JP2001093538A - Stainless steel cryogenic fuel cell separator - Google Patents

Stainless steel cryogenic fuel cell separator

Info

Publication number
JP2001093538A
JP2001093538A JP27160099A JP27160099A JP2001093538A JP 2001093538 A JP2001093538 A JP 2001093538A JP 27160099 A JP27160099 A JP 27160099A JP 27160099 A JP27160099 A JP 27160099A JP 2001093538 A JP2001093538 A JP 2001093538A
Authority
JP
Japan
Prior art keywords
stainless steel
acid
film
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27160099A
Other languages
Japanese (ja)
Inventor
Masanori Matsuno
雅典 松野
Yoshikazu Morita
芳和 守田
Minoru Saito
実 斎藤
Takeshi Takahashi
剛 高橋
Yuichi Yatsugami
裕一 八神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP27160099A priority Critical patent/JP2001093538A/en
Publication of JP2001093538A publication Critical patent/JP2001093538A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To obtain a separator for a cryogenic fuell cell with improved acid- proof and conductive properties, by inserting acid-proof coating to form conductive coating on stainless steel substrate surface. SOLUTION: The separator for a cryogenic fuel cell is based on stainless steel, the acid-proof coating selected from group consisting of Ta, Zr, Ni, Ti, Ni-Cr alloy is formed on substrate surface, and the conductive coating selected from group consisting of Au, Pt, Pd, is formed on the acid-proof coating. Since the conductive coating is provided by inserting the acid-proof coating even if the conductive coating is thinner, elusion of metal ion from the stainless steel substrate is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
を始めとする低温で稼動する燃料電池のステンレス鋼製
セパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel separator for a fuel cell which operates at a low temperature, such as a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】燃料電池のなかでも、固体高分子型の燃
料電池は、100℃以下の温度で動作可能であり、短時
間で起動する長所を備えている。また、各部材が固体か
らなるため、構造が簡単でメンテナンスが容易であり、
振動や衝撃に曝される用途にも適用できる。更に、出力
密度が高いため小型化に適し、燃料効率が高く、騒音が
小さい等の長所を備えている。これらの長所から、電気
自動車搭載用としての用途が検討されている。ガソリン
自動車と同等の走行距離を出せる燃料電池を自動車に搭
載できると、NOx,SOxの発生がほとんどなく、CO
2の発生が半減する等、環境に対して非常にクリーンな
動力源になる。固体高分子型燃料電池は、分子中にプロ
トン交換基をもつ固体高分子樹脂膜がプロトン伝導性電
解質として機能することを利用したものであり、他の形
式の燃料電池と同様に固体高分子膜の一側に水素等の燃
料ガスを流し、他側に空気等の酸化性ガスを流す構造に
なっている。
2. Description of the Related Art Among fuel cells, a polymer electrolyte fuel cell can operate at a temperature of 100 ° C. or less and has an advantage that it can be started in a short time. Also, since each member is made of solid, the structure is simple and maintenance is easy,
It can be applied to applications exposed to vibration and shock. Furthermore, it has advantages such as high power density, suitable for miniaturization, high fuel efficiency, and low noise. From these advantages, applications for electric vehicles are being studied. If a fuel cell capable of providing the same mileage as a gasoline-powered vehicle can be mounted on the vehicle, NO x and SO x will hardly be generated,
It becomes a very clean power source for the environment, such as halving the occurrence of 2 . Solid polymer fuel cells utilize the fact that a solid polymer resin membrane having a proton exchange group in the molecule functions as a proton-conducting electrolyte. Has a structure in which a fuel gas such as hydrogen flows on one side and an oxidizing gas such as air flows on the other side.

【0003】具体的には、固体高分子膜1は、図1に示
すように両側に空気電極2及び水素電極3が接合され、
それぞれガスケット4を介してセパレータ5を対向させ
ている。空気電極2側のセパレータ5には空気供給口
6,空気排出口7が形成され、水素電極3側のセパレー
タ5には水素供給口8,水素排出口9が形成されてい
る。セパレータ5には、水素g及び酸素又は空気oの導
通及び均一分配のため、水素g及び酸素又は空気oの流
動方向に延びる複数の溝10が形成されている。また、
発電時に発熱があるため、給水口11から送り込んだ冷
却水wをセパレータ5の内部に循環させた後、排水口1
2から排出させる水冷機構をセパレータ5に内蔵させて
いる。
Specifically, as shown in FIG. 1, an air electrode 2 and a hydrogen electrode 3 are joined to both sides of a solid polymer membrane 1,
The separators 5 face each other via the gaskets 4. An air supply port 6 and an air discharge port 7 are formed on the separator 5 on the side of the air electrode 2, and a hydrogen supply port 8 and a hydrogen discharge port 9 are formed on the separator 5 on the side of the hydrogen electrode 3. A plurality of grooves 10 extending in the flow direction of the hydrogen g and the oxygen or the air o are formed in the separator 5 for conduction and uniform distribution of the hydrogen g and the oxygen or the air o. Also,
Since heat is generated at the time of power generation, the cooling water w sent from the water supply port 11 is circulated inside the separator 5 and then discharged to the drain port 1.
A water-cooling mechanism for discharging from the second 2 is incorporated in the separator 5.

