JP2004071321A - Metal separator for fuel cell and manufacturing method therefor - Google Patents

Metal separator for fuel cell and manufacturing method therefor Download PDF

Info

Publication number
JP2004071321A
JP2004071321A JP2002228251A JP2002228251A JP2004071321A JP 2004071321 A JP2004071321 A JP 2004071321A JP 2002228251 A JP2002228251 A JP 2002228251A JP 2002228251 A JP2002228251 A JP 2002228251A JP 2004071321 A JP2004071321 A JP 2004071321A
Authority
JP
Japan
Prior art keywords
separator
gold
contact resistance
fuel cell
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228251A
Other languages
Japanese (ja)
Other versions
JP3930393B2 (en
Inventor
Takashi Kuwayama
桑山 貴司
Masao Utsunomiya
宇都宮 政男
Makoto Tsuji
辻 誠
Teruyuki Otani
大谷 輝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002228251A priority Critical patent/JP3930393B2/en
Publication of JP2004071321A publication Critical patent/JP2004071321A/en
Application granted granted Critical
Publication of JP3930393B2 publication Critical patent/JP3930393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reasonable cost fuel cell separator which is made of a stainless steel member whose part is plated, which has excellent contact resistance with a gas diffusion electrode, and which has excellent corrosion resistance to realize required life time as a separator. <P>SOLUTION: Conductive inclusion is exposed through a surface having the corrosion resistance, and surface area where the conductive inclusion is not exposed is covered with gold. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子燃料電池の構成要素であって、燃料電池のガス通路を形成する金属製セパレータおよびその製造方法に係り、特に、電極構造体との間における良好な接触抵抗性を示すとともに、優れた耐食性を確保した金属製セパレータの製造技術に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane ElectrodeAssembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、カソードおよびアノードを構成する一対のガス拡散電極の間にイオン交換樹脂などからなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、アノード側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、カソード側のガス拡散電極に面するガス流路に酸素や空気などの酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、アノード側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子をカソード側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、ステンレス鋼やチタン合金などの耐食性を有する金属材料からなる薄板をプレス加工して断面凹凸状に成形したものが挙げられる。
【0004】
【発明が解決しようとする課題】
このようなセパレータは、電極構造体から発電された電気を取り出すための端子として使用されるため、ガス拡散電極との接触抵抗が低いことが必要とされる。ステンレス鋼からなるセパレータを用いた場合、黒鉛系のセパレータを用いた場合に比べて電極構造体との接触抵抗が大きい。接触抵抗の増大は発電性能の低下につながるので、接触抵抗を低減させるために、例えばステンレス鋼の表面全域に金めっき等を施すことが提案されている。しかしながら、表面全域に金めっき等を施した場合にはコストが割高となる。このため、表面の一部に金めっき等を施してガス拡散電極との間における優れた接触抵抗性が得られるセパレータの開発が要請されていた。
【0005】
また、上記セパレータは、使用時に低pHの電解質膜と接触するとともに、カソード・アノード間にて相当な電池発電電位がかかるため、優れた耐食性を有することが必要とされる。ステンレス鋼のみからなるセパレータを用いた場合、耐食性は不十分である。耐食性の不良はセパレータの寿命の短縮につながるので、耐食性を向上させるために、例えば、ステンレス鋼の表面全域に金めっき等を施すことが提案されている。しかしながら、製造コストを割高とせずに十分な発電性能を示すめっき厚、例えば厚さ0.1μmとしたセパレータでは、その表面にピンホールが存在する。このため、使用環境下においてカソード側の金とアノード側のステンレス鋼との間で部分電池が形成される。セパレータ表面に占めるピンホールの割合は微少であるが、ピンホールに電流集中が生じて錆が発生する。これにより、上記セパレータはその必要とされる寿命を実現できないという問題があった。したがって、製造コストを割高なものとしないことを前提に、セパレータとして必要な寿命を実現できる優れた耐食性を有するセパレータの開発も要請されていた。
【0006】
