JP2006164824A - Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell - Google Patents

Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell Download PDF

Info

Publication number
JP2006164824A
JP2006164824A JP2004356462A JP2004356462A JP2006164824A JP 2006164824 A JP2006164824 A JP 2006164824A JP 2004356462 A JP2004356462 A JP 2004356462A JP 2004356462 A JP2004356462 A JP 2004356462A JP 2006164824 A JP2006164824 A JP 2006164824A
Authority
JP
Japan
Prior art keywords
stainless steel
fuel cell
contact resistance
mass
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356462A
Other languages
Japanese (ja)
Inventor
Yoshikazu Morita
芳和 守田
Shinichi Kamoshita
真一 鴨志田
Keiji Izumi
圭二 和泉
Kazu Shiroyama
和 白山
Hiroshi Fujimoto
廣 藤本
Naohito Kumano
尚仁 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004356462A priority Critical patent/JP2006164824A/en
Publication of JP2006164824A publication Critical patent/JP2006164824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator made of austenite based stainless steel for a solid polymer fuel cell with few elution quantity of metallic ion, maintaining low contact resistance even if exposed in acidic humid atmosphere for a long time. <P>SOLUTION: The separator made of stainless steel is formed by covering the surface of the austenite based stainless steel containing 19 to 40 mass% of chromium by a passivated membrane containing chromium by 19 mass% or more. The passive membrane is formed by applying an immersion treatment using non-oxidative acid, and adjusting so that the contact resistance to a carbon paper becomes 5 mΩ cm<SP>2</SP>or lower at a measuring pressure of 20 kgf/cm<SP>2</SP>after leaving it in an atmosphere of 72°C with a relative humidity of 98% for 72 hours. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温稼動が可能でメンテナンスも容易な固体高分子型燃料電池に組み込まれるステンレス鋼製セパレータ及び該ステンレス鋼製セパレータを組み込んだ固体高分子型燃料電池に関する。   The present invention relates to a stainless steel separator incorporated in a polymer electrolyte fuel cell that can be operated at a low temperature and is easy to maintain, and a polymer electrolyte fuel cell incorporating the stainless steel separator.

固体高分子型燃料電池は、100℃以下の低温で動作可能であり、短時間で起動する長所を備えている。各部材が固体からなる簡単な構造のため、メンテナンスが容易で振動や衝撃に曝される用途にも適用できる。しかも、出力密度が高いため小型化に適し、燃料効率が高く騒音が少ない等の長所も備えている。
燃料電池は単セル当りの発電量が極僅かであり、実用に供せられる電力量を取り出すには触媒電極層を固体高分子膜にプレスした膜-電極接合体を一単位とし、セパレータを介して複数の膜-電極接合体をスタックする必要がある。セパレータには、導電性が良好で接触抵抗が低いことが要求されるため従来から黒鉛質のセパレータが使用されてきた。
The polymer electrolyte fuel cell can operate at a low temperature of 100 ° C. or less and has an advantage of starting in a short time. Since each member is a simple structure made of a solid, it is easy to maintain and can be applied to applications where it is exposed to vibration or impact. In addition, the high output density is suitable for downsizing, and has advantages such as high fuel efficiency and low noise.
A fuel cell has very little power generation per unit cell, and in order to extract the amount of power that can be put to practical use, a membrane-electrode assembly in which a catalyst electrode layer is pressed on a solid polymer membrane is used as a unit, and a separator is interposed. It is necessary to stack a plurality of membrane-electrode assemblies. Since the separator is required to have good conductivity and low contact resistance, a graphite separator has been conventionally used.

しかし、黒鉛製セパレータを組み込んだ燃料電池は振動や衝撃に対して脆く亀裂が生じやすい。また、気密性を確保するため十分な厚みのセパレータ形状にするほかなく、コンパクト化の要求に応えられない。しかも、フライス加工等で流路を形成する必要があるため、生産コストが高くなる。そこで、黒鉛に変わるセパレータ素材としてステンレス鋼の適用が検討されている(特許文献1,2)。
特開平9-157801号公報 特開2000-239806号公報
However, a fuel cell incorporating a graphite separator is brittle with respect to vibration and impact and easily cracks. Moreover, in order to ensure airtightness, it is necessary to make the separator shape sufficiently thick, and it is impossible to meet the demand for compactness. In addition, the production cost increases because the flow path needs to be formed by milling or the like. Therefore, application of stainless steel as a separator material replacing graphite is being studied (Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 9-15801 JP 2000-239806 JP

ステンレス鋼は、高強度で延性に優れているため薄肉化でき、プレス成形等の安価な加工法で目標のセパレータ形状に加工でき、十分な耐衝撃性,ガス不透過性等の構造的機能が得られる。ステンレス鋼に含まれる成分Cr,Mo,Fe等の酸化物,水酸化物から形成される不動態皮膜で鋼板表面が覆われ、不動態皮膜のバリア効果によって下地鋼が防食されることも、ステンレス鋼製セパレータの利点である。   Stainless steel can be thinned due to its high strength and excellent ductility, and can be processed into the target separator shape by an inexpensive processing method such as press molding, and has sufficient structural functions such as impact resistance and gas impermeability. can get. The steel plate surface is covered with a passive film formed from oxides and hydroxides of the components Cr, Mo, Fe, etc. contained in the stainless steel, and the base steel is protected against corrosion by the barrier effect of the passive film. This is an advantage of the steel separator.

不動態皮膜は耐食性に有効であるものの半導体的な特性を呈し、下地鋼に比較して電気伝導性が劣っている。そのため、通常の不動態皮膜が生成しているステンレス鋼をセパレータに使用すると、電極との接触抵抗が大きく,電池反応で生じた電気エネルギーがジュール熱として消費され,燃料電池の発電効率が低下する。また、ステンレス鋼製セパレータは黒鉛製に比較して耐酸性に劣り、溶出した金属イオンによる固体高分子膜や触媒電極層の汚染に起因する燃料電池の性能低下も懸念される。
優れた耐食性を活用しながらステンレス鋼をセパレータに適用するためには、ステンレス鋼表面の接触抵抗を下げる必要がある。表面接触抵抗を低下させる手段として、貴金属コーティング,ステンレス鋼表面の粗面化等が検討されている。
Although the passive film is effective for corrosion resistance, it exhibits semiconductor-like properties and is inferior in electrical conductivity as compared to the base steel. Therefore, when stainless steel with a normal passive film is used for the separator, the contact resistance with the electrode is large, the electric energy generated by the cell reaction is consumed as Joule heat, and the power generation efficiency of the fuel cell decreases. . Further, stainless steel separators are inferior in acid resistance compared to graphite, and there is a concern that the performance of the fuel cell may be deteriorated due to contamination of the solid polymer membrane or the catalyst electrode layer by the eluted metal ions.
In order to apply stainless steel to the separator while utilizing excellent corrosion resistance, it is necessary to reduce the contact resistance of the stainless steel surface. As means for reducing the surface contact resistance, precious metal coating, roughening of the stainless steel surface, and the like have been studied.

貴金属コーティングは、高価な貴金属を消費することから燃料電池のコストを上昇させる原因であり、燃料電池の普及に経済面からの制約を加える。しかも、貴金属皮膜にピンホールがあると孔食が発生しやすくなるので、製品管理に厳重な注意が必要になる。厚めっきによってピンホールの発生を防止できるが、厚めっきは高価な貴金属の多量消費を意味しコスト低減のネックになる。
粗面化処理で接触抵抗を下げる場合、交番電解による粗面化が理想であるが、高耐食性のステンレス鋼表面を必要な粗面化状態に改質することは困難である。
The noble metal coating is a cause of increasing the cost of the fuel cell because it consumes an expensive noble metal, and imposes economic restrictions on the spread of the fuel cell. In addition, if there is a pinhole in the noble metal film, pitting corrosion is likely to occur, so strict care is required for product management. Thick plating can prevent the occurrence of pinholes, but thick plating means a large consumption of expensive noble metals and becomes a bottleneck in cost reduction.
When reducing the contact resistance by the roughening treatment, roughening by alternating electrolysis is ideal, but it is difficult to improve the surface of the highly corrosion resistant stainless steel to the required roughened state.

本発明は、燃料電池の内部環境下でオーステナイト系ステンレス鋼の接触抵抗の増加傾向が不動態皮膜のCr濃度によって大きく変わるとの新たな知見をベースに、Cr濃度の高い不動態皮膜をオーステナイト系ステンレス鋼表面に形成することにより、貴金属コーティングや粗面化処理に拠ることなく、優れた耐食性を維持しながら低い表面接触抵抗を呈するステンレス鋼製セパレータを組み込んだ固体高分子型燃料電池を提供することを目的とする。   The present invention is based on the new knowledge that the increasing tendency of the contact resistance of austenitic stainless steel in the internal environment of the fuel cell greatly depends on the Cr concentration of the passive film. Provided is a polymer electrolyte fuel cell that incorporates a stainless steel separator that exhibits low surface contact resistance while maintaining excellent corrosion resistance, without forming on a stainless steel surface, and without relying on precious metal coating or roughening treatment. For the purpose.

本発明の固体高分子型燃料電池用ステンレス鋼製セパレータは、Cr:19〜40質量%を含むオーステナイト系ステンレス鋼を基材とし、基材表面をCr濃度:19質量%以上の不動態皮膜で覆っている。不動態皮膜は、非酸化性酸を用いた浸漬処理で形成され、温度:70℃,相対湿度:98%の湿潤雰囲気に72時間放置した後でカーボンペーパとの接触抵抗が測定圧力:20kgf/cm2で5mΩ・cm2以下となるように調質されている。 The stainless steel separator for a polymer electrolyte fuel cell according to the present invention is based on an austenitic stainless steel containing Cr: 19 to 40% by mass, and the surface of the substrate is a passive film having a Cr concentration of 19% by mass or more. Covering. The passive film is formed by a dipping process using a non-oxidizing acid, and after being left in a humid atmosphere at a temperature of 70 ° C. and a relative humidity of 98% for 72 hours, the contact resistance with the carbon paper is measured. has been tempered in such a way that 5mΩ · cm 2 or less in cm 2.

実施の形態Embodiment

オーステナイト系ステンレス鋼は、燃料電池内部のように酸性の湿潤雰囲気下でも優れた耐食性を呈し、フェライト系に比較して加工性に優れているのでプレス加工,切削加工,化学エッチング等で複雑なセパレータ形状にも容易に成形できる。なかでも、量産性に優れたプレス加工が採用可能なことは、作製コストを低減する上で有利である。しかも、Cr濃度:19質量%以上の不動態皮膜がステンレス鋼製セパレータ表面にあるため、イオン交換膜や電極に悪影響を及ぼすNi,Cu等の溶出も抑えられる。   Austenitic stainless steel exhibits excellent corrosion resistance even in an acidic moist atmosphere like the inside of a fuel cell, and is superior in workability compared to ferrite, so it is a complicated separator for pressing, cutting, chemical etching, etc. Easy to shape. Among these, the fact that press work with excellent mass productivity can be adopted is advantageous in reducing the production cost. In addition, since a passive film having a Cr concentration of 19% by mass or more is present on the surface of the stainless steel separator, elution of Ni, Cu and the like that adversely affect the ion exchange membrane and the electrode can be suppressed.

使用可能なオーステナイト系ステンレス鋼としては、Cr:19〜40質量%,Ni:5〜26質量%を含み、C:0.08質量%以下,Si:1.50質量%以下,Mn:2.00質量%以下,P:0.045質量%以下,S:0.030質量%以下に規制したSUS 310S等の鋼種がある。
酸浸漬によりCrが富化した不動態皮膜を形成させるため19質量%以上のCr含有量が必要であり、Cr含有量の増加に伴い接触抵抗が安定し酸性雰囲気下の耐酸性も向上する。しかし、過剰量のCr含有は加工性,熱間加工性を低下させるので、上限を40質量%とした。接触抵抗の安定性,耐酸性,加工性,熱間加工性を重視する場合、20〜26質量%のCr含有量が好ましい。
Usable austenitic stainless steels include Cr: 19-40 mass%, Ni: 5-26 mass%, C: 0.08 mass% or less, Si: 1.50 mass% or less, Mn: 2. There are steel types such as SUS 310S regulated to 00 mass% or less, P: 0.045 mass% or less, and S: 0.030 mass% or less.
In order to form a passivated film enriched with Cr by acid dipping, a Cr content of 19% by mass or more is required. As the Cr content increases, the contact resistance is stabilized and the acid resistance in an acidic atmosphere is improved. However, since an excessive amount of Cr decreases workability and hot workability, the upper limit is set to 40% by mass. When importance is attached to stability of contact resistance, acid resistance, workability, and hot workability, a Cr content of 20 to 26 mass% is preferable.

Ni含有量は、オーステナイト相の形成及び酸性雰囲気下の耐食性のため、5.0質量%以上が必要である。しかし、過剰量のNi添加は加工性に悪影響を及ぼし、コスト的にも不利であり、更にはセル内に溶出するNiイオン量が多くなって触媒の劣化を促進させる。そこで、オーステナイト相の形成に必要な最低限にNi含有量を留めることが好適である。また、必要に応じMo:6質量%以下,Cu:6質量%以下,Ti:1.0質量%以下,Nb:1.0質量%以下,Al:3.0質量%以下,V:1.0質量%以下,B:1.0質量%以下等を含ませても良い。   The Ni content needs to be 5.0% by mass or more for the formation of austenite phase and the corrosion resistance in an acidic atmosphere. However, the addition of an excessive amount of Ni adversely affects workability and is disadvantageous in terms of cost, and further, the amount of Ni ions eluted in the cell increases to promote catalyst deterioration. Therefore, it is preferable to keep the Ni content to the minimum necessary for forming the austenite phase. If necessary, Mo: 6 mass% or less, Cu: 6 mass% or less, Ti: 1.0 mass% or less, Nb: 1.0 mass% or less, Al: 3.0 mass% or less, V: 1. You may include 0 mass% or less, B: 1.0 mass% or less.

オーステナイト系ステンレス鋼は、非酸化性酸を用いた浸漬処理で再不動態化することにより表面接触抵抗が低下する。なかでも、塩酸,硫酸等の非酸化性酸で酸洗したステンレス鋼を固体高分子型燃料電池に組み込むと、表面接触抵抗が低減したセパレータとなる。表面接触抵抗の低減は、Crが濃化した薄い不動態皮膜がステンレス鋼表面に生じることによるものと推察される。すなわち、Cr濃度の増加に伴い不動態皮膜が薄膜化するので接触抵抗も低下する。実際、温度:70℃,相対湿度:98%の湿潤雰囲気に72時間放置した後でカーボンペーパとの接触抵抗が測定圧力:20kgf/cm2で5mΩ・cm2以下となるように浸漬処理条件を制御することによって、燃料電池の内部環境を模擬した長時間の湿潤試験後にも接触抵抗が低位に維持されることが判った。 Austenitic stainless steel has a reduced surface contact resistance by repassivation by immersion treatment using a non-oxidizing acid. In particular, when stainless steel pickled with a non-oxidizing acid such as hydrochloric acid or sulfuric acid is incorporated in a polymer electrolyte fuel cell, a separator with reduced surface contact resistance is obtained. The reduction in surface contact resistance is presumed to be due to the formation of a thin passive film enriched with Cr on the stainless steel surface. That is, as the Cr concentration increases, the passive film becomes thinner, so the contact resistance also decreases. Actually, the immersion treatment conditions were set so that the contact resistance with carbon paper was 5 mΩ · cm 2 or less at a measurement pressure of 20 kgf / cm 2 after being left in a humid atmosphere of temperature: 70 ° C. and relative humidity: 98% for 72 hours. It was found that the contact resistance was maintained at a low level even after a long-time wet test simulating the internal environment of the fuel cell by controlling.

表1のオーステナイト系ステンレス鋼を濃度10質量%の塩酸に5分浸漬した後、温度:70℃,相対湿度:98%の湿潤雰囲気に72時間放置する湿潤試験に供した。湿潤試験前後に測定圧力:20kgf/cm2でカーボンペーパに対する接触抵抗を測定し、接触抵抗の変化を調査した。 The austenitic stainless steel shown in Table 1 was immersed in hydrochloric acid having a concentration of 10% by mass for 5 minutes and then subjected to a wet test in which it was left in a humid atmosphere at a temperature of 70 ° C. and a relative humidity of 98% for 72 hours. Before and after the wet test, the contact resistance against carbon paper was measured at a measurement pressure of 20 kgf / cm 2 , and the change in contact resistance was investigated.

Figure 2006164824
Figure 2006164824

湿潤試験前では何れの鋼種も5mΩ・cm2以下の低い接触抵抗を示していた。しかし、湿潤試験後の接触抵抗は、鋼種A-4〜A-8で5mΩ・cm2以下の低位を維持したが、Cr含有量が不足する鋼種A-1〜A-3では10mΩ・cm2を超えていた(図1)。別の実験で、湿潤試験前後における接触抵抗の変動傾向は、ステンレス鋼のCr含有量:19質量%を境に変わることが確認され、Cr:20質量%以上のステンレス鋼製セパレータではNi,Mo含有量に拘わらず低接触抵抗が維持されることが判った。 Before the wet test, all steel types showed a low contact resistance of 5 mΩ · cm 2 or less. However, the contact resistance after humidity test is maintained a 5 m [Omega · cm 2 or less of low in steels A-4~A-8, steels A-1 to A-3 in 10 m [Omega · cm 2 which Cr content is insufficient (Fig. 1). In another experiment, it was confirmed that the fluctuation tendency of the contact resistance before and after the wet test changes at the boundary of the Cr content of stainless steel: 19% by mass, and in the stainless steel separator with Cr: 20% by mass or more, Ni, Mo It was found that low contact resistance was maintained regardless of the content.

湿潤試験後の接触抵抗変動に関する臨界値がステンレス鋼のCr含有量にあることは、次のように推察される。
鋼種A-1,A-5をそれぞれ接触抵抗が最も低下する条件で塩酸溶液に浸漬し、生成した不動態皮膜をTEM観察した。TEM観察では、ビーム径:1nmのX線をUTW型シリコン半導体検出器から不動態皮膜に照射し、不動態皮膜のEDSスペクトルを検出した。得られたEDSスペクトルをピーク分離し、半定量化処理によってFe,Cr,Ni,Moの質量比を算出した。
It is guessed as follows that the critical value regarding the contact resistance fluctuation after the wet test is in the Cr content of stainless steel.
Steel types A-1 and A-5 were each immersed in a hydrochloric acid solution under the condition that the contact resistance was the lowest, and the formed passive film was observed by TEM. In TEM observation, the passive film was irradiated with X-rays having a beam diameter of 1 nm from a UTW type silicon semiconductor detector, and the EDS spectrum of the passive film was detected. The obtained EDS spectrum was subjected to peak separation, and the mass ratio of Fe, Cr, Ni, and Mo was calculated by a semi-quantification process.

図2の算出結果にみられるように、湿潤試験後に接触抵抗が増大した鋼種A-1では、不動態皮膜のCr濃度が鋼中Cr濃度に対応して低く、高温・高湿度の環境下で下地鋼が容易に酸化されて不動態皮膜が厚膜化し、結果として接触抵抗が上昇した。   As can be seen from the calculation results in FIG. 2, in steel type A-1, whose contact resistance increased after the wet test, the Cr concentration in the passive film was low corresponding to the Cr concentration in the steel, and in a high temperature / high humidity environment. The base steel was easily oxidized and the passive film was thickened, resulting in an increase in contact resistance.

これに対し、湿潤試験後にも接触抵抗の増加が少ない鋼種A-5(図3)では、不動態皮膜のCr濃度が鋼中Cr濃度に対応して高くなっており、浸漬処理によるCr濃度にも変動がない。この結果は、浸漬処理でステンレス鋼製セパレータの耐食性が低下しないことを意味する。また、鋼中のNiに着目すると、浸漬処理によって不動態皮膜のNi量が増加している。不動態皮膜のNi濃度が耐食性に及ぼす影響は定かでないが、Ni濃度の増加に相応して不動態皮膜のFe量が減少することは確かであることから、湿潤環境下におけるFeの酸化抑制が長期にわたって低接触抵抗が維持される原因の一つと考えられる。因みに、湿潤環境下で接触抵抗が増大した鋼種A-1では、不動態皮膜のFe量が増加している。   On the other hand, in steel type A-5 (Fig. 3) in which the increase in contact resistance is small even after the wet test, the Cr concentration of the passive film is high corresponding to the Cr concentration in the steel, There is no change. This result means that the corrosion resistance of the stainless steel separator is not lowered by the immersion treatment. When attention is focused on Ni in the steel, the amount of Ni in the passive film is increased by the immersion treatment. Although the influence of the Ni concentration of the passive film on the corrosion resistance is uncertain, it is certain that the Fe content of the passive film decreases as the Ni concentration increases. This is considered to be one of the reasons why low contact resistance is maintained over a long period of time. Incidentally, in the steel type A-1 having increased contact resistance in a wet environment, the Fe content of the passive film is increased.

次いで、鋼種A-5を使用し浸漬処理が不動態皮膜のCr濃度,接触抵抗に及ぼす影響を調査した。
浸漬処理では、濃度:5質量%,液温:60℃のオルトケイ酸ソーダ溶液にステンレス鋼を浸漬して10秒間電解脱脂した後、濃度:10質量%,液温:50℃の塩酸溶液に浸漬した。塩酸浸漬後、直ちに水洗し、ドライヤで乾燥させた。なお、接触抵抗に及ぼす不動態皮膜の影響を調査するため,塩酸浸漬時間を種々変更した。
Next, the effect of immersion treatment on Cr concentration and contact resistance of the passive film was investigated using steel type A-5.
In the immersion treatment, stainless steel is immersed in a sodium orthosilicate solution having a concentration of 5% by mass and a liquid temperature of 60 ° C. and electrolytic degreasing for 10 seconds, and then immersed in a hydrochloric acid solution having a concentration of 10% by mass and a liquid temperature of 50 ° C. did. After immersion in hydrochloric acid, it was immediately washed with water and dried with a dryer. In order to investigate the influence of the passive film on the contact resistance, the hydrochloric acid immersion time was variously changed.

浸漬処理後のステンレス鋼から試験片を切り出し、カーボンペーパ(電極)を荷重:20kgf/cm2で接触させ、ステンレス鋼/カーボンペーパの接触抵抗を測定した。浸漬処理していない未処理ステンレス鋼の接触抵抗は120mΩ・cm2であったが、浸漬時間が長くなるに従って接触抵抗が低下し、5分の浸漬処理で約1.9mΩ・cm2となった。しかし、更に長い時間かけて浸漬処理すると却って接触抵抗が増加した。
浸漬処理5分のステンレス鋼を温度:70℃,相対湿度:98%の湿潤試験に供した。接触抵抗は1000時間の湿潤試験後にも5mΩ・cm2以下であり、燃料電池の内部環境でも低い接触抵抗が維持されることが確認できる。
A test piece was cut out from the stainless steel after the immersion treatment, a carbon paper (electrode) was brought into contact with a load of 20 kgf / cm 2 , and the contact resistance of the stainless steel / carbon paper was measured. The contact resistance of the untreated stainless steel not subjected to the immersion treatment was 120 mΩ · cm 2 , but the contact resistance decreased as the immersion time became longer, and was about 1.9 mΩ · cm 2 after the immersion treatment for 5 minutes. . However, the contact resistance increased when the immersion treatment was performed for a longer time.
The stainless steel immersed for 5 minutes was subjected to a wet test at a temperature of 70 ° C. and a relative humidity of 98%. The contact resistance is 5 mΩ · cm 2 or less even after a 1000 hour wet test, and it can be confirmed that a low contact resistance is maintained even in the internal environment of the fuel cell.

板厚:0.25mmの鋼種A-5(25Cr-20Ni)をセパレータ形状にプレス成形した後、濃度:10質量%,温度:50℃の塩酸に浸漬した。5分浸漬後、水洗し、乾燥させた。
また、片面に白金触媒層を1mg/cm2の割合で塗布した厚さ:360μmのカーボンペーパ(TGP-H-120:東レ製)を膜厚:50μmのフッ素イオン交換膜(商品名:ナフィオン112)にホットプレスすることにより膜-電極接合体を作製した。膜-電極接合体を中心としてステンレス鋼製セパレータを両側に配置し、燃料電池の単セルを組み上げた。
Plate type: Steel type A-5 (25Cr-20Ni) having a thickness of 0.25 mm was press-formed into a separator shape, and then immersed in hydrochloric acid having a concentration of 10% by mass and a temperature of 50 ° C. After immersion for 5 minutes, it was washed with water and dried.
Also, a platinum catalyst layer coated on one side at a rate of 1 mg / cm 2 Thickness: 360 μm carbon paper (TGP-H-120: manufactured by Toray Industries), film thickness: 50 μm fluorine ion exchange membrane (trade name: Nafion 112) The membrane-electrode assembly was manufactured by hot pressing. A stainless steel separator was placed on both sides centering on the membrane-electrode assembly, and a single cell of the fuel cell was assembled.

単セルを70℃に保ち、アノード側に純水素,カソード側に空気を流し発電させたところ、電流密度0.3A/cm2,連続2000時間の放電でセル電圧が0.62Vから0.61Vに低下したが、電圧降下は僅か0.01Vに留まっていた。比較のため塩酸浸漬したSUS316Lステンレス鋼製のセパレータを同様に組み込んだ単セルでは初期のセル電圧が0.62Vと同等であったが、連続放電2000時間後に0.5Vと低下しており、電圧降下が0.11Vと大きな値を示した。
この対比から明らかなように、酸浸漬処理で表面改質したオーステナイト系ステンレス鋼をセパレータに使用するとき、長時間運転後にも電圧降下が少なく、高い発電効率を維持する燃料電池が得られることが判る。
When the single cell was maintained at 70 ° C. and pure hydrogen was supplied to the anode side and air was supplied to the cathode side to generate electricity, the cell voltage changed from 0.62 V to 0.61 V with a current density of 0.3 A / cm 2 and a continuous 2000 hour discharge. However, the voltage drop was only 0.01V. For comparison, in the single cell similarly incorporating a separator made of SUS316L stainless steel immersed in hydrochloric acid, the initial cell voltage was equivalent to 0.62 V, but it decreased to 0.5 V after 2000 hours of continuous discharge. The drop was as large as 0.11V.
As is clear from this comparison, when austenitic stainless steel surface-modified by acid dipping treatment is used for the separator, a fuel cell can be obtained that maintains high power generation efficiency with little voltage drop even after long-time operation. I understand.

以上に説明したように、高Cr含有オーステナイト系ステンレス鋼を基材とし、非酸化性酸を用いた浸漬処理で表面改質するとき、本来の高耐食性を活かしながら、燃料電池内の酸性湿潤雰囲気に長時間曝されても接触抵抗が低位に維持されるステンレス鋼製セパレータが得られる。ステンレス鋼製であるため複雑なセパレータ形状へも容易に加工でき、安価で長期耐久性に優れ発電効率が高位に安定した固体高分子型燃料電池が構築される。   As described above, when the surface is modified by immersion treatment using a non-oxidizing acid based on a high Cr content austenitic stainless steel, the acidic wet atmosphere in the fuel cell is utilized while utilizing the original high corrosion resistance. A stainless steel separator whose contact resistance is maintained at a low level even when exposed to a long time is obtained. Since it is made of stainless steel, it can be easily processed into a complicated separator shape, and a solid polymer fuel cell is constructed that is inexpensive, has long-term durability, and has a stable power generation efficiency.

ステンレス鋼のCr含有量と湿潤試験後の接触抵抗との関係を示すグラフGraph showing relationship between Cr content of stainless steel and contact resistance after wet test 17Cr-12Ni-2Moステンレス鋼浸漬処理材の成分分析結果を示すグラフThe graph which shows the component analysis result of 17Cr-12Ni-2Mo stainless steel immersion treatment material 25Cr-20Niステンレス鋼浸漬処理材の成分分析結果を示すグラフThe graph which shows the component analysis result of 25Cr-20Ni stainless steel immersion treatment material

Claims (2)

Cr:19〜40質量%を含むオーステナイト系ステンレス鋼を基材とし、非酸化性酸を用いた浸漬処理で形成されたCr濃度:19質量%以上の不動態皮膜が基材表面を覆っており、温度:70℃,相対湿度:98%の湿潤雰囲気に72時間放置した後でカーボンペーパとの接触抵抗が測定圧力:20kgf/cm2で5mΩ・cm2以下であることを特徴とする固体高分子型燃料電池用ステンレス鋼製セパレータ。 Cr: 19% by mass or more of a passive film covering the substrate surface is formed by dipping treatment using a non-oxidizing acid based on austenitic stainless steel containing 19-40% by mass of Cr. , Temperature: 70 ° C., relative humidity: 98% after standing in a humid atmosphere for 72 hours, the contact resistance with carbon paper is 5 mΩ · cm 2 or less at a measurement pressure: 20 kgf / cm 2. Stainless steel separator for molecular fuel cells. 請求項1記載のステンレス鋼製セパレータを介して複数の単セルがスタックされている固体高分子型燃料電池。   A polymer electrolyte fuel cell in which a plurality of single cells are stacked via the stainless steel separator according to claim 1.
JP2004356462A 2004-12-09 2004-12-09 Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell Pending JP2006164824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356462A JP2006164824A (en) 2004-12-09 2004-12-09 Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356462A JP2006164824A (en) 2004-12-09 2004-12-09 Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2006164824A true JP2006164824A (en) 2006-06-22

Family

ID=36666583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356462A Pending JP2006164824A (en) 2004-12-09 2004-12-09 Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2006164824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801429B1 (en) 2006-10-16 2008-02-05 현대하이스코 주식회사 The method for manufacturing a metal seperator of fuel cell
KR100844023B1 (en) 2008-02-19 2008-07-04 현대하이스코 주식회사 Stainless separator for fuel cell having metal coating surface and method for the same
US9493860B2 (en) 2012-04-04 2016-11-15 Nippon Steel & Sumitomo Metal Corporation Chromium-containing austenitic alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170582A (en) * 2000-12-04 2002-06-14 Nisshin Steel Co Ltd Fuel battery separator and manufacturing method thereof
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof
JP2003272650A (en) * 2002-03-15 2003-09-26 Honda Motor Co Ltd Manufacturing method of metal separator for fuel cell
JP2003297380A (en) * 2002-04-03 2003-10-17 Nisshin Steel Co Ltd Stainless steel separator for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170582A (en) * 2000-12-04 2002-06-14 Nisshin Steel Co Ltd Fuel battery separator and manufacturing method thereof
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof
JP2003272650A (en) * 2002-03-15 2003-09-26 Honda Motor Co Ltd Manufacturing method of metal separator for fuel cell
JP2003297380A (en) * 2002-04-03 2003-10-17 Nisshin Steel Co Ltd Stainless steel separator for fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801429B1 (en) 2006-10-16 2008-02-05 현대하이스코 주식회사 The method for manufacturing a metal seperator of fuel cell
KR100844023B1 (en) 2008-02-19 2008-07-04 현대하이스코 주식회사 Stainless separator for fuel cell having metal coating surface and method for the same
US9493860B2 (en) 2012-04-04 2016-11-15 Nippon Steel & Sumitomo Metal Corporation Chromium-containing austenitic alloy
KR20170003709A (en) * 2012-04-04 2017-01-09 신닛테츠스미킨 카부시키카이샤 Cr-containing austenitic alloy
KR101996712B1 (en) * 2012-04-04 2019-07-04 닛폰세이테츠 가부시키가이샤 Cr-containing austenitic alloy

Similar Documents

Publication Publication Date Title
Asri et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review
JP5222214B2 (en) Stainless steel separator for fuel cell and method for producing the same
JP5133466B2 (en) Fuel cell separator and method for producing the same
JP5507495B2 (en) Method for producing titanium fuel cell separator
JP2007165275A (en) Separator, manufacturing method of separator and solid polymer fuel cell using the same,
JP4402630B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
WO2013018320A1 (en) Stainless steel for fuel cell separator
Li et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
US8785031B2 (en) Polymer electrolyte fuel cell separator made of pure titanium or titanium alloy and method of production of same
TWI640122B (en) Base material stainless steel plate for steel plate of fuel cell separator and manufacturing method thereof
Wang et al. Optimizing the interfacial potential distribution to mitigate high transient potential induced dissolution on C/Ti coated metal bipolar plates used in PEMFCs
JP2003272659A (en) Separator for solid polymer fuel cell and fuel cell
JP5806099B2 (en) Surface treatment method for fuel cell separator
JP2007134107A (en) Separator for fuel cell, its manufacturing method and fuel cell
JPH11219713A (en) Separator for low-temperature fuel cell
JP2002075399A (en) Separator for solid polymer electrolyte fuel cell
EP1735865A1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP2006164824A (en) Separator made of stainless steel for solid polymer fuel cell, and solid polymer fuel cell
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
JP2006253107A (en) Separator made of stainless steel for polymer electrolyte fuel cell
JP2006302731A (en) Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006302729A (en) Stainless steel separator for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR101372645B1 (en) Metal separator for fuel cell and method of manufacturing the same
KR20180087384A (en) Stainless steel sheet for separator of fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816