【0004】水素供給口8から水素電極3とセパレータ
5との間隙に送り込まれた水素gは、電子を放出したプ
ロトンとなって固体高分子膜1を透過し、空気電極2側
で電子を受け、空気電極2とセパレータ5との間隙を通
過する酸素又は空気oによって燃焼する。そこで、空気
電極2及び水素電極3に接触する各セパレータ5,5か
ら電流を取り出し、負荷を接続するとき、電力を取り出
すことができる。燃料電池は、1セル当りの発電量が極
く僅かである。そこで、図1(b)に示すようにセパレ
ータ5,5で挟まれた固体高分子膜を1単位とし、複数
のセルを積層することによって取出し可能な電力量を大
きくしている。多数のセルを積層した構造では、空気電
極2及び水素電極3と各セパレータ5,5との接触抵抗
が発電効率に大きな影響を及ぼす。発電効率を向上させ
るためには、導電性が良好で、空気電極2及び水素電極
3との接触抵抗の低いセパレータが要求され、リン酸型
燃料電池と同様に黒鉛質のセパレータが使用されてい
る。
[0004] Hydrogen g sent from the hydrogen supply port 8 into the gap between the hydrogen electrode 3 and the separator 5 becomes protons that have emitted electrons, passes through the solid polymer membrane 1, and receives electrons on the air electrode 2 side. , And burns with oxygen or air o passing through the gap between the air electrode 2 and the separator 5. Therefore, current can be taken out from each of the separators 5 and 5 that come into contact with the air electrode 2 and the hydrogen electrode 3, and power can be taken out when a load is connected. Fuel cells generate very little power per cell. Therefore, as shown in FIG. 1B, the solid polymer film sandwiched between the separators 5 and 5 is defined as one unit, and the amount of power that can be taken out is increased by stacking a plurality of cells. In a structure in which a large number of cells are stacked, the contact resistance between the air electrode 2 and the hydrogen electrode 3 and each of the separators 5 has a great effect on the power generation efficiency. In order to improve the power generation efficiency, a separator having good conductivity and low contact resistance with the air electrode 2 and the hydrogen electrode 3 is required, and a graphite separator is used similarly to the phosphoric acid type fuel cell. .

【0005】黒鉛質のセパレータは、黒鉛ブロックを所
定形状に切り出し、切削加工によって各種の孔や溝を形
成している。そのため、材料費や加工費が高く、全体と
して燃料電池の価格を高騰させると共に、生産性を低下
させる原因になっている。しかも、材質的に脆い黒鉛で
できたセパレータでは、振動や衝撃が加えられると破損
する虞れが大きい。そこで、プレス加工やパンチング加
工等によって金属板からセパレータを作ることが特開平
8−180883号公報で提案されている。
[0005] The graphite separator cuts a graphite block into a predetermined shape and forms various holes and grooves by cutting. Therefore, material costs and processing costs are high, which raises the price of the fuel cell as a whole and lowers productivity. In addition, a separator made of brittle graphite as a material has a high possibility of being damaged when subjected to vibration or impact. Therefore, it has been proposed in Japanese Patent Application Laid-Open No. Hei 8-180883 to produce a separator from a metal plate by pressing or punching.

【0006】[0006]

【発明が解決しようとする課題】酸素又は空気oが通過
する空気電極2側は、酸性度がpH2〜3の酸性雰囲気
にある。このような強酸性雰囲気に耐え、しかもセパレ
ータに要求される特性を満足する金属材料は、これまで
のところ実用化されていない。たとえば、強酸に耐える
金属材料としてステンレス鋼等の耐酸性材料が考えら
れ、本発明者等もステンレス鋼を基材に使用したセパレ
ータを特開平11−121018号公報で紹介してい
る。ステンレス鋼は、表面に形成した強固な不動態皮膜
によって耐酸性を呈するものであるが、不動態皮膜によ
って表面抵抗や接触抵抗が高くなり、接触部分で多量の
ジュール熱が発生し、大きな熱損失となり、燃料電池の
発電効率を低下させる。また、燃料電池雰囲気ではステ
ンレス鋼表面から金属イオンが若干溶出する。溶出した
金属イオンが高分子膜に侵入するとプロトンの輸送効率
を低下させる。これによっても、燃料電池の発電効率が
低下する。
The air electrode 2 through which oxygen or air o passes is in an acidic atmosphere having an acidity of pH 2-3. A metal material that withstands such a strongly acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far. For example, an acid-resistant material such as stainless steel is considered as a metal material capable of withstanding a strong acid, and the present inventors have also introduced a separator using stainless steel as a base material in Japanese Patent Application Laid-Open No. H11-12018. Stainless steel exhibits acid resistance due to a strong passivation film formed on the surface.However, the passivation film increases surface resistance and contact resistance, generates a large amount of Joule heat in the contact area, and causes large heat loss. And lowers the power generation efficiency of the fuel cell. In a fuel cell atmosphere, metal ions are slightly eluted from the stainless steel surface. When the eluted metal ions enter the polymer membrane, the proton transport efficiency is reduced. This also lowers the power generation efficiency of the fuel cell.

【0007】ステンレス鋼に耐酸性に優れたAu,P
t,Pd等の厚膜めっきを施すとき、金属イオンの溶出
が抑制される。Au,Pt,Pd等のめっき層は、接触
抵抗を下げる上でも有効である。しかし、厚膜めっき
は、高価なAu,Pt,Pd等を多量に消費し、セパレ
ータのコストを上昇させるため、実用的な解決策とはい
えない。コスト上昇を抑制するためAu,Pt,Pd等
のめっき厚みを単に薄くすると、金属イオンの溶出が十
分に抑制されず、まためっき層の部分的剥離により接触
抵抗が増加する傾向がみられる。
Au, P which is excellent in acid resistance to stainless steel
When a thick film plating of t, Pd or the like is performed, elution of metal ions is suppressed. A plating layer of Au, Pt, Pd, etc. is also effective in lowering the contact resistance. However, thick film plating is not a practical solution because it consumes a large amount of expensive Au, Pt, Pd and the like and increases the cost of the separator. If the plating thickness of Au, Pt, Pd, etc. is simply reduced in order to suppress the cost increase, the elution of metal ions is not sufficiently suppressed, and the contact resistance tends to increase due to partial peeling of the plating layer.

【0008】[0008]

【課題を解決するための手段】本発明は、金属イオンの
溶出抑制や接触抵抗の低下に有効なAu,Pt,Pd等
の導電性皮膜を施すことを前提にし、燃料電池雰囲気に
おいて優れた耐酸性を呈する皮膜をステンレス鋼との界
面に介在させることにより、高価なAu,Pt,Pd等
の導電性皮膜を薄くしても、金属イオンの溶出が抑制さ
れ、接触抵抗が低い低温型燃料電池用セパレータを提供
することを目的とする。本発明の低温型燃料電池用セパ
レータは、その目的を達成するため、ステンレス鋼を基
材とし、基材表面にTa,Zr,Nb,Ti,Ni−C
r合金から選ばれた耐酸性皮膜が形成され、該耐酸性皮
膜の上にAu,Pt,Pdから選ばれた導電性皮膜が形
成されていることを特徴とする。
SUMMARY OF THE INVENTION The present invention is based on the premise that a conductive film such as Au, Pt, Pd or the like which is effective for suppressing elution of metal ions and lowering contact resistance is provided. A low-temperature fuel cell with low contact resistance by suppressing metal ion elution even if an expensive conductive film such as Au, Pt, Pd, etc. is thinned by interposing a film exhibiting the property at the interface with stainless steel It is an object to provide a separator for use. In order to achieve the object, the low temperature fuel cell separator of the present invention is based on stainless steel and has Ta, Zr, Nb, Ti, Ni-C
An acid-resistant film selected from an r-alloy is formed, and a conductive film selected from Au, Pt, and Pd is formed on the acid-resistant film.

