.
 本発明の目的は、耐食性に優れ、且つ低コストで製造することが可能な燃料電池用セパレータおよびその製造方法を提供することにある。 An object of the present invention is to provide a fuel cell separator that is excellent in corrosion resistance and can be manufactured at low cost, and a method for manufacturing the same.
 本発明の燃料電池用セパレータは、ステンレス鋼基材と、前記ステンレス鋼基材上に形成された、ピンホールを有する金めっき層と、前記ピンホール内に形成されたステンレス鋼の不動態層とを有し、前記金めっき層と前記ステンレス鋼基材とがステンレス鋼の不動態層を介さずに接触している領域を有する。前記金めっき層と前記ステンレス鋼基材との間には、ステンレス鋼の不動態層が存在しないことが好ましい。前記金めっき層の厚さは、少なくとも0.01μm超であることが好ましく、0.05μm以上であることがさらに好ましい。 The separator for a fuel cell of the present invention includes a stainless steel substrate, a gold plating layer having a pinhole formed on the stainless steel substrate, and a passive layer of stainless steel formed in the pinhole. And the gold plating layer and the stainless steel base material are in contact with each other without a stainless steel passivation layer. Preferably, there is no stainless steel passivation layer between the gold plating layer and the stainless steel substrate. The thickness of the gold plating layer is preferably at least more than 0.01 μm, and more preferably 0.05 μm or more.
 ある実施形態において、前記金めっき層と前記ステンレス鋼基材とが、クロムを実質的に含まない鉄酸化物層を介して接触している領域を有する。前記金めっき層と前記ステンレス鋼基材との間には、クロムを実質的に含まない鉄酸化物層が存在する。 In one embodiment, the gold plating layer and the stainless steel base material have a region in contact with each other via an iron oxide layer substantially not containing chromium. An iron oxide layer substantially free from chromium exists between the gold plating layer and the stainless steel substrate.
 ある実施形態において、前記不動態層の厚さは4nm以上である。 In one embodiment, the passive layer has a thickness of 4 nm or more.
 ある実施形態において、前記金めっき層の厚さは0.3μm以下である。 In one embodiment, the gold plating layer has a thickness of 0.3 μm or less.
 ある実施形態において、前記金めっき層の接触抵抗が10mΩ・cm2以下である。 In one embodiment, the contact resistance of the gold plating layer is 10 mΩ · cm 2 or less.
 本発明の燃料電池用セパレータの製造方法は、ステンレス鋼基材を用意する工程aと、前記工程aの後に、前記ステンレス鋼基材の表面に、酸性の金ストライクめっき液を用いてストライク金めっき層を形成する工程bと、前記工程bの後に、前記ストライク金めっき層の上に、本金めっき層を形成する工程cと、前記工程cの後に、前記金めっき層がピンホールを有していたとき、前記ピンホール内にステンレス鋼の不動態層を形成することができる条件で、不動態化処理を行う工程dとを包含する。 The method for producing a separator for a fuel cell according to the present invention includes a step a in which a stainless steel substrate is prepared, and a strike gold plating using an acidic gold strike plating solution on the surface of the stainless steel substrate after the step a. Step b for forming a layer, Step c for forming the gold plating layer on the strike gold plating layer after the step b, and the gold plating layer having a pinhole after the step c And a step d of performing a passivation treatment under conditions that allow a stainless steel passivation layer to be formed in the pinhole.
 ある実施形態において、不動態化処理は、30%以上の濃度の硝酸を用いることが好ましい。 In an embodiment, the passivation treatment preferably uses nitric acid having a concentration of 30% or more.
 ある実施形態において、前記工程aの後、前記工程bの前に、前記ステンレス鋼基材の表面をエッチングする工程をさらに包含する。 In one embodiment, the method further includes a step of etching the surface of the stainless steel substrate after the step a and before the step b.
 ある実施形態において、前記工程cにおいて形成される金めっき層はピンホールを有し、前記工程dにおいて、前記ピンホール内にステンレス鋼の不動態層を形成する。 In one embodiment, the gold plating layer formed in step c has a pinhole, and in step d, a stainless steel passivation layer is formed in the pinhole.
 本発明の燃料電池用セパレータは、上記のいずれかの燃料電池用セパレータの製造方法によって製造された燃料電池用セパレータと実質的に同じ構造を有していればよい。すなわち、金めっき層とステンレス鋼基材との間の不動態層は少なくとも一部が除去された結果、金めっき層とステンレス鋼基材との密着性は改善され、さらに、金めっき層のピンホール内にステンレス鋼の不動態層が形成されることによって、耐食性が向上させられた構造を有していればよい。 The fuel cell separator of the present invention may have substantially the same structure as the fuel cell separator manufactured by any one of the above-described fuel cell separator manufacturing methods. That is, at least a part of the passive layer between the gold plating layer and the stainless steel substrate is removed, so that the adhesion between the gold plating layer and the stainless steel substrate is improved, and the pin of the gold plating layer is further improved. It is only necessary to have a structure in which corrosion resistance is improved by forming a passive layer of stainless steel in the hole.
 本発明によると、耐食性に優れ、且つ金めっき層の密着性の高い燃料電池用セパレータおよびその製造方法が提供される。 According to the present invention, a fuel cell separator having excellent corrosion resistance and high adhesion of a gold plating layer and a method for producing the same are provided.
(a)~(e)は、本発明による実施形態の燃料電池用セパレータ20の製造方法を説明するための模式的な断面図である。(A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the separator 20 for fuel cells of embodiment by this invention. ステンレス鋼基材の濃度プロファイルを示すグラフであり、(a)は市販品されているステンレス鋼(SUS304)基材の濃度プロファイルを示すグラフであり、(b)は表面をエッチングおよび水洗した後の濃度プロファイルを示すグラフである。It is a graph which shows the density | concentration profile of a stainless steel base material, (a) is a graph which shows the density | concentration profile of the stainless steel (SUS304) base material currently marketed, (b) is after etching and washing the surface. It is a graph which shows a density | concentration profile. (a)は、エッチングおよび水洗の後に10%硝酸水溶液で不動態化処理した後の濃度プロファイルを示すグラフであり、(b)はエッチングおよび水洗の後に10%硝酸水溶液で不動態化処理した後の濃度プロファイルを示すグラフである。(A) is a graph showing a concentration profile after etching and washing with a 10% nitric acid aqueous solution after washing, and (b) after etching and washing with a 10% nitric acid aqueous solution. It is a graph which shows a density | concentration profile. (a)は試料4、(b)は試料8にそれぞれ対応するサンプルの濃度プロファイルを示すグラフである。(A) is a graph which shows the density | concentration profile of the sample corresponding to the sample 4, and (b) is the sample 8, respectively.