よって本発明は、以上のような要請に鑑みてなされたものであり、製造コストが割高とならないように、ステンレス鋼材の一部にめっきを施すことを前提とした上で、ガス拡散電極との間における優れた接触抵抗性が得られるとともに、セパレータとして必要な寿命が実現される優れた耐食性を有する燃料電池用金属製セパレータおよびその製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の燃料電池用金属製セパレータは、耐食性を有する表面から導電性介在物が露出し、表面の導電性介在物が露出していない領域に金が被覆されていることを特徴としている。本発明のセパレータでは、耐食性を有する表面から露出した介在物が導電経路を形成する。このためこの燃料電池用金属製セパレータは、ガス拡散電極との間における優れた接触抵抗性を得ることができる。また本発明のセパレータは、上記表面の導電性介在物が露出していない領域に金を被覆した構成を採用している。例えば、母材となる表面を形成する金属材料に上記組成のステンレス鋼板を用いた場合、導電性介在物が露出する領域は、表面全域の約10〜20%となる。したがって本発明によれば、導電性介在物が露出していない面積率80〜90%の領域に金を被覆した部分めっきとすることで、母材そのものでは達成し得ないガス拡散電極との間における優れた接触抵抗性を得ることができる。また本発明では、導電性介在物が露出している面積率10〜20%の領域には金を被覆しないこととしている。このため、カソード側の金とアノード側の母材との間で部分電池が形成されて電流集中が発生した場合であっても、この電流の導電経路を上記10〜20%の面積率を有する導電性介在物に担わせることができる。このため、上記電流集中を十分に緩和して母材の溶出に基づく錆の発生を確実に防止することができる。したがって、本発明によれば、セパレータとして必要な寿命を実現し得る優れた耐食性を確保することができる。
【0008】
なお、上記耐食性を有する表面を形成する金属材料としては、導電経路を形成する導電性介在物が金属組織中に分散するステンレス鋼板を用いることができる。具体的には、例えば次の組成を有するステンレス鋼板を用いることが望ましい。すなわち、C:0.15wt%以下、Si:0.01〜1.5wt%、Mn:0.01〜2.5wt%、P:0.035wt%以下、S:0.01wt%以下、Al:0.001〜0.2wt%、N:0.3wt%以下、Cu:0〜3wt%、Ni:7〜50wt%、Cr:17〜30wt%、Mo:0〜7wt%、残部がFe,Bおよび不可避的不純物であり、かつ、Cr,MoおよびBが次式を満足するものである。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17
このステンレス鋼板を使用した場合には、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物として表面に析出し、これら硼化物が導電性介在物となる。
【0009】
このような燃料電池用金属製セパレータにおいては、導電性介在物を表面から突出させることが望ましい。この形態によれば、導電性介在物がガス拡散電極に接触する割合が増大するので、ガス拡散電極との間における接触抵抗をさらに低減することができる。
【0010】
次に、本発明の燃料電池用金属製セパレータの製造方法は、耐食性を有する表面から導電性介在物が露出する素材板の表面に、下地処理を施さず酸性浴にて金めっきを行うことを特徴としている。本発明では、耐食性を有する表面から露出した介在物に導電経路としての役割を担わせ、ガス拡散電極との間における優れた接触抵抗性を得ることができる。また、表面の導電性介在物が露出していない領域に金を被覆することで、母材そのものでは達成し得ないガス拡散電極との間における優れた接触抵抗性を得ることもできる。さらに、導電性介在物が露出している領域には金を被覆しないことで、金と母材との間に生じ得る電流集中を導電性介在物に負担させて緩和し、錆の発生を確実に防止すべく優れた耐食性を実現することができる。なお、上述した理由により、導電性介在物を表面から突出させることが望ましい。
【0011】
さらに本発明では、下地処理を施さずに直接金めっきを施している。従来は、母材と金との密着性を高めるためにニッケルめっきによる下地処理を行っていたが、金めっきにピンホールなどの欠陥が生じていると、下地処理の成分であるニッケルが溶出し易くなっていた。このため、従来のセパレータには金めっきを施しているにもかかわらず耐食性が低いという問題があった。また、ニッケルの溶出は電解質膜のイオン交換量の低下や金めっきの剥離の促進させることから、接触抵抗の増大を招くといった問題もあった。本発明では、下地処理を施さず素材板の表面に直接めっきを行うことにより、金めっきにピンホールなどの欠陥があっても、下地成分の溶出が起こらない。このため金めっきが剥離しにくくなり、ガス拡散電極との間における接触抵抗を低く抑えることができる。なお、本発明では、金めっきを酸性浴で行うことで、母材に対して金の密着性を高めることができる。
【0012】
【実施例】
次に、本発明の実施例を説明する。
A.セパレータの製造
[実施例および比較例1〜6]
表1に示す各母材により、実施例および比較例1〜6の各セパレータ用の鋼板をそれぞれ製造した。なお、表1に示す開発材とは、表2に示す各成分を有し、残部がFeと不可避的不純物であるステンレス素材をいう。次いで、これら鋼板を厚さ0.2mmまで圧延し圧延鋼を得た。さらに開発材を母材とした実施例および比較例5,6については、これら圧延鋼の両面に40℃に保持したボーメ度40゜Be(重液用ボーメ度)の塩化第二鉄溶液のシャワーを吹き付け圧1kg/cmで30秒間吹き付けて化学的エッチングを行い、圧延鋼の表面に導電性介在物を露出させてセパレータ用の素材板をそれぞれ得た。次に、これら素材板から100mm×100mmの正方形状の薄板をそれぞれ必要枚数切り出して得た。これら薄板をプレス成形して、図1に示すセパレータの成形板をそれぞれ得た。これら成形板は、中央に断面凹凸状の発電部を有し、その周囲に平坦な縁部を有している。
【0013】
【表1】

Figure 2004071321
【0014】
【表2】
Figure 2004071321
【0015】
さらに、各成形板の両面を不動態化処理して成形板表面に強固な酸化被膜を形成した。不動態化処理は、成形板をアセトンで10分間脱脂洗浄後、30℃に保持した10wt%硝酸液浴の中に10分間浸漬することによって行った。不動態化処理後は常温水による10分間の洗浄を2回行い、この後乾燥させた。
【0016】
次に、比較例1以外の成形板の両面に金めっきを行った。比較例2〜6の成形板については表1に示す条件(めっき浴への浸漬時間)下で、30℃に保持し、電流密度が1.0A/dmであり、pHが0.5〜0.9に設定された青化金(2g/L)のめっき浴に浸漬することにより行った。なお、実施例の成形板については、マトリックス(母材表面の導電性介在物が露出していない領域)上にのみ金をめっきするため、予めマトリックス上にのみ金をめっきする方法について検討した。その結果、表3に示すように予め金ストライクめっきを施してから金めっきを施す場合と、金めっきのみを施す場合とについて、好適なめっき浴が判明した。具体的には金ストライクめっきを施すか否かに関わらず、酸性浴で電流密度が2.0A/dm以下であり、浸漬時間が12分以下であれば、マトリックスのみに金をめっきすることができるとの知見を得た。そこで、発明者らは、実施例の成形板については、電流密度0.5A/dmとするとともに、pHが3〜6に設定された青化金(2g/L)のめっき浴に5分浸漬した。最後に、金めっきを施したものについては、常温水による10分間の水洗を2回行い、実施例および比較例1〜6の各セパレータを得た。