【0009】[0009]

【作用】ステンレス鋼板は、製造過程で熱間圧延等の熱
的加工を受けており、鋼板表面に酸化物層(スケール
層)が形成されている。スケール層の直下には、耐酸性
に悪影響を及ぼすCr欠乏層が生じている。なかでも、
焼鈍等の熱処理が施されたステンレス鋼板では、鋼材か
らスケール層へのCr拡散が進行しているためCr欠乏
層の影響が大きくなる。酸化物層はステンレス鋼板製セ
パレータを積層した状態で接触抵抗に起因したジュール
熱を増加させ、変質した表面層は金属イオンの溶出を助
長し、何れも燃料電池の発電効率に悪影響を及ぼす。
The stainless steel sheet has undergone thermal processing such as hot rolling in the manufacturing process, and an oxide layer (scale layer) is formed on the surface of the steel sheet. Immediately below the scale layer, there is a Cr-deficient layer that adversely affects acid resistance. Above all,
In a stainless steel sheet that has been subjected to heat treatment such as annealing, the effect of the Cr-deficient layer increases because the diffusion of Cr from the steel material to the scale layer progresses. The oxide layer increases the Joule heat caused by the contact resistance in a state where the separators made of stainless steel sheets are stacked, and the altered surface layer promotes the elution of metal ions, all of which adversely affect the power generation efficiency of the fuel cell.

【0010】接触抵抗の増加及び金属イオンの溶出は、
ステンレス鋼表面にAu,Pt,Pd等の導電性皮膜を
施すことにより抑制できる。しかし、Au,Pt,Pd
等の導電性皮膜をステンレス鋼表面に直接設ける場合に
は、前述したように厚膜の導電性皮膜が必要とされる。
そこで、本発明においては、Au,Pt,Pd等の導電
性皮膜の膜厚を薄くしても十分な低接触抵抗及び金属イ
オン溶出防止効果が確保されるように、ステンレス鋼表
面とAu,Pt,Pd等の導電性皮膜との間にTa,Z
r,Nb,Ti,Ni−Cr合金等の耐酸性皮膜を介在
させている。
The increase in contact resistance and the elution of metal ions
It can be suppressed by applying a conductive film of Au, Pt, Pd or the like on the stainless steel surface. However, Au, Pt, Pd
When a conductive film such as is provided directly on the surface of stainless steel, a thick conductive film is required as described above.
Therefore, in the present invention, the surface of the stainless steel and the surface of the Au, Pt, etc. are secured so that even if the thickness of the conductive film such as Au, Pt, Pd or the like is reduced, sufficient low contact resistance and metal ion elution prevention effect are ensured. , Pd, etc. between the conductive film and Ta, Z
An acid resistant film such as r, Nb, Ti, Ni-Cr alloy is interposed.

【0011】耐酸性皮膜として使用されるTa,Zr,
Nb,Ti,Ni−Cr合金は、何れも過酷な腐食雰囲
気においても優れた耐酸性を呈し、ステンレス鋼基材を
保護するバリア層として有効に作用する。この耐酸性皮
膜を介在させるとき、その上に形成されるAu,Pt,
Pd等の導電性皮膜を薄くしても金属イオンの溶出がな
く、燃料電池用セパレータに要求される低接触抵抗のス
テンレス鋼板となる。
[0011] Ta, Zr, used as an acid-resistant film
Nb, Ti, and Ni-Cr alloys exhibit excellent acid resistance even in a severe corrosive atmosphere, and effectively act as a barrier layer for protecting a stainless steel substrate. When this acid resistant film is interposed, Au, Pt,
Even if the conductive film such as Pd is thinned, no metal ions are eluted, and a stainless steel plate having a low contact resistance required for a fuel cell separator is obtained.

【0012】[0012]

【実施の形態】基材となるステンレス鋼としては、酸化
性及び非酸化性雰囲気の酸による腐食に耐えることが必
要であり、オーステナイト系,二相系,フェライト系等
のステンレス鋼が使用される。オーステナイト系ステン
レス鋼としては、14〜35重量%のCr濃度及び5〜
60重量%のNi濃度をもち、たとえばC:0.008
〜0.2重量%,Si:0.05〜5.0重量%,M
n:0.1〜5.0重量%,Ni:5.0〜60重量
%,Cr:14〜35重量%を含む組成をもつものが使
用される。二相系ステンレス鋼としては、17〜35重
量%のCr濃度及び2〜60重量%のNi濃度をもち、
たとえばC:0.008〜0.2重量%,Si:0.0
5〜5.0重量%,Mn:0.1〜5.0重量%,N
i:2.0〜60重量%,Cr:17〜35重量%を含
む組成をもつものが使用される。フェライト系ステンレ
ス鋼としては、20〜35重量%のCr濃度をもち、た
とえば、C:0.001〜0.3重量%,Si:0.0
2〜5.0重量%,Mn:0.5〜5.0重量%,C
r:20〜35重量%を含む組成をもつものが使用され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a stainless steel as a base material, it is necessary to withstand corrosion by an acid in an oxidizing and non-oxidizing atmosphere, and austenitic, two-phase, ferritic, etc. stainless steels are used. . As an austenitic stainless steel, a Cr concentration of 14 to 35% by weight and a
It has a Ni concentration of 60% by weight, for example, C: 0.008
-0.2% by weight, Si: 0.05-5.0% by weight, M
Those having a composition containing n: 0.1 to 5.0% by weight, Ni: 5.0 to 60% by weight, and Cr: 14 to 35% by weight are used. The duplex stainless steel has a Cr concentration of 17 to 35% by weight and a Ni concentration of 2 to 60% by weight,
For example, C: 0.008 to 0.2% by weight, Si: 0.0
5 to 5.0% by weight, Mn: 0.1 to 5.0% by weight, N
Those having a composition containing i: 2.0 to 60% by weight and Cr: 17 to 35% by weight are used. Ferritic stainless steel has a Cr concentration of 20 to 35% by weight, for example, C: 0.001 to 0.3% by weight, Si: 0.0
2 to 5.0% by weight, Mn: 0.5 to 5.0% by weight, C
r: A composition having a composition containing 20 to 35% by weight is used.

【0013】基材の耐酸性を更に高めるため、Mo,C
u,N等の1種又は2種以上を添加しても良い。すなわ
ち、単位面積当りの電流値を上げて出力密度を増加させ
る燃料電池では、pHが低下することから、より耐酸性
に優れたステンレス鋼基材が必要になる。そこで、M
o:0.2〜7重量%,Cu:0.1〜5重量%,N:
0.02〜0.5重量%の1種又は2種以上を添加する
ことにより耐酸性を改善する。また、場合によっては、
少量のTi,Nb,Zr等の添加によっても耐酸性を高
めることができる。
In order to further increase the acid resistance of the substrate, Mo, C
One or more of u and N may be added. That is, in a fuel cell in which the power density is increased by increasing the current value per unit area, the pH is lowered, so that a stainless steel substrate having more excellent acid resistance is required. Then, M
o: 0.2 to 7% by weight, Cu: 0.1 to 5% by weight, N:
Acid resistance is improved by adding one or more of 0.02 to 0.5% by weight. Also, in some cases,
Acid resistance can also be increased by adding a small amount of Ti, Nb, Zr or the like.

【0014】耐酸性皮膜の形成に先立ってステンレス鋼
板を前処理し、表面変質層や酸化皮膜を除去することが
好ましい。表面変質層や酸化皮膜を除去する前処理とし
ては、代表的なものに酸洗法がある。酸洗条件は鋼種に
よって適正条件が異なるが、ステンレス鋼の酸洗はスケ
ール直下にある素地の溶解によって進行するため、酸化
剤を添加した酸が使用される。酸洗処理液に硝酸とフッ
酸との混酸を用いたフッ硝酸酸洗が短時間で処理可能で
あることから広く採用されており、本発明においても好
適である。酸洗処理条件には、たとえば「ステンレス鋼
便覧」第3版(ステンレス協会編)第1133頁に記載
されている条件が採用される。すなわち、処理液組成は
フッ酸1〜5%+硝酸5〜20%、処理温度は常温から
60℃の範囲が適切である。また、酸洗方式としては、
浸漬法が簡便で効果的である。ステンレス鋼表面に付着
していたスケールやCr欠乏層がフッ硝酸酸洗で除去さ
れ、均一で薄い酸化皮膜がステンレス鋼表面に形成され
る。薄い酸化皮膜の形成により耐酸性が向上し、酸洗前
に比較して接触抵抗も小さくなる。
Prior to forming the acid-resistant film, it is preferable to pre-treat the stainless steel plate to remove the surface altered layer and the oxide film. As a typical pretreatment for removing the surface altered layer and the oxide film, there is a pickling method. The pickling conditions vary depending on the type of steel. However, since pickling of stainless steel proceeds by dissolving the base immediately below the scale, an acid containing an oxidizing agent is used. Fluoric nitric acid pickling using a mixed acid of nitric acid and hydrofluoric acid as the pickling treatment liquid is widely used because it can be processed in a short time, and is also suitable in the present invention. As the pickling treatment conditions, for example, the conditions described in “Stainless Steel Handbook”, 3rd edition (edited by the Stainless Steel Association), page 1133, are employed. That is, the composition of the treatment liquid is 1 to 5% of hydrofluoric acid + 5 to 20% of nitric acid, and the treatment temperature is suitably in the range from room temperature to 60 ° C. In addition, as the pickling method,
The immersion method is simple and effective. The scale and Cr-depleted layer adhering to the stainless steel surface are removed by hydrofluoric acid washing, and a uniform and thin oxide film is formed on the stainless steel surface. The formation of a thin oxide film improves the acid resistance and reduces the contact resistance as compared with before the pickling.

【0015】前処理されたステンレス鋼に、Ta,Z
r,Nb,Ti,Ni−Cr合金等の耐酸性皮膜がスパ
ッタリング,イオンプレーティング等のPVD法や熱C
VD,プラズマCVD等のCVD法,電気めっき,有機
溶媒溶液を用いためっき等により設けられる。たとえ
ば、スパッタリング法では、0.1〜10Paの圧力に
維持した不活性ガスをグロー放電させることによって生
成した正イオンをターゲット(陰極)に衝突させ、ター
ゲットから弾き飛ばされた原子をステンレス鋼基板上に
堆積させることにより皮膜を形成する。イオンプレーテ
ィング法では、数kV以上で加速された電子ビームの照
射により蒸着用材料を蒸発させ、蒸発粒子をイオン化す
ることによりステンレス鋼基板と蒸着皮膜との密着性を
向上させる。Ta,Zr,Nb,Ti,Ni−Cr合金
等の耐酸性皮膜は、特に耐酸性に優れており、燃料電池
のセパレータが曝される低pH環境においても十分に耐
え得る。そのため、Ta,Zr,Nb,Ti,Ni−C
r合金等の耐酸性皮膜でステンレス鋼板表面を被覆する
ことにより、ステンレス鋼の溶解が防止される。耐酸性
確保に有効なTa,Zr,Nb,Ti,Ni−Cr合金
等の耐酸性皮膜の膜厚は、ステンレス鋼表面を完全に覆
う程度に設定され、0.1μm以上が好ましい。
[0015] Ta, Z
acid-resistant coatings such as r, Nb, Ti, Ni-Cr alloys are formed by PVD methods such as sputtering and ion plating, and thermal C
It is provided by a CVD method such as VD or plasma CVD, electroplating, plating using an organic solvent solution, or the like. For example, in the sputtering method, positive ions generated by glow discharge of an inert gas maintained at a pressure of 0.1 to 10 Pa collide with a target (cathode), and atoms repelled from the target are deposited on a stainless steel substrate. To form a film. In the ion plating method, a deposition material is evaporated by irradiation with an electron beam accelerated at several kV or more, and the adhesion between the stainless steel substrate and the deposited film is improved by ionizing the evaporated particles. Acid-resistant coatings such as Ta, Zr, Nb, Ti, and Ni—Cr alloys are particularly excellent in acid resistance, and can withstand a low pH environment to which a fuel cell separator is exposed. Therefore, Ta, Zr, Nb, Ti, Ni-C
By coating the surface of the stainless steel plate with an acid-resistant film such as an r alloy, dissolution of the stainless steel is prevented. The thickness of the acid-resistant coating such as Ta, Zr, Nb, Ti, and Ni-Cr alloy effective for securing the acid resistance is set so as to completely cover the stainless steel surface, and is preferably 0.1 μm or more.

【0016】耐酸性皮膜を形成した後、スパッタリン
グ,イオンプレーティング等のPVD法,熱CVD,プ
ラズマCVD等のCVD法,電気めっき等でAu,P
t,Pd等の導電性皮膜が形成される。たとえば、スパ
ッタリングでは、Au,Pt,Pd等のターゲットに対
しAr等の希ガスイオンを衝突させ、ターゲットから金
属原子を弾き出し、耐酸性材料で被覆したステンレス鋼
基板上に堆積させる。スパッタリング条件は、特に貴金
属であるという制約はなく、通常の条件が採用される。
ただし、Au,Pt,Pd等をターゲットに使用するこ
とから、ターゲットからステンレス鋼基板までの距離を
可能な限り短くして付着効率を上げることが好ましい。
電気めっき法でAuめっきする場合には、たとえばシア
ン化金カリウム浴が使用される。電気めっき法でPtめ
っきする場合には、ジニトロジアミン白金塩浴,テトラ
ニトロ白金酸カリウム塩浴等のめっき浴が使用される。
ジニトロジアミン白金塩浴は、利用効率が良く好適であ
る。Pdめっきは、Pd地金がAuの1/2〜1/3で
あり、しかもAuに匹敵する電気接触抵抗及び耐食性を
呈することから、コスト低減を考慮した場合に有効なめ
っきである。Au,Pt,Pd等のめっき金属は、導電
性が良く、耐酸性にも優れているため、燃料電池のセパ
レータが曝される低pH環境においても極薄い膜厚で十
分な低接触抵抗を維持する。ここで、ステンレス鋼板か
らの金属イオンの溶出が耐酸性皮膜で防止されているた
め、導電性皮膜は、専ら接触抵抗を低下させる機能をも
っていれば十分である。したがって、ステンレス鋼板に
Au,Pt,Pd等の皮膜を直接形成する場合と異な
り、導電性皮膜を十分に薄く(具体的には0.1μm以
下)でき、高価なAu,Pt,Pd等の消費量を少なく
してコストの上昇が抑えられる。更には、導電性皮膜を
島状に形成しても、燃料電池用セパレータに要求される
接触抵抗の低下が図られる。
After forming the acid resistant film, Au, P is formed by PVD method such as sputtering and ion plating, CVD method such as thermal CVD and plasma CVD, and electroplating.
A conductive film such as t or Pd is formed. For example, in sputtering, a rare gas ion such as Ar collides with a target such as Au, Pt, or Pd to eject metal atoms from the target and deposit the metal atoms on a stainless steel substrate coated with an acid-resistant material. The sputtering conditions are not particularly limited to a noble metal, and ordinary conditions are employed.
However, since Au, Pt, Pd or the like is used for the target, it is preferable to increase the adhesion efficiency by shortening the distance from the target to the stainless steel substrate as much as possible.
When Au plating is performed by an electroplating method, for example, a gold potassium cyanide bath is used. In the case of Pt plating by an electroplating method, a plating bath such as a dinitrodiamine platinum salt bath and a potassium tetranitroplatinate bath is used.
The dinitrodiamine platinum salt bath is preferable because of its high use efficiency. Pd plating is an effective plating in consideration of cost reduction, since the Pd base metal is 1 / to 1 / of Au and exhibits electrical contact resistance and corrosion resistance comparable to Au. Plating metals such as Au, Pt, and Pd have good conductivity and excellent acid resistance, and maintain a sufficiently low contact resistance with an extremely thin film thickness even in a low pH environment where a fuel cell separator is exposed. I do. Here, since elution of metal ions from the stainless steel plate is prevented by the acid-resistant coating, it is sufficient for the conductive coating to have a function of exclusively reducing contact resistance. Therefore, unlike the case where a film such as Au, Pt, Pd or the like is directly formed on a stainless steel plate, the conductive film can be made sufficiently thin (specifically, 0.1 μm or less), and the expensive Au, Pt, Pd, etc. can be consumed. By reducing the amount, the increase in cost can be suppressed. Furthermore, even if the conductive film is formed in an island shape, the contact resistance required for the fuel cell separator is reduced.

【0017】導電性皮膜は、耐酸性皮膜に連続して形成
することが好ましい。たとえば、耐酸性皮膜形成用ター
ゲット及び導電性皮膜形成用ターゲットをセットしたス
パッタリング装置の真空チャンバにステンレス鋼板を装
入し、耐酸性皮膜形成用ターゲットを用いたスパッタリ
ングを所定時間継続した後で、導電性皮膜形成用ターゲ
ットを用いたスパッタリングに切り替えるとき、耐酸性
皮膜及び導電性皮膜が連続して形成される。このよう
に、同じ真空チャンバで耐酸性皮膜及び導電性皮膜を形
成するとき、真空を破らないで処理できることから工程
的,コスト的に有利であることは勿論、耐酸性皮膜の表
面に酸化皮膜が生成することが抑えられ、耐酸性皮膜に
対する導電性皮膜の密着性が向上する。その結果、加工
性にも優れたセパレータ用ステンレス鋼板が得られる。
It is preferable that the conductive film is formed continuously with the acid-resistant film. For example, a stainless steel plate is charged into a vacuum chamber of a sputtering apparatus in which a target for forming an acid-resistant film and a target for forming a conductive film are set, and sputtering using the target for forming an acid-resistant film is continued for a predetermined time. When switching to sputtering using a target for forming a conductive film, an acid-resistant film and a conductive film are continuously formed. As described above, when forming the acid-resistant film and the conductive film in the same vacuum chamber, the process can be performed without breaking the vacuum, which is advantageous in terms of process and cost, and of course, the oxide film is formed on the surface of the acid-resistant film. Formation is suppressed, and the adhesion of the conductive film to the acid-resistant film is improved. As a result, a stainless steel plate for a separator having excellent workability is obtained.

【0018】[0018]

【実施例】ステンレス鋼基材として、SUS316L
BA仕上げ材(C:0.02重量%,Si:0.56重
量%,Mn:1.7重量%,Ni:12.9重量%,C
r:17.3重量%,Mo:2.4重量%,Cu:0.
09重量%)を使用した。ステンレス鋼板を脱脂し、1
0%HCl水溶液に2秒浸漬する酸洗を施した。次い
で、Taをターゲットとして配置した真空チャンバに酸
洗後のステンレス鋼板を装入した。流量300sccm
でArガスを流し、メインバルブを調節して真空チャン
バの雰囲気圧を真空度6×10-2Paに維持した。次い
で、陰極スパッタリングを10分間継続してステンレス
鋼表面の酸化膜を除去した後、陽極スパッタリングに切
り替えてTa基板を5分間スパッタリングした。その結
果、ステンレス鋼板の表面に膜厚1μmのTa皮膜が形
成された。Ta皮膜を形成した後、真空チャンバ内のタ
ーゲットをAuに切り替え、膜厚0.03μmのAuめ
っき層をTa皮膜の上に設けた。
[Example] SUS316L as a stainless steel base material
BA finishing material (C: 0.02% by weight, Si: 0.56% by weight, Mn: 1.7% by weight, Ni: 12.9% by weight, C
r: 17.3% by weight, Mo: 2.4% by weight, Cu: 0.
09% by weight). Degreasing stainless steel plate, 1
Pickling was performed by dipping in a 0% HCl aqueous solution for 2 seconds. Next, the pickled stainless steel plate was placed in a vacuum chamber in which Ta was placed as a target. Flow rate 300sccm
And the main valve was adjusted to maintain the atmospheric pressure of the vacuum chamber at a degree of vacuum of 6 × 10 −2 Pa. Next, the cathode sputtering was continued for 10 minutes to remove the oxide film on the stainless steel surface, and then switched to anodic sputtering, and the Ta substrate was sputtered for 5 minutes. As a result, a 1 μm-thick Ta film was formed on the surface of the stainless steel plate. After forming the Ta film, the target in the vacuum chamber was switched to Au, and an Au plating layer having a thickness of 0.03 μm was provided on the Ta film.

【0019】Ta皮膜及びAu皮膜が形成されたステン
レス鋼板から試験片を切り出し、耐酸性試験及び接触抵
抗試験に供した。比較のため、無垢のステンレス鋼板,
Ta皮膜のみを形成したステンレス鋼板及びAu皮膜の
みを形成したステンレス鋼板についても同様に試験し
た。耐酸性試験では、浴温90℃,pH2の硫酸水溶液
に168時間浸漬し、浸漬前後の重量変化から試験片の
腐食減量を測定した。接触抵抗試験では、試験片に荷重
10kg/cm2でカーボン電極材を接触させ、両者間
の接触抵抗を測定した。
A test piece was cut out from a stainless steel plate on which a Ta film and an Au film were formed, and subjected to an acid resistance test and a contact resistance test. For comparison, a solid stainless steel plate,
The same test was performed on a stainless steel sheet having only a Ta film and a stainless steel sheet having only an Au film. In the acid resistance test, the specimen was immersed in a sulfuric acid aqueous solution having a bath temperature of 90 ° C. and a pH of 168 hours, and the weight loss of the test piece was measured from the weight change before and after the immersion. In the contact resistance test, the test piece was brought into contact with a carbon electrode material at a load of 10 kg / cm 2 , and the contact resistance between the two was measured.

【0020】表1の調査結果にみられるように、Ta皮
膜のある基材(試験番号2,3)では腐食減量が実質的
にゼロであった。他方、無垢のステンレス鋼基材(試験
番号1)では金属イオンが溶出しており、金属イオンの
溶出はAu皮膜のみを形成した場合(試験番号4)にも
検出された。しかし、Ta皮膜のみを設けた基材(試験
番号2)では、接触抵抗が高く、燃料電池用セパレータ
として多数を重ね合せたときにジュール熱による損失が
大きくなることが予想された。これに対して、Ta皮膜
及びAu皮膜を形成した場合(試験番号3)には接触抵
抗が大幅に下がっており、燃料電池用セパレータとして
の要求特性を十分に満足することが判った。しかも、T
a皮膜を介して形成されたAu皮膜はステンレス鋼基材
に対する密着性が良好で、穿孔,曲げ加工等によってス
テンレス鋼板をセパレータ形状に加工してもステンレス
鋼基材からTa皮膜及びAu皮膜が剥離しなかった。し
たがって、成形後のセパレータにおいても、表1に示す
優れた低接触抵抗及び耐酸性が維持された。
As can be seen from the investigation results in Table 1, the substrate having a Ta film (test numbers 2 and 3) had substantially zero corrosion loss. On the other hand, metal ions were eluted from the solid stainless steel substrate (test number 1), and the elution of metal ions was detected even when only the Au film was formed (test number 4). However, the substrate provided with only the Ta film (Test No. 2) had a high contact resistance, and it was expected that the loss due to Joule heat would increase when a large number of fuel cell separators were stacked. On the other hand, when the Ta film and the Au film were formed (Test No. 3), the contact resistance was significantly reduced, and it was found that the required characteristics as a fuel cell separator were sufficiently satisfied. And T
The Au film formed through the a film has good adhesion to the stainless steel substrate, and the Ta film and the Au film are separated from the stainless steel substrate even when the stainless steel plate is processed into a separator shape by punching, bending, or the like. Did not. Therefore, excellent low contact resistance and acid resistance shown in Table 1 were maintained in the separator after molding.

【0021】 [0021]

【0022】[0022]

【発明の効果】以上に説明したように、本発明のセパレ
ータは、基材として使用するステンレス鋼板に耐酸性皮
膜を介して導電性皮膜を形成しているので、燃料電池の
強酸性雰囲気に曝された場合でも金属イオンの溶出がな
く、ジュール発熱による損失の原因である接触抵抗を十
分低い値に抑えている。そのため、多数のセルを積層し
た構造をもつ低温型燃料電池用のセパレータとして使用
するとき、強酸性雰囲気においても腐食が少ない優れた
耐久性を示すと共に、多数のセルを積層したときに発生
しがちな熱損失やプロトンの輸送効率低下を抑制し、発
電効率の高い燃料電池が得られる。
As described above, since the separator of the present invention has a conductive film formed on a stainless steel plate used as a base material through an acid-resistant film, the separator is exposed to a strongly acidic atmosphere of a fuel cell. In this case, no metal ions are eluted, and the contact resistance, which is a cause of loss due to Joule heat, is suppressed to a sufficiently low value. Therefore, when used as a separator for a low-temperature fuel cell having a structure in which a large number of cells are stacked, it exhibits excellent durability with little corrosion even in a strongly acidic atmosphere, and is generated when a large number of cells are stacked. Thus, a fuel cell with high power generation efficiency can be obtained by suppressing heat loss and reduction in proton transport efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の固体高分子膜を電解質として使用した
燃料電池の内部構造を説明する断面図(a)及び分解斜
視図(b)
FIG. 1 is a sectional view (a) and an exploded perspective view (b) illustrating an internal structure of a fuel cell using a conventional solid polymer membrane as an electrolyte.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 芳和 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 (72)発明者 高橋 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 八神 裕一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA06 BB04 CC03 CC08 EE02 EE08 EE12  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshikazu Morita 5 Ishizu Nishimachi, Sakai City, Osaka Nisshin Steel Co., Ltd. (72) Inventor Minoru Saito 5 Ishizu Nishimachi 5 Sakai City, Osaka Nissin Steel Co., Ltd. Within the Technical Research Institute (72) Inventor Takeshi Takahashi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yuichi Yagami 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H026 AA06 BB04 CC03 CC08 EE02 EE08 EE12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼を基材とし、基材表面にT
a,Zr,Nb,Ti,Ni−Cr合金から選ばれた耐
酸性皮膜が形成され、該耐酸性皮膜の上にAu,Pt,
Pdから選ばれた導電性皮膜が形成されているステンレ
ス鋼製低温型燃料電池用セパレータ。
1. A stainless steel base material having T
An acid-resistant film selected from a, Zr, Nb, Ti, and Ni-Cr alloy is formed, and Au, Pt,
A stainless steel low-temperature fuel cell separator on which a conductive film selected from Pd is formed.
JP27160099A 1999-09-27 1999-09-27 Stainless steel cryogenic fuel cell separator Withdrawn JP2001093538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27160099A JP2001093538A (en) 1999-09-27 1999-09-27 Stainless steel cryogenic fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27160099A JP2001093538A (en) 1999-09-27 1999-09-27 Stainless steel cryogenic fuel cell separator

Publications (1)

Publication Number Publication Date
JP2001093538A true JP2001093538A (en) 2001-04-06

Family

ID=17502347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27160099A Withdrawn JP2001093538A (en) 1999-09-27 1999-09-27 Stainless steel cryogenic fuel cell separator

Country Status (1)

Country Link
JP (1) JP2001093538A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367622A (en) * 2001-06-04 2002-12-20 Nisshin Steel Co Ltd Separator for low temperature type fuel cell and manufacturing method of the same
WO2003028134A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
WO2003028133A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell
WO2003034525A1 (en) * 2001-10-10 2003-04-24 Nippon Metal Industry Co., Ltd. Solid polymer electrolyte type fuel cell-use separator and production method therefor
WO2003083980A1 (en) * 2002-03-29 2003-10-09 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and manufacturing method thereof
JP2005529466A (en) * 2002-06-05 2005-09-29 ゼネラル・モーターズ・コーポレーション Au ultra-low loading for stainless steel bipolar plate plates
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
WO2006082734A1 (en) * 2005-02-01 2006-08-10 Neomax Materials Co., Ltd. Separator for fuel cell and method for manufacturing same
DE10243349B4 (en) * 2001-09-19 2007-06-14 Honda Giken Kogyo K.K. Separator for a fuel cell and method of making the same
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
JP2008507824A (en) * 2004-07-20 2008-03-13 ゼネラル・モーターズ・コーポレーション High stability bipolar plate
WO2008059950A1 (en) 2006-11-16 2008-05-22 Neomax Materials Co., Ltd. Fuel cell separator and method for producing the same
WO2008075591A1 (en) 2006-12-21 2008-06-26 Kabushiki Kaisha Kobe Seiko Sho Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
WO2008126525A1 (en) 2007-04-09 2008-10-23 Kabushiki Kaisha Kobe Seiko Sho Metallic separator for fuel cell and process for producing the metallic separator
JP2008277287A (en) * 2007-04-05 2008-11-13 Kobe Steel Ltd Manufacturing method of metallic separator for fuel cell
JP2009093825A (en) * 2007-10-04 2009-04-30 Hitachi Cable Ltd Current-collecting composite plate for fuel cell, and fuel cell
DE102009056908A1 (en) 2009-02-06 2010-08-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Corrosion resistant film for a fuel cell separator and fuel cell separator
US7851107B2 (en) 2002-12-04 2010-12-14 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and production method therefor
JP2015000989A (en) * 2013-06-13 2015-01-05 東洋鋼鈑株式会社 Palladium plating-coated material and method of producing palladium plating-coated material
JP2017503082A (en) * 2013-12-02 2017-01-26 ダウ グローバル テクノロジーズ エルエルシー Precipitation hardening of tantalum coated metals
US11843136B2 (en) 2020-10-30 2023-12-12 Honda Motor Co., Ltd. Fuel cell separator and method of manufacturing fuel cell separator