 以下、図面を参照して、本発明による実施形態の燃料電池用セパレータおよびその製造方法を説明する。なお、本発明は、例示する実施形態に限定されるものではない。 Hereinafter, a fuel cell separator according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings. Note that the present invention is not limited to the illustrated embodiment.
 図1(a)~(e)に、本発明による実施形態の燃料電池用セパレータ20の製造方法を説明するための模式的な断面図を示す。 1A to 1E are schematic cross-sectional views for explaining a method for manufacturing a fuel cell separator 20 according to an embodiment of the present invention.
 本発明による実施形態の燃料電池用セパレータの製造方法では、まず、図1(a)に示すように、ステンレス鋼基材12を用意する。ステンレス鋼基材12は、ステンレス鋼から構成された本体部12aと、本体部12aの表面に形成された不動態層(不動態皮膜)14とを有している。不動態層14は、よく知られているように、スレンレス鋼を大気中に放置すると自然に形成され、クロムの酸化物と、クロムおよび鉄の水酸化物とを含み、耐食性に優れている。本体部12a側にクロムの酸化物層が形成され、表面側にクロムおよび鉄の水酸化物層が形成されていると考えられている。不動態層14の厚さは条件によって異なるが数nm程度である。ステンレス鋼としては、例えば、オーステナイト系ステンレス鋼(例えば、SUS304、SUS316)またはオーステナイト-フェライト系ステンレス鋼(例えば、SUS329J1)を好適に用いることができる。次の工程の前に、必要に応じて、不動態層14の表面を洗浄および/または脱脂してもよい。 In the method for manufacturing a fuel cell separator according to an embodiment of the present invention, first, a stainless steel substrate 12 is prepared as shown in FIG. The stainless steel base 12 has a main body 12a made of stainless steel and a passive layer (passive film) 14 formed on the surface of the main body 12a. As is well known, the passive layer 14 is naturally formed when the stainless steel is left in the atmosphere, and contains a chromium oxide and chromium and iron hydroxides, and has excellent corrosion resistance. It is considered that a chromium oxide layer is formed on the main body 12a side, and a chromium and iron hydroxide layer is formed on the surface side. The thickness of the passive layer 14 is about several nm although it varies depending on conditions. As the stainless steel, for example, austenitic stainless steel (for example, SUS304, SUS316) or austenitic-ferritic stainless steel (for example, SUS329J1) can be preferably used. Prior to the next step, the surface of the passive layer 14 may be cleaned and / or degreased, if necessary.
 次に、図1(b)に示すように、ステンレス鋼基材12の表面をエッチングする。エッチング液として、例えば、塩酸や、塩酸と硝酸との混酸を用いると、不動態層14を除去することができる。また、エッチングに代えて、電解液として硫酸水溶液を用いた陰極電解法でも不動態層14を除去することができる。このように、次の酸性の金ストライクめっき液を用いてストライク金めっき層22sを形成する工程に先立って、不動態層14を一旦除去することによって、最終的な金めっきの仕上がりの均一性を高めることができる。金めっきの仕上がりの均一性は目視で容易に確認できる。 Next, as shown in FIG. 1B, the surface of the stainless steel substrate 12 is etched. If, for example, hydrochloric acid or a mixed acid of hydrochloric acid and nitric acid is used as the etching solution, the passive layer 14 can be removed. Further, the passive layer 14 can be removed by cathodic electrolysis using an aqueous sulfuric acid solution as the electrolytic solution instead of etching. Thus, prior to the step of forming the strike gold plating layer 22s using the next acidic gold strike plating solution, the passivation layer 14 is removed once, thereby achieving the final gold plating uniformity. Can be increased. The uniformity of the gold plating finish can be easily confirmed visually.
 なお、不動態層14を除去した後、ストライク金めっき層を形成する前に、ステンレス鋼基材12(本体部12a)の表面に付着したエッチング液を、例えば水洗することによって除去することが好ましい。このとき、不動態層が再び形成されることがある。また、不動態層14を除去した後の保存環境によっては、不動態層が再び形成されることがある。上記の方法で、不動態層14を一旦除去しておくと、ステンレス鋼基材の表面の均一性が高められるので、その後に不動態層が形成されても、最終的な金めっきの仕上がりの均一性を高めることができる。 In addition, after removing the passive layer 14, before forming a strike gold plating layer, it is preferable to remove the etching liquid adhering to the surface of the stainless steel base material 12 (main body part 12a), for example by washing with water. . At this time, the passive layer may be formed again. Moreover, depending on the storage environment after removing the passive layer 14, the passive layer may be formed again. Once the passive layer 14 is removed by the above method, the uniformity of the surface of the stainless steel base material is improved, so that even if a passive layer is subsequently formed, the final gold plating finish is achieved. Uniformity can be improved.
 なお、酸性の金ストライクめっき液を用いてストライク金めっき層を形成する過程で、ステンレス鋼基材12の表面の不動態層14は少なくとも部分的に除去されるので、ストライク金めっき工程に先立って予め不動態層14を除去しなくても、耐食性や密着性に優れた金めっき層を得ることができる。図1(b)を参照して説明したエッチング工程を行うことによって、最終的な金めっきの仕上がりの均一性を高めることができる。自然に形成されている酸化層は、履歴(圧延条件、保管環境、処理前加工状況など)により酸化の程度、酸化層の厚さや酸化層の組成が不均一であり、エッチング処理で不均一な酸化層を除去することによって、表面の均一性を高めることができると考えられる。 In addition, in the process of forming a strike gold plating layer using an acidic gold strike plating solution, the passive layer 14 on the surface of the stainless steel substrate 12 is at least partially removed, so that prior to the strike gold plating step. Even if the passive layer 14 is not removed in advance, a gold plating layer having excellent corrosion resistance and adhesion can be obtained. By performing the etching process described with reference to FIG. 1B, the final uniformity of the gold plating can be improved. A naturally formed oxide layer has a non-uniform degree of oxidation, oxide layer thickness and oxide layer composition due to history (rolling conditions, storage environment, processing conditions before processing, etc.), and non-uniformity in the etching process. It is considered that the uniformity of the surface can be improved by removing the oxide layer.