【0017】
【表3】
Figure 2004071321
【0018】
B.表面の観察
上記実施例のセパレータの表面を走査電子顕微鏡で観察した。図2はそのSEM写真であり、金めっきがマトリックス上のみに析出し、その他の部分には、導電性介在物が析出していることが判る。
【0019】
C.めっきの面積率の測定
1000倍のSEM写真から粒子状の金の被覆面積を画像解析ソフトを用いて求め、金属間化合物の面積に対する金の面積を計算によって求めた。各セパレータについて任意に30カ所を選択して測定した平均値を表1に併記する。
【0020】
D.初期の接触抵抗の測定
実施例および比較例1〜6の7種類のセパレータにつき、次の方法で初期の接触抵抗を測定した。2枚のセパレータで電極構造体のガス拡散層の表面を構成するカーボンペーパーを挟み、これを2枚の電極板で挟み、さらに電極板に対するセパレータの面圧が10kg/cmになるように荷重をかけ、試験体をセットした。そして、2枚のセパレータ間に電流を流し、セパレータ間の電圧降下から接触抵抗を求めた。その結果を表4に示す。同表によれば、実施例のセパレータは、めっきの面積率が比較例2,4,5,6のセパレータに比して低いにも関わらず、これらのセパレータと同等の優れた接触抵抗性を示す。これは、金めっきをマトリックス上のみに施したことで、接触抵抗性の不良な母材には導電経路を担わせず、金および導電性介在物の双方に導電経路を負担させ、優れた接触抵抗性を実現したからである。これに対し、比較例1,3のセパレータについては、金めっきの面積率が皆無かまたは著しく低いものであるため、接触抵抗性の不良な母材に導電経路を担わせなければならず、このため優れた接触抵抗性を得ることはできない。
【0021】
【表4】
Figure 2004071321
【0022】
E.硫酸浸漬試験後の接触抵抗の測定
実施例および比較例1〜6の7種類の未使用のセパレータのそれぞれを、90℃、pH3の硫酸に1000時間浸漬した。次いで、各セパレータの硫酸浸漬試験後の接触抵抗を上記したように測定した。その結果を表4に併記する。同表によれば、実施例のセパレータは、いずれの比較例のセパレータに対しても、同等以上の優れた接触抵抗値示すことが判る。これは、カソード側の金とアノード側の母材との間で部分電池が形成されて電流集中が発生した場合であっても、この電流の導電経路を15%の面積率を有する導電性介在物に担わせることができるからである。このため、上記電流集中を十分に緩和して母材の溶出に基づく錆の発生を確実に防止することができる。これに対し、比較例2,5,6のセパレータについては、金の面積率が高過ぎることから上記部分電池が形成され易い。しかも金めっきがマトリックス上に限らず、導電性介在部上にも施されているため、電流集中を緩和すべき導電性介在物が金めっきにより消失している箇所がある。このため、比較例2,5,6のセパレータについては、電流集中により母材が溶出し、錆が発生することから優れた接触抵抗性が実現できない。なお、比較例1,3のセパレータについては初期の接触抵抗が高いために優れた接触抵抗性を実現することができない。また、比較例4のセパレータについては、金めっきの面積率が比較例2,5,6のセパレータに比して多少低いものであるが、めっき部分がマトリックスに限定されていないため、実施例のセパレータよりも優れた接触抵抗性が実現できない。
【0023】
F.塩水噴霧−乾燥試験後の錆の観察
実施例および比較例1〜6の7種類の未使用のセパレータのそれぞれに塩水を12時間噴霧した後12時間乾燥させるサイクルを250サイクル繰り返した。その後、各セパレータの表面を目視にて観察し、錆の発生の有無を調査した。その結果を表4に併記する。同表によれば、初期の接触抵抗に比して塩水噴霧−乾燥試験後の接触抵抗が大幅に増大した比較例2,5,6については錆の発生が確認された。これは、上述した部分電池の形成による母材の溶出が原因である。これに対し、初期の接触抵抗に比して塩水噴霧−乾燥試験後の接触抵抗が比較的増大しなかった実施例および比較例1,3,4については錆の発生は確認されなかった。
【0024】
【発明の効果】
以上説明したように、本発明によれば、耐食性を有する表面から導電性介在物を露出させ、表面の導電性介在物が露出していない領域に金を被覆させることで、燃料電池用金属製セパレータの優れた接触抵抗性および耐食性を実現することができる。よって本発明は、好適な燃料電池用金属製セパレータを製造することができる点で有望である。
【図面の簡単な説明】
【図1】セパレータの成形板の一例を示す平面図である。
【図2】実施例のセパレータの表面のSEM写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a component of a polymer electrolyte fuel cell, and relates to a metal separator forming a gas passage of a fuel cell and a method for manufacturing the same, and particularly, exhibits a good contact resistance with an electrode structure. In addition, the present invention relates to a technique for manufacturing a metal separator having excellent corrosion resistance.
[0002]
[Prior art]
The polymer electrolyte fuel cell is configured as a fuel cell stack by stacking a separator in which a separator is stacked on both sides of a plate-shaped electrode structure (MEA: Membrane Electrode Assembly), and a plurality of units are stacked. . The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is interposed between a pair of gas diffusion electrodes constituting a cathode and an anode. The gas diffusion electrode has a gas diffusion layer formed outside the electrode catalyst layer in contact with the electrolyte membrane. Further, the separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for flowing gas between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, flows through the gas flow path facing the gas diffusion electrode on the anode side, and oxidizes oxygen and air into the gas flow path facing the gas diffusion electrode on the cathode side. When an inert gas flows, an electrochemical reaction occurs to generate electricity.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of the hydrogen gas on the anode side to the external circuit, while supplying electrons from the external circuit to the cathode side. Therefore, a conductive material made of graphite or metal material is used for the separator. Especially, the metal material has excellent mechanical strength and can be made lighter and more compact by making it thinner. It is considered to be advantageous in that Examples of the metal separator include a metal separator formed by pressing a thin plate made of a corrosion-resistant metal material such as stainless steel or a titanium alloy into an uneven shape.
[0004]
[Problems to be solved by the invention]
Since such a separator is used as a terminal for extracting electricity generated from the electrode structure, it is required that the contact resistance with the gas diffusion electrode be low. When a separator made of stainless steel is used, the contact resistance with the electrode structure is higher than when a graphite-based separator is used. Since an increase in contact resistance leads to a decrease in power generation performance, it has been proposed to apply gold plating or the like to the entire surface of stainless steel, for example, in order to reduce contact resistance. However, when gold plating or the like is applied to the entire surface, the cost is relatively high. For this reason, there has been a demand for the development of a separator in which a portion of the surface is plated with gold or the like to obtain excellent contact resistance with a gas diffusion electrode.
[0005]
In addition, the separator is required to have excellent corrosion resistance because it comes into contact with the low pH electrolyte membrane during use and a considerable battery power generation potential is applied between the cathode and the anode. When a separator made of only stainless steel is used, the corrosion resistance is insufficient. Since poor corrosion resistance leads to shortening of the life of the separator, it has been proposed to apply, for example, gold plating to the entire surface of stainless steel in order to improve the corrosion resistance. However, a separator having a plating thickness, for example, 0.1 μm in thickness, which shows sufficient power generation performance without increasing the manufacturing cost has pinholes on its surface. For this reason, a partial battery is formed between gold on the cathode side and stainless steel on the anode side under the use environment. Although the proportion of pinholes on the separator surface is very small, current concentration occurs in the pinholes and rust occurs. As a result, there is a problem that the required life of the separator cannot be realized. Therefore, on the premise that the production cost is not increased, there has been a demand for the development of a separator having excellent corrosion resistance capable of realizing a required life as a separator.