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367622A (en) * 2001-06-04 2002-12-20 Nisshin Steel Co Ltd Separator for low temperature type fuel cell and manufacturing method of the same
JP4629914B2 (en) * 2001-06-04 2011-02-09 日新製鋼株式会社 Low temperature fuel cell separator and method for producing the same
WO2003028134A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
WO2003028133A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell
US7014938B2 (en) 2001-09-19 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell
DE10297250B4 (en) * 2001-09-19 2009-07-09 Honda Giken Kogyo K.K. Separator for a fuel cell and method for its production
US7166386B2 (en) 2001-09-19 2007-01-23 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
DE10243349B4 (en) * 2001-09-19 2007-06-14 Honda Giken Kogyo K.K. Separator for a fuel cell and method of making the same
WO2003034525A1 (en) * 2001-10-10 2003-04-24 Nippon Metal Industry Co., Ltd. Solid polymer electrolyte type fuel cell-use separator and production method therefor
WO2003083980A1 (en) * 2002-03-29 2003-10-09 Honda Giken Kogyo Kabushiki Kaisha Metal separator for fuel cell and manufacturing method thereof
JP2005529466A (en) * 2002-06-05 2005-09-29 ゼネラル・モーターズ・コーポレーション Au ultra-low loading for stainless steel bipolar plate plates
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
DE10356653C5 (en) 2002-12-04 2022-09-08 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and manufacturing method for the same
US7851107B2 (en) 2002-12-04 2010-12-14 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and production method therefor
JP2008507824A (en) * 2004-07-20 2008-03-13 ゼネラル・モーターズ・コーポレーション High stability bipolar plate
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
JP4660161B2 (en) * 2004-10-29 2011-03-30 大日本印刷株式会社 Manufacturing method of separator for fuel cell
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
KR101195180B1 (en) 2005-02-01 2012-10-29 가부시키가이샤 네오맥스 마테리아르 Separator for fuel cell and method for manufacturing same
JP5226302B2 (en) * 2005-02-01 2013-07-03 株式会社Neomaxマテリアル Manufacturing method of fuel cell separator
WO2006082734A1 (en) * 2005-02-01 2006-08-10 Neomax Materials Co., Ltd. Separator for fuel cell and method for manufacturing same
US8338058B2 (en) 2005-02-01 2012-12-25 Neomax Materials Co., Ltd. Separator for fuel cell having intermediate layer and method for manufacturing same
JPWO2006082734A1 (en) * 2005-02-01 2008-06-26 株式会社Neomaxマテリアル Fuel cell separator and method for producing the same
US8334078B2 (en) 2006-11-16 2012-12-18 Neomax Materials Co., Ltd. Fuel cell separator and method for producing the same
WO2008059950A1 (en) 2006-11-16 2008-05-22 Neomax Materials Co., Ltd. Fuel cell separator and method for producing the same
US8231990B2 (en) 2006-12-21 2012-07-31 Kobe Steel, Ltd. Alloy film for a metal separator for a fuel cell, a manufacturing method thereof and a target material for sputtering, as well as a metal separator, and a fuel cell
WO2008075591A1 (en) 2006-12-21 2008-06-26 Kabushiki Kaisha Kobe Seiko Sho Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
KR101107862B1 (en) 2006-12-21 2012-01-31 가부시키가이샤 고베 세이코쇼 Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP2008277287A (en) * 2007-04-05 2008-11-13 Kobe Steel Ltd Manufacturing method of metallic separator for fuel cell
US8298723B2 (en) 2007-04-09 2012-10-30 Kobe Steel, Ltd. Metal separator for fuel cell and manufacturing method thereof
WO2008126525A1 (en) 2007-04-09 2008-10-23 Kabushiki Kaisha Kobe Seiko Sho Metallic separator for fuel cell and process for producing the metallic separator
US8039171B2 (en) 2007-10-04 2011-10-18 Hitachi Cable, Ltd. Current-collecting composite plate for fuel cell and fuel cell fabricated using same
JP2009093825A (en) * 2007-10-04 2009-04-30 Hitachi Cable Ltd Current-collecting composite plate for fuel cell, and fuel cell
KR101117417B1 (en) * 2009-02-06 2012-03-13 가부시키가이샤 고베 세이코쇼 Corrosion resistant film for fuel cell separator and fuel cell separator
JP2010182593A (en) * 2009-02-06 2010-08-19 Kobe Steel Ltd Corrosion resistant film for fuel cell separator, and fuel cell separator
DE102009056908A1 (en) 2009-02-06 2010-08-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Corrosion resistant film for a fuel cell separator and fuel cell separator
JP2015000989A (en) * 2013-06-13 2015-01-05 東洋鋼鈑株式会社 Palladium plating-coated material and method of producing palladium plating-coated material
US10087528B2 (en) 2013-06-13 2018-10-02 Toyo Kohan Co., Ltd. Palladium plate coated material and method of producing palladium plate coated material
JP2017503082A (en) * 2013-12-02 2017-01-26 ダウ グローバル テクノロジーズ エルエルシー Precipitation hardening of tantalum coated metals
US11843136B2 (en) 2020-10-30 2023-12-12 Honda Motor Co., Ltd. Fuel cell separator and method of manufacturing fuel cell separator

Similar Documents

Publication Publication Date Title
JP2001093538A (en) Stainless steel cryogenic fuel cell separator
EP2157645B1 (en) Metallic separator for fuel cell and process for producing the metallic separator
CN101019257B (en) Enhanced stability bipolar plate
US8440368B2 (en) Stainless steel separator for fuel cell having M/MNx and MOyNz layer and method for manufacturing the same
KR101214511B1 (en) Fuel cell separator and method for manufacturing the same
JPWO2006082734A1 (en) Fuel cell separator and method for producing the same
US7070877B2 (en) Stainless steel separator for low-temperature fuel cell
EP2031687B1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP3667679B2 (en) Stainless steel separator for low-temperature fuel cells
JP2012043775A (en) Method for manufacturing titanic separator for fuel cell
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
JP2000323152A (en) Separator for stainless steel low-temperature type fuel cell and manufacture thereof
TWI640122B (en) Base material stainless steel plate for steel plate of fuel cell separator and manufacturing method thereof
JP2004139951A (en) Separator for fuel cell and its manufacturing method
JPH11219713A (en) Separator for low-temperature fuel cell
JP2000309854A (en) Austenitic stainless steel for current-carrying electric parts, and fuel cell
JP2000328205A (en) Ferritic stainless steel for conductive electric parts and fuel cell
JP4516628B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4568977B2 (en) Fuel cell separator
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5180932B2 (en) Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
JP6988568B2 (en) Stainless steel base material
WO2003083980A1 (en) Metal separator for fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205