 次に、図1(c)に示すように、不動態層14が除去された結果露出された、本体部12aの表面に、酸性の金ストライクめっき液(例えば、小島化学薬品株式会社製K-770)を用いてストライク金めっき層22sを形成する。酸性の金ストライクめっき液としては、公知のものを広く用いることができる。例えば、pHが0.4以上1.0以下(液温20℃以上40℃以下)のものが好ましい。電流密度は例えば0.5A/dm2以上8.0A/dm2以下で、めっき時間は例えば30秒以上90秒以下である。ストライク金めっき層22sの厚さは、例えば0.005μm以上0.05μm以下であることが好ましい。ストライク金めっき層22sは非常に薄いのでピンホール22saを有する。なお、上述したように、図1(b)を参照して説明した不動態層14を除去する工程を省略しても、不動態層14の除去は金ストライクめっき工程においても起こるので、図1(c)に示した構造を得ることができる。 Next, as shown in FIG. 1C, an acidic gold strike plating solution (for example, K-manufactured by Kojima Chemical Co., Ltd.) is formed on the surface of the main body 12a exposed as a result of removing the passive layer. 770) is used to form the strike gold plating layer 22s. As the acidic gold strike plating solution, known ones can be widely used. For example, one having a pH of 0.4 or more and 1.0 or less (liquid temperature of 20 ° C. or more and 40 ° C. or less) is preferable. The current density is, for example, 0.5 A / dm 2 or more and 8.0 A / dm 2 or less, and the plating time is, for example, 30 seconds or more and 90 seconds or less. The thickness of the strike gold plating layer 22s is preferably, for example, 0.005 μm or more and 0.05 μm or less. Since the strike gold plating layer 22s is very thin, it has a pinhole 22sa. As described above, even if the step of removing the passivation layer 14 described with reference to FIG. 1B is omitted, the removal of the passivation layer 14 also occurs in the gold strike plating step. The structure shown in (c) can be obtained.
 次に、図1(d)に示すように、ストライク金めっき層22sの上に本金めっき層22mを形成する。本金めっき層22mは、例えば、シアン化金めっき液を用いて形成される。シアン化合物を含む金めっき液(例えば、日本高純度化学株式会社製テンペレジストBL)としては、公知のものを広く用いることができる。例えば、pHが6.0以上6.5以下(液温60℃以上70℃以下)のものが好ましい。電流密度は例えば0.02A/dm2以上0.3A/dm2以下で、めっき時間は例えば100秒以上300秒以下である。 Next, as shown in FIG. 1D, the gold plating layer 22m is formed on the strike gold plating layer 22s. The gold plating layer 22m is formed using, for example, a gold cyanide plating solution. A well-known thing can be widely used as a gold plating solution containing a cyanide compound (for example, Nippon High Purity Chemical Co., Ltd. Tempe resist BL). For example, those having a pH of 6.0 or more and 6.5 or less (liquid temperature of 60 ° C. or more and 70 ° C. or less) are preferable. The current density is, for example, 0.02 A / dm 2 or more and 0.3 A / dm 2 or less, and the plating time is, for example, 100 seconds or more and 300 seconds or less.
 本金めっき層22mは厚く形成する必要がなく、ストライク金めっき層22sと本金めっき層22mとを合わせた金めっき層22はピンホール22aを有してもよい。本発明者の検討によると、ピンホールを有しない金めっき層22を形成するためには、金めっき層22の全体の厚さが概ね1.2μm以上必要である。後に実験例を示すように、金めっき層22の全体の厚さは、接触抵抗を十分に低くできればよく、少なくとも0.01μm超であることが好ましく、0.05μm以上であることがさらに好ましい。また、金めっき層22の厚さを0.3μm超とする必要はなく、0.3μm以下の厚さで、接触抵抗を十分に低下させることができる。金めっき層22の接触抵抗は10mΩ・cm2以下であることが好ましい。 The gold plating layer 22m does not need to be thick, and the gold plating layer 22 including the strike gold plating layer 22s and the gold plating layer 22m may have a pinhole 22a. According to the study of the present inventor, in order to form the gold plating layer 22 having no pinhole, the total thickness of the gold plating layer 22 is required to be approximately 1.2 μm or more. As will be shown later in the experimental example, the total thickness of the gold plating layer 22 is sufficient if the contact resistance can be sufficiently lowered, is preferably at least over 0.01 μm, and more preferably at least 0.05 μm. Further, the thickness of the gold plating layer 22 does not need to be more than 0.3 μm, and the contact resistance can be sufficiently reduced with a thickness of 0.3 μm or less. The contact resistance of the gold plating layer 22 is preferably 10 mΩ · cm 2 or less.
 次に、図1(e)に示すように、金めっき層22が形成されたステンレス鋼基材の本体部12aに対して不動態化処理を行うことによって、燃料電池用セパレータ20が得られる。不動態化処理は、金めっき層がピンホールを有していたとき、ピンホール内にステンレス鋼の不動態層を形成することができる条件で行う。例えば、実験例で示すように、30℃の30質量%の硝酸水溶液に5分間浸漬することによって行うことができる。もちろんこの条件に限られず、例えば、50℃の30質量%の硝酸水溶液に約10秒間浸漬してもよい。硝酸水溶液の濃度は30質量%以上であることが好ましい。不動態化処理を行うことによって、ピンホール22a内に露出されたステンレス鋼基材の本体部12aが不動態化され、ピンホール22a内にステンレス鋼の不動態層16が形成される。不動態層16の厚さは、一般的な不動態層の厚さと同様に、数nm(例えば4nm)以上あればよい。 Next, as shown in FIG. 1 (e), the fuel cell separator 20 is obtained by performing a passivation treatment on the main body 12a of the stainless steel base material on which the gold plating layer 22 is formed. The passivation treatment is performed under conditions that allow a stainless steel passivation layer to be formed in the pinhole when the gold plating layer has a pinhole. For example, as shown in an experimental example, it can be performed by immersing in a 30% by mass nitric acid aqueous solution at 30 ° C. for 5 minutes. Of course, it is not restricted to this condition, For example, you may immerse for about 10 second in 30 mass% nitric acid aqueous solution of 50 degreeC. The concentration of the nitric acid aqueous solution is preferably 30% by mass or more. By performing the passivation treatment, the main body 12a of the stainless steel substrate exposed in the pinhole 22a is passivated, and the stainless steel passivation layer 16 is formed in the pinhole 22a. The thickness of the passivation layer 16 may be several nm (for example, 4 nm) or more, like the thickness of a general passivation layer.
 上述したように、本発明の実施形態の燃料電池用セパレータの製造方法によると、酸性のストライク金めっき液を用いてストライク金めっき層22sを形成するので、金めっき層22とステンレス鋼基材12aとの間にはステンレス鋼の不動態層14はほとんど存在せず、金めっき層22とステンレス鋼基材12aとの密着性を高めることができる。さらに、金めっき層22を形成した後で、不動態化処理を行うので、金めっき層22にピンホール22aが存在しても、ピンホール22a内に露出されたステンレス鋼基材12aが不動態化され、ピンホール22a内にステンレス鋼の不動態層16が形成される結果、耐食性が向上させられる。金めっき層22はピンホールを有していてもよいので厚く形成する必要がなく、金めっき工程のスループットは高く、材料費も安い。また、ストライク金めっき工程に先立って、ステンレス鋼基材の表面をエッチングまたは陰極電解することによって、不動態層を除去しておけば、最終的な金めっきの仕上がりの均一性を高めることができる。 As described above, according to the fuel cell separator manufacturing method of the embodiment of the present invention, the strike gold plating layer 22s is formed using the acidic strike gold plating solution, so that the gold plating layer 22 and the stainless steel substrate 12a are formed. Between them, the stainless steel passive layer 14 is hardly present, and the adhesion between the gold plating layer 22 and the stainless steel substrate 12a can be improved. Further, since the passivation treatment is performed after the gold plating layer 22 is formed, the stainless steel substrate 12a exposed in the pin hole 22a is passivated even if the pin hole 22a exists in the gold plating layer 22. As a result of the formation of the passive layer 16 made of stainless steel in the pinhole 22a, the corrosion resistance is improved. Since the gold plating layer 22 may have pinholes, the gold plating layer 22 does not need to be formed thick, and the gold plating process has high throughput and low material costs. Moreover, if the passivation layer is removed by etching or cathodic electrolysis of the surface of the stainless steel substrate prior to the strike gold plating step, the final gold plating finish can be improved. .
 以下に、実験例を示して、本発明による実施形態の燃料電池用セパレータおよびその製造方法を詳細に説明する。 Hereinafter, an experimental example will be shown to describe in detail a fuel cell separator and a method for manufacturing the same according to an embodiment of the present invention.
 図1(a)に示したステンレス鋼基材12として、オーステナイト系ステンレス鋼(SUS304)から形成された基材(縦80mm×横80mm×厚さ1.0mm)を用意した。この基材の表面をグロー放電発光分光分析法で分析した結果得られた濃度プロファイルの例を図2(a)に示す。横軸は基材表面からの深さ、縦軸は各原子の濃度を原子%(at%)で示している。なお、図2では、炭素、ニッケル、銅、シリコン、マンガンの結果は省略している。以下の、グロー放電発光分光分析結果についても同様である。 As the stainless steel substrate 12 shown in FIG. 1 (a), a substrate (length 80 mm × width 80 mm × thickness 1.0 mm) formed from austenitic stainless steel (SUS304) was prepared. FIG. 2A shows an example of a concentration profile obtained as a result of analyzing the surface of this substrate by glow discharge emission spectrometry. The horizontal axis represents the depth from the substrate surface, and the vertical axis represents the concentration of each atom in atomic% (at%). In FIG. 2, results for carbon, nickel, copper, silicon, and manganese are omitted. The same applies to the following glow discharge emission spectroscopic analysis results.
 図2(a)から分かるように、この基材12の表面には、Fe(鉄)、Cr(クロム)およびO(酸素)が確認され、酸化物層が形成されていることがわかる。この酸化物層は、よく知られているように、不動態層14である。不動態層14の厚さは、酸素原子濃度がピーク値の半分になる深さで評価すると、約4.4nmであった。 As can be seen from FIG. 2A, Fe (iron), Cr (chromium), and O (oxygen) are confirmed on the surface of the substrate 12, and it can be seen that an oxide layer is formed. This oxide layer is a passivation layer 14 as is well known. The thickness of the passive layer 14 was about 4.4 nm when evaluated at a depth at which the oxygen atom concentration was half the peak value.
 次に、上記基材12をエッチング液(塩酸と硝酸との混酸)に30℃で5分間浸漬することによって、基材12の表面をエッチングした後、容器に貯めた水道水に2回浸漬することによって、エッチング液を洗い流した。この基材の表面をグロー放電発光分光分析法で分析した結果の例を図2(b)に示す。最表面の近傍の酸素原子濃度が図2(a)よりも少し低く、深さ方向への変化がなだらかであることを除いて、図2(a)の濃度プロファイルと同様であった。このことから、エッチングによって不動態層14を除去しても、水洗および/またはその後の空気中での保存中に、不動態層14が再び形成されたと考えられる。なお、図2(b)の濃度プロファイルから、上記同様にして求めた不動態層14の厚さは約6.1nmであった。 Next, the surface of the base material 12 is etched by immersing the base material 12 in an etching solution (mixed acid of hydrochloric acid and nitric acid) at 30 ° C. for 5 minutes, and then immersed twice in tap water stored in a container. As a result, the etching solution was washed away. FIG. 2B shows an example of the result of analyzing the surface of this substrate by glow discharge emission spectrometry. The oxygen atom concentration in the vicinity of the outermost surface was a little lower than that in FIG. 2A and was the same as the concentration profile in FIG. 2A except that the change in the depth direction was gentle. From this, even if the passive layer 14 is removed by etching, it is considered that the passive layer 14 was formed again during washing with water and / or subsequent storage in air. The thickness of the passive layer 14 obtained in the same manner as described above from the concentration profile in FIG. 2B was about 6.1 nm.
 また、エッチングおよび水洗を施した基材に硝酸を用いて不動態化処理を施し、得られた基材の表面をグロー放電発光分光分析法で分析した結果を図3(a)および(b)に示す。図3(a)は10%硝酸水溶液を用いたときの結果であり、図3(b)は30%硝酸水溶液を用いたときの結果である。図3(a)および(b)の濃度プロファイルは、何れも図2(a)の濃度プロファイルとほとんど同じであり、硝酸による不動態化処理によって、表面の不動態層の組成および厚さは変化していないと考えられる。なお、図3(a)および(b)の濃度プロファイルから、上記と同様にして求めた不動態層14の厚さは、それぞれ約4.5nmおよび約4.3nmであった。図2~図3の結果から、本実験で用いた基材の表面に形成される不動態層14の厚さは、約4nm~約6nmの範囲にあると考えられる。 Further, the substrate subjected to etching and washing with water was subjected to passivation treatment using nitric acid, and the results of analyzing the surface of the obtained substrate by glow discharge emission spectrometry were shown in FIGS. 3 (a) and 3 (b). Shown in FIG. 3A shows the results when a 10% nitric acid aqueous solution is used, and FIG. 3B shows the results when a 30% nitric acid aqueous solution is used. The concentration profiles in FIGS. 3 (a) and 3 (b) are almost the same as the concentration profile in FIG. 2 (a), and the composition and thickness of the surface passivation layer are changed by the passivation treatment with nitric acid. It is thought that it is not. In addition, the thickness of the passive layer 14 calculated | required similarly to the above from the density | concentration profile of Fig.3 (a) and (b) was about 4.5 nm and about 4.3 nm, respectively. From the results of FIGS. 2 to 3, the thickness of the passive layer 14 formed on the surface of the substrate used in this experiment is considered to be in the range of about 4 nm to about 6 nm.
 金めっきは、酸性のストライク金めっき液を用いたストライク金めっきと、シアン化金めっき液を用いた本金めっきとによって行った。ストライク金めっきは、シアン系で、pHが0.8、温度が35℃の金ストライクめっき液(小島化学薬品株式会社製K-770 500ml/L(2倍希釈))を用い、電流密度1A/dm2で40秒間、電解めっきを行った。この条件で得られるストライク金めっき層の厚さは、約0.01μmであった。めっき層の厚さは、特に断らない限り、蛍光X線膜厚計を用いて測定した厚さである。 Gold plating was performed by strike gold plating using an acidic strike gold plating solution and main gold plating using a gold cyanide plating solution. Strike gold plating uses a gold-based strike plating solution (K-770 500 ml / L (2 times dilution) manufactured by Kojima Chemical Co., Ltd.), which is cyan, has a pH of 0.8, and a temperature of 35 ° C. Electroplating was performed at dm 2 for 40 seconds. The thickness of the strike gold plating layer obtained under these conditions was about 0.01 μm. The thickness of the plating layer is a thickness measured using a fluorescent X-ray film thickness meter unless otherwise specified.
 約0.01μmよりも厚い金めっき層を形成する際には、ストライク金めっきに続いて本金めっきを行った。本金めっきには、pHが6.3、温度が65℃のシアン化金めっき液(日本高純度化学株式会社製テンペレジストBL 200g/L、シアン化金カリウム8.0g/L)を用い、電流密度0.1A/dm2で、通電時間を調整することによって、本金めっき層の厚さを調節した。通電時間が4分で、厚さが約0.1μmの本金めっき層を得ることができた。 When a gold plating layer thicker than about 0.01 μm was formed, the gold plating was performed following the strike gold plating. For this gold plating, a gold cyanide plating solution having a pH of 6.3 and a temperature of 65 ° C. (Tempresist BL 200 g / L, potassium gold cyanide 8.0 g / L, manufactured by Japan High Purity Chemical Co., Ltd.) The thickness of the gold plating layer was adjusted by adjusting the energization time at a current density of 0.1 A / dm 2 . The energized time was 4 minutes, and a gold plating layer having a thickness of about 0.1 μm could be obtained.
 上記の条件を変えて、試料を作製し、耐食性と接触抵抗を評価した。各試料の作製条件と、評価結果を併せて、下記の表1に示す。 Specimens were prepared by changing the above conditions, and corrosion resistance and contact resistance were evaluated. The production conditions for each sample and the evaluation results are shown in Table 1 below.
 耐食性は、pH1の硫酸水溶液(80℃)に1000時間浸漬した後の表面を目視で観察することによって評価した。金めっき層の腐食が確認できたものを×、腐食には至っていないが変色が見られたものを△、変色が見られなかったものを○とした。なお、○は、実用に耐える耐食性を有している。 Corrosion resistance was evaluated by visually observing the surface after being immersed in a sulfuric acid aqueous solution (80 ° C.) having a pH of 1 for 1000 hours. The case where the corrosion of the gold plating layer was confirmed was rated as “X”, the case where corrosion was not reached but a discoloration was observed was indicated as “Δ”, and the case where no discoloration was observed was indicated as “◯”. In addition, (circle) has the corrosion resistance which can be used practically.
 接触抵抗は、各試料(セパレータ)を、カーボンペーパーを間に介して、金めっきを施した銅板(集電板)で10kgf/cm2の面圧で挟持した状態で、ミリオームメータを用いて1Aの電流を流したときの抵抗値で評価した。なお、1W程度のPEFC用燃料電池に用いる場合、金めっき層の接触抵抗は10mΩ・cm2以下であることが好ましく、5mΩ・cm2以下であることがさらに好ましい。 The contact resistance is 1A using a milliohm meter in a state where each sample (separator) is sandwiched between a carbon plate and a copper plate (current collector plate) plated with gold at a surface pressure of 10 kgf / cm 2. It was evaluated by the resistance value when a current of. In the case of using the PEFC for a fuel cell of about 1W, it is preferable that the contact resistance of the gold plating layer is 10 m [Omega · cm 2 or less, and more preferably 5 m [Omega · cm 2 or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 耐食試験前の抵抗値をみると、全ての試料の接触抵抗は5mΩ・cm2以下であり、良好であった。すなわち、金めっき層の厚さは少なくとも0.01μmあれば、接触抵抗を十分に低減できることが分かる。 Looking at the resistance values before the corrosion resistance test, the contact resistance of all the samples was 5 mΩ · cm 2 or less, which was good. That is, it can be seen that the contact resistance can be sufficiently reduced if the thickness of the gold plating layer is at least 0.01 μm.
 耐食性についてみると、エッチングを行った後に金めっきを施した試料2の耐食性は、エッチングを行うことなく金めっきを施した試料1の耐食性よりも劣る。試料1の耐食性が十分でないのは、不動態層と金めっき層との密着性が低いためである。試料2の耐食性が試料1よりも低いのは、エッチングによって不動態層を除去した後に再度生成された不動態層(図2(b))は、基材の表面に予め形成されていた不動態層(図2(a))よりも耐食性が低いためであると考えられる。すなわち、図2(a)、(b)を参照して説明したように、エッチングによって不動態層を除去しても、水洗や保存中に不動態層が再び形成されるが、この不動態層の化学的な安定性は、もともとの基材の表面に形成されていた不動態層(一般のステンレス鋼基材の表面は不動態化処理されている)よりも劣り、この不動態層の耐食性の差が、金めっき層のピンホールからの腐食に対する耐性の違いとして現れたと考えられる。 Regarding the corrosion resistance, the corrosion resistance of Sample 2 plated with gold after etching is inferior to that of Sample 1 plated with gold without etching. The reason why the corrosion resistance of Sample 1 is not sufficient is that the adhesion between the passive layer and the gold plating layer is low. The corrosion resistance of the sample 2 is lower than that of the sample 1 because the passive layer (FIG. 2 (b)) regenerated after removing the passive layer by etching is a passive layer that has been previously formed on the surface of the substrate. This is probably because the corrosion resistance is lower than that of the layer (FIG. 2A). That is, as described with reference to FIGS. 2A and 2B, even if the passive layer is removed by etching, the passive layer is formed again during washing and storage. The chemical stability of this is inferior to the passive layer formed on the surface of the original substrate (the surface of a general stainless steel substrate is passivated), and the corrosion resistance of this passive layer This difference is considered to have appeared as a difference in resistance to corrosion from pinholes in the gold plating layer.
 試料4と試料2とを比較する。試料4の製造工程は、試料2の製造プロセスにおけるエッチング工程の後、ストライク金めっきの前に、10%硝酸による不動態化処理を含んでいる。すなわち、金めっきが施される表面に不動態化処理が施されている。その結果、試料4の耐食性は試料2よりも優れるが、試料1と同等であり、十分なレベルではない。なお、試料4の製造プロセスは、特許文献2に記載の製造プロセスを模擬したものである。 Compare sample 4 and sample 2. The manufacturing process of sample 4 includes a passivation treatment with 10% nitric acid after the etching process in the manufacturing process of sample 2 and before the strike gold plating. That is, the passivation process is performed on the surface to which gold plating is applied. As a result, although the corrosion resistance of the sample 4 is superior to that of the sample 2, it is equivalent to the sample 1 and is not at a sufficient level. The manufacturing process of the sample 4 is a simulation of the manufacturing process described in Patent Document 2.
 また、試料3と試料2とを比較するとわかるように、金めっき層の厚さを0.2μmにすると、試料2(金めっき層の厚さ0.1μm)よりは耐食性は改善するものの、十分な耐食性を得ることはできない。 Further, as can be seen from a comparison between Sample 3 and Sample 2, when the thickness of the gold plating layer is 0.2 μm, the corrosion resistance is improved as compared with Sample 2 (thickness of the gold plating layer is 0.1 μm). Can not get good corrosion resistance.
 これに対し、試料7~9(実施例)は十分な耐食性を有しており、試料7の結果から分かるように、金めっき層の厚さは0.05μmもあれば十分である。これらの試料の接触抵抗は耐食試験後も殆ど増大しておらず、非常に優れた耐食性を有していることがわかる。 On the other hand, Samples 7 to 9 (Examples) have sufficient corrosion resistance, and as can be seen from the results of Sample 7, it is sufficient that the thickness of the gold plating layer is 0.05 μm. It can be seen that the contact resistance of these samples hardly increased even after the corrosion resistance test, and has very excellent corrosion resistance.
 なお、試料6の結果から、金めっき層の厚さが0.01μm以下であると、耐食性は低く、金めっき層の厚さは0.01μm超であることが好ましいことが分かる。また、試料5の結果から分かるように、10質量%の硝酸水溶液では、ピンホール内のステンレス鋼の不動態層を形成できず、硝酸水溶液を用いてピンホール内に不動態層を形成するためには、30質量%以上の硝酸水溶液を用いることが好ましいことがわかる。ピンホール内における組成の表面プロファイルを測定することは困難であり、直接的な分析結果は得られていないものの、上記の実験結果から、不動態化処理の条件を調整すれば、金めっき層のピンホール内に、十分に安定なステンレス鋼の不動態層を形成できることがわかる。 In addition, it can be seen from the results of Sample 6 that when the thickness of the gold plating layer is 0.01 μm or less, the corrosion resistance is low, and the thickness of the gold plating layer is preferably more than 0.01 μm. In addition, as can be seen from the results of Sample 5, a 10% by mass nitric acid aqueous solution cannot form a passive layer of stainless steel in the pinhole, and the nitric acid aqueous solution is used to form a passive layer in the pinhole. It is understood that it is preferable to use a 30% by mass or more nitric acid aqueous solution. Although it is difficult to measure the surface profile of the composition in the pinhole and no direct analysis results have been obtained, if the conditions of the passivation treatment are adjusted from the above experimental results, the gold plating layer It can be seen that a sufficiently stable passive layer of stainless steel can be formed in the pinhole.
 ここで、図4(a)および(b)にそれぞれ試料4と試料8の表面をグロー放電発光分光分析法で分析した結果を示す。 Here, FIGS. 4 (a) and 4 (b) show the results of analyzing the surfaces of Sample 4 and Sample 8 by glow discharge optical emission spectrometry, respectively.
 図4(a)および(b)のFeとCrの濃度プロファイルを見ると、Feの濃度が増大し始めた後で、Crが増大し始めている。すなわち、表面に近いところには、クロムを実質的に含まない鉄酸化物層が形成されていることがわかる。これは、図2および図3に示した基材の表面に形成されている不動態層においては、最表面に、鉄およびクロムを含む酸化物層が存在しているのと、対照的である。すなわち、試料4および試料8では、金めっき層とステンレス鋼基材とがステンレス鋼の不動態層を介さずに接触している領域が存在する。密着性の観点からは、金めっき層とステンレス鋼基材との間に、ステンレス鋼の不動態層が存在しないことが好ましいと考えられるが、少なくとも部分的に、不動態層を介さずに、金めっき層とステンレス鋼基材と接触していれば、密着性は改善されると考えられる。 4A and 4B, the Fe and Cr concentration profiles show that after the Fe concentration starts to increase, Cr begins to increase. That is, it can be seen that an iron oxide layer substantially free of chromium is formed near the surface. This is in contrast to the presence of an oxide layer containing iron and chromium on the outermost surface in the passive layer formed on the surface of the substrate shown in FIGS. . That is, in Sample 4 and Sample 8, there is a region where the gold plating layer and the stainless steel base material are in contact with each other without passing through the stainless steel passive layer. From the viewpoint of adhesion, it is considered preferable that there is no stainless steel passive layer between the gold plating layer and the stainless steel base material, but at least partially without passing through the passive layer, If the gold plating layer and the stainless steel substrate are in contact, the adhesion is considered to be improved.
 特に、図4(b)に示した、エッチングを行った後、不動態化処理を行うことなく、金めっきを行った試料8の方が、図4(a)に示した、エッチングを行った後、不動態化処理を行い、その後に金めっきを行った試料4よりも、実質的にクロムを含まない鉄酸化物層の厚さが厚い。これは、不動態化処理によって形成された不動態層よりも、不動態層を一旦除去した後に水洗や空気中の保存によって形成された不動態層の方が、酸性のストライク金めっき工程において除去されやすいためと考えられる。なお、酸性のストライク金めっき工程においては、不動態層の全体が除去されるのではなく、不動態層の内でクロム酸化物がリッチな部分が除去されると考えられる。 In particular, after performing the etching shown in FIG. 4B, the sample 8 plated with gold without performing the passivation treatment performed the etching shown in FIG. 4A. Then, the thickness of the iron oxide layer which does not contain chromium substantially is thicker than the sample 4 which performed the passivation process and performed gold plating after that. This is because the passive layer formed by washing with water and storing in the air after removing the passive layer is removed in the acidic strike gold plating process rather than the passive layer formed by the passivation treatment. It is thought that it is easy to be done. In the acidic strike gold plating step, it is considered that not all of the passive layer is removed but a portion rich in chromium oxide in the passive layer is removed.
 以上のことから、酸性の金ストライクめっきを行うと、ステンレス鋼基材の表面の不動態層のクロム酸化物がリッチな部分が少なくとも部分的に除去される。クロム酸化物は金めっき層との密着性を低下させるので、クロム酸化物がリッチな部分を除去することによって、金めっき層とスレンレス鋼基材との密着性が改善される。特に、エッチングを行うことによって、予め形成されていた不動態層を除去した後に、ストライク金めっきを行うことによって、より効果的にクロム酸化物を除去することができる。なお、種々の実験の結果、エッチングを行うことによって、基材の表面の均一性が高まり、最終的な金めっきの仕上がりの均一性を高めることができることもわかった。 From the above, when acidic gold strike plating is performed, the chromium oxide rich portion of the passive layer on the surface of the stainless steel substrate is at least partially removed. Since chromium oxide reduces the adhesion with the gold plating layer, the adhesion between the gold plating layer and the stainless steel substrate is improved by removing the portion rich in chromium oxide. In particular, the chromium oxide can be more effectively removed by performing strike gold plating after removing the previously formed passive layer by etching. As a result of various experiments, it has also been found that by performing etching, the uniformity of the surface of the substrate can be increased, and the uniformity of the final gold plating finish can be improved.
 また、金めっき層の厚さが0.3μm以下と薄く、ピンホールを有している場合でも、金めっき後に、所定の条件で不動態化処理を行うことによって、ピンホール内に露出されているステンレス鋼基材の表面に不動態層を形成できるので、耐食性を向上させることができる。高い耐食性を得るためには、30質量%以上の硝酸水溶液を用いることが好ましい。 In addition, even when the gold plating layer is as thin as 0.3 μm or less and has a pinhole, it is exposed in the pinhole by performing passivation treatment under predetermined conditions after gold plating. Since a passive layer can be formed on the surface of the stainless steel substrate, corrosion resistance can be improved. In order to obtain high corrosion resistance, it is preferable to use a 30% by mass or more nitric acid aqueous solution.
 なお、ストライク金めっきおよび本金めっきは、無電解めっきであってもよいが、ここで例示したように、電解めっきの方が好ましい。特に、酸性ストライク金めっきは、ストライク金めっき層を形成するだけなく、下地の不動態層のクロムリッチな部分を除去するという作用・効果を有し、このためには電解めっきが好ましい。 The strike gold plating and the gold plating may be electroless plating, but as exemplified here, electrolytic plating is more preferable. In particular, acidic strike gold plating not only forms a strike gold plating layer, but also has an action and effect of removing a chromium-rich portion of the underlying passive layer, and for this purpose, electrolytic plating is preferred.
 本発明は、燃料電池用セパレータおよびその製造方法に広く用いられる。 The present invention is widely used in fuel cell separators and manufacturing methods thereof.
 12   ステンレス鋼基材
 12a  ステンレス鋼基材の本体部(ステンレス鋼基材ともいう)
 14   不動態層(自然に形成されたもの)
 16   ピンホール内に形成された不動態層
 20   燃料電池用セパレータ
 22   金めっき層
 22a  ピンホール
 22s  ストライク金めっき層
 22sa ストライク金めっき層のピンホール
 22m  本金めっき層
12 Stainless steel substrate 12a Stainless steel substrate body (also called stainless steel substrate)
14 Passive layer (naturally formed)
16 Passive Layer Formed in Pinhole 20 Fuel Cell Separator 22 Gold Plating Layer 22a Pinhole 22s Strike Gold Plating Layer 22sa Strike Gold Plating Pinhole 22m Real Gold Plating Layer

Claims (10)

  1.  ステンレス鋼基材と、
     前記ステンレス鋼基材上に形成された、ピンホールを有する金めっき層と、
     前記ピンホール内に形成されたステンレス鋼の不動態層と
    を有し、前記金めっき層と前記ステンレス鋼基材とがステンレス鋼の不動態層を介さずに接触している領域を有する、燃料電池用セパレータ。
    A stainless steel substrate;
    A gold plating layer having a pinhole formed on the stainless steel substrate;
    A stainless steel passivation layer formed in the pinhole, and a fuel having a region in which the gold plating layer and the stainless steel substrate are in contact with each other without a stainless steel passivation layer Battery separator.
  2.  前記金めっき層と前記ステンレス鋼基材とが、クロムを実質的に含まない鉄酸化物層を介して接触している領域を有する、請求項1に記載の燃料電池用セパレータ。 2. The fuel cell separator according to claim 1, wherein the gold plating layer and the stainless steel substrate have a region in contact with each other through an iron oxide layer substantially not containing chromium.
  3.  前記不動態層の厚さは4nm以上である、請求項1または2に記載の燃料電池用セパレータ。 The fuel cell separator according to claim 1 or 2, wherein the passive layer has a thickness of 4 nm or more.
  4.  前記金めっき層の厚さは0.3μm以下である、請求項1から3のいずれかに記載の燃料電池用セパレータ。 The fuel cell separator according to any one of claims 1 to 3, wherein the gold plating layer has a thickness of 0.3 µm or less.
  5.  前記金めっき層の接触抵抗が10mΩ・cm2以下である、請求項1から4のいずれかに記載の燃料電池用セパレータ。 The fuel cell separator according to any one of claims 1 to 4, wherein a contact resistance of the gold plating layer is 10 mΩ · cm 2 or less.
  6.  ステンレス鋼基材を用意する工程aと、
     前記工程aの後に、前記ステンレス鋼基材の表面に、酸性の金ストライクめっき液を用いてストライク金めっき層を形成する工程bと、
     前記工程bの後に、前記ストライク金めっき層の上に、金めっき層を形成する工程cと、
     前記工程cの後に、前記金めっき層がピンホールを有していたとき、前記ピンホール内にステンレス鋼の不動態層を形成することができる条件で、不動態化処理を行う工程dと
    を包含する、燃料電池用セパレータの製造方法。
    Preparing a stainless steel substrate a;
    After the step a, a step b of forming a strike gold plating layer on the surface of the stainless steel substrate using an acidic gold strike plating solution;
    A step c of forming a gold plating layer on the strike gold plating layer after the step b;
    After the step c, when the gold plating layer has a pinhole, a step d for performing a passivation treatment under a condition that a passive layer of stainless steel can be formed in the pinhole. A method for producing a fuel cell separator.
  7.  前記工程dは、30%以上の濃度の硝酸を用いて行われる、請求項6に記載の燃料電池用セパレータの製造方法。 The method for producing a fuel cell separator according to claim 6, wherein the step d is performed using nitric acid having a concentration of 30% or more.
  8.  前記工程aの後、前記工程bの前に、前記ステンレス鋼基材の表面をエッチングする工程をさらに包含する、請求項6または7に記載の燃料電池用セパレータの製造方法。 The method for manufacturing a fuel cell separator according to claim 6 or 7, further comprising a step of etching the surface of the stainless steel substrate after the step a and before the step b.
  9.  前記工程cにおいて形成される金めっき層はピンホールを有し、
     前記工程dにおいて、前記ピンホール内にステンレス鋼の不動態層を形成する、請求項6から8のいずれかに記載の燃料電池用セパレータの製造方法。
    The gold plating layer formed in the step c has a pinhole,
    The method for producing a fuel cell separator according to any one of claims 6 to 8, wherein a passivating layer of stainless steel is formed in the pinhole in the step d.
  10.  請求項6から9のいずれかに記載の燃料電池用セパレータの製造方法によって製造された燃料電池用セパレータ。 A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to any one of claims 6 to 9.
PCT/JP2011/073620 2010-10-20 2011-10-14 Fuel cell separator and method for producing same WO2012053431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012513374A JP5133466B2 (en) 2010-10-20 2011-10-14 Fuel cell separator and method for producing the same
CN201180040114.3A CN103069629B (en) 2010-10-20 2011-10-14 Fuel cell separator and method for producing same
KR1020137004717A KR101266096B1 (en) 2010-10-20 2011-10-14 Fuel cell separator and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010235262 2010-10-20
JP2010-235262 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012053431A1 true WO2012053431A1 (en) 2012-04-26

Family

ID=45975146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073620 WO2012053431A1 (en) 2010-10-20 2011-10-14 Fuel cell separator and method for producing same

Country Status (5)

Country Link
JP (1) JP5133466B2 (en)
KR (1) KR101266096B1 (en)
CN (1) CN103069629B (en)
TW (1) TWI489679B (en)
WO (1) WO2012053431A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113647A (en) * 2014-12-12 2016-06-23 東洋鋼鈑株式会社 Production method of stainless material coated with metal plating
JP2016113697A (en) * 2014-12-12 2016-06-23 東洋鋼鈑株式会社 Production method of stainless material coated with metal plating
WO2016166935A1 (en) * 2015-04-14 2016-10-20 Jfeスチール株式会社 Metal plate for use as separator of solid polymer fuel cell
WO2017006741A1 (en) * 2015-07-09 2017-01-12 東洋鋼鈑株式会社 Current-carrying member for fuel cells, fuel cell, fuel cell stack, and method for producing current-carrying member for fuel cells
EP3231893A4 (en) * 2014-12-12 2018-09-05 Toyo Kohan Co., Ltd. Method for producing metal-plated stainless steel material
JP7144937B2 (en) 2017-01-23 2022-09-30 日東電工株式会社 Method for manufacturing wired circuit board
JP7484760B2 (en) 2021-02-10 2024-05-16 トヨタ自動車株式会社 Separator manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380275A1 (en) * 2014-12-11 2016-12-29 Hamilton Sundstrand Space Systems International, Inc. Multi-voltage fuel cell
CN105436645A (en) * 2015-12-07 2016-03-30 天津平高智能电气有限公司 Brazing method for vacuum switch assembling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323988A (en) * 2006-06-01 2007-12-13 Daido Steel Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP2009140789A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Method for manufacturing fuel cell separator, and fuel cell separator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093743B2 (en) * 2001-10-17 2008-06-04 日新製鋼株式会社 Low temperature fuel cell separator
JP2005302669A (en) * 2004-04-16 2005-10-27 Nippon Light Metal Co Ltd Manufacturing method of aluminum separator for fuel cell
JP5292578B2 (en) * 2007-09-04 2013-09-18 国立大学法人山梨大学 Metal separator for fuel cell, method for producing metal separator for fuel cell, and fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323988A (en) * 2006-06-01 2007-12-13 Daido Steel Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP2009140789A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Method for manufacturing fuel cell separator, and fuel cell separator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113647A (en) * 2014-12-12 2016-06-23 東洋鋼鈑株式会社 Production method of stainless material coated with metal plating
JP2016113697A (en) * 2014-12-12 2016-06-23 東洋鋼鈑株式会社 Production method of stainless material coated with metal plating
EP3231893A4 (en) * 2014-12-12 2018-09-05 Toyo Kohan Co., Ltd. Method for producing metal-plated stainless steel material
US10287689B2 (en) 2014-12-12 2019-05-14 Toyo Kohan Co., Ltd. Method for producing metal-plated stainless material
WO2016166935A1 (en) * 2015-04-14 2016-10-20 Jfeスチール株式会社 Metal plate for use as separator of solid polymer fuel cell
JP6066024B1 (en) * 2015-04-14 2017-01-25 Jfeスチール株式会社 Metal plate for separator of polymer electrolyte fuel cell
WO2017006741A1 (en) * 2015-07-09 2017-01-12 東洋鋼鈑株式会社 Current-carrying member for fuel cells, fuel cell, fuel cell stack, and method for producing current-carrying member for fuel cells
JP2017021956A (en) * 2015-07-09 2017-01-26 東洋鋼鈑株式会社 Electrification member for fuel battery, fuel battery cell, fuel battery stack, and manufacturing method of electrification member for fuel battery
US10847830B2 (en) 2015-07-09 2020-11-24 Toyo Kohan Co., Ltd. Conducting member for fuel cells, fuel cell, fuel cell stack, and method of producing conducting member for fuel cells
JP7144937B2 (en) 2017-01-23 2022-09-30 日東電工株式会社 Method for manufacturing wired circuit board
JP7484760B2 (en) 2021-02-10 2024-05-16 トヨタ自動車株式会社 Separator manufacturing method

Also Published As

Publication number Publication date
KR20130032403A (en) 2013-04-01
TW201232892A (en) 2012-08-01
TWI489679B (en) 2015-06-21
CN103069629B (en) 2014-02-26
JP5133466B2 (en) 2013-01-30
KR101266096B1 (en) 2013-05-27
CN103069629A (en) 2013-04-24
JPWO2012053431A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5133466B2 (en) Fuel cell separator and method for producing the same
Asri et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review
EP2168189B1 (en) Stainless steel separator for fuel cell having m/mnx and moynz layer and method for manufacturing the same
TWI515336B (en) Fabricating method of stainless steel used for fuel cell separator, stainless steel used for fuel cell separator, fuel cell separator and fuel cell
JP5507495B2 (en) Method for producing titanium fuel cell separator
KR20140034181A (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
EP2025027A1 (en) Fuel cell stack and method of producing its separator plates
US8785031B2 (en) Polymer electrolyte fuel cell separator made of pure titanium or titanium alloy and method of production of same
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
CN101889363A (en) Method of manufacturing fuel cell separator, fuel cell separator and fuel cell
CN103484910A (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
JP5634604B2 (en) Separator for fuel cell and method for producing the same
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
JP2001093538A (en) Stainless steel cryogenic fuel cell separator
TWI640122B (en) Base material stainless steel plate for steel plate of fuel cell separator and manufacturing method thereof
JP2011038166A (en) Energizing member for fuel cell and method for producing the same
JP2004139951A (en) Separator for fuel cell and its manufacturing method
WO2005101555A1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP5699624B2 (en) Metal plate for polymer electrolyte fuel cell separator and method for producing the same
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
CN108432009B (en) Stainless steel sheet for fuel cell separator and method for producing same
KR102102608B1 (en) Method of manufacturing stainless steel for proton exchange membrane fuel cell separator
JP2006164824A (en) Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell
JP5625902B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JP2010086897A (en) Fuel cell separator, and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040114.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012513374

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004717

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834271

Country of ref document: EP

Kind code of ref document: A1