[0006]
Therefore, the present invention has been made in view of the above demands, and on the assumption that plating is performed on a part of the stainless steel material, so that the manufacturing cost is not overly expensive, the gas diffusion electrode and It is an object of the present invention to provide a metal separator for a fuel cell, which has excellent contact resistance between the separators and excellent corrosion resistance in which the required life of the separator is realized, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The metal separator for a fuel cell according to the present invention is characterized in that conductive inclusions are exposed from the corrosion-resistant surface, and gold is coated on a region where the conductive inclusions are not exposed. In the separator of the present invention, the inclusions exposed from the corrosion-resistant surface form conductive paths. Therefore, the metal separator for a fuel cell can obtain excellent contact resistance with the gas diffusion electrode. Further, the separator of the present invention employs a configuration in which gold is coated on a region where the conductive inclusions on the surface are not exposed. For example, when a stainless steel sheet having the above composition is used as the metal material forming the surface serving as the base material, the area where the conductive inclusions are exposed is about 10 to 20% of the entire surface area. Therefore, according to the present invention, the area between 80% and 90% of the area where the conductive inclusions are not exposed is covered with gold to form a partial plating. Excellent contact resistance can be obtained. Further, in the present invention, gold is not coated on a region having an area ratio of 10 to 20% where the conductive inclusions are exposed. Therefore, even if a partial battery is formed between the gold on the cathode side and the base material on the anode side and current concentration occurs, the conductive path of this current has the area ratio of 10 to 20%. It can be carried by conductive inclusions. For this reason, it is possible to sufficiently alleviate the current concentration and to reliably prevent the generation of rust due to the elution of the base material. Therefore, according to the present invention, it is possible to secure excellent corrosion resistance that can achieve a required life as a separator.
[0008]
In addition, as the metal material forming the surface having corrosion resistance, a stainless steel sheet in which conductive inclusions forming conductive paths are dispersed in a metal structure can be used. Specifically, for example, it is desirable to use a stainless steel plate having the following composition. That is, C: 0.15 wt% or less, Si: 0.01 to 1.5 wt%, Mn: 0.01 to 2.5 wt%, P: 0.035 wt% or less, S: 0.01 wt% or less, Al: 0.001 to 0.2 wt%, N: 0.3 wt% or less, Cu: 0 to 3 wt%, Ni: 7 to 50 wt%, Cr: 17 to 30 wt%, Mo: 0 to 7 wt%, the balance being Fe, B And unavoidable impurities, and Cr, Mo and B satisfy the following formula.
Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17
When this stainless steel sheet is used, B precipitates on the surface as M 2 B and MB type borides, and M 23 (C, B) 6 type borides, and these borides become conductive inclusions. Become.
[0009]
In such a metal separator for a fuel cell, it is desirable that the conductive inclusions protrude from the surface. According to this aspect, the rate at which the conductive inclusion contacts the gas diffusion electrode increases, so that the contact resistance with the gas diffusion electrode can be further reduced.
[0010]
Next, the method for producing a metal separator for a fuel cell according to the present invention includes performing gold plating in an acidic bath without performing a base treatment on a surface of a material plate on which conductive inclusions are exposed from a surface having corrosion resistance. Features. In the present invention, the inclusions exposed from the corrosion-resistant surface can serve as conductive paths, and excellent contact resistance with the gas diffusion electrode can be obtained. In addition, by coating the surface of the surface where the conductive inclusions are not exposed with gold, it is possible to obtain excellent contact resistance with the gas diffusion electrode which cannot be achieved by the base material itself. Furthermore, by not covering the area where the conductive inclusions are exposed with gold, current concentration that may occur between the gold and the base material is reduced by burdening the conductive inclusions on the conductive inclusions, thereby ensuring the generation of rust. It is possible to realize excellent corrosion resistance in order to prevent corrosion. Note that, for the reasons described above, it is desirable that the conductive inclusions protrude from the surface.
[0011]
Further, in the present invention, the gold plating is directly performed without performing the base treatment. In the past, undercoating with nickel plating was performed to enhance the adhesion between the base metal and gold.However, if a defect such as a pinhole occurs in the gold plating, nickel, a component of the undercoating, elutes. It was easier. For this reason, there is a problem that the conventional separator has low corrosion resistance despite being plated with gold. In addition, the elution of nickel causes a decrease in the ion exchange amount of the electrolyte membrane and promotes peeling of the gold plating, so that there is a problem that the contact resistance is increased. In the present invention, by directly plating the surface of the material plate without performing the underlying treatment, even if the gold plating has a defect such as a pinhole, the elution of the underlying component does not occur. For this reason, it becomes difficult for the gold plating to peel off, and the contact resistance with the gas diffusion electrode can be suppressed low. In the present invention, by performing gold plating in an acidic bath, the adhesion of gold to the base material can be increased.
[0012]
【Example】
Next, examples of the present invention will be described.
A. Production of separator [Examples and Comparative Examples 1 to 6]
From the respective base materials shown in Table 1, the steel plates for the separators of the examples and comparative examples 1 to 6 were manufactured. The developed material shown in Table 1 refers to a stainless steel material having the components shown in Table 2 and the balance being Fe and inevitable impurities. Next, these steel sheets were rolled to a thickness of 0.2 mm to obtain rolled steel. Further, in Examples and Comparative Examples 5 and 6 using the developed material as a base material, a shower of a ferric chloride solution having a Baume degree of 40 ° Be (Baume degree for heavy liquid) maintained at 40 ° C. on both surfaces of the rolled steel. Was sprayed at a spray pressure of 1 kg / cm 2 for 30 seconds to perform chemical etching, thereby exposing the conductive inclusions on the surface of the rolled steel to obtain separator material plates. Next, a required number of square thin plates of 100 mm × 100 mm were cut out from these material plates. These thin plates were press-molded to obtain respective molded plates of the separator shown in FIG. These formed plates have a power generation section having a concave-convex section at the center and flat edges around the power generation section.
[0013]
[Table 1]
Figure 2004071321
[0014]
[Table 2]
Figure 2004071321
[0015]
Further, both surfaces of each molded plate were subjected to a passivation treatment to form a strong oxide film on the surface of the molded plate. The passivation treatment was performed by degrease and washing the molded plate with acetone for 10 minutes, and then immersing the molded plate in a 10 wt% nitric acid solution bath maintained at 30 ° C. for 10 minutes. After the passivation treatment, the substrate was washed twice with room temperature water for 10 minutes, and then dried.
[0016]
Next, gold plating was performed on both surfaces of the molded plate other than Comparative Example 1. The molded plates of Comparative Examples 2 to 6 were maintained at 30 ° C. under the conditions shown in Table 1 (immersion time in the plating bath), the current density was 1.0 A / dm 2 , and the pH was 0.5 to The test was performed by immersing in a plating bath of blue gold (2 g / L) set to 0.9. In the case of the molded plate of the example, gold was plated only on the matrix (the region where the conductive inclusions on the surface of the base material were not exposed). As a result, as shown in Table 3, suitable plating baths were found for the case where gold strike plating was performed before gold plating and the case where only gold plating was performed. Specifically, regardless of whether or not to apply gold strike plating, if the current density in the acidic bath is 2.0 A / dm 2 or less and the immersion time is 12 minutes or less, gold should be plated only on the matrix. I learned that I can do it. Then, the inventors set the current density to 0.5 A / dm 2 and set the pH of the molded plate of the example to a plating bath of blue gold (2 g / L) set to 3 to 6 for 5 minutes. Dipped. Finally, the gold-plated product was washed twice with normal-temperature water twice for 10 minutes to obtain the separators of Examples and Comparative Examples 1 to 6.
[0017]
[Table 3]
Figure 2004071321
[0018]
B. Observation of Surface The surface of the separator of the above example was observed with a scanning electron microscope. FIG. 2 is an SEM photograph showing that gold plating is deposited only on the matrix and that conductive inclusions are deposited on the other portions.
[0019]
C. Measurement of Area Ratio of Plating From the 1000 times SEM photograph, the area of gold-coated particles was determined using image analysis software, and the area of gold relative to the area of the intermetallic compound was determined by calculation. Table 1 also shows the average value of 30 measurements for each separator.
[0020]
D. Measurement of Initial Contact Resistance Initial contact resistance was measured by the following method for the seven types of separators of Examples and Comparative Examples 1 to 6. The carbon paper constituting the surface of the gas diffusion layer of the electrode structure is sandwiched between the two separators, sandwiched between the two electrode plates, and a load is applied so that the surface pressure of the separator against the electrode plates becomes 10 kg / cm 2. And set the specimen. A current was passed between the two separators, and the contact resistance was determined from the voltage drop between the separators. Table 4 shows the results. According to the table, the separators of the Examples have excellent contact resistance equivalent to those of the separators in spite of the fact that the area ratio of plating is lower than the separators of Comparative Examples 2, 4, 5, and 6. Show. This is because gold plating is applied only on the matrix, so that the base material with poor contact resistance does not carry a conductive path, but both the gold and conductive inclusions bear the conductive path, resulting in excellent contact. This is because resistance has been achieved. On the other hand, in the separators of Comparative Examples 1 and 3, since the area ratio of the gold plating is completely absent or extremely low, the base material having poor contact resistance must be made to carry a conductive path. Therefore, excellent contact resistance cannot be obtained.
[0021]
[Table 4]
Figure 2004071321
[0022]
E. FIG. Measurement of Contact Resistance after Sulfuric Acid Immersion Test Each of the seven types of unused separators of Examples and Comparative Examples 1 to 6 was immersed in sulfuric acid at 90 ° C. and pH 3 for 1000 hours. Next, the contact resistance of each separator after the sulfuric acid immersion test was measured as described above. The results are shown in Table 4. According to the table, it can be seen that the separators of the examples show the same or better contact resistance values than the separators of any of the comparative examples. This is because even if a partial battery is formed between the gold on the cathode side and the base material on the anode side and current concentration occurs, the conductive path of this current has a conductive area having an area ratio of 15%. This is because they can be carried by objects. For this reason, it is possible to sufficiently alleviate the current concentration and to reliably prevent the generation of rust due to the elution of the base material. On the other hand, in the separators of Comparative Examples 2, 5, and 6, the area ratio of gold is too high, and thus the partial battery is easily formed. In addition, since the gold plating is applied not only on the matrix but also on the conductive intervening portions, there are places where the conductive inclusions for reducing the current concentration have disappeared by the gold plating. For this reason, with respect to the separators of Comparative Examples 2, 5, and 6, the base material is eluted due to current concentration and rust is generated, so that excellent contact resistance cannot be realized. Note that the separators of Comparative Examples 1 and 3 cannot achieve excellent contact resistance because the initial contact resistance is high. Further, the separator of Comparative Example 4 has a slightly lower area ratio of gold plating than the separators of Comparative Examples 2, 5, and 6, but the plating portion is not limited to the matrix. A contact resistance superior to that of the separator cannot be realized.
[0023]
F. Observation of Rust after Salt Spray-Drying Test 250 cycles of spraying salt water for 12 hours on each of the seven kinds of unused separators of Examples and Comparative Examples 1 to 6 and then drying for 12 hours were repeated. Thereafter, the surface of each separator was visually observed, and the presence or absence of rust was examined. The results are shown in Table 4. According to the table, generation of rust was confirmed in Comparative Examples 2, 5, and 6, in which the contact resistance after the salt spray-drying test was significantly increased as compared with the initial contact resistance. This is due to the elution of the base material due to the formation of the partial battery described above. In contrast, no rust was observed in Examples and Comparative Examples 1, 3, and 4 in which the contact resistance after the salt spray-drying test was not relatively increased as compared with the initial contact resistance.
[0024]
【The invention's effect】
As described above, according to the present invention, by exposing the conductive inclusions from the surface having corrosion resistance and coating the surface of the surface where the conductive inclusions are not exposed with gold, Excellent contact resistance and corrosion resistance of the separator can be realized. Therefore, the present invention is promising in that a suitable metal separator for a fuel cell can be manufactured.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a molded plate of a separator.
FIG. 2 is a SEM photograph of a surface of a separator of an example.

Claims (3)

耐食性を有する表面から導電性介在物が露出し、前記表面の導電性介在物が露出していない領域に金が被覆されていることを特徴とする燃料電池用金属製セパレータ。A metal separator for a fuel cell, wherein a conductive inclusion is exposed from a surface having corrosion resistance, and gold is coated on a region of the surface where the conductive inclusion is not exposed. 前記導電性介在物が表面から突出していることを特徴とする請求項1に記載の燃料電池用金属製セパレータ。The metal separator for a fuel cell according to claim 1, wherein the conductive inclusions protrude from a surface. 耐食性を有する表面から導電性介在物が露出する素材板の表面に、下地処理を施さず酸性浴にて金めっきを行うことを特徴とする燃料電池用金属製セパレータの製造方法。A method for producing a metal separator for a fuel cell, comprising: performing gold plating in an acidic bath without subjecting a surface treatment to a surface of a material plate from which conductive inclusions are exposed from a surface having corrosion resistance.
JP2002228251A 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof Expired - Fee Related JP3930393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228251A JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228251A JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004071321A true JP2004071321A (en) 2004-03-04
JP3930393B2 JP3930393B2 (en) 2007-06-13

Family

ID=32014990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228251A Expired - Fee Related JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930393B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683419B1 (en) 2005-03-08 2007-02-20 자동차부품연구원 Bipolar plate for fuel cell
JP2010524160A (en) * 2007-04-05 2010-07-15 アトテック・ドイチュラント・ゲーエムベーハー Process for manufacturing electrodes used in fuel cells
DE112008003275T5 (en) 2007-12-07 2010-09-16 Aisin Takaoka Co., Ltd., Toyota Method for producing a fuel cell separator, fuel cell separator and fuel cell
JP2013501340A (en) * 2009-08-21 2013-01-10 ヒュンダイ ハイスコ Metal separator for fuel cell having coating film formed on surface and method for manufacturing the same
US8722267B2 (en) 2007-12-07 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell terminal plate, method for manufacturing the plate, and fuel cell incorporating the plate
WO2016129598A1 (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
WO2016129599A1 (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Separator for solid polymer fuel cell and method for producing same
KR20170031233A (en) 2014-08-19 2017-03-20 신닛테츠스미킨 카부시키카이샤 Metal material and current-carrying component using said metal material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683419B1 (en) 2005-03-08 2007-02-20 자동차부품연구원 Bipolar plate for fuel cell
JP2010524160A (en) * 2007-04-05 2010-07-15 アトテック・ドイチュラント・ゲーエムベーハー Process for manufacturing electrodes used in fuel cells
JP2013225513A (en) * 2007-04-05 2013-10-31 Atotech Deutschland Gmbh Process for manufacturing electrodes for use in fuel cell
DE112008003275T5 (en) 2007-12-07 2010-09-16 Aisin Takaoka Co., Ltd., Toyota Method for producing a fuel cell separator, fuel cell separator and fuel cell
US8722267B2 (en) 2007-12-07 2014-05-13 Toyota Jidosha Kabushiki Kaisha Fuel cell terminal plate, method for manufacturing the plate, and fuel cell incorporating the plate
US8815471B2 (en) 2007-12-07 2014-08-26 Toyota Jidosha Kabushiki Kaisha Method of manufacturing fuel cell separator, fuel cell separator and fuel cell, including gold plating
JP2013501340A (en) * 2009-08-21 2013-01-10 ヒュンダイ ハイスコ Metal separator for fuel cell having coating film formed on surface and method for manufacturing the same
KR20170031233A (en) 2014-08-19 2017-03-20 신닛테츠스미킨 카부시키카이샤 Metal material and current-carrying component using said metal material
US10230115B2 (en) 2014-08-19 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Metallic material, and conductive component including the same
WO2016129599A1 (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Separator for solid polymer fuel cell and method for producing same
JP6057034B1 (en) * 2015-02-13 2017-01-11 新日鐵住金株式会社 Separator for polymer electrolyte fuel cell and method for producing the same
JP6057033B1 (en) * 2015-02-13 2017-01-11 新日鐵住金株式会社 Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
KR20170106512A (en) * 2015-02-13 2017-09-20 신닛테츠스미킨 카부시키카이샤 Ferritic stainless steel material, separator, solid polymer fuel cell, and manufacturing method of separator
CN107210458A (en) * 2015-02-13 2017-09-26 新日铁住金株式会社 Use in solid polymer fuel cell separator and its manufacture method
KR101878115B1 (en) 2015-02-13 2018-08-09 신닛테츠스미킨 카부시키카이샤 Ferritic stainless steel material, separator, solid polymer fuel cell, and manufacturing method of separator
WO2016129598A1 (en) * 2015-02-13 2016-08-18 新日鐵住金株式会社 Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator

Also Published As

Publication number Publication date
JP3930393B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
US20010028974A1 (en) Fuel cell gas separator, manufacturing method thereof, and fuel cell
CN103484910B (en) The method depositing the thin gold plating of durability on fuel battery double plates
JP5325235B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
JP4402630B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP2003511832A (en) Corrosion resistant coated fuel cell bipolar plate with graphite protective film and its production
JP2010027262A (en) Fuel cell separator and fuel cell
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2000323152A (en) Separator for stainless steel low-temperature type fuel cell and manufacture thereof
TWI515944B (en) Stainless steel foil for separator between solid polymer fuel cell
JP3723515B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP3930393B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4234597B2 (en) Manufacturing method of fuel cell separator
JP3917442B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2003187817A (en) Separator for fuel cell
JP5466269B2 (en) Fuel cell separator and fuel cell
TW201727980A (en) Stainless steel sheet for fuel cell separators and method for producing same
WO2003028133A1 (en) Separator for fuel cell
JP2011249148A (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method of manufacturing fuel cell separator material
JP2009104932A (en) Fuel cell separator and its manufacturing method
JP2010086897A (en) Fuel cell separator, and method of manufacturing the same
JP2009099292A (en) Fuel battery cell and fuel battery